

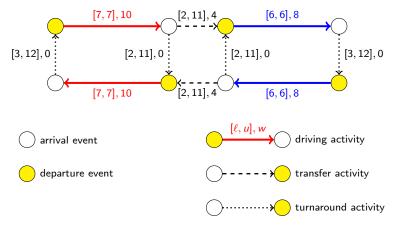
Determining All Integer Vertices of the PESP Polytope by Flipping Arcs ATMOS 2020 · September 7, 2020

> Niels Lindner Zuse Institute Berlin

Christian Liebchen TH Wildau

Periodic Timetabling

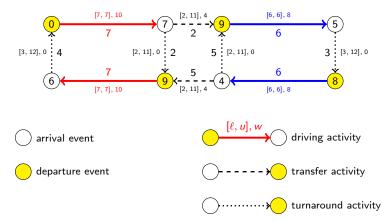
... is classically modeled by the Periodic Event Scheduling Problem (PESP):



PESP instance, period time T = 10

Periodic Timetabling

... is classically modeled by the Periodic Event Scheduling Problem (PESP):



periodic timetable, period time T = 10

Periodic Event Scheduling

(Serafini and Ukovich, 1989)

Given

- ▶ a weakly connected digraph ("event-activity network") G = (V, A),
- ▶ a period time $T \in \mathbb{N}$,
- ▶ lower and upper bounds $\ell, u \in \mathbb{Z}_{\geq 0}^A$ with $\ell \leq u$,
- weights $w \in \mathbb{Z}^{A}_{\geq 0}$,

the Periodic Event Scheduling Problem (PESP) is to solve the MIP

Minimize
$$\sum_{a \in A} w_a x_a$$
 $ij \in A,$ s.t. $x_{ij} = \pi_j - \pi_i + Tp_{ij},$ $ij \in A,$ $\ell_{ij} \leq x_{ij} \leq u_{ij},$ $ij \in A,$ $0 \leq \pi_i < T,$ $i \in V,$ $p_{ij} \in \mathbb{Z},$ $ij \in A.$

We call any feasible $\pi \in \mathbb{R}^V$ a periodic timetable, $x \in \mathbb{R}^A$ a periodic tension, and $y := x - \ell$ a periodic slack.

Periodic Event Scheduling

(Serafini and Ukovich, 1989)

Given

- ▶ a weakly connected digraph ("event-activity network") G = (V, A),
- ▶ a period time $T \in \mathbb{N}$,
- ▶ lower and upper bounds $\ell, u \in \mathbb{Z}_{\geq 0}^{A}$ with $\ell \leq u$,
- weights $w \in \mathbb{Z}^{A}_{\geq 0}$,

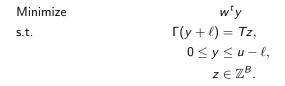
the Periodic Event Scheduling Problem (PESP) is to solve the MIP

We call any feasible $\pi \in \mathbb{R}^V$ a periodic timetable, $x := y + \ell \in \mathbb{R}^A$ a periodic tension, and y a periodic slack.

Cycle-based MIP Formulation

Theorem (Liebchen, Peeters, 2009)

If $\Gamma \in \mathbb{Z}^{B \times A}$ is an *integral cycle matrix* B of G, i.e., a matrix whose rows are incidence vectors of oriented cycles making up a \mathbb{Z} -basis of the cycle space of G, then PESP is equivalent to:



Related Polytopes

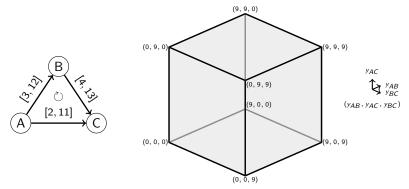
$$\begin{split} P_{\mathsf{IP}} &:= \mathsf{conv}\{(y,z) \in \mathbb{R}^A \times \mathbb{Z}^B \mid \mathsf{\Gamma}(y+\ell) = \mathit{Tz}, 0 \leq y \leq u-\ell\}, & \underset{\mathsf{feasible solutions}}{\overset{\mathsf{convex hull of}}{\mathsf{feasible solutions}}} \\ P_{\mathsf{LP}} &:= \{(y,z) \in \mathbb{R}^A \times \mathbb{R}^B \mid \mathsf{\Gamma}(y+\ell) = \mathit{Tz}, 0 \leq y \leq u-\ell\}. & \underset{\mathsf{LP relaxation}}{\overset{\mathsf{polytope of}}{\mathsf{LP relaxation}}} \end{split}$$

LP Relaxation Polytope

Lemma

 $P_{LP} = \{(y, \Gamma(y + \ell)/T) \mid 0 \le y \le u - \ell\}$, so the projection to the slack space is combinatorially equivalent to an |A|-dimensional cube.

