Forward Cycle Bases and Periodic Timetabling

Niels Lindner
Zuse Institute Berlin

Christian Liebchen
Technical University of Applied Sciences
Wildau
Berenike Masing
Zuse Institute Berlin

ATMOS 2021
September 9 and 10, 2021

Periodic Event Scheduling Problem (PESP)

Given
$G=(V, A)$ event-activity network,
$T \in \mathbb{N} \quad$ period time,
$\ell \in \mathbb{Z}^{A} \quad$ lower bounds,
$u \in \mathbb{Z}^{A} \quad$ upper bounds,
$w \in \mathbb{R}_{\geq 0}^{A} \quad$ weights,
find
$\pi \in[0, T)^{V} \quad$ periodic timetable,
$x \in \mathbb{R}^{A} \quad$ periodic tension
such that
(1) $\pi_{j}-\pi_{i} \equiv x_{i j} \bmod T$ for all $i j \in A$,
(2) $\ell \leq x \leq u$,
(3) $w^{\top} x$ is minimum,
or decide that no such (π, x) exists.

Periodic Event Scheduling Problem (PESP)

Given
$G=(V, A)$ event-activity network, $T \in \mathbb{N} \quad$ period time,
$\ell \in \mathbb{Z}^{A} \quad$ lower bounds,
$u \in \mathbb{Z}^{A} \quad$ upper bounds,
$w \in \mathbb{R}_{\geq 0}^{A} \quad$ weights,
find
$\pi \in[0, T)^{V} \quad$ periodic timetable,
$x \in \mathbb{R}^{A} \quad$ periodic tension
such that
(1) $\pi_{j}-\pi_{i} \equiv x_{i j} \bmod T$ for all $i j \in A$,
(2) $\ell \leq x \leq u$,
(3) $w^{\top} x$ is minimum,
or decide that no such (π, x) exists.

Cycle-based MIP formulation:
(Nachtigall, 1994, Liebchen and Peeters, 2009)
Minimize

$$
\begin{gathered}
w^{\top} x \\
\Gamma x=T z, \\
\ell \leq x \leq u, \\
z \in \mathbb{Z}^{B}
\end{gathered}
$$

s.t.
$B \subseteq \mathbb{Z}^{A} \quad$ integral cycle basis of G
$\Gamma \in \mathbb{Z}^{B \times A} \quad$ cycle matrix of B
$z \in \mathbb{Z}^{B} \quad$ modulo parameters

Periodic Event Scheduling Problem (PESP)

Given
$G=(V, A)$ event-activity network,
$T \in \mathbb{N} \quad$ period time,
$\ell \in \mathbb{Z}^{A} \quad$ lower bounds,
$u \in \mathbb{Z}^{A} \quad$ upper bounds,
$w \in \mathbb{R}_{\geq 0}^{A} \quad$ weights,
find
$\pi \in[0, T)^{V} \quad$ periodic timetable,
$x \in \mathbb{R}^{A} \quad$ periodic tension
such that
(1) $\pi_{j}-\pi_{i} \equiv x_{i j} \bmod T$ for all $i j \in A$,
(2) $\ell \leq x \leq u$,
(3) $w^{\top} x$ is minimum,
or decide that no such (π, x) exists.

Cycle-based MIP formulation:
(Nachtigall, 1994, Liebchen and Peeters, 2009)
Minimize
s.t.

$$
\begin{gathered}
w^{\top} x \\
\Gamma x=T z \\
\ell \leq x \leq u \\
z \in \mathbb{Z}^{B}
\end{gathered}
$$

$B \subseteq \mathbb{Z}^{A} \quad$ integral cycle basis of G
$\Gamma \in \mathbb{Z}^{B \times A} \quad$ cycle matrix of B
$z \in \mathbb{Z}^{B} \quad$ modulo parameters
Cycle inequalities:
(Odijk, 1994)

$$
\left\lceil\frac{\gamma_{+}^{\top} \ell-\gamma_{-}^{\top} u}{T}\right\rceil \leq \frac{\gamma^{\top} x}{T} \leq\left\lfloor\frac{\gamma_{+}^{\top} u-\gamma_{-}^{\top} \ell}{T}\right\rfloor
$$

for each oriented cycle $\gamma \in\{-1,0,1\}^{A}$.

