

Determining All Integer Vertices of the PESP Polytope by Flipping Arcs ATMOS $2020 \cdot$ September 7, 2020

Niels Lindner Zuse Institute Berlin	Christian Liebchen TH Wildau
MATH+	

Periodic Timetabling

... is classically modeled by the Periodic Event Scheduling Problem (PESP):

\bigcirc arrival event
$\bigcirc \xrightarrow{[\ell, u], w}$ driving activitydeparture event

PESP instance, period time $T=10$

Periodic Timetabling

... is classically modeled by the Periodic Event Scheduling Problem (PESP):
arrival eventdeparture event

periodic timetable, period time $T=10$

Periodic Event Scheduling

(Serafini and Ukovich, 1989)

Given

- a weakly connected digraph ("event-activity network") $G=(V, A)$,
- a period time $T \in \mathbb{N}$,
- lower and upper bounds $\ell, u \in \mathbb{Z}_{\geq 0}^{A}$ with $\ell \leq u$,
- weights $w \in \mathbb{Z}_{\geq 0}^{A}$,
the Periodic Event Scheduling Problem (PESP) is to solve the MIP

$$
\begin{array}{lcl}
\text { Minimize } & \sum_{a \in A} w_{a} x_{a} & \\
\text { s.t. } & x_{i j}=\pi_{j}-\pi_{i}+T p_{i j}, & i j \in A, \\
& \ell_{i j} \leq x_{i j} \leq u_{i j}, & i j \in A, \\
0 \leq \pi_{i}<T, & i \in V, \\
& p_{i j} \in \mathbb{Z}, & i j \in A .
\end{array}
$$

We call any feasible $\pi \in \mathbb{R}^{V}$ a periodic timetable, $x \in \mathbb{R}^{A}$ a periodic tension, and $y:=x-\ell$ a periodic slack.

Periodic Event Scheduling

(Serafini and Ukovich, 1989)

Given

- a weakly connected digraph ("event-activity network") $G=(V, A)$,
- a period time $T \in \mathbb{N}$,
- lower and upper bounds $\ell, u \in \mathbb{Z}_{\geq 0}^{A}$ with $\ell \leq u$,
- weights $w \in \mathbb{Z}_{\geq 0}^{A}$,
the Periodic Event Scheduling Problem (PESP) is to solve the MIP
Minimize

$$
\begin{array}{rlr}
\sum_{a \in A} w_{a} y_{a} & \\
y_{i j}+\ell_{i j}=\pi_{j}-\pi_{i}+T p_{i j}, & & i j \in A, \\
0 \leq y_{i j} \leq u_{i j}-\ell_{i j}, & i j \in A, \\
0 \leq \pi_{i}<T, & i \in V, \\
p_{i j} \in \mathbb{Z}, & i j \in A .
\end{array}
$$

s.t.

We call any feasible $\pi \in \mathbb{R}^{V}$ a periodic timetable, $x:=y+\ell \in \mathbb{R}^{A}$ a periodic tension, and y a periodic slack.

Cycle-based MIP Formulation

Theorem (Liebchen, Peeters, 2009)
If $\Gamma \in \mathbb{Z}^{B \times A}$ is an integral cycle matrix B of G, i.e., a matrix whose rows are incidence vectors of oriented cycles making up a \mathbb{Z}-basis of the cycle space of G, then PESP is equivalent to:

Minimize
s.t.

$$
\begin{gathered}
w^{t} y \\
\Gamma(y+\ell)=T z, \\
0 \leq y \leq u-\ell, \\
z \in \mathbb{Z}^{B} .
\end{gathered}
$$

Related Polytopes

$$
\begin{aligned}
& P_{\mathrm{IP}}:=\operatorname{conv}\left\{(y, z) \in \mathbb{R}^{A} \times \mathbb{Z}^{B} \mid \Gamma(y+\ell)=T z, 0 \leq y \leq u-\ell\right\}, \quad \begin{array}{r}
\text { convex hull of } \\
\text { feasible solutions }
\end{array} \\
& P_{\mathrm{LP}}:=\left\{(y, z) \in \mathbb{R}^{A} \times \mathbb{R}^{B} \mid \Gamma(y+\ell)=T z, 0 \leq y \leq u-\ell\right\}
\end{aligned}
$$

LP Relaxation Polytope

Lemma

$P_{L P}=\{(y, \Gamma(y+\ell) / T) \mid 0 \leq y \leq u-\ell\}$, so the projection to the slack space is combinatorially equivalent to an $|A|$-dimensional cube.

Example

Change-Cycle Inequalities

Theorem (Nachtigall, 1996, 1998)

For any feasible periodic slack y and any oriented cycle γ with positive part γ^{+}and negative part γ^{-}holds the change-cycle inequality

$$
(T-\alpha) \gamma_{+}^{t} y+\alpha \gamma_{-}^{t} y \geq \alpha(T-\alpha), \quad \text { where } \alpha:=\left[-\gamma^{t} \ell\right]_{T}
$$

Here, $[\cdot]_{T}$ denotes the modulo T operator with values in $[0, T)$. The change-cycle inequalities are facet-defining if $\alpha>0$.

