A Concurrent Approach to the Periodic Event Scheduling Problem

Ralf Borndörfer, Niels Lindner, Sarah Roth

Zuse Institute Berlin

Berlin Mathematics Research Center
MATH+

RailNorrköping 2019
June 18, 2019

§1

Introduction

Periodic Timetabling Example

two lines meeting at a common station

Periodic Timetabling Example

arrival eventdeparture event

driving activity

transfer activity

turnaround activity
event-activity network model

Periodic Timetabling Example

arrival eventdeparture event

PESP instance (still unweighted), period time $T=10$

Periodic Timetabling Example

arrival eventdeparture event

periodic timetable, period time $T=10$

Periodic Event Scheduling Problem

Serafini and Ukovich (1989)
Given

- an event-activity network $G=(V, E)$,
- a period time $T \in \mathbb{N}$,
- lower bounds $\ell \in \mathbb{Z}^{E}, \ell \geq 0$,
- upper bounds $u \in \mathbb{Z}^{E}, u \geq \ell$,
- weights $w \in \mathbb{R}^{E}, w \geq 0$,

Periodic Event Scheduling Problem

Serafini and Ukovich (1989)
Given

- an event-activity network $G=(V, E)$,
- a period time $T \in \mathbb{N}$,
- lower bounds $\ell \in \mathbb{Z}^{E}, \ell \geq 0$,
- upper bounds $u \in \mathbb{Z}^{E}, u \geq \ell$,
- weights $w \in \mathbb{R}^{E}, w \geq 0$,
the (integer) periodic event scheduling problem (PESP) is to find a periodic timetable $\pi \in\{0,1, \ldots, T-1\}^{V}$ and a periodic tension $x \in \mathbb{Z}^{E}$ such that
- $\ell \leq x \leq u$,
- $\sum_{i j \in E} w_{i j} x_{i j}$ is minimal.

Periodic Event Scheduling Problem

Serafini and Ukovich (1989)
Given

- an event-activity network $G=(V, E)$,
- a period time $T \in \mathbb{N}$,
- lower bounds $\ell \in \mathbb{Z}^{E}, \ell \geq 0$,
- upper bounds $u \in \mathbb{Z}^{E}, u \geq \ell$,
- weights $w \in \mathbb{R}^{E}, w \geq 0$,
the (integer) periodic event scheduling problem (PESP) is to find a periodic timetable $\pi \in\{0,1, \ldots, T-1\}^{V}$ and a periodic tension $x \in \mathbb{Z}^{E}$ such that
- $\ell \leq x \leq u$,
- $\sum_{i j \in E} w_{i j} x_{i j}$ is minimal.

Equivalently, one can minimize $\sum_{i j \in E} w_{i j} y_{i j}$, where $y:=x-\ell$ denotes the periodic slack.

§1 Introduction

Cycle Periodicity Property

Oriented Cycles

§1 Introduction

Cycle Periodicity Property

Oriented Cycles

Cycle Periodicity Property

Oriented Cycles

Cycle Periodicity Property

Oriented Cycles

Theorem (Cycle Periodicity Property, Odijk 1994)
Let (G, T, ℓ, u, w) be a PESP instance. Let $x \in \mathbb{Z}^{E}$ be a vector with
$\ell \leq x \leq u$. Then the following are equivalent:
(1) There exists a periodic timetable π compatible to x.
(2) For every incidence vector $\gamma \in\{-1,0,1\}^{E}$ of an oriented cycle in G holds $\gamma^{t} x \equiv 0 \bmod T$.