A Small PESP Instance: Cycle Inequalities

PESP instance with period time $T=10$:

A Small PESP Instance: Cycle Inequalities

PESP instance with period time $T=10$:

A Small PESP Instance: Cycle Inequalities

PESP instance with period time $T=10$:

Relaxation
LP relaxation
$+\gamma_{2}^{\top} x \geq 10\left\lceil\frac{3+1+3+1}{10}\right\rceil=10$
Optimal weighted slack
$\gamma_{2}^{\top} x=3+1+3+3=10$

A Small PESP Instance: Cycle Inequalities

PESP instance with period time $T=10$:

A Small PESP Instance: Cycle Inequalities

PESP instance with period time $T=10$:

Relaxation
LP relaxation

$$
\left.\left.\begin{array}{l}
+\gamma_{2}^{\top} x \geq 10 \tag{0}\\
+\gamma_{1}^{\top} x \geq 10\left\lceil\frac{\frac{3+1+3+1}{10}}{\frac{1+1+1-7}{10}}\right\rceil=10 \\
+\gamma_{3}^{\top} x \geq 10
\end{array} \right\rvert\, \frac{1+1+1-7}{10}\right\rceil=0 \quad 0
$$

Optimal weighted slack

$$
\gamma_{2}^{\top} x=3+1+3+3=10
$$

$\gamma_{2}^{\top} x=3+1+3+3=10 \quad 0$

$$
\gamma_{1}^{\top} x=1+1+1-1=2
$$

$\gamma_{1}^{\top} x=1+1+1-1=2 \quad 0$

$$
\gamma_{3}^{\top} x=1+1+1-3=0
$$

$\gamma_{3}^{\top} x=1+1+1-3=0$

A Small PESP Instance: Cycle Inequalities

PESP instance with period time $T=10$:

Relaxation
LP relaxation

$$
\begin{align*}
& +\gamma_{2}^{\top} x \geq 10\left[\frac{3+1+3+1}{10}\right]=10 \tag{0}\\
& \begin{array}{l}
+\gamma_{2}^{\top} x \geq 10\left\lceil\frac{3+1+3+1}{1+1}\right\rceil=10 \\
\left.+\gamma_{1}^{\top} x \geq 10-\frac{1+1+1-7}{10}\right\rceil=0 \\
+\gamma_{3}^{\top} x \geq 10\left\lceil\frac{1+1+1-7}{10}\right\rceil=0 \\
+\left(\gamma_{1}+\gamma_{2}\right)^{\top} x \geq 10\left\lceil\frac{10}{10}\right\rceil=10
\end{array} \tag{0}
\end{align*}
$$

Optimal weighted slack

$$
\begin{array}{ll}
\gamma_{2}^{\top} x=3+1+3+3=10 & 0 \\
\gamma_{1}^{\top} x=1+1+1-1=2 & 0 \\
\gamma_{3}^{\top} x=1+1+1-3=0 & 0 \\
\left(\gamma_{1}+\gamma_{2}\right)^{\top} x=12 & 0 \tag{0}
\end{array}
$$

A Small PESP Instance: Cycle Inequalities

PESP instance with period time $T=10$:

Relaxation
Optimal weighted slack
LP relaxation

$$
+\gamma_{2}^{\top} x \geq 10\left[\frac{3+1+3+1}{1+101}\right]=10
$$

$$
\gamma_{2}^{\top} x=3+1+3+3=10
$$

$$
\gamma_{1}^{\top} x=1+1+1-1=2 \quad 0
$$

$$
\begin{equation*}
\gamma_{3}^{\top} x=1+1+1-3=0 \tag{0}
\end{equation*}
$$

$\left(\gamma_{1}+\gamma_{2}\right)^{\top} x=12$
$\left(\gamma_{2}+\gamma_{3}\right)^{\top} x=10$

A Small PESP Instance: Cycle Inequalities

PESP instance with period time $T=10$:

