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Periodic Timetabling
... is classically modeled by the Periodic Event Scheduling Problem (PESP):
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Periodic Event Scheduling
(Serafini and Ukovich, 1989)

Given
I a weakly connected digraph (“event-activity network”) G = (V ,A),
I a period time T ∈ N,
I lower and upper bounds `, u ∈ ZA

≥0 with ` ≤ u,
I weights w ∈ ZA

≥0,

the Periodic Event Scheduling Problem (PESP) is to solve the MIP

Minimize
∑
a∈A

waxa

s.t. xij = πj − πi + Tpij , ij ∈ A,

`ij ≤ xij ≤ uij , ij ∈ A,

0 ≤ πi < T , i ∈ V ,

pij ∈ Z, ij ∈ A.

We call any feasible π ∈ RV a periodic timetable, x ∈ RA a periodic tension, and
y := x − ` a periodic slack.
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Periodic Event Scheduling
(Serafini and Ukovich, 1989)

Given
I a weakly connected digraph (“event-activity network”) G = (V ,A),
I a period time T ∈ N,
I lower and upper bounds `, u ∈ ZA

≥0 with ` ≤ u,
I weights w ∈ ZA

≥0,

the Periodic Event Scheduling Problem (PESP) is to solve the MIP

Minimize
∑
a∈A

waya

s.t. yij + `ij = πj − πi + Tpij , ij ∈ A,

0 ≤ yij ≤ uij − `ij , ij ∈ A,

0 ≤ πi < T , i ∈ V ,

pij ∈ Z, ij ∈ A.

We call any feasible π ∈ RV a periodic timetable, x := y + ` ∈ RA a
periodic tension, and y a periodic slack.
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Cycle-based MIP Formulation

Theorem (Liebchen, Peeters, 2009)

If Γ ∈ ZB×A is an integral cycle matrix B of G , i.e., a matrix whose rows are
incidence vectors of oriented cycles making up a Z-basis of the cycle space of G ,
then PESP is equivalent to:

Minimize w ty

s.t. Γ(y + `) = Tz ,

0 ≤ y ≤ u − `,
z ∈ ZB .

Related Polytopes

PIP := conv{(y , z) ∈ RA × ZB | Γ(y + `) = Tz , 0 ≤ y ≤ u − `}, convex hull of
feasible solutions

PLP := {(y , z) ∈ RA × RB | Γ(y + `) = Tz , 0 ≤ y ≤ u − `}. polytope of
LP relaxation
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LP Relaxation Polytope

Lemma

PLP = {(y , Γ(y + `)/T ) | 0 ≤ y ≤ u − `}, so the projection to the slack space is
combinatorially equivalent to an |A|-dimensional cube.

Example
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Change-Cycle Inequalities

Theorem (Nachtigall, 1996, 1998)

For any feasible periodic slack y and any oriented cycle γ with positive part γ+ and
negative part γ− holds the change-cycle inequality

(T − α) γt+y + αγt−y ≥ α(T − α), where α := [−γt`]T .

Here, [·]T denotes the modulo T operator with values in [0,T ). The change-cycle
inequalities are facet-defining if α > 0.

Observation

The optimal solution to the LP relaxation is y∗ = 0. This is a feasible periodic slack
if and only if the change-cycle inequality for y∗ = 0 holds for any oriented cycle γ.

⇒ Either y∗ = 0 is optimal, or it is cut off by a change-cycle inequality.
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Change-Cycle Inequality: Example
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The vector y∗ = (0, 0, 0) is an infeasible slack, and it is cut off by the change-cycle
inequality

5yAB + 5yBC + 5yAC ≥ 25.

N. Lindner, C. Liebchen: Determining all integer vertices of the PESP polytope by flipping arcs ATMOS 2020 7 / 21



Change-Cycle Inequality: Example

A

B

C

�[3
, 1

2]

[4, 13]

[2, 11]

(0, 0, 0)

(0, 0, 9)

(0, 9, 0)

(0, 9, 9)

(9, 0, 0)

(9, 0, 9)

(9, 9, 0)

(9, 9, 9)

(0, 5, 0)

(5, 0, 0)

(0, 0, 5)

yAB

yAC

yBC

(yAB , yAC , yBC )

The vector y∗ = (0, 0, 0) is an infeasible slack, and it is cut off by the change-cycle
inequality

5yAB + 5yBC + 5yAC ≥ 25.
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Flipping Arcs
Flipping an arc a ∈ A: Replace a by an arc a in the opposite direction, and set

`a := −ua, ua := −`a. plus a suitable integer multiple of T so that ` ≥ 0

Observation

A vector y ∈ RA is a feasible periodic slack for the original PESP instance if and
only if the vector y with y a = ua − `a − ya and agreeing with y otherwise is a
feasible periodic slack for the PESP instance where a is flipped.

Example
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y = (yAB , yCA, yBC ) = (0, 4, 0)

N. Lindner, C. Liebchen: Determining all integer vertices of the PESP polytope by flipping arcs ATMOS 2020 8 / 21



Flip Inequalities

Theorem (L&L, 2020)

For any feasible periodic slack y , any oriented cycle γ, and any subset F ⊆ A, the
following flip inequality is valid:

(T − αF )
∑

a∈A\F :
γa=1

ya + αF

∑
a∈A\F :
γa=−1

ya

+ αF

∑
a∈F :
γa=1

(ua − `a − ya) + (T − αF )
∑
a∈F :
γa=−1

(ua − `a − ya) ≥ αF (T − αF ),

where

αF :=

− ∑
a∈A\F

γa`a −
∑
a∈F

γaua


T

.

The flip inequalities are facet-defining if αF > 0.