§2
 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

- global, but slow

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

- global, but slow
- several formulations, weak linear programming relaxations

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

- global, but slow
- several formulations, weak linear programming relaxations
- cutting planes by e.g. (change-)cycle inequalities

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

- global, but slow
- several formulations, weak linear programming relaxations
- cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

- fast, but local, improving heuristic

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

- global, but slow
- several formulations, weak linear programming relaxations
- cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

- fast, but local, improving heuristic
- vertices of timetabling polytope \leftrightarrow spanning tree structures

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

- global, but slow
- several formulations, weak linear programming relaxations
- cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

- fast, but local, improving heuristic
- vertices of timetabling polytope \leftrightarrow spanning tree structures
- various escape strategies

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

- global, but slow
- several formulations, weak linear programming relaxations
- cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

- fast, but local, improving heuristic
- vertices of timetabling polytope \leftrightarrow spanning tree structures
- various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

- pseudo-polynomial transformations

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

- global, but slow
- several formulations, weak linear programming relaxations
- cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

- fast, but local, improving heuristic
- vertices of timetabling polytope \leftrightarrow spanning tree structures
- various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

- pseudo-polynomial transformations
- feasibility: SAT solver (very fast)

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

- global, but slow
- several formulations, weak linear programming relaxations
- cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

- fast, but local, improving heuristic
- vertices of timetabling polytope \leftrightarrow spanning tree structures
- various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

- pseudo-polynomial transformations
- feasibility: SAT solver (very fast)
- optimality: weighted partial MaxSAT solver (very slow)

§2 Solving PESP

Network Simplification

Preprocessing

§2 Solving PESP

Network Simplification

Preprocessing

- remove bridges (i.e., activities that are not part of any cycle)

§2 Solving PESP

Network Simplification

Preprocessing

- remove bridges (i.e., activities that are not part of any cycle)

§2 Solving PESP

Network Simplification

Preprocessing

- remove bridges (i.e., activities that are not part of any cycle)
- remove isolated events

§2 Solving PESP

Network Simplification

Preprocessing

- remove bridges (i.e., activities that are not part of any cycle)
- remove isolated events

§2 Solving PESP

Network Simplification

Preprocessing

- remove bridges (i.e., activities that are not part of any cycle)
- remove isolated events
- contract fixed activities (i.e., $\ell_{a}=u_{a}$)

§2 Solving PESP

Network Simplification

Preprocessing

- remove bridges (i.e., activities that are not part of any cycle)
- remove isolated events
- contract fixed activities (i.e., $\ell_{a}=u_{a}$)

§2 Solving PESP

Network Simplification

Preprocessing

- remove bridges (i.e., activities that are not part of any cycle)
- remove isolated events
- contract fixed activities (i.e., $\ell_{a}=u_{a}$)
- contract events of degree two (inexact)

Preprocessing

- remove bridges (i.e., activities that are not part of any cycle)
- remove isolated events
- contract fixed activities (i.e., $\ell_{a}=u_{a}$)
- contract events of degree two (inexact)

Preprocessing

- remove bridges (i.e., activities that are not part of any cycle)
- remove isolated events
- contract fixed activities (i.e., $\ell_{a}=u_{a}$)
- contract events of degree two (inexact)

Removing free activities does not affect feasibility. The number of arcs, linearly independent cycles, and the objective value decrease.

Removing free activities does not affect feasibility. The number of arcs, linearly independent cycles, and the objective value decrease.

Ignore r \%

1. Sort the free activities in ascending order w.r.t. weight.

Removing free activities does not affect feasibility. The number of arcs, linearly independent cycles, and the objective value decrease.

Ignore r \%

1. Sort the free activities in ascending order w.r.t. weight.
2. Delete the first activities until a certain ratio $r \%$ of the total free weight has been removed.

Removing free activities does not affect feasibility. The number of arcs, linearly independent cycles, and the objective value decrease.

Ignore r \%

1. Sort the free activities in ascending order w.r.t. weight.
2. Delete the first activities until a certain ratio $r \%$ of the total free weight has been removed.
3. Apply network preprocessing again.

Removing free activities does not affect feasibility. The number of arcs, linearly independent cycles, and the objective value decrease.

Ignore r \%

1. Sort the free activities in ascending order w.r.t. weight.
2. Delete the first activities until a certain ratio $r \%$ of the total free weight has been removed.
3. Apply network preprocessing again.

Remarks

- Ignore 0% : original network after preprocessing
- If the total free weight is W, then the decrease in weighted slack is at most $r \% \cdot W \cdot(T-1)$.