Relaxation

Optimal weighted slack
$\gamma_{2}^{\top} x=3+1+3+3=10$
$\gamma_{1}^{\top} x=1+9+1-1=10$
$\gamma_{3}^{\top} x=1+1+1-3=0$
$\left(\gamma_{1}+\gamma_{2}\right)^{\top} x=20$
$\left(\gamma_{2}+\gamma_{3}\right)^{\top} x=10$
$\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)^{\top} x=20$

A Small PESP Instance: Cycle Inequalities

PESP instance with period time $T=10$:

Relaxation
Optimal weighted slack
LP relaxation

$+\gamma_{2}^{\top} x \geq 10\left\lceil\left[\frac{3+1+3+1}{10}\right]=10\right.$	$\gamma_{2}^{\top} x=3+1+3+3=10$	0
$\left.+\gamma_{1}^{\top} x \geq 10-\frac{1+1+1-7}{10}\right\rceil=0$	$\gamma_{1}^{\top} x=1+9+1-1=10$	0
$+\gamma_{3}^{\top} x \geq 10\left\lceil\frac{1+1+1-7}{10}\right\rceil=0$	$\gamma_{3}^{\top} x=1+1+1-3=0$	0
$+\left(\gamma_{1}+\gamma_{2}\right)^{\top} x \geq 10\left\lceil\frac{10}{10}\right\rceil=10$	$\left(\gamma_{1}+\gamma_{2}\right)^{\top} x=20$	0
$+\left(\gamma_{2}+\gamma_{3}\right)^{\top} x \geq 10\left\lceil\frac{10}{10}\right\rceil=10$	$\left(\gamma_{2}+\gamma_{3}\right)^{\top} x=10$	0
$+\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)^{\top} x \geq 10\left\lceil\frac{12}{10}\right\rceil=20$	$\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)^{\top} x=20$	80
PESP MIP		80

A Small PESP Instance: Conclusions

Observation

- Cycle inequalities derived from the planar cycle basis $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ are useless. This is also the integral cycle basis with minimum span $u-\ell$.
- The only contributing cycle inequalities come from the forward cycles γ_{2} and $\gamma_{1}+\gamma_{2}+\gamma_{3}$.
- If the cycle basis contains the "vehicle rotation" $\gamma_{1}+\gamma_{2}+\gamma_{3}$, then the LP relaxation closes the MIP optimality gap at the root node.
- $\gamma_{1}+\gamma_{2}+\gamma_{3}$ is the only cycle where are arcs have positive weight.

A Small PESP Instance: Conclusions

Observation

- Cycle inequalities derived from the planar cycle basis $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ are useless. This is also the integral cycle basis with minimum span $u-\ell$.
- The only contributing cycle inequalities come from the forward cycles γ_{2} and $\gamma_{1}+\gamma_{2}+\gamma_{3}$.
- If the cycle basis contains the "vehicle rotation" $\gamma_{1}+\gamma_{2}+\gamma_{3}$, then the LP relaxation closes the MIP optimality gap at the root node.
- $\gamma_{1}+\gamma_{2}+\gamma_{3}$ is the only cycle where are arcs have positive weight.

Idea
Look for cycle bases consisting of forward or heavy-weight cycles.

A Small PESP Instance: Conclusions

Observation

- Cycle inequalities derived from the planar cycle basis $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ are useless. This is also the integral cycle basis with minimum span $u-\ell$.
- The only contributing cycle inequalities come from the forward cycles γ_{2} and $\gamma_{1}+\gamma_{2}+\gamma_{3}$.
- If the cycle basis contains the "vehicle rotation" $\gamma_{1}+\gamma_{2}+\gamma_{3}$, then the LP relaxation closes the MIP optimality gap at the root node.
- $\gamma_{1}+\gamma_{2}+\gamma_{3}$ is the only cycle where are arcs have positive weight.

Idea
Look for cycle bases consisting of forward or heavy-weight cycles.