Observation

The optimal solution to the LP relaxation is $y^{*}=0$. This is a feasible periodic slack if and only if the change-cycle inequality for $y^{*}=0$ holds for any oriented cycle γ.
\Rightarrow Either $y^{*}=0$ is optimal, or it is cut off by a change-cycle inequality.

Change-Cycle Inequality: Example

The vector $y^{*}=(0,0,0)$ is an infeasible slack, and it is cut off by the change-cycle inequality

$$
5 y_{A B}+5 y_{B C}+5 y_{A C} \geq 25 .
$$

Change-Cycle Inequality: Example

The vector $y^{*}=(0,0,0)$ is an infeasible slack, and it is cut off by the change-cycle inequality

$$
5 y_{A B}+5 y_{B C}+5 y_{A C} \geq 25 .
$$

Flipping Arcs

Flipping an arc $a \in A$: Replace a by an arc \bar{a} in the opposite direction, and set

$$
\ell_{\bar{a}}:=-u_{a}, \quad u_{\bar{a}}:=-\ell_{a} . \quad \text { plus a suitable integer multiple of } T \text { so that } \ell \geq 0
$$

Observation

A vector $y \in \mathbb{R}^{A}$ is a feasible periodic slack for the original PESP instance if and only if the vector \bar{y} with $\bar{y}_{\bar{a}}=u_{a}-\ell_{a}-y_{a}$ and agreeing with y otherwise is a feasible periodic slack for the PESP instance where a is flipped.

Example

$$
y=\left(y_{A B}, y_{A C}, y_{B C}\right)=(0,5,0) \quad \bar{y}=\left(\bar{y}_{A B}, \bar{y}_{C A}, \bar{y}_{B C}\right)=(0,4,0)
$$

Flip Inequalities

Theorem (L\&L, 2020)

For any feasible periodic slack y, any oriented cycle γ, and any subset $F \subseteq A$, the following flip inequality is valid:

$$
\begin{aligned}
& \left(T-\alpha_{F}\right) \sum_{\substack{a \in A \backslash F: \\
\gamma_{a}=1}} y_{a}+\alpha_{F} \sum_{\substack{a \in A \backslash F: \\
\gamma_{a}=-1}} y_{a} \\
& +\alpha_{F} \sum_{\substack{a \in F: \\
\gamma_{a}=1}}\left(u_{a}-\ell_{a}-y_{a}\right)+\left(T-\alpha_{F}\right) \sum_{\substack{a \in F: \\
\gamma_{a}=-1}}\left(u_{a}-\ell_{a}-y_{a}\right) \geq \alpha_{F}\left(T-\alpha_{F}\right),
\end{aligned}
$$

where

$$
\alpha_{F}:=\left[-\sum_{a \in A \backslash F} \gamma_{a} \ell_{a}-\sum_{a \in F} \gamma_{a} u_{a}\right]_{T} .
$$

The flip inequalities are facet-defining if $\alpha_{F}>0$.
Proof: Flip all arcs in F and transform the change-cycle inequality back.

Spanning Tree Solutions

Separating Cube Vertices

Recall that the change-cycle inequalities separate the cube vertex $y^{*}=0$ from P_{IP}. Any vertex y^{*} of P_{LP} yields a flip $F:=\left\{a \in A \mid y_{a}^{*}=u_{a}-\ell_{a}\right\}$. In the flipped PESP instance, y^{*} maps to $\overline{y^{*}}=0$. The flip inequalities for F hence separate y^{*} from P_{IP}.

Spanning Tree Solutions

We call a point $\left(y^{*}, z^{*}\right) \in P_{\mathrm{LP}}$ a spanning tree solution if there is a spanning tree S s.t. $y_{a}^{*} \in\left\{0, u_{a}-\ell_{a}\right\}$ for all $a \in S$. The vertices of P_{IP} (Nachtigall, 1998) and the vertices of P_{LP} (trivially) are always spanning tree solutions.

Theorem (L\&L, 2020)

Let $\left(y^{*}, z^{*}\right) \in P_{\text {LP }} \backslash P_{\text {IP }}$ be a spanning tree solution. Then $\left(y^{*}, z^{*}\right)$ is separated from $P_{\text {IP }}$ by at least one of $2(|A|-|V|+1)$ explicit flip inequalities.
For each co-tree arc a^{\prime} of the spanning tree S, one can pick the corresponding fundamental cycle, and the two sets $F_{1}:=\left\{a \in S \mid y_{a}=u_{a}-\ell_{a}\right\}, F_{2}:=F_{1} \cup\left\{a^{\prime}\right\}$. In particular, infeasible spanning tree sols in P_{LP} can be separated in linear time.

Truncating the Cube

The change-cycle inequality is the flip inequality for $F=\emptyset$ and cuts off $(0,0,0)$.