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.
2. Ignore $50 \% .15$ minutes MNS. 45 minutes MIP.

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.
2. Ignore 50%. 15 minutes MNS. 45 minutes MIP.
3. Ignore 30%. 15 minutes MNS. 45 minutes MIP.

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.
2. Ignore 50%. 15 minutes MNS. 45 minutes MIP.
3. Ignore $30 \% .15$ minutes MNS. 45 minutes MIP.
4. Ignore $18 \% .15$ minutes MNS. 45 minutes MIP. :
(for 8 hours in total)

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.
2. Ignore 50%. 15 minutes MNS. 45 minutes MIP.
3. Ignore 30%. 15 minutes MNS. 45 minutes MIP.
4. Ignore $18 \% .15$ minutes MNS. 45 minutes MIP.
:
(for 8 hours in total)

Idea
MNS provides solutions fast, and MIP helps MNS out of local optima.

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.
2. Ignore 50%. 15 minutes MNS. 45 minutes MIP.
3. Ignore 30%. 15 minutes MNS. 45 minutes MIP.
4. Ignore $18 \% .15$ minutes MNS. 45 minutes MIP.
(for 8 hours in total)

Idea
MNS provides solutions fast, and MIP helps MNS out of local optima.

Our Goal

Combine MNS, MIP and other powerful methods to a concurrent solver.

§2 Solving PESP

Concurrent Solver Architecture

Concurrent phase

§2 Solving PESP

Concurrent Solver Architecture

Concurrent phase

- Two problems at the same time: Master, Ignore

Concurrent Solver Architecture

Concurrent phase

- Two problems at the same time: Master, Ignore
- Master: preprocessed input instance, does not change

Concurrent Solver Architecture

Concurrent phase

- Two problems at the same time: Master, Ignore
- Master: preprocessed input instance, does not change
- Ignore: ignore light free activities, can change

Concurrent Solver Architecture

Concurrent phase

- Two problems at the same time: Master, Ignore
- Master: preprocessed input instance, does not change
- Ignore: ignore light free activities, can change
- Each problem is tackled with MIP, MNS, Max-Cut

Concurrent Solver Architecture

Concurrent phase

- Two problems at the same time: Master, Ignore
- Master: preprocessed input instance, does not change
- Ignore: ignore light free activities, can change
- Each problem is tackled with MIP, MNS, Max-Cut
- Algorithms run in parallel and talk to a common solution pool

Concurrent Solver Architecture

Concurrent phase

- Two problems at the same time: Master, Ignore
- Master: preprocessed input instance, does not change
- Ignore: ignore light free activities, can change
- Each problem is tackled with MIP, MNS, Max-Cut
- Algorithms run in parallel and talk to a common solution pool
- Further heuristic: Solve LP for fixed integer variables

Concurrent Solver Architecture

Concurrent phase

- Two problems at the same time: Master, Ignore
- Master: preprocessed input instance, does not change
- Ignore: ignore light free activities, can change
- Each problem is tackled with MIP, MNS, Max-Cut
- Algorithms run in parallel and talk to a common solution pool
- Further heuristic: Solve LP for fixed integer variables
- Initial solution: SAT solver

Concurrent Solver Features

MIP Features

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis
- Callbacks: heuristic (change-)cycle separator, SAT propagator

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis
- Callbacks: heuristic (change-)cycle separator, SAT propagator MNS Features

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis
- Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

- modulo network simplex implementation with quality-first pivot rule

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis
- Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

- modulo network simplex implementation with quality-first pivot rule
- single-node and multi-node cuts

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis
- Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

- modulo network simplex implementation with quality-first pivot rule
- single-node and multi-node cuts
- tabu search

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis
- Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

- modulo network simplex implementation with quality-first pivot rule
- single-node and multi-node cuts
- tabu search

More Features

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis
- Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

- modulo network simplex implementation with quality-first pivot rule
- single-node and multi-node cuts
- tabu search

More Features

- maximally improving delay cuts using SCIP as MIP solver

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis
- Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

- modulo network simplex implementation with quality-first pivot rule
- single-node and multi-node cuts
- tabu search

