Berlin Mathematics Research Center

Forward Cycle Bases and Periodic Timetabling

<u>Niels Lindner</u> Zuse Institute Berlin

Christian Liebchen Technical University of Applied Sciences Wildau

Berenike Masing Zuse Institute Berlin

ATMOS 2021 September 9 and 10, 2021

Periodic Event Scheduling Problem (PESP)

Given

- G = (V, A) event-activity network,
- $T \in \mathbb{N}$ period time,
- $\ell \in \mathbb{Z}^A$ lower bounds,
- $u \in \mathbb{Z}^A$ upper bounds,
- $w \in \mathbb{R}^{A}_{\geq 0}$ weights,

find

 $\pi \in [0, T)^{V}$ periodic timetable, $x \in \mathbb{R}^{A}$ periodic tension

such that

- (1) $\pi_j \pi_i \equiv x_{ij} \mod T$ for all $ij \in A$,
- (2) $\ell \leq x \leq u$,
- (3) $w^{\top}x$ is minimum,
- or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Periodic Event Scheduling Problem (PESP)

Given	
G = (V, A)	event-activity network,
$T \in \mathbb{N}$	period time,
$\ell \in \mathbb{Z}^{A}$	lower bounds,
$u \in \mathbb{Z}^{A}$	upper bounds,
$w \in \mathbb{R}^{A}_{\geq 0}$	weights,
find	
$\pi \in [0,T)^V$	periodic timetable,
$x \in \mathbb{R}^{A}$	periodic tension
such that	
(1) $\pi_j - \pi_i \equiv$	$x_{ij} \mod T$ for all $ij \in A$,
(2) $\ell \leq x \leq \ell$	и,
(3) $w^{\top}x$ is m	inimum,
or docido that	r = r + r + r + r + r + r + r + r + r +

or decide that no such (π, X) exists.

(Serafini and Ukovich, 1989)

Cycle-based MIP formulation: (Nachtigall, 1994, Liebchen and Peeters, 2009)

Minimize	$w^{ op}x$
s.t.	$\Gamma x = Tz$,
	$\ell \leq x \leq u,$
	$z \in \mathbb{Z}^{B}$

 $B \subseteq \mathbb{Z}^A$ integral cycle bas $\Gamma \in \mathbb{Z}^{B \times A}$ cycle matrix of B $z \in \mathbb{Z}^B$ modulo paramet integral cycle basis of G modulo parameters

Periodic Event Scheduling Problem (PESP)

Given		
G = (V, A)	event-activity network,	
$T \in \mathbb{N}$	period time,	
$\ell \in \mathbb{Z}^A$	lower bounds,	
$u \in \mathbb{Z}^{A}$	upper bounds,	
$w \in \mathbb{R}^{A}_{\geq 0}$	weights,	
find		

 $\pi \in [0, T)^{V}$ periodic timetable, $x \in \mathbb{R}^{A}$ periodic tension

such that

(1) $\pi_j - \pi_i \equiv x_{ij} \mod T$ for all $ij \in A$, (2) $\ell < x < u$,

(3) $w^{\top}x$ is minimum,

or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Cycle-based MIP formulation: (Nachtigall, 1994, Liebchen and Peeters, 2009)

Minimize	$w^{ op}x$
s.t.	$\Gamma x = Tz$,
	$\ell \leq x \leq u,$
	$z \in \mathbb{Z}^{B}$

 $\begin{array}{ll} B \subseteq \mathbb{Z}^A & \text{ integral cycle basis of } G \\ \Gamma \in \mathbb{Z}^{B \times A} & \text{ cycle matrix of } B \\ z \in \mathbb{Z}^B & \text{ modulo parameters} \end{array}$

Cycle inequalities: (Odijk, 1994)

$$\left\lceil \frac{\gamma_{+}^{\top}\ell - \gamma_{-}^{\top}u}{T} \right\rceil \leq \frac{\gamma^{\top}x}{T} \leq \left\lfloor \frac{\gamma_{+}^{\top}u - \gamma_{-}^{\top}\ell}{T} \right\rfloor$$

for each oriented cycle $\gamma \in \{-1, 0, 1\}^{A}$.