Truncating the Cube

Flip AC: In the flipped PESP instance w.r.t. $F=\{A C\}$, the change-cycle inequality is $6 \bar{y}_{A B}+6 \bar{y}_{B C}+6 \bar{y}_{C A} \geq 24$, which in the original instance translates to the flip inequality $6 y_{A B}+6 y_{B C}+6\left(9-y_{A C}\right) \geq 24$. Simplifying, we obtain

$$
y_{A B}+y_{B C}-y_{A C} \geq-5 .
$$

This is one of the two cycle inequalities (Odijk, 1994). It cuts off $(0,9,0)$.

Truncating the Cube

This is the (projected) flip poly-
 tope of our example: All 8 cube vertices have been cut off by the corresponding 8 flip inequalities. It is combinatorially equivalent to a cuboctahedron with 12 vertices, 24 edges, 14 facets:
$\square 6$ bound ineq. (\leftarrow cube)
$\square 2$ cycle ineq.
$\square 1$ change-cycle ineq.
\square 5 other flip ineq.

Here, the flip inequalities already determine P_{IP} : The vertices of the flip polytope are spanning tree solutions.
The set of feasible slacks is the union of the 3 green polygons, which arise as intersection with the planes $z=\frac{\gamma^{t}(y+\ell)}{10}=0,1,2$.

Two Theorems on the Flip Polytope

The flip polytope $P_{\text {flip }}$ is the subpolytope of P_{LP} consisting of all (y, z) such that y satisfies the flip inequalities for all oriented cycles γ and all $F \subseteq A$. Clearly $P_{\mathrm{IP}} \subseteq P_{\mathrm{flip}} \subseteq P_{\mathrm{LP}}$.

Theorem (L\&L, 2020)

The vertices of $P_{I P}$ are precisely the integer vertices of $P_{\text {flip }}$.
$P_{\text {flip }}$ hence shows a remarkable structure, as it determines all integer vertices: Every vertex of P_{IP} appears as a vertex of $P_{\text {flip }}$, but $P_{\text {flip }}$ might contain more vertices.

Theorem (L\&L, 2020)
Suppose that each arc is contained in at most one (undirected) cycle. Then $P_{\text {flip }}=P_{\text {IP }}$.
This is satisfied, e.g., in our running example. However, we do not have $P_{\text {flip }}=P_{\mathrm{IP}}$ in general: There is an infeasible PESP instance on a wheel graph with $P_{\text {flip }} \neq \emptyset$. The flip inequalities comprise Nachtigall's change-cycle and Odijk's cycle inequalities. However, they differ from the multi-circuit cuts (Liebchen, Swarat, 2008), as the latter detect infeasibility in the aforementioned wheel instance.

Separating Flips in Practice

Typical PESP Branch-and-Cut Bound Evolution

\leftarrow logarithmic time axis The primal bound on this tiny instance stops moving after 10 seconds, proving optimality takes 30 min utes.
Aim: Improve dual bounds by flip inequalities.

Obstacles

- For each of the potentially exponentially many cycles, there are exponentially many flips.
- For a general point in P_{LP}, a violated flip inequality can be found in $O\left(T^{2}|V|^{2}|A|\right)$ time (Borndörfer et al., 2020) \rightarrow too slow, too much memory.

Separating Flips in Practice

Heuristics

We propose several heuristics that, given a point $(y, z) \in P_{\mathrm{LP}}$ of the LP relaxation, consider the fundamental cycles of a minimum spanning tree w.r.t. y :

Strategy	Description
standard	violated cycle \& change-cycle ineq. for all fundamental cycles
all-flip	standard + violated single-arc flip ineq. for all fundamental cycles
max-flip-hybrid	standard + if standard does not produce enough cuts: maximally violated single-arc flip inequality per fundamental cycle
+4 more...	e.g., precomputing all flip ineq. for all cycles of length $\leq k$

Instances

Instance	Hardness	$\|V\|$	$\|A\|$	$\|A\|-\|V\|+1$
R1L1-0.6	easy	125	225	101
R4L4-0.6	medium	506	960	455
R1L1	hard	3664	6385	2722
R4L4	extreme	8384	17754	9371

$\leftarrow 4$ instances derived from Marc Goerigk's PESPlib

Solver: Concurrent PESP (Borndörfer, Lindner, Roth, 2020) with CPLEX 12.10, 6 threads, Intel Xeon E3-1245 v5 @ $3.5 \mathrm{GHz}, 32 \mathrm{~GB}$ RAM. Wall time limit: 12 hours.

Dual Bound Comparison: R1L1-0.6

standard $>$ max-flip-hybrid $>$ all-flip, no trade-off from adding flip inequalities

Dual Bound Comparison: R4L4-0.6

max-flip-hybrid $>$ all-flip $>$ standard

Dual Bound Comparison: R1L1

max-flip-hybrid > standard, all-flip runs out of memory new PESPlib dual bound record 20230655 (1.8 \% improvement)

Dual Bound Comparison: R4L4

standard > max-flip-hybrid, all methods run out of memory within 12 h new PESPlib dual bound record 17961400 (13.4 \% improvement)

Determining All Integer Vertices of the PESP Polytope by Flipping Arcs ATMOS $2020 \cdot$ September 7, 2020

Niels Lindner	Christian Liebchen TH Wildau
$M A T M+$	