More Features

- maximally improving delay cuts using SCIP as MIP solver
- SAT and MaxSAT strategies

Concurrent Solver Features

MIP Features

- Solver interface: SCIP, CPLEX
- Model: incidence matrix, cycle matrix, (change-)cycle inequalities, fundamental or minimum undirected cycle basis
- Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

- modulo network simplex implementation with quality-first pivot rule
- single-node and multi-node cuts
- tabu search

More Features

- maximally improving delay cuts using SCIP as MIP solver
- SAT and MaxSAT strategies
- work in progress: divide and conquer

A delay cut is a pair (S, d) consisting of a subset S of the events and a shift $d \in\{1, \ldots, T-1\}$.

A delay cut is a pair (S, d) consisting of a subset S of the events and a shift $d \in\{1, \ldots, T-1\}$.

Improving Delay Cuts

If π is a periodic timetable, then a delay cut (S, d) produces a new timetable $\pi^{(S, d)}$ by setting

$$
\pi_{i}^{(S, d)}:= \begin{cases}\left(\pi_{i}+d\right) \bmod T & \text { if } i \in S \\ \pi_{i} & \text { otherwise }\end{cases}
$$

Caveat: This timetable might violate some bounds.

§2 Solving PESP

Maximum Cut Heuristic

Delay Cuts
A delay cut is a pair (S, d) consisting of a subset S of the events and a shift $d \in\{1, \ldots, T-1\}$.

Improving Delay Cuts

If π is a periodic timetable, then a delay cut (S, d) produces a new timetable $\pi^{(S, d)}$ by setting

$$
\pi_{i}^{(S, d)}:= \begin{cases}\left(\pi_{i}+d\right) \bmod T & \text { if } i \in S \\ \pi_{i} & \text { otherwise }\end{cases}
$$

Caveat: This timetable might violate some bounds.
Theorem (-, 2019)
For fixed d, a maximally improving feasible delay cut (S, d) can be found by solving a maximum cut problem with positive and negative weights.

§2 Solving PESP

Escaping Local Optima
 Examples of Delay Cuts

§2 Solving PESP

Escaping Local Optima

Examples of Delay Cuts

- Modulo network simplex loop (Nachtigall/Opitz, 1998): An exchange move of the modulo network simplex is a delay cut corresponding to the fundamental cut of a spanning tree arc. The delay depends on the co-tree arc.

Escaping Local Optima

Examples of Delay Cuts

- Modulo network simplex loop (Nachtigall/Opitz, 1998):

An exchange move of the modulo network simplex is a delay cut corresponding to the fundamental cut of a spanning tree arc. The delay depends on the co-tree arc.

- Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with $|S|=1$.

Escaping Local Optima

Examples of Delay Cuts

- Modulo network simplex loop (Nachtigall/Opitz, 1998): An exchange move of the modulo network simplex is a delay cut corresponding to the fundamental cut of a spanning tree arc. The delay depends on the co-tree arc.
- Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with $|S|=1$.
- Waiting edge cuts (Goerigk/Schöbel, 2012):

Delay cuts with $|S|=2$, the vertices of S are connected by an edge with small span $u-\ell$.

Escaping Local Optima

Examples of Delay Cuts

- Modulo network simplex loop (Nachtigall/Opitz, 1998): An exchange move of the modulo network simplex is a delay cut corresponding to the fundamental cut of a spanning tree arc. The delay depends on the co-tree arc.
- Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with $|S|=1$.
- Waiting edge cuts (Goerigk/Schöbel, 2012):

Delay cuts with $|S|=2$, the vertices of S are connected by an edge with small span $u-\ell$.

- Multi-node cuts (Goerigk/Schöbel, 2012):

Delay cuts obtained by a greedy procedure.

Escaping Local Optima

Examples of Delay Cuts

- Modulo network simplex loop (Nachtigall/Opitz, 1998): An exchange move of the modulo network simplex is a delay cut corresponding to the fundamental cut of a spanning tree arc. The delay depends on the co-tree arc.
- Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with $|S|=1$.
- Waiting edge cuts (Goerigk/Schöbel, 2012):

Delay cuts with $|S|=2$, the vertices of S are connected by an edge with small span $u-\ell$.