Observation

- ► Cycle inequalities derived from the planar cycle basis $\{\gamma_1, \gamma_2, \gamma_3\}$ are useless. This is also the integral cycle basis with minimum span $u - \ell$.
- The only contributing cycle inequalities come from the *forward* cycles γ_2 and $\gamma_1 + \gamma_2 + \gamma_3$.
- ► If the cycle basis contains the "vehicle rotation" \(\gamma_1 + \gamma_2 + \gamma_3\), then the LP relaxation closes the MIP optimality gap at the root node.
- $\gamma_1 + \gamma_2 + \gamma_3$ is the only cycle where are arcs have positive weight.

Observation

- ► Cycle inequalities derived from the planar cycle basis $\{\gamma_1, \gamma_2, \gamma_3\}$ are useless. This is also the integral cycle basis with minimum span $u - \ell$.
- The only contributing cycle inequalities come from the *forward* cycles γ_2 and $\gamma_1 + \gamma_2 + \gamma_3$.
- ► If the cycle basis contains the "vehicle rotation" \(\gamma_1 + \gamma_2 + \gamma_3\), then the LP relaxation closes the MIP optimality gap at the root node.
- $\gamma_1 + \gamma_2 + \gamma_3$ is the only cycle where are arcs have positive weight.

Idea

Look for cycle bases consisting of forward or heavy-weight cycles.

Observation

- ► Cycle inequalities derived from the planar cycle basis $\{\gamma_1, \gamma_2, \gamma_3\}$ are useless. This is also the integral cycle basis with minimum span $u - \ell$.
- The only contributing cycle inequalities come from the *forward* cycles γ_2 and $\gamma_1 + \gamma_2 + \gamma_3$.
- ► If the cycle basis contains the "vehicle rotation" \(\gamma_1 + \gamma_2 + \gamma_3\), then the LP relaxation closes the MIP optimality gap at the root node.
- $\gamma_1 + \gamma_2 + \gamma_3$ is the only cycle where are arcs have positive weight.

Idea

Look for cycle bases consisting of forward or heavy-weight cycles.

Some Benefits of Forward Cycles

- cycle inequalities = change-cycle inequalities.
- increasing the modulo parameters correlates with increasing objective value

Let G = (V, A) be a digraph.

Cycle space:

$$\mathcal{C} := \left\{ \gamma \in \mathbb{Z}^{A} \left| \forall v \in \mathcal{V} : \sum_{a \in \delta^{+}(v)} \gamma_{a} = \sum_{a \in \delta^{-}(v)} \gamma_{a} \right\} \quad \text{(abelian group)}$$

Let G = (V, A) be a digraph.

Cycle space:

$$\mathcal{C} := \left\{ \gamma \in \mathbb{Z}^A \, \middle| \, \forall v \in \mathcal{V} : \sum_{a \in \delta^+(v)} \gamma_a = \sum_{a \in \delta^-(v)} \gamma_a \right\} \quad \text{(abelian group)}$$

Oriented cycle: vector $\gamma \in \mathcal{C} \cap \{-1, 0, 1\}^{A}$

Let G = (V, A) be a digraph.

Cycle space:

$$\mathcal{C} := \left\{ \gamma \in \mathbb{Z}^{\mathsf{A}} \, \middle| \, \forall \mathsf{v} \in \mathsf{V} : \sum_{a \in \delta^+(\mathsf{v})} \gamma_a = \sum_{a \in \delta^-(\mathsf{v})} \gamma_a \right\} \quad \text{(abelian group)}$$

Oriented cycle: vector $\gamma \in \mathcal{C} \cap \{-1, 0, 1\}^{A}$

Cycle bases: set $B = \{\gamma_1, \dots, \gamma_\mu\}$ of $\mu := \operatorname{rank}(\mathcal{C})$ oriented cycles s.t.

- (1) B basis of \mathbb{R} -vector space $\mathcal{C} \otimes \mathbb{R}$
- (2) B basis of \mathbb{F}_2 -vector space $\mathcal{C} \otimes \mathbb{F}_2$
- (3) B basis of abelian group C

$$(4) \quad \forall i \exists a \in \gamma_i \setminus (\gamma_1 \cup \cdots \cup \gamma_{i-1})$$

(5) *B* fundamental cycles of spanning forest

directed cycle basis undirected cycle basis integral cycle basis weakly fundamental cycle basis strictly fundamental cycle basis

Let G = (V, A) be a digraph.