Example



Theorem (Nachtigall, 1996, 1998)

For any feasible periodic slack y and any oriented cycle γ with positive part γ^+ and negative part γ^- holds the change-cycle inequality

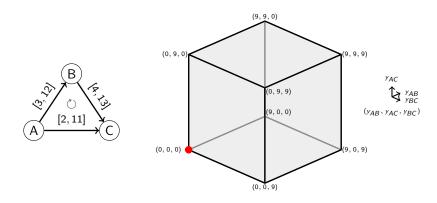
$$(T - \alpha)\gamma_+^t y + \alpha \gamma_-^t y \ge \alpha (T - \alpha), \quad \text{ where } \alpha := [-\gamma^t \ell]_T.$$

Here, $[\cdot]_T$ denotes the modulo T operator with values in [0, T). The change-cycle inequalities are facet-defining if $\alpha > 0$.

Observation

The optimal solution to the LP relaxation is $y^* = 0$. This is a feasible periodic slack if and only if the change-cycle inequality for $y^* = 0$ holds for any oriented cycle γ . \Rightarrow Either $y^* = 0$ is optimal, or it is cut off by a change-cycle inequality.

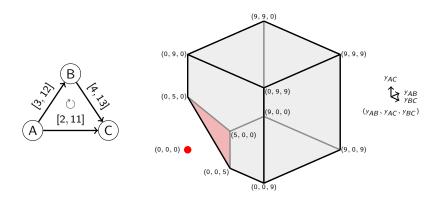
Change-Cycle Inequality: Example



The vector $y^* = (0, 0, 0)$ is an infeasible slack, and it is cut off by the change-cycle inequality

$$5y_{AB}+5y_{BC}+5y_{AC}\geq 25.$$

Change-Cycle Inequality: Example



The vector $y^* = (0, 0, 0)$ is an infeasible slack, and it is cut off by the change-cycle inequality

$$5y_{AB}+5y_{BC}+5y_{AC}\geq 25.$$

Flipping Arcs

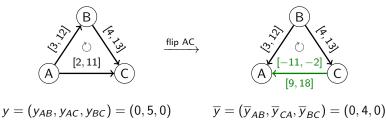
Flipping an arc $a \in A$: Replace a by an arc \overline{a} in the opposite direction, and set

 $\ell_{\overline{a}}:=-u_a, \quad u_{\overline{a}}:=-\ell_a. \qquad \text{plus a suitable integer multiple of T so that $\ell\geq 0$}$

Observation

A vector $y \in \mathbb{R}^A$ is a feasible periodic slack for the original PESP instance if and only if the vector \overline{y} with $\overline{y}_{\overline{a}} = u_a - \ell_a - y_a$ and agreeing with y otherwise is a feasible periodic slack for the PESP instance where a is flipped.

Example



Flip Inequalities

Theorem (L&L, 2020)

For any feasible periodic slack y, any oriented cycle γ , and any subset $F \subseteq A$, the following flip inequality is valid:

$$(T - \alpha_F) \sum_{\substack{a \in A \setminus F: \\ \gamma_a = 1}} y_a + \alpha_F \sum_{\substack{a \in A \setminus F: \\ \gamma_a = -1}} y_a$$

+ $\alpha_F \sum_{\substack{a \in F: \\ \gamma_a = 1}} (u_a - \ell_a - y_a) + (T - \alpha_F) \sum_{\substack{a \in F: \\ \gamma_a = -1}} (u_a - \ell_a - y_a) \ge \alpha_F(T - \alpha_F),$

where

$$\alpha_{F} := \left[-\sum_{\mathbf{a} \in A \setminus F} \gamma_{\mathbf{a}} \ell_{\mathbf{a}} - \sum_{\mathbf{a} \in F} \gamma_{\mathbf{a}} u_{\mathbf{a}} \right]_{T}.$$

The flip inequalities are facet-defining if $\alpha_F > 0$. Proof: Flip all arcs in *F* and transform the change-cycle inequality back.

Spanning Tree Solutions

Separating Cube Vertices

Recall that the change-cycle inequalities separate the cube vertex $y^* = 0$ from P_{IP} . Any vertex y^* of P_{LP} yields a flip $F := \{a \in A \mid y_a^* = u_a - \ell_a\}$. In the flipped PESP instance, y^* maps to $\overline{y^*} = 0$. The flip inequalities for F hence separate y^* from P_{IP} .

