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Remarks on the notation

The natural numbers N do not contain 0. The set N∪ {0} is denoted by N0. If a subset I of
some ring S is an ideal of S, this will be indicated by I ⊴ S. If S is a graded ring, then Sd
denotes the set of homogeneous elements of degree d ∈ Z. The same notation will be used
for graded modules. For n ∈ Z and k ∈ N, set

(
n
k

)
:= 0 whenever n < k.
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1 Motivation

Let C ⊂ P2
C be a curve in the complex projective plane. Then P2

C \ C is not only a Zariski-
open subset of P2

C, but also open with respect to the Euclidean topology. Moreover, P2
C \ C

is path-connected. Thus one might ask for the fundamental group π1(P2
C \ C).

Theorem 1.1 (Deligne-Fulton-Zariski). Let C ⊂ P2
C be a reduced curve of degree d ∈ N with

r ∈ N irreducible components. Assume further that the only singularities of C are ordinary
double points. Then

π1(P2
C \ C) ∼= Zr/⟨(d1, . . . , dr)⟩,

where di ∈ N denotes the degree of the i-th irreducible component, i = 1, . . . , r.

Zariski gave a proof of this theorem in 1929 (see [30, Theorem 9]). However, he relied on a
statement of Severi, whose proof was incorrect. Severi's result was proven by Harris ([18]) in
1986. In the meantime, Deligne ([8, Théorème 1]) used methods of Fulton ([13]) to give an
independent proof of the above theorem in 1979.

Thus the fundamental group of a curve complement seems to be related to the singularities
of the curve. After ordinary double points, the next step is to allow ordinary cusps as
singularities. In the sequel, such curves will be called cuspidal (plane) curves. Now the
situation has become more sophisticated:

• The fundamental group is not necessarily abelian: For example, the complement of the
three-cuspidal quartic given by

C := V
(
x2y2 + x2z2 + y2z2 − 2xyz(x+ y + z)

)
⊂ P2

C.

has the fundamental group

π1(P2
C \ C) ∼= ⟨a, b | a2 = b3 = (ab)2⟩

(see e. g. [9, Proposition 4.4.8] or [30, Section 9]). Nevertheless, if C is an irreducible
curve of degree at most four and not a three-cuspidal quartic, then π1(P2

C \ C) is an
abelian group ([9, Exercise 4.4.1 and Proposition 4.4.3]).

• Consider the two curves

C1 := V
(
(x2 − 2y2)3 + (x3 + z3)2

)
,

C2 := V
(
(y2 + ξx2)3 − (x2 + ξy2)3 − (z2 + ξy2 + ξ2x2)3

)
,

where ξ is a primitive third root of unity. Both C1 and C2 are irreducible sextics
with exactly six cusps as singularities. That is, the �combinatorial types� of C1 and
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1 Motivation

C2 coincide. However, the fundamental groups of the respective complements are non-
isomorphic:

π1(P2
C \ C1) ∼= Z/2Z ∗ Z/3Z ̸∼= Z/6Z ∼= π1(P2

C \ C2).

The reason is that all six cusps of C1 lie on a conic, whereas the cusps of C2 do not.
This has already been discovered by Zariski, who also computed the two fundamental
groups ([30, Section 9], [32, Section 9]). In general, if C1 and C2 are two plane curves
with equal combinatorial data, but di�erent fundamental groups, then (C1, C2) is called
a Zariski pair.

As a consequence, the fundamental group of a curve does also depend on the position of its
singularities. An invariant to decide whether two di�erent curves yield di�erent fundamental
groups is given by a polynomial in Q[t], the so-called Alexander polynomial. In fact, the
curves C1 and C2 mentioned in the above example lead to distinct polynomials.

However, the usefulness of Alexander polynomials is limited: If the degree of a cuspidal plane
curve is not divisible by six, then its Alexander polynomial will always be trivial. Therefore,
the �rst case where Alexander polynomials come into play is the case of sextics: If C is
a cuspidal sextic, then its Alexander polynomial can be determined just by knowing the
number κ of cusps of C, unless κ = 6. In the latter case, there are two possible polynomials
depending on whether the six cusps lie on a conic or not.