Cycle space:

$$\mathcal{C} := \left\{ \gamma \in \mathbb{Z}^{\mathsf{A}} \, \middle| \, \forall \mathsf{v} \in \mathsf{V} : \sum_{a \in \delta^{+}(\mathsf{v})} \gamma_{a} = \sum_{a \in \delta^{-}(\mathsf{v})} \gamma_{a} \right\} \quad \text{(abelian group)}$$

Oriented cycle: vector $\gamma \in \mathcal{C} \cap \{-1, 0, 1\}^{A}$

Cycle bases: set $B = \{\gamma_1, \dots, \gamma_\mu\}$ of $\mu := \operatorname{rank}(\mathcal{C})$ oriented cycles s.t.

- (1) B basis of \mathbb{R} -vector space $\mathcal{C} \otimes \mathbb{R}$
- (2) B basis of \mathbb{F}_2 -vector space $\mathcal{C} \otimes \mathbb{F}_2$
- (3) B basis of abelian group C

$$(4) \quad \forall i \exists a \in \gamma_i \setminus (\gamma_1 \cup \cdots \cup \gamma_{i-1})$$

(5) *B* fundamental cycles of spanning forest

directed cycle basis *undirected* cycle basis *integral* cycle basis *weakly fundamental* cycle basis *strictly fundamental* cycle basis

Cycle matrix: representation matrix $\Gamma \in \{-1, 0, 1\}^{B \times A}$ of some cycle basis *B*

Let G = (V, A) be a digraph.

Cycle space:

$$\mathcal{C} := \left\{ \gamma \in \mathbb{Z}^{\mathsf{A}} \, \middle| \, \forall \mathsf{v} \in \mathsf{V} : \sum_{a \in \delta^+(\mathsf{v})} \gamma_a = \sum_{a \in \delta^-(\mathsf{v})} \gamma_a \right\} \quad \text{(abelian group)}$$

Oriented cycle: vector $\gamma \in \mathcal{C} \cap \{-1, 0, 1\}^{A}$

Cycle bases: set $B = \{\gamma_1, \dots, \gamma_\mu\}$ of $\mu := \operatorname{rank}(\mathcal{C})$ oriented cycles s.t.

- (1) B basis of \mathbb{R} -vector space $\mathcal{C} \otimes \mathbb{R}$
- (2) B basis of \mathbb{F}_2 -vector space $\mathcal{C} \otimes \mathbb{F}_2$
- (3) B basis of abelian group C

$$(4) \quad \forall i \exists a \in \gamma_i \setminus (\gamma_1 \cup \cdots \cup \gamma_{i-1})$$

(5) *B* fundamental cycles of spanning forest

directed cycle basis undirected cycle basis integral cycle basis weakly fundamental cycle basis strictly fundamental cycle basis

Cycle matrix: representation matrix $\Gamma \in \{-1, 0, 1\}^{B \times A}$ of some cycle basis *B*

Hierarchy:
$$(5) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$$

Niels Lindner: Forward Cycle Bases and Periodic Timetabling

(Kavitha et al., 2009)

Forward cycle: vector $\gamma \in C \cap \{0, 1\}^A$ (\Leftrightarrow oriented cycle with no backward arcs) Forward cycle basis: cycle basis *B* consisting only of forward cycles

Forward cycle: vector $\gamma \in C \cap \{0, 1\}^A$ (\Leftrightarrow oriented cycle with no backward arcs) Forward cycle basis: cycle basis *B* consisting only of forward cycles

Theorem (Seymour and Thomassen, 1987)

G has a forward directed cycle basis ⇔ each 2-edge-connected component of G is strongly connected.

Forward cycle: vector $\gamma \in C \cap \{0, 1\}^A$ (\Leftrightarrow oriented cycle with no backward arcs) Forward cycle basis: cycle basis *B* consisting only of forward cycles

Theorem (Seymour and Thomassen, 1987)

G has a forward directed cycle basis ⇔ each 2-edge-connected component of G is strongly connected.

Example: Non-Existence of Forward Strictly Fundamental Bases

Every digraph has a spanning forest, and hence a strictly fundamental cycle basis. But: Not every strongly connected *G* has a *forward* strictly fundamental cycle basis.