- Multi-node cuts (Goerigk/Schöbel, 2012):

Delay cuts obtained by a greedy procedure.

Corollary

Delay cuts are "more global": If a periodic timetable cannot be improved by a delay cut, then it cannot be improved by any the above strategies.

§3

Benchmarks

§3 Benchmarks

Hard PESP Instances

PESPlib

- num.math.uni-goettingen.de/~m.goerigk/pesplib

Hard PESP Instances

PESPlib

- num.math.uni-goettingen.de/~m.goerigk/pesplib
- est. 2012 by Goerigk

Hard PESP Instances

PESPlib

- num.math.uni-goettingen.de/~m.goerigk/pesplib
- est. 2012 by Goerigk
- 16 railway instances, 4 bus instances, period time $T=60$

Hard PESP Instances

PESPlib

> num.math.uni-goettingen.de/~m.goerigk/pesplib

- est. 2012 by Goerigk
- 16 railway instances, 4 bus instances, period time $T=60$
- cyclomatic number μ from 2722 to 9371

Hard PESP Instances

PESPlib

> num.math.uni-goettingen.de/~m.goerigk/pesplib

- est. 2012 by Goerigk
- 16 railway instances, 4 bus instances, period time $T=60$
- cyclomatic number μ from 2722 to 9371
- no instance solved to proven optimality

Hard PESP Instances

PESPlib

> num.math.uni-goettingen.de/~m.goerigk/pesplib

- est. 2012 by Goerigk
- 16 railway instances, 4 bus instances, period time $T=60$
- cyclomatic number μ from 2722 to 9371
- no instance solved to proven optimality
- biggest instance is part of MIPLIB 2017

Hard PESP Instances

PESPlib

- num.math.uni-goettingen.de/~m.goerigk/pesplib
- est. 2012 by Goerigk
- 16 railway instances, 4 bus instances, period time $T=60$
- cyclomatic number μ from 2722 to 9371
- no instance solved to proven optimality
- biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

- 2004: U-Bahn Berlin $(\mu=184), 0.5$ s, 4% gap, CPLEX + cycle basis

Hard PESP Instances

PESPlib

- num.math.uni-goettingen.de/~m.goerigk/pesplib
- est. 2012 by Goerigk
- 16 railway instances, 4 bus instances, period time $T=60$
- cyclomatic number μ from 2722 to 9371
- no instance solved to proven optimality
- biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

- 2004: U-Bahn Berlin $(\mu=184), 0.5$ s, 4% gap, CPLEX + cycle basis
- 2008: timtab2 $(\mu=294), 22$ h, optimal, CPLEX + user cuts

Hard PESP Instances

PESPlib

> num.math.uni-goettingen.de/~m.goerigk/pesplib

- est. 2012 by Goerigk
- 16 railway instances, 4 bus instances, period time $T=60$
- cyclomatic number μ from 2722 to 9371
- no instance solved to proven optimality
- biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

- 2004: U-Bahn Berlin $(\mu=184), 0.5$ s, 4% gap, CPLEX + cycle basis
- 2008: timtab2 $(\mu=294), 22 \mathrm{~h}$, optimal, CPLEX + user cuts
- 2016: timtab2 $(\mu=294), 1.78$ h, optimal, ParaXpress @ 6144 cores

§3 Benchmarks

PESPlib: Difficulty

- - Events

\sim Activities

- Cyclomatic number
$=$ Log width

Log width: $\log _{10}$ of combinations of values for the integer variables

PESPlib: Preprocessing

- Remaining events (exact)
\backsim Remaining activities (exact)
- - Remaining events (heuristic)
\leadsto Remaining activities (heuristic)

Exact preprocessing: remove bridges \& isolated events, contract fixed arcs Heuristic preprocessing: exact preprocessing, contract events of degree 2