Spanning Tree Solutions

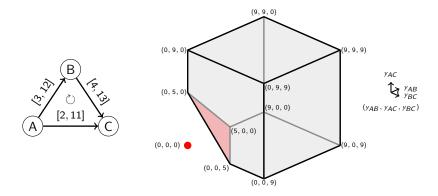
We call a point $(y^*, z^*) \in P_{LP}$ a **spanning tree solution** if there is a spanning tree S s.t. $y_a^* \in \{0, u_a - \ell_a\}$ for all $a \in S$. The vertices of P_{IP} (Nachtigall, 1998) and the vertices of P_{LP} (trivially) are always spanning tree solutions.

Theorem (L&L, 2020)

Let $(y^*, z^*) \in P_{LP} \setminus P_{IP}$ be a spanning tree solution. Then (y^*, z^*) is separated from P_{IP} by at least one of 2(|A| - |V| + 1) explicit flip inequalities.

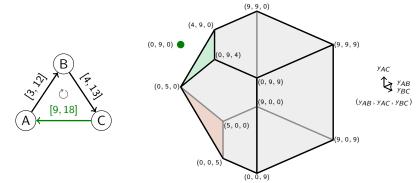
For each co-tree arc a' of the spanning tree S, one can pick the corresponding fundamental cycle, and the two sets $F_1 := \{a \in S \mid y_a = u_a - \ell_a\}, F_2 := F_1 \cup \{a'\}$. In particular, infeasible spanning tree sols in P_{LP} can be separated in linear time.

Truncating the Cube



The change-cycle inequality is the flip inequality for $F = \emptyset$ and cuts off (0, 0, 0).

Truncating the Cube

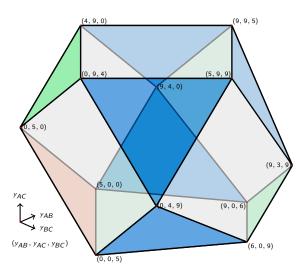


Flip AC: In the flipped PESP instance w.r.t. $F = \{AC\}$, the change-cycle inequality is $6\overline{y}_{AB} + 6\overline{y}_{BC} + 6\overline{y}_{CA} \ge 24$, which in the original instance translates to the flip inequality $6y_{AB} + 6y_{BC} + 6(9 - y_{AC}) \ge 24$. Simplifying, we obtain

$$y_{AB} + y_{BC} - y_{AC} \ge -5$$

This is one of the two cycle inequalities (Odijk, 1994). It cuts off (0, 9, 0).

Truncating the Cube



This is the (projected) *flip poly-tope* of our example: All 8 cube vertices have been cut off by the corresponding 8 flip inequalities. It is combinatorially equivalent to a *cuboctahedron* with 12 vertices, 24 edges, 14 facets:

- 6 bound ineq. (\leftarrow cube)
- 2 cycle ineq.
- 1 change-cycle ineq.
- 5 other flip ineq.

Here, the flip inequalities already determine $P_{\rm IP}$: The vertices of the flip polytope are spanning tree solutions.

The set of feasible slacks is the union of the 3 green polygons, which arise as intersection with the planes $z = \frac{\gamma^t(y+\ell)}{10} = 0, 1, 2.$

Two Theorems on the Flip Polytope

The **flip polytope** P_{flip} is the subpolytope of P_{LP} consisting of all (y, z) such that y satisfies the flip inequalities for all oriented cycles γ and all $F \subseteq A$. Clearly $P_{\text{lP}} \subseteq P_{\text{flip}} \subseteq P_{\text{LP}}$.

Theorem (L&L, 2020)

The vertices of P_{IP} are precisely the integer vertices of P_{flip} .

 $P_{\rm flip}$ hence shows a remarkable structure, as it determines all integer vertices: Every vertex of $P_{\rm IP}$ appears as a vertex of $P_{\rm flip}$, but $P_{\rm flip}$ might contain more vertices.

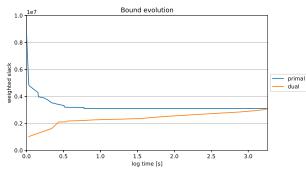
Theorem (L&L, 2020)

Suppose that each arc is contained in at most one (undirected) cycle. Then $P_{flip} = P_{IP}$.

This is satisfied, e.g., in our running example. However, we do not have $P_{\text{flip}} = P_{\text{IP}}$ in general: There is an infeasible PESP instance on a wheel graph with $P_{\text{flip}} \neq \emptyset$. The flip inequalities comprise Nachtigall's change-cycle and Odijk's cycle inequalities. However, they differ from the *multi-circuit cuts* (Liebchen, Swarat, 2008), as the latter detect infeasibility in the aforementioned wheel instance.