Forward cycle: vector $\gamma \in C \cap \{0, 1\}^A$ (\Leftrightarrow oriented cycle with no backward arcs) Forward cycle basis: cycle basis *B* consisting only of forward cycles

Theorem (Seymour and Thomassen, 1987)

G has a forward directed cycle basis ⇔ each 2-edge-connected component of G is strongly connected.

Example: Non-Existence of Forward Strictly Fundamental Bases

Every digraph has a spanning forest, and hence a strictly fundamental cycle basis. But: Not every strongly connected *G* has a *forward* strictly fundamental cycle basis.

G directed Hamiltonian ⇒ G strongly connected no spanning tree with exclusively forward fundamental cycles forward weakly fundamental cycle basis by first 4 cycles

A Standard Construction

Question

How can we ensure existence of forward integral cycle bases for PESP instances?

A Standard Construction

Question

How can we ensure existence of forward integral cycle bases for PESP instances?

Line-Based Event-Activity Networks

ILTY Cycles

ILTY Cycles

ILTY cycles at a station:

	# dwell	# transfer
Ι	2	0
L	0	2
Т	1	2
Υ	3	0

Theorem (LLM, 2021)

The set B_s of ILTY cycles at a station s through a fixed event at s is a weakly fundamental basis for the space spanned by all ILTY cycles at s.

There is B' s.t. $B' \cup \bigcup_{s \in S} B_s$ is a forward integral cycle basis, and B' projects to a strictly fundamental cycle basis of the line network.

ZIB

Weights for Cycle Bases

Let $c \in \mathbb{R}^{A}_{\geq 0}$ be a weight vector. Weight of a cycle basis: $c(B) = \sum_{\gamma \in B} \sum_{a \in \gamma} \gamma_{a}$

Weights for Cycle Bases

Let $c \in \mathbb{R}^{A}_{\geq 0}$ be a weight vector. Weight of a cycle basis: $c(B) = \sum_{\gamma \in B} \sum_{a \in \gamma} \gamma_{a}$

Finding Minimum Weight Cycle Bases

Motivation: weight of *B* w.r.t. $u - \ell \approx \log(\# \text{ possible modulo parameters } z \in \mathbb{Z}^B)$

Weights for Cycle Bases

Let $c \in \mathbb{R}^{A}_{\geq 0}$ be a weight vector. Weight of a cycle basis: $c(B) = \sum_{\gamma \in B} \sum_{a \in \gamma} \gamma_{a}$

Finding Minimum Weight Cycle Bases

Motivation: weight of *B* w.r.t. $u - \ell \approx \log(\# \text{ possible modulo parameters } z \in \mathbb{Z}^B)$

	type	complexity (oriented)
(1)	directed	P (Horton's algorithm, 1987)
(2)	undirected	P (Horton's algorithm, 1987)
(3)	integral	?
(4)	weakly fund.	APX-hard (Rizzi, 2007)
(5)	strictly fund.	APX-hard (Galbiati et al., 2007)

Weights for Cycle Bases

Let $c \in \mathbb{R}^{A}_{\geq 0}$ be a weight vector. Weight of a cycle basis: $c(B) = \sum_{\gamma \in B} \sum_{a \in \gamma} \gamma_{a}$

Finding Minimum Weight Cycle Bases

Motivation: weight of *B* w.r.t. $u - \ell \approx \log(\# \text{ possible modulo parameters } z \in \mathbb{Z}^B)$

	type	complexity (oriented)	complexity (forward)
(1)	directed	P (Horton's algorithm, 1987)	P (Gleiss et al., 2003)
(2)	undirected	P (Horton's algorithm, 1987)	P (Gleiss et al., 2003)
(3)	integral	?	?
(4)	weakly fund.	APX-hard (Rizzi, 2007)	?
(5)	strictly fund.	APX-hard (Galbiati et al., 2007)	?

Recapitulation

- We want to use forward integral cycle bases for solving the PESP MIP.
- Forward cycle bases exist in strongly connected digraphs.
- A forward integral cycle basis can be constructed in line-based networks by means of ILTY cycles.
- Minimum weight forward (un)directed cycle bases can be computed by a modification of Horton's algorithm.