Proof: Flip all arcs in F and transform the change-cycle inequality back. �
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Spanning Tree Solutions

Separating Cube Vertices

Recall that the change-cycle inequalities separate the cube vertex y∗ = 0 from PIP.
Any vertex y∗ of PLP yields a flip F := {a ∈ A | y∗a = ua − `a}. In the flipped PESP
instance, y∗ maps to y∗ = 0. The flip inequalities for F hence separate y∗ from PIP.

Spanning Tree Solutions

We call a point (y∗, z∗) ∈ PLP a spanning tree solution if there is a spanning tree
S s.t. y∗a ∈ {0, ua − `a} for all a ∈ S . The vertices of PIP (Nachtigall, 1998) and
the vertices of PLP (trivially) are always spanning tree solutions.

Theorem (L&L, 2020)

Let (y∗, z∗) ∈ PLP \ PIP be a spanning tree solution. Then (y∗, z∗) is separated
from PIP by at least one of 2(|A| − |V |+ 1) explicit flip inequalities.

For each co-tree arc a′ of the spanning tree S , one can pick the corresponding
fundamental cycle, and the two sets F1 := {a ∈ S | ya = ua − `a}, F2 := F1 ∪ {a′}.
In particular, infeasible spanning tree sols in PLP can be separated in linear time.
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Truncating the Cube
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The change-cycle inequality is the flip inequality for F = ∅ and cuts off (0, 0, 0).
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Truncating the Cube
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Flip AC: In the flipped PESP instance w.r.t. F = {AC}, the change-cycle inequality
is 6yAB + 6yBC + 6yCA ≥ 24, which in the original instance translates to the flip
inequality 6yAB + 6yBC + 6(9− yAC ) ≥ 24. Simplifying, we obtain

yAB + yBC − yAC ≥ −5.

This is one of the two cycle inequalities (Odijk, 1994). It cuts off (0, 9, 0).
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Truncating the Cube
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This is the (projected) flip poly-
tope of our example: All 8 cube
vertices have been cut off by the
corresponding 8 flip inequalities.
It is combinatorially equivalent
to a cuboctahedron with 12 ver-
tices, 24 edges, 14 facets:

6 bound ineq. (← cube)

2 cycle ineq.
1 change-cycle ineq.
5 other flip ineq.

Here, the flip inequalities already
determine PIP: The vertices of
the flip polytope are spanning
tree solutions.

The set of feasible slacks is the
union of the 3 green polygons,
which arise as intersection with
the planes z = γt (y+`)

10
= 0, 1, 2.
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Two Theorems on the Flip Polytope
The flip polytope Pflip is the subpolytope of PLP consisting of all (y , z) such that
y satisfies the flip inequalities for all oriented cycles γ and all F ⊆ A. Clearly
PIP ⊆ Pflip ⊆ PLP.

Theorem (L&L, 2020)

The vertices of PIP are precisely the integer vertices of Pflip.

Pflip hence shows a remarkable structure, as it determines all integer vertices: Every
vertex of PIP appears as a vertex of Pflip, but Pflip might contain more vertices.

Theorem (L&L, 2020)

Suppose that each arc is contained in at most one (undirected) cycle. Then
Pflip = PIP.

This is satisfied, e.g., in our running example. However, we do not have Pflip = PIP

in general: There is an infeasible PESP instance on a wheel graph with Pflip 6= ∅.
The flip inequalities comprise Nachtigall’s change-cycle and Odijk’s cycle
inequalities. However, they differ from the multi-circuit cuts (Liebchen, Swarat,
2008), as the latter detect infeasibility in the aforementioned wheel instance.
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Separating Flips in Practice

Typical PESP Branch-and-Cut Bound Evolution
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← logarithmic time axis

The primal bound on this
tiny instance stops moving
after 10 seconds, proving
optimality takes 30 min-
utes.

Aim: Improve dual bounds
by flip inequalities.

Obstacles
I For each of the potentially exponentially many cycles, there are exponentially

many flips.

I For a general point in PLP, a violated flip inequality can be found in
O(T 2|V |2|A|) time (Borndörfer et al., 2020) → too slow, too much memory.
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Separating Flips in Practice

Heuristics

We propose several heuristics that, given a point (y , z) ∈ PLP of the LP relaxation,
consider the fundamental cycles of a minimum spanning tree w.r.t. y :

Strategy Description

standard violated cycle & change-cycle ineq. for all fundamental cycles
all-flip standard + violated single-arc flip ineq. for all fundamental cycles
max-flip-hybrid standard + if standard does not produce enough cuts:

maximally violated single-arc flip inequality per fundamental cycle
+ 4 more... e.g., precomputing all flip ineq. for all cycles of length ≤ k

Instances
Instance Hardness |V | |A| |A| − |V |+ 1

R1L1-0.6 easy 125 225 101
R4L4-0.6 medium 506 960 455
R1L1 hard 3 664 6 385 2 722
R4L4 extreme 8 384 17 754 9 371

← 4 instances derived
from Marc Goerigk’s
PESPlib

Solver: Concurrent PESP (Borndörfer, Lindner, Roth, 2020) with CPLEX 12.10, 6
threads, Intel Xeon E3-1245 v5 @ 3.5 GHz, 32 GB RAM. Wall time limit: 12 hours.
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Dual Bound Comparison: R1L1-0.6
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standard > max-flip-hybrid > all-flip, no trade-off from adding flip inequalities
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Dual Bound Comparison: R4L4-0.6
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Dual Bound Comparison: R1L1
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max-flip-hybrid > standard, all-flip runs out of memory
new PESPlib dual bound record 20 230 655 (1.8 % improvement)
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Dual Bound Comparison: R4L4
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standard > max-flip-hybrid, all methods run out of memory within 12 h
new PESPlib dual bound record 17 961 400 (13.4 % improvement)
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