Consequently, Alexander polynomials of cuspidal plane sextics are well understood. In the
degree 12 case, it is much more di�cult to predict the possible Alexander polynomials from
the number of cusps: The currently known bounds are much coarser than in the case of sextics
and cannot be expected to be sharp. The aim of this diploma thesis is to contribute various
examples of cuspidal plane curves of degree 12 and to calculate their Alexander polynomials.
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2 Cuspidal plane curves

2.1 Projective plane curves

This section collects some essential facts about curves in the complex projective plane. Ref-
erences for the mentioned results are e. g. [2] and [14].

Basic de�nitions. Consider the complex projective plane P2
C. Let f = f(x, y, z) ∈ C[x, y, z]

be a square-free non-constant homogeneous polynomial. Then

V (f) := {(α : β : γ) ∈ P2
C | f(α, β, γ) = 0} ⊂ P2

C

is called the (reduced) complex projective plane curve de�ned by f . This notion is well-
de�ned. Sometimes, f = 0 will be called an equation for V (f). A complex projective plane
curve has an essentially unique square-free equation in the sense that if V (f) = V (g) for
square-free polynomials f and g, then there exists some unit u ∈ C∗ such that g = u · f . The
degree of a complex projective plane curve C is de�ned to be the degree of any de�ning square-
free polynomial and denoted by degC. If this polynomial can be chosen to be irreducible,
then the corresponding curve is also called irreducible.

Multiplicity of a point and singularities. Let C = V (f) be a complex projective plane
curve of degree d and p = (α : β : γ) be a point in P2

C. After applying a projective change of
coordinates if necessary, assume that γ = 1. Write

f(x+ α, y + β, 1) = f0(x, y) + · · ·+ fd(x, y), where fi ∈ C[x, y]i, i = 1, . . . , d.

The multiplicity of C at p is given by mp(C) := min{i ∈ {0, . . . , d} : fi ̸= 0}. The point
p lies on C if and only if mp(C) ≥ 1. The curve C is called smooth at p if mp(C) = 1. A
singular point of C is a point p ∈ C with mp(C) ≥ 2. This happens if and only if the partial
derivatives of f with respect to x, y and z vanish at p. If C contains no singular points, C
is said to be smooth, otherwise C is called a singular curve.

Example: Let p > q ≥ 2 be natural numbers. Set f := xp − yqzp−q and C := V (f). Then
(0 : 0 : 1) is a singular point of C with multiplicity q.

Denote by Σ ⊂ P2
C the set of all singular points on C. Since Σ is cut out by f and its partial

derivatives, it is a closed set in the Zariski topology. Moreover

2#Σ ≤
∑
p∈Σ

mp(C)(mp(C)− 1) ≤

{
d(d− 1) and even

(d− 1)(d− 2) if f is irreducible.
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2 Cuspidal plane curves

Intersection multiplicity. Let C and C ′ be two complex projective plane curves and p :=
(0 : 0 : 1) ∈ P2

C. If f(x, y, z) and g(x, y, z) are the de�ning polynomials for C and C ′,
respectively, then the intersection multiplicity of C and C ′ at p is de�ned via

ip(C,C
′) := dimCC[x, y]⟨x,y⟩/(f(x, y, 1), g(x, y, 1)),

where C[x, y]⟨x,y⟩ denotes the localization of C[x, y] at the prime ideal ⟨x, y⟩.

The intersection multiplicity satis�es ip(C,C
′) = 0 if and only if p /∈ C ∩ C ′. If p lies on a

common component of C and C ′, then ip(C,C
′) = ∞, otherwise ip(C,C

′) is �nite. A lower
bound for ip(C,C

′) is given by mp(C) ·mp(C
′) for all p ∈ C ∩C ′. Equality holds if and only

if C and C ′ have no common tangent at p. Moreover, the intersection multiplicity does not
depend on coordinate changes, thus it may be extended to arbitrary points in P2

C.

A very useful statement on the intersection multiplicity is

Theorem 2.1 (Bézout). Let C and C ′ be two complex projective plane curves without a
common component. Then

∑
p∈C∩C′

ip(C,C
′) = degC · degC ′.