Recapitulation

- We want to use forward integral cycle bases for solving the PESP MIP.
- Forward cycle bases exist in strongly connected digraphs.
- A forward integral cycle basis can be constructed in line-based networks by means of ILTY cycles.
- Minimum weight forward (un)directed cycle bases can be computed by a modification of Horton's algorithm.

PESPlib

- benchmarking library of PESP instances by Goerigk
- networks are not strongly connected
- but they are very close to line-based networks!

Observations for R1L1

• Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.

- Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.
- ► The network is now bipartite.

- Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.
- The network is now bipartite.
- Remove all arcs with $u_a \ell_a = T 1 = 59$.

- Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.
- The network is now bipartite.
- Remove all arcs with $u_a \ell_a = T 1 = 59$.
- All remaining arcs have $u_a \ell_a \leq 17$.

- Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.
- The network is now bipartite.
- Remove all arcs with $u_a \ell_a = T 1 = 59$.
- All remaining arcs have $u_a \ell_a \leq 17$.
- ► The network decomposes into 110 directed paths.

- Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.
- The network is now bipartite.
- Remove all arcs with $u_a \ell_a = T 1 = 59$.
- All remaining arcs have $u_a \ell_a \leq 17$.
- The network decomposes into 110 directed paths.
- For each path, every second activity has $[\ell_a, u_a] = [1, 5]$.

- Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.
- The network is now bipartite.
- Remove all arcs with $u_a \ell_a = T 1 = 59$.
- All remaining arcs have $u_a \ell_a \leq 17$.
- The network decomposes into 110 directed paths.
- For each path, every second activity has $[\ell_a, u_a] = [1, 5]$.
- For each path, we find another path whose sequence of bound intervals is exactly reverse.

- Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.
- ► The network is now bipartite. → arrivals and departures
- Remove all arcs with $u_a \ell_a = T 1 = 59$. \rightarrow transfers (all start at arrivals)
- All remaining arcs have $u_a \ell_a \leq 17$. \rightarrow drive or dwell activities
- ▶ The network decomposes into 110 directed paths. \rightarrow lines
- ▶ For each path, every second activity has $[\ell_a, u_a] = [1, 5]$. → dwell activities
- ► For each path, we find another path whose sequence of bound intervals is exactly reverse. → bidirectional lines

- Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.
- ► The network is now bipartite. → arrivals and departures
- ▶ Remove all arcs with $u_a \ell_a = T 1 = 59$. \rightarrow transfers (all start at arrivals)
- All remaining arcs have $u_a \ell_a \leq 17$. \rightarrow drive or dwell activities
- ▶ The network decomposes into 110 directed paths. \rightarrow lines
- For each path, every second activity has $[\ell_a, u_a] = [1, 5]$. \rightarrow dwell activities
- ► For each path, we find another path whose sequence of bound intervals is exactly reverse. → bidirectional lines

Construction of R1L1v

Add 110 turnaround activities, at each end of each of the 55 bidirectional lines.

- Remove the 4 arcs with $[\ell_a, u_a] = [0, 0]$.
- ▶ The network is now bipartite. → arrivals and departures
- Remove all arcs with $u_a \ell_a = T 1 = 59$. \rightarrow transfers (all start at arrivals)
- All remaining arcs have $u_a \ell_a \leq 17$. \rightarrow drive or dwell activities
- ▶ The network decomposes into 110 directed paths. \rightarrow lines
- For each path, every second activity has $[\ell_a, u_a] = [1, 5]$. \rightarrow dwell activities
- ► For each path, we find another path whose sequence of bound intervals is exactly reverse. → bidirectional lines

Construction of R1L1v

Add 110 turnaround activities, at each end of each of the 55 bidirectional lines.

Remark

The structure of all 16 PESPlib railway instances follows this pattern.

Computational Set-Up

Solver: Concurrent PESP solver (Borndörfer et al., 2020) with Gurobi 9.1, up to 8 threads, 1h wall time

Scenarios: R1L1v with...