Some Benefits of Forward Cycles

- cycle inequalities = change-cycle inequalities.
- increasing the modulo parameters correlates with increasing objective value

Cycle Space and Cycle Bases

Let $G=(V, A)$ be a digraph.
Cycle space:

$$
\mathcal{C}:=\left\{\gamma \in \mathbb{Z}^{A} \mid \forall v \in V: \sum_{a \in \delta^{+}(v)} \gamma_{a}=\sum_{a \in \delta^{-}(v)} \gamma_{a}\right\} \quad \text { (abelian group) }
$$

Cycle Space and Cycle Bases

Let $G=(V, A)$ be a digraph.
Cycle space:

$$
\mathcal{C}:=\left\{\gamma \in \mathbb{Z}^{A} \mid \forall v \in V: \sum_{a \in \delta^{+}(v)} \gamma_{a}=\sum_{a \in \delta^{-}(v)} \gamma_{a}\right\} \quad \text { (abelian group) }
$$

Oriented cycle: vector $\gamma \in \mathcal{C} \cap\{-1,0,1\}^{A}$

Cycle Space and Cycle Bases

Let $G=(V, A)$ be a digraph.
Cycle space:

$$
\mathcal{C}:=\left\{\gamma \in \mathbb{Z}^{A} \mid \forall v \in V: \sum_{a \in \delta^{+}(v)} \gamma_{a}=\sum_{a \in \delta^{-}(v)} \gamma_{a}\right\} \quad \text { (abelian group) }
$$

Oriented cycle: vector $\gamma \in \mathcal{C} \cap\{-1,0,1\}^{A}$
Cycle bases: set $B=\left\{\gamma_{1}, \ldots, \gamma_{\mu}\right\}$ of $\mu:=\operatorname{rank}(\mathcal{C})$ oriented cycles s.t.
(1) $\quad B$ basis of \mathbb{R}-vector space $\mathcal{C} \otimes \mathbb{R}$
(2) $\quad B$ basis of \mathbb{F}_{2}-vector space $\mathcal{C} \otimes \mathbb{F}_{2}$
(3) B basis of abelian group \mathcal{C}
(4) $\forall i \exists a \in \gamma_{i} \backslash\left(\gamma_{1} \cup \cdots \cup \gamma_{i-1}\right)$
(5) B fundamental cycles of spanning forest strictly fundamental cycle basis

Cycle Space and Cycle Bases

Let $G=(V, A)$ be a digraph.
Cycle space:

$$
\mathcal{C}:=\left\{\gamma \in \mathbb{Z}^{A} \mid \forall v \in V: \sum_{a \in \delta^{+}(v)} \gamma_{a}=\sum_{a \in \delta^{-}(v)} \gamma_{a}\right\} \quad \text { (abelian group) }
$$

Oriented cycle: vector $\gamma \in \mathcal{C} \cap\{-1,0,1\}^{A}$
Cycle bases: set $B=\left\{\gamma_{1}, \ldots, \gamma_{\mu}\right\}$ of $\mu:=\operatorname{rank}(\mathcal{C})$ oriented cycles s.t.
(1) $\quad B$ basis of \mathbb{R}-vector space $\mathcal{C} \otimes \mathbb{R}$
(2) $\quad B$ basis of \mathbb{F}_{2}-vector space $\mathcal{C} \otimes \mathbb{F}_{2}$
(3) B basis of abelian group \mathcal{C}
(4) $\forall i \exists a \in \gamma_{i} \backslash\left(\gamma_{1} \cup \cdots \cup \gamma_{i-1}\right)$
(5) B fundamental cycles of spanning forest strictly fundamental cycle basis

Cycle matrix: representation matrix $\Gamma \in\{-1,0,1\}^{B \times A}$ of some cycle basis B

Cycle Space and Cycle Bases

Let $G=(V, A)$ be a digraph.
Cycle space:

$$
\mathcal{C}:=\left\{\gamma \in \mathbb{Z}^{A} \mid \forall v \in V: \sum_{a \in \delta^{+}(v)} \gamma_{a}=\sum_{a \in \delta^{-}(v)} \gamma_{a}\right\} \quad \text { (abelian group) }
$$