Separating Flips in Practice

Typical PESP Branch-and-Cut Bound Evolution



 $\leftarrow \textit{logarithmic time axis}$

The primal bound on this tiny instance stops moving after 10 seconds, proving optimality takes 30 minutes.

Aim: Improve dual bounds by flip inequalities.

Obstacles

- For each of the potentially exponentially many cycles, there are exponentially many flips.
- For a general point in P_{LP} , a violated flip inequality can be found in $O(T^2|V|^2|A|)$ time (Borndörfer et al., 2020) \rightarrow too slow, too much memory.

Separating Flips in Practice

Heuristics

We propose several heuristics that, given a point $(y, z) \in P_{LP}$ of the LP relaxation, consider the fundamental cycles of a minimum spanning tree w.r.t. y:

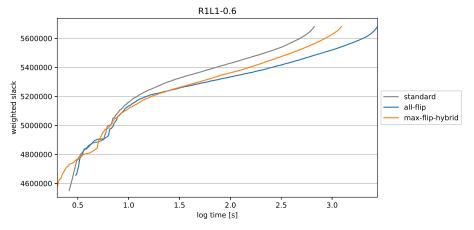
Strategy	Description
standard	violated cycle & change-cycle ineq. for all fundamental cycles
all-flip	standard $+$ violated single-arc flip ineq. for all fundamental cycles
max-flip-hybrid	standard $+$ if standard does not produce enough cuts:
	maximally violated single-arc flip inequality per fundamental cycle
+ 4 more	e.g., precomputing all flip ineq. for all cycles of length $\leq k$

Instances

Instance	Hardness	V	A	$ \mathcal{A} - \mathcal{V} +1$	
R1L1-0.6	easy	125	225	101	\leftarrow 4 instances derived
R4L4-0.6	medium	506	960	455	from Marc Goerigk's
R1L1	hard	3664	6 385	2 7 2 2	PESPlib
R4L4	extreme	8 384	17 754	9 371	

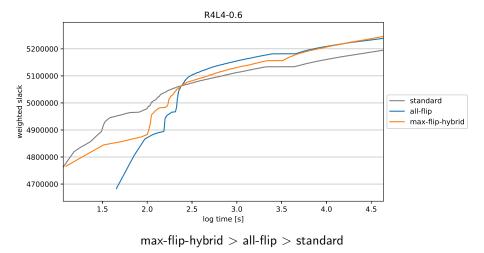
Solver: Concurrent PESP (Borndörfer, Lindner, Roth, 2020) with CPLEX 12.10, 6 threads, Intel Xeon E3-1245 v5 @ 3.5 GHz, 32 GB RAM. Wall time limit: 12 hours.

Dual Bound Comparison: R1L1-0.6

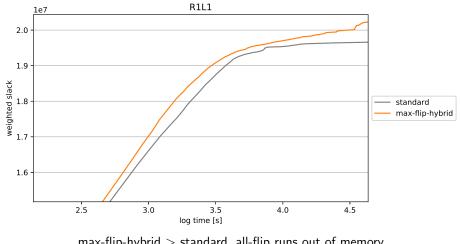


standard > max-flip-hybrid > all-flip, no trade-off from adding flip inequalities

Dual Bound Comparison: R4L4-0.6

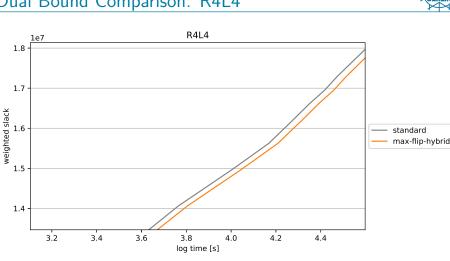


Dual Bound Comparison: R1L1

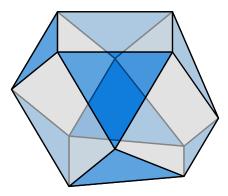


max-flip-hybrid > standard, all-flip runs out of memory new PESPlib dual bound record 20 230 655 (1.8 % improvement)

Dual Bound Comparison: R4L4



standard > max-flip-hybrid, all methods run out of memory within 12 h new PESPlib dual bound record 17 961 400 (13.4 % improvement)



Determining All Integer Vertices of the PESP Polytope by Flipping Arcs ATMOS 2020 · September 7, 2020

> Niels Lindner Zuse Institute Berlin

Christian Liebchen TH Wildau