Tangents, nodes and cusps. A line is a complex projective plane curve of degree 1. If
C = V (f) is a complex projective plane curve, then a line ℓ is called a tangent to C at p ∈ P2

C
if ip(C, ℓ) > mp(C). A point p ∈ C has mp(C) tangents, counted with multiplicity. These
correspond to the linear factors of the homogeneous degree mp(C) part of f(x+ α, y + β, 1)
if p = (α : β : 1). Therefore, if p is a smooth point of C, then there is a unique tangent to C
at p.

Now if mp(C) = 2, than p has either two distinct tangents or a doubly counted tangent. In
the �rst case, p is called an ordinary double point or ordinary node of C. In the latter case,
p is called a cusp of C and the tangent line is called the cuspidal tangent. If additionally C
intersects the cuspidal tangent ℓ with multiplicity ip(C, ℓ) = 3, then p is called an ordinary
cusp.

De�nition 2.2. A complex projective plane curve C is called a cuspidal plane curve or simply
a cuspidal curve if its singular points are either ordinary nodes or ordinary cusps.
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2.2 Plücker formulas and bounds on the number of cusps

Ordinary node and ordinary cusp

Lemma 2.3 (Characterization of ordinary cusps). Let C be the complex projective plane
curve de�ned by the polynomial f(x, y, z) ∈ C[x, y, z]d. Write

f(x, y, 1) = f0(x, y) + · · ·+ fd(x, y), where fi ∈ C[x, y]i, i = 1, . . . , d.

Then (0 : 0 : 1) is a cusp if and only if

(a) f0(x, y) = f1(x, y) = 0,

(b) f2(x, y) = (ax+ by)2 for some (a, b) ∈ C2 \ {(0, 0)},

(c) f3(x, y) ̸= 0 and ax+ by does not divide f3(x, y).

Proof:

(⇐) Clearly, p := (0 : 0 : 1) is a point of multiplicity two with a single tangent given by
ℓ := V (ax+ by) by (a) and (b). In particular ip(C, ℓ) ≥ mp(C) + 1 = 3. Since

⟨f(x, y, 1), ax+ by⟩ = ⟨f3(x, y) + · · ·+ fd(x, y), ax+ by⟩

as ideals in C[x, y]⟨x,y⟩, and the a�ne curves V (f3(x, y)+ · · ·+fd(x, y)) and V (ax+ by)
have no common tangent at (0, 0) due to (c), this shows ip(C, ℓ) = 3.

(⇒) If p := (0 : 0 : 1) is an ordinary cusp, then mp(C) = 2, which implies (a). Suppose that
ℓ := V (ax+ by+ cz) is the cuspidal tangent at p, where a, b, c ∈ C. Hence ax+ by+ cz
vanishes at p = (0 : 0 : 1), thus c = 0. Since mp(C) = 2, not both a and b can be zero.
As f2(x, y) is the product of the tangent lines at p, (b) follows. Due to ip(C, ℓ) = 3,
also (c) holds. □

2.2 Plücker formulas and bounds on the number of cusps

Let C = V (f) be a complex projective plane curve. If p is a smooth point of C, then there
exists a unique tangent at p. Since the set of all singular points of C is �nite, this gives rise
to a rational map

φ : C 99K P2
C, p 7→ (a : b : c), where V (ax+ by + cz) is the tangent at p.
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2 Cuspidal plane curves

The closure of the image of φ is a complex projective plane curve and called the dual curve
of C.

Proposition 2.4 (Plücker formulas). Let C be a cuspidal curve of degree d ≥ 2 with κ cusps
and δ nodes. Suppose that C has no lines as components. Assume further that the dual curve
of C is also cuspidal with degree d∗, κ∗ cusps and δ∗ nodes. Then

d∗ = d(d− 1)− 2δ − 3κ,

κ∗ = 3d(d− 2)− 6δ − 8κ,

δ∗ =
1

2
d(d− 2)(d2 − 9)− (2δ + 3κ)(d2 − d− 6) + 2δ(δ − 1) +

9

2
κ(κ− 1) + 6δκ.