Oriented cycle: vector $\gamma \in \mathcal{C} \cap\{-1,0,1\}^{A}$
Cycle bases: set $B=\left\{\gamma_{1}, \ldots, \gamma_{\mu}\right\}$ of $\mu:=\operatorname{rank}(\mathcal{C})$ oriented cycles s.t.
(1) $\quad B$ basis of \mathbb{R}-vector space $\mathcal{C} \otimes \mathbb{R}$
(2) $\quad B$ basis of \mathbb{F}_{2}-vector space $\mathcal{C} \otimes \mathbb{F}_{2}$
(3) B basis of abelian group \mathcal{C}
(4) $\forall i \exists a \in \gamma_{i} \backslash\left(\gamma_{1} \cup \cdots \cup \gamma_{i-1}\right)$
(5) B fundamental cycles of spanning forest strictly fundamental cycle basis

Cycle matrix: representation matrix $\Gamma \in\{-1,0,1\}^{B \times A}$ of some cycle basis B
Hierarchy: $(5) \Rightarrow(4) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$
(Kavitha et al., 2009)

Forward Cycle Bases

Forward cycle: vector $\gamma \in \mathcal{C} \cap\{0,1\}^{A}$ (\Leftrightarrow oriented cycle with no backward arcs) Forward cycle basis: cycle basis B consisting only of forward cycles

Forward Cycle Bases

Forward cycle: vector $\gamma \in \mathcal{C} \cap\{0,1\}^{A}$ (\Leftrightarrow oriented cycle with no backward arcs) Forward cycle basis: cycle basis B consisting only of forward cycles Theorem (Seymour and Thomassen, 1987)
G has a forward directed cycle basis \Leftrightarrow each 2-edge-connected component of G is strongly connected.

Forward Cycle Bases

Forward cycle: vector $\gamma \in \mathcal{C} \cap\{0,1\}^{A}$ (\Leftrightarrow oriented cycle with no backward arcs) Forward cycle basis: cycle basis B consisting only of forward cycles

Theorem (Seymour and Thomassen, 1987)

G has a forward directed cycle basis
\Leftrightarrow each 2-edge-connected component of G is strongly connected.

Example: Non-Existence of Forward Strictly Fundamental Bases

Every digraph has a spanning forest, and hence a strictly fundamental cycle basis. But: Not every strongly connected G has a forward strictly fundamental cycle basis.

Forward Cycle Bases

Forward cycle: vector $\gamma \in \mathcal{C} \cap\{0,1\}^{A}$ (\Leftrightarrow oriented cycle with no backward arcs) Forward cycle basis: cycle basis B consisting only of forward cycles

Theorem (Seymour and Thomassen, 1987)

G has a forward directed cycle basis
\Leftrightarrow each 2-edge-connected component of G is strongly connected.

Example: Non-Existence of Forward Strictly Fundamental Bases

Every digraph has a spanning forest, and hence a strictly fundamental cycle basis. But: Not every strongly connected G has a forward strictly fundamental cycle basis.

-

G directed Hamiltonian $\Rightarrow G$ strongly connected no spanning tree with exclusively forward fundamental cycles forward weakly fundamental cycle basis by first 4 cycles

A Standard Construction

Question

How can we ensure existence of forward integral cycle bases for PESP instances?

A Standard Construction

Question

How can we ensure existence of forward integral cycle bases for PESP instances?
Line-Based Event-Activity Networks

line network 3 bidirectional lines

event-activity network drive, dwell, turnaround, transfer activities

ILTY Cycles

ILTY cycles at a station:

	\# dwell	\# transfer
I	2	0
L	0	2
T	1	2
Y	3	0

I

T

L

ILTY cycles at a station:

	\# dwell	\# transfer
I	2	0
L	0	2
T	1	2
Y	3	0

Theorem (LLM, 2021)
The set B_{s} of ILTY cycles at a station s through a fixed event at s is a weakly fundamental basis for the space spanned by all ILTY cycles at s.
There is B^{\prime} s.t. $B^{\prime} \cup \bigcup_{s \in S} B_{s}$ is a forward integral cycle basis, and B^{\prime} projects to a strictly fundamental cycle basis of the line network.