- 4 minimum turnaround times: $\ell_a = 0, 5, 10, 15$
- ▶ 7 turnaround weights: $w_a = 0, 2500, 5000, 10000, 20000, 40000, 80000$
- 4 cycle bases: span, forward span, forward bottleneck, ILTY
- ► 6 solution strategies:

Strategy	MIP	Initial solution	Ignore light arcs	Other
complete	\checkmark		\checkmark	\checkmark
mip	\checkmark			
mip-start	\checkmark	\checkmark		
mip-ignore	\checkmark		\checkmark	
mip-ignore-start	\checkmark	\checkmark	\checkmark	
dual	\checkmark	\checkmark		

2 evaluation criteria: weighted passenger slack (i.e., without turnaround activities), number of vehicles (vehicles stay on line)

Pareto Front

Unsurprising Results

- ► The higher the turnaround weights, the lower the number of vehicles.
- With the passenger-optimized initial timetable, the number of vehicles tends to be higher.
- Within 1h, reaching the passenger slack of the PESPlib incumbent is impossible, but the best number of vehicles goes down to the theoretical minimum +1.

Unsurprising Results

- ► The higher the turnaround weights, the lower the number of vehicles.
- With the passenger-optimized initial timetable, the number of vehicles tends to be higher.
- Within 1h, reaching the passenger slack of the PESPlib incumbent is impossible, but the best number of vehicles goes down to the theoretical minimum +1.

Impact of Cycle Bases

- The "mip" strategy without initial solution and without further heuristics performs bad in all cases.
- The picture is quite diffuse. For the 4 other strategies and for all 4 cycle bases, we find at least one non-dominated solution each.
- Comparing the 4 cycle bases, the difference is at most 2.6% in passenger slack and 0.6% in number of vehicles on average.

Unsurprising Results

- ► The higher the turnaround weights, the lower the number of vehicles.
- With the passenger-optimized initial timetable, the number of vehicles tends to be higher.
- Within 1h, reaching the passenger slack of the PESPlib incumbent is impossible, but the best number of vehicles goes down to the theoretical minimum +1.

Impact of Cycle Bases

- The "mip" strategy without initial solution and without further heuristics performs bad in all cases.
- The picture is quite diffuse. For the 4 other strategies and for all 4 cycle bases, we find at least one non-dominated solution each.
- Comparing the 4 cycle bases, the difference is at most 2.6% in passenger slack and 0.6% in number of vehicles on average.

Conclusion: The choice of cycle basis does not matter.

Results: Dual Side

- After 1h, the best dual bound for the traditional oriented minimum span basis is on average 17.6% worse than with ILTY.
- With minimum turnaround time 0 and turnaround weight 0, dual bounds are valid for the original R1L1:

instance	cycle basis	dual bound
R1L1v	span	20 638 013
R1L1v	forward span	20 609 801
R1L1v	forward bottleneck	20 591 564
R1L1v	ILTY	20 901 883
R1L1	span	20 693 118

(24h wall time, with CPLEX 12.10 and flip inequality separation)

Results: Dual Side

- After 1h, the best dual bound for the traditional oriented minimum span basis is on average 17.6% *worse* than with ILTY.
- With minimum turnaround time 0 and turnaround weight 0, dual bounds are valid for the original R1L1:

instance	cycle basis	dual bound
R1L1v	span	20 638 013
R1L1v	forward span	20 609 801
R1L1v	forward bottleneck	20 591 564
R1L1v	ILTY	20 901 883
R1L1	span	20 693 118

(24h wall time, with CPLEX 12.10 and flip inequality separation)

Conclusion: Making the network larger in order to use forward cycle bases can improve dual bounds!

Results: Dual Side

- After 1h, the best dual bound for the traditional oriented minimum span basis is on average 17.6% *worse* than with ILTY.
- With minimum turnaround time 0 and turnaround weight 0, dual bounds are valid for the original R1L1:

instance	cycle basis	dual bound
R1L1v	span	20 638 013
R1L1v	forward span	20 609 801
R1L1v	forward bottleneck	20 591 564
R1L1v	ILTY	20 901 883
R1L1	span	20 693 118

(24h wall time, with CPLEX 12.10 and flip inequality separation)

Conclusion: Making the network larger in order to use forward cycle bases can improve dual bounds!

New Challenges: PESPlib has grown by 2 instances with turnarounds (R1L1v and R4L4v).

Berlin Mathematics Research Center

Forward Cycle Bases and Periodic Timetabling

<u>Niels Lindner</u> Zuse Institute Berlin

Christian Liebchen Technical University of Applied Sciences Wildau

Berenike Masing Zuse Institute Berlin

ATMOS 2021 September 9 and 10, 2021