Proof: Combine [2, Section 9.1, Theorem 1] and [2, Section 9.1, Remark (2) after Theorem
1]. □

Furthermore, the numbers δ∗ and κ∗ have another interpretation: A bitangent of C is a line
that is tangent to C at more than one point. An in�ection point or �ex of C is a smooth point
p of C, where the tangent line ℓ satis�es ip(C, ℓ) = 3. Now δ∗ is the number of bitangents of
C, whereas κ∗ gives the number of in�ection points.

Bitangent and in�ectional tangent

Depending on the degree d, a curve is called line, conic, cubic, quartic, quintic, sextic, . . . if
d = 1, 2, 3, 4, 5, 6, . . . , respectively. The Plücker formulas give rise to a bound on the number
of cusps on a cuspidal curve:

Proposition 2.5 (First bound on the number of cusps). Let C be a cuspidal curve of degree
d ≥ 2 with κ cusps. Then C is either a three-cuspidal quartic, a nine-cuspidal sextic or

κ ≤ d(d− 2)

3
.

Proof: Suppose that C has δ nodes and that the dual curve is of degree d∗ with κ∗ cusps and
δ∗ nodes. The generalized Plücker formulas of [2, Section 9.1, Theorem 2] give the following
relations:

d∗ = d(d− 1)− 2δ − 3κ,

κ∗ = 3d(d− 2)− 6δ − 8κ,

d ≤ d∗(d∗ − 1)− 2δ∗ − 3κ∗.

6



2.3 Analytic set germs

Solving this with the constraints d, d∗, κ, κ∗, δ, δ∗ ∈ N0, d, d
∗ ≥ 2 and κ > d(d − 2)/3 yields

(d, κ, δ) = (4, 3, 0) or (d, κ, δ) = (6, 9, 0). Both three-cuspidal quartics and nine-cuspidal
sextics exist, see Chapter 5. □

As a consequence, a complex projective plane curve C of degree d can have a cusp only if
d ≥ 3. If d = 3, then C has at most one cusp. An example is given by the cuspidal cubic
V (x2z − y3).

Moreover, a cuspidal curve of degree 12 can have at most 40 cusps. An equation for an
irreducible curve of degree 12 with 39 cusps will be presented in Chapter 5 as Example
(4.12).

If C is irreducible and has degree at least 15, the following improvement can be achieved (see
[27, Formula (0.3)]):

Proposition 2.6 (Second bound on the number of cusps). Let C be an irreducible curve of
degree d ≥ 6 with κ cusps. Then

κ ≤ 5

16
d2 − 3

8
d.

2.3 Analytic set germs

This section explains the connection between singular points of complex projective plane
curves and analytic set germs following [2, III.8.2] and [15].

Analytic set germs. Let U be an open subset of Cn and X ⊆ U . X is called analytic at
x ∈ U if there are a neighborhood V ⊆ U of x and holomorphic functions f1, . . . , fs on V
such that

X ∩ V = {z ∈ V | f1(z) = · · · = fs(z) = 0}.

X is called an analytic subset of U if X is analytic at any x ∈ U .

Let U and U ′ be open subsets of Cn and X ⊆ U , X ′ ⊆ U ′ be respective analytic subsets.
Further let x ∈ U ∩ U ′. Then X and X ′ are said to be equivalent if there is an open
neighborhood V ⊆ U ∩ U ′ of x such that X ∩ V = X ′ ∩ V . The corresponding equivalence
class is called the analytic set germ at x and denoted by (X,x).

Mapping germs, analytic and topological equivalence. Let (X,x) ⊆ (Cm, x) and (Y, y) ⊆
(Cn, y) be analytic set germs, and let U, V ⊆ Cm be open neighborhoods of x. Suppose that
f : U → Cn and g : V → Cn are two analytic mappings with f(x) = g(x) = y, which map
representatives of X to representatives of Y . Then f and g de�ne the same mapping germ
(X,x) → (Y, y) if there is an open neighborhood W ⊆ Cm of x and a representative X ′ of X
in W such that the restrictions of f and g to X ′ coincide.

Suppose (X, 0) and (Y, 0) are analytic set germs at 0 ∈ Cn such that there is a mapping germ
φ : (Cn, x) → (Cn, y) with φ(X,x) = (Y, y). If φ is the germ of an analytic isomorphism,
then (X,x) and (Y, y) are called analytically equivalent or sometimes contact equivalent. If

7



2 Cuspidal plane curves

φ is the germ of a homeomorphism, then (X,x) and (Y, y) are called topologically equivalent.
In particular, analytic equivalence of analytic set germs implies topological equivalence.