Minimum Forward Cycle Bases

Weights for Cycle Bases

Let $c \in \mathbb{R}_{\geq 0}^{A}$ be a weight vector.
Weight of a cycle basis: $c(B)=\sum_{\gamma \in B} \sum_{a \in \gamma} \gamma_{a}$

Minimum Forward Cycle Bases

Weights for Cycle Bases

Let $c \in \mathbb{R}_{\geq 0}^{A}$ be a weight vector.
Weight of a cycle basis: $c(B)=\sum_{\gamma \in B} \sum_{a \in \gamma} \gamma_{a}$
Finding Minimum Weight Cycle Bases
Motivation: weight of B w.r.t. $u-\ell \approx \log \left(\#\right.$ possible modulo parameters $\left.z \in \mathbb{Z}^{B}\right)$

Minimum Forward Cycle Bases

Weights for Cycle Bases

Let $c \in \mathbb{R}_{\geq 0}^{A}$ be a weight vector.
Weight of a cycle basis: $c(B)=\sum_{\gamma \in B} \sum_{a \in \gamma} \gamma_{a}$
Finding Minimum Weight Cycle Bases
Motivation: weight of B w.r.t. $u-\ell \approx \log \left(\#\right.$ possible modulo parameters $\left.z \in \mathbb{Z}^{B}\right)$

	type	complexity (oriented)
(1)	directed	P (Horton's algorithm, 1987)
(2)	undirected	P (Horton's algorithm, 1987)
(3)	integral	?
(4)	weakly fund.	APX-hard (Rizzi, 2007)
(5)	strictly fund.	APX-hard (Galbiati et al., 2007)

Minimum Forward Cycle Bases

Weights for Cycle Bases

Let $c \in \mathbb{R}_{\geq 0}^{A}$ be a weight vector.
Weight of a cycle basis: $c(B)=\sum_{\gamma \in B} \sum_{a \in \gamma} \gamma_{a}$
Finding Minimum Weight Cycle Bases
Motivation: weight of B w.r.t. $u-\ell \approx \log \left(\#\right.$ possible modulo parameters $\left.z \in \mathbb{Z}^{B}\right)$

	type	complexity (oriented)	complexity (forward)
(1)	directed	P (Horton's algorithm, 1987)	P (Gleiss et al., 2003)
(2)	undirected	P (Horton's algorithm, 1987)	P (Gleiss et al., 2003)
(3)	integral	$?$	$?$
(4)	weakly fund.	APX-hard (Rizzi, 2007)	$?$
(5)	strictly fund.	APX-hard (Galbiati et al., 2007)	$?$

Forward Cycles in Practice

Recapitulation

- We want to use forward integral cycle bases for solving the PESP MIP.
- Forward cycle bases exist in strongly connected digraphs.
- A forward integral cycle basis can be constructed in line-based networks by means of ILTY cycles.
- Minimum weight forward (un)directed cycle bases can be computed by a modification of Horton's algorithm.

Forward Cycles in Practice

Recapitulation

- We want to use forward integral cycle bases for solving the PESP MIP.
- Forward cycle bases exist in strongly connected digraphs.
- A forward integral cycle basis can be constructed in line-based networks by means of ILTY cycles.
- Minimum weight forward (un)directed cycle bases can be computed by a modification of Horton's algorithm.

PESPlib

- benchmarking library of PESP instances by Goerigk
- networks are not strongly connected
- but they are very close to line-based networks!

Reverse Engineering PESPlib Instances

Observations for R1L1

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the $4 \operatorname{arcs}$ with $\left[\ell_{a}, u_{a}\right]=[0,0]$.

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the 4 arcs with $\left[\ell_{a}, u_{a}\right]=[0,0]$.
- The network is now bipartite.

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the $4 \operatorname{arcs}$ with $\left[\ell_{a}, u_{a}\right]=[0,0]$.
- The network is now bipartite.
- Remove all arcs with $u_{a}-\ell_{a}=T-1=59$.

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the $4 \operatorname{arcs}$ with $\left[\ell_{a}, u_{a}\right]=[0,0]$.
- The network is now bipartite.
- Remove all arcs with $u_{a}-\ell_{a}=T-1=59$.
- All remaining arcs have $u_{a}-\ell_{a} \leq 17$.

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the $4 \operatorname{arcs}$ with $\left[\ell_{a}, u_{a}\right]=[0,0]$.
- The network is now bipartite.
- Remove all arcs with $u_{a}-\ell_{a}=T-1=59$.
- All remaining arcs have $u_{a}-\ell_{a} \leq 17$.
- The network decomposes into 110 directed paths.