PESPlib: Objective Value Improvement by Algorithm

Round 1: 20 minutes
best of 10

PESPlib: Objective Value Improvement by Algorithm

Round 2: 60 minutes
best of 10

PESPlib: Objective Value Improvement by Algorithm

Round 3: 4 hours
best of 1

PESPlib: Objective Value Improvement by Algorithm

Round 4: 8 hours
best of 1 , no ignore problem

§3 Benchmarks

PESPlib: Primal Results

		Exp. 1	Exp. 2	Exp. 3	Exp. 4	7 7 品
Instance	SAT start	20 min	1 h	4 h	8 h	Improvement
R1L1	74234870	30861021	30501068	30493800	30463638	1.03\%
R1L2	72731210	30891284	30516991	30516991	30507180	3.71\%
R1L3	71682438	30348596	29335021	29319593	29319593	3.26\%
R1L4	67395169	27635070	26738840	26690573	26516727	2.96\%
R2L1	97230766	42863646	42598548	42463738	42422038	0.19\%
R2L2	95898935	42024414	41149768	40876575	40642186	2.15\%
R2L3	93800082	39054513	38924083	38881659	38558371	3.47\%
R2L4	84605216	33256602	32707981	32548415	32483894	1.75\%
R3L1	92939173	44216552	43521250	43460397	43271824	2.53\%
R3L2	91336260	45829180	45442171	45401718	45220083	1.80\%
R3L3	89741119	42112858	41103062	41005379	40849585	4.63\%
R3L4	74142083	34589170	34018560	33454773	33335852	3.91\%
R4L1	98276297	50638727	49970330	49582677	49426919	4.30\%
R4L2	101135698	50514805	49379256	49018380	48764793	1.64\%
R4L3	96629751	46406365	45656395	45530113	45493081	0.85\%
R4L4	80446905	40706349	38884544	38695188	38381922	1.17\%
BL1	15367998	7299228	6394914	6375778	6333641	14.27\%
BL2	16046736	7378468	6837447	6819856	6799331	16.51\%
BL3	14850854	7512685	7065270	7011324	6999313	10.57\%
BL4	15618608	7997783	7330393	6738582	6562147	10.84\%
		10 better	18 better	20 better	20 better	

PESPlib: Dual Results

Instance	Dual bound	PESPlib improvement	Optimality gap
R1L1	19878200	17.64%	34.75%
R1L2	19414800	290.22%	36.36%
R1L3	18786300	189.09%	35.93%
R1L4	16822200	167.11%	36.56%
R2L1	25082000	163.82%	40.88%
R2L2	24867400	220.09%	38.81%
R2L3	23152300	181.49%	39.96%
R2L4	18941500	263.07%	41.69%
R3L1	25077800	217.16%	42.05%
R3L2	25272600	240.02%	44.11%
R3L3	21642500	226.52%	47.02%
R3L4	16479500	193.04%	50.57%
R4L1	27243900	170.03%	44.88%
R4L2	26368200	230.63%	45.93%
R4L3	22701400	203.62%	50.10%
R4L4	15840600	207.75%	58.73%
BL1	3668148	148.26%	42.08%
BL2	3943811	127.93%	42.00%
BL3	3571976	196.31%	48.97%
BL4	3131491	211.81%	52.28%

8 h, 6 threads

- Half of the instances could be improved within only 20 minutes.
- Half of the instances could be improved within only 20 minutes.
- Concurrency pays off: The speed-up compared to the sequential method of Goerigk/Liebchen is bigger than the number of threads.

PESPlib: Conclusions

- Half of the instances could be improved within only 20 minutes.
- Concurrency pays off: The speed-up compared to the sequential method of Goerigk/Liebchen is bigger than the number of threads.
- Solving to proven optimality currently seems to be out of reach: Given the relatively small primal improvements, there is a lot to do on the dual side.

A Concurrent Approach to the Periodic Event Scheduling Problem

Ralf Borndörfer, Niels Lindner, Sarah Roth

Zuse Institute Berlin

Berlin Mathematics Research Center
MATH+

RailNorrköping 2019
June 18, 2019