Application to complex projective plane curves. Suppose that C ⊂ P2
C is a complex

projective plane curve with a point of multiplicity two at p := (0 : 0 : 1). If C is de�ned by
some homogeneous f(x, y, z) ∈ C[x, y, z], then consider the a�ne curve

Cz := V (f(x, y, 1)) := {(x, y) ∈ C2 | f(x, y, 1) = 0} ⊂ C2.

Now Cz is an analytic subset of C2 and (Cz, (0, 0)) is an analytic set germ. If this set germ
is analytically equivalent to (V (x2 − yk+1), (0, 0)) for some k ∈ N, then p is called an Ak

singularity of C.

Lemma 2.7. Ordinary nodes are A1 singularities and ordinary cusps are A2 singularities.

Proof: Let C ⊂ P2
C be a complex projective plane curve and p := (0 : 0 : 1).

(a) If p is an ordinary double point, then by the discussion in Section 2.1,

f(x, y, 1) = (ax+ by)(cx+ dy) + higher order terms,

where (a, b), (c, d) ∈ C2 are linearly independent. Thus the Hessian matrix(
∂2f(x,y,1)

∂x2 (0, 0) ∂2f(x,y,1)
∂x∂y (0, 0)

∂2f(x,y,1)
∂y∂x (0, 0) ∂2f(x,y,1)

∂y2
(0, 0)

)
=

(
2ac ad+ bc

ad+ bc 2bd

)
has determinant (ad−bc)2 ̸= 0 and therefore full rank. By the Morse lemma [15, Theorem
2.46], this means that p is an A1 singularity.

(b) If p is an ordinary cusp, then after applying a coordinate change,

f(x, y, 1) = x2 + f3(x, y) + higher order terms,

where x does not divide f3(x, y) by Lemma 2.3. The Hessian matrix(
∂2f(x,y,1)

∂x2 (0, 0) ∂2f(x,y,1)
∂x∂y (0, 0)

∂2f(x,y,1)
∂y∂x (0, 0) ∂2f(x,y,1)

∂y2
(0, 0)

)
=

(
2 0
0 0

)
has now rank one. Moreover,

fx :=
∂f(x, y, 1)

∂x
= 2x+

∂f3(x, y)

∂x
+ higher order terms,

fy :=
∂f(x, y, 1)

∂y
=
∂f3(x, y)

∂y
+ higher order terms.

Now (0, 0) is a common point of the a�ne curves V (fx) and V (fy). Due to the divisibility
condition x ∤ f3(x, y), both curves have distinct tangents at (0, 0). Since (0, 0) is a smooth
point on V (fx) and a double point on V (fy), this implies

dimCC[x, y]⟨x,y⟩ /⟨fx, fy⟩ = 1 · 2 = 2.

By [15, Theorem 2.48], p is an A2 singularity. □
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2.4 Kummer coverings

2.4 Kummer coverings

The aim of this section is to investigate the behavior of a curve and its singularities, when
its de�ning polynomial f(x, y, z) ∈ C[x, y, z] is replaced by f(xn, yn, zn) for some natural
number n ∈ N.

The Kummer covering φn. For n ∈ N consider the morphism

φn : P2
C → P2

C, (x : y : z) 7→ (xn : yn : zn).

The map φn : P2
C → P2

C is a �nite surjective morphism of degree n2. In particular, the
cardinality of each �ber is bounded from above by n2. More precisely, if p ∈ P2

C, then

#φ−1
n (p) =


1 if p ∈ {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)},
n if p ∈ V (xyz) \ {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)},
n2 otherwise.

If p is one of the three points (1 : 0 : 0), (0 : 1 : 0) or (0 : 0 : 1), then p has one preimage
under φn, namely p. Otherwise, if p is none of these points, but still lies on V (xyz), then
p has n preimages: Indeed, suppose without loss of generality that p = (0 : 1 : α) for some
α ∈ C∗. Then

φ−1
n (p) = {(0 : β : γ) | βn = 1 and γn = α}.