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the 4 arcs with $\left[\ell_{a}, u_{a}\right]=[0,0]$.
- The network is now bipartite.
- Remove all arcs with $u_{a}-\ell_{a}=T-1=59$.
- All remaining arcs have $u_{a}-\ell_{a} \leq 17$.
- The network decomposes into 110 directed paths.
- For each path, every second activity has $\left[\ell_{a}, u_{a}\right]=[1,5]$.

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the 4 arcs with $\left[\ell_{a}, u_{a}\right]=[0,0]$.
- The network is now bipartite.
- Remove all arcs with $u_{a}-\ell_{a}=T-1=59$.
- All remaining arcs have $u_{a}-\ell_{a} \leq 17$.
- The network decomposes into 110 directed paths.
- For each path, every second activity has $\left[\ell_{a}, u_{a}\right]=[1,5]$.
- For each path, we find another path whose sequence of bound intervals is exactly reverse.

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the 4 arcs with $\left[\ell_{a}, u_{a}\right]=[0,0]$.
- The network is now bipartite. \rightarrow arrivals and departures
\rightarrow Remove all arcs with $u_{a}-\ell_{a}=T-1=59 . \rightarrow$ transfers (all start at arrivals)
- All remaining arcs have $u_{a}-\ell_{a} \leq 17 . \rightarrow$ drive or dwell activities
- The network decomposes into 110 directed paths. \rightarrow lines
\rightarrow For each path, every second activity has $\left[\ell_{a}, u_{a}\right]=[1,5] . \rightarrow$ dwell activities
- For each path, we find another path whose sequence of bound intervals is exactly reverse. \rightarrow bidirectional lines

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the 4 arcs with $\left[\ell_{a}, u_{a}\right]=[0,0]$.
- The network is now bipartite. \rightarrow arrivals and departures
\rightarrow Remove all arcs with $u_{a}-\ell_{a}=T-1=59 . \rightarrow$ transfers (all start at arrivals)
- All remaining arcs have $u_{a}-\ell_{a} \leq 17 . \rightarrow$ drive or dwell activities
- The network decomposes into 110 directed paths. \rightarrow lines
- For each path, every second activity has $\left[\ell_{a}, u_{a}\right]=[1,5] . \rightarrow$ dwell activities
- For each path, we find another path whose sequence of bound intervals is exactly reverse. \rightarrow bidirectional lines

Construction of R1L1v

Add 110 turnaround activities, at each end of each of the 55 bidirectional lines.

Reverse Engineering PESPlib Instances

Observations for R1L1

- Remove the $4 \operatorname{arcs}$ with $\left[\ell_{a}, u_{a}\right]=[0,0]$.
- The network is now bipartite. \rightarrow arrivals and departures
\rightarrow Remove all arcs with $u_{a}-\ell_{a}=T-1=59 . \rightarrow$ transfers (all start at arrivals)
- All remaining arcs have $u_{a}-\ell_{a} \leq 17 . \rightarrow$ drive or dwell activities
- The network decomposes into 110 directed paths. \rightarrow lines
\rightarrow For each path, every second activity has $\left[\ell_{a}, u_{a}\right]=[1,5] . \rightarrow$ dwell activities
- For each path, we find another path whose sequence of bound intervals is exactly reverse. \rightarrow bidirectional lines

Construction of R1L1v

Add 110 turnaround activities, at each end of each of the 55 bidirectional lines.

Remark

The structure of all 16 PESPlib railway instances follows this pattern.

Computational Set-Up

Solver: Concurrent PESP solver (Borndörfer et al., 2020) with Gurobi 9.1, up to 8 threads, 1h wall time

Scenarios: R1L1v with...

- 4 minimum turnaround times: $\ell_{a}=0,5,10,15$
- 7 turnaround weights: $w_{a}=0,2500,5000,10000,20000,40000,80000$
- 4 cycle bases: span, forward span, forward bottleneck, ILTY
- 6 solution strategies:

Strategy	MIP	Initial solution	Ignore light arcs	Other
complete	\checkmark		\checkmark	\checkmark
mip	\checkmark			
mip-start	\checkmark	\checkmark	\checkmark	
mip-ignore	\checkmark		\checkmark	
mip-ignore-start	\checkmark	\checkmark		
dual	\checkmark	\checkmark		

- 2 evaluation criteria: weighted passenger slack (i.e., without turnaround activities), number of vehicles (vehicles stay on line)

Pareto Front

Results: Primal Side

Unsurprising Results

- The higher the turnaround weights, the lower the number of vehicles.
- With the passenger-optimized initial timetable, the number of vehicles tends to be higher.
- Within 1 h , reaching the passenger slack of the PESPlib incumbent is impossible, but the best number of vehicles goes down to the theoretical minimum +1 .

Results: Primal Side

Unsurprising Results

- The higher the turnaround weights, the lower the number of vehicles.
- With the passenger-optimized initial timetable, the number of vehicles tends to be higher.
- Within 1 h , reaching the passenger slack of the PESPlib incumbent is impossible, but the best number of vehicles goes down to the theoretical minimum +1 .

Impact of Cycle Bases

- The "mip" strategy without initial solution and without further heuristics performs bad in all cases.
- The picture is quite diffuse. For the 4 other strategies and for all 4 cycle bases, we find at least one non-dominated solution each.
- Comparing the 4 cycle bases, the difference is at most 2.6% in passenger slack and 0.6% in number of vehicles on average.

Results: Primal Side

Unsurprising Results

- The higher the turnaround weights, the lower the number of vehicles.
- With the passenger-optimized initial timetable, the number of vehicles tends to be higher.
- Within 1 h , reaching the passenger slack of the PESPlib incumbent is impossible, but the best number of vehicles goes down to the theoretical minimum +1 .

Impact of Cycle Bases

- The "mip" strategy without initial solution and without further heuristics performs bad in all cases.
- The picture is quite diffuse. For the 4 other strategies and for all 4 cycle bases, we find at least one non-dominated solution each.
- Comparing the 4 cycle bases, the difference is at most 2.6% in passenger slack and 0.6% in number of vehicles on average.

Conclusion: The choice of cycle basis does not matter.

Results: Dual Side

- After 1 h , the best dual bound for the traditional oriented minimum span basis is on average 17.6% worse than with ILTY.
- With minimum turnaround time 0 and turnaround weight 0 , dual bounds are valid for the original R1L1:

instance	cycle basis	dual bound
R1L1v	span	20638013
R1L1v	forward span	20609801
R1L1v	forward bottleneck	20591564
R1L1v	ILTY	20901883
R1L1	span	20693118

(24h wall time, with CPLEX 12.10 and flip inequality separation)

Results: Dual Side

- After 1 h , the best dual bound for the traditional oriented minimum span basis is on average 17.6% worse than with ILTY.
- With minimum turnaround time 0 and turnaround weight 0 , dual bounds are valid for the original R1L1:

instance	cycle basis	dual bound
R1L1v	span	20638013
R1L1v	forward span	20609801
R1L1v	forward bottleneck	20591564
R1L1v	ILTY	20901883
R1L1	span	20693118

(24h wall time, with CPLEX 12.10 and flip inequality separation)
Conclusion: Making the network larger in order to use forward cycle bases can improve dual bounds!

Results: Dual Side

- After 1 h , the best dual bound for the traditional oriented minimum span basis is on average 17.6% worse than with ILTY.
- With minimum turnaround time 0 and turnaround weight 0 , dual bounds are valid for the original R1L1:

instance	cycle basis	dual bound
R1L1v	span	20638013
R1L1v	forward span	20609801
R1L1v	forward bottleneck	20591564
R1L1v	ILTY	20901883
R1L1	span	20693118

(24h wall time, with CPLEX 12.10 and flip inequality separation)
Conclusion: Making the network larger in order to use forward cycle bases can improve dual bounds!

New Challenges: PESPlib has grown by 2 instances with turnarounds (R1L1v and R4L4v).

Forward Cycle Bases and Periodic Timetabling

Niels Lindner

Zuse Institute Berlin
Christian Liebchen
Technical University of Applied Sciences
Wildau
Berenike Masing
Zuse Institute Berlin

ATMOS 2021
September 9 and 10, 2021