If such a pair (β, γ) is given and ξ is an n-th root of unity, then (0 : ξβ : ξγ) and (0 : β : γ)
de�ne the same point in the complex projective plane. Consequently, φ−1

n (p) consists of n
distinct points.
If p is of the form (1 : α : β) for some α, β ∈ C∗, a similar argument shows that#φ−1

n (p) = n2.

Since the cardinality of the �bers drops at V (xyz), this set is called the rami�cation locus
of φn. Outside the rami�cation locus, i. e., when restricted to P2

C \ V (xyz) on both sides,
φn is a covering map of degree n2 with respect to the Euclidean topology. Furthermore, the
corresponding �eld extension is a Kummer extension with Galois group (Z/nZ)2. For these
reasons, φn is called a Kummer covering.

Pulling back curves via φn. Let f ∈ C[x, y, z] be a square-free homogeneous polynomial.
Then the homogeneous ideal

J(f) :=

⟨
∂f

∂x
,
∂f

∂y
,
∂f

∂z

⟩
⊴ C[x, y, z]

is called the Jacobian ideal of f . By the projective Nullstellensatz (see e. g. [19, Section I.2])
and Euler's theorem (see e. g. [2, II.4.4, Theorem 3]), the radical ideal of J(f) is the ideal
of singular points of the curve V (f).

Note that the morphism φn induces a ring homomorphism

φ∗
n : C[x, y, z] → C[x, y, z], g(x, y, z) 7→ g(xn, yn, zn).

9



2 Cuspidal plane curves

Proposition 2.8. Let C = V (f) ⊂ P2
C be a complex projective plane curve of degree d ∈ N.

Suppose that C intersects V (xyz) in smooth points only and that C does not contain any of
the points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1).

Then φ−1
n (C) = V (φ∗

n(f)) ⊂ P2
C is a curve of degree nd and

J(φ∗
n(f)) =

⟨
xn−1 · φ∗

n

(
∂f

∂x

)
, yn−1 · φ∗

n

(
∂f

∂y

)
, zn−1 · φ∗

n

(
∂f

∂z

)⟩
.

In particular, for the singular loci Σ(C) resp. Σ(φ−1
n (C)) holds

Σ(φ−1
n (C)) = φ−1

n (Σ(C) ∪∆),

where ∆ is the set of points where C intersects V (xyz) with multiplicity at least two.

Proof: If C is de�ned by the vanishing of f = f(x, y, z), then it is clear that φ−1
n (C) is a

curve in P2
C of degree nd with de�ning equation φ∗

n(f) = f(xn, yn, zn) = 0. Note that

∂

∂x
f(xn, yn, zn) = nxn−1 · ∂f

∂x
(xn, yn, zn) = nxn−1 · φ∗

n

(
∂f

∂x
(x, y, z)

)
.

This holds analogously for the derivatives with respect to y and z. In particular, the ideal
J(φ∗

n(f)) is of the described form.

Now let (α : β : γ) be a singular point of φ−1
n (C). Then from the description of J(φ∗

n(f))
follows that either φn(α : β : γ) is a singular point of C or (α : β : γ) lies on V (xyz). In
the latter case, note at �rst that (α : β : γ) is by assumption none of the points (1 : 0 : 0),
(0 : 1 : 0) and (0 : 0 : 1). Thus only one coordinate may vanish, assume without loss of
generality that α = 0. In other terms,

∂f

∂x
(αn, βn, γn) ̸= 0,

∂f

∂y
(αn, βn, γn) = 0,

∂f

∂z
(αn, βn, γn) = 0.

This shows that the tangent to C at (αn : βn : γn) ∈ C∩V (x) is given by V (x). In particular,
C intersects V (x) at (αn : βn : γn) with multiplicity at least 2, hence (α : β : γ) ∈ φ−1

n (∆).

If p ∈ Σ(C) is a singular point of C, then the description of J(φ∗
n(f)) shows that any point

in φ−1
n (p) is in Σ(φ−1

n (C)). If q ∈ ∆, say without loss of generality q = (0 : 1 : α) for some
α ∈ C∗, then the tangent to C at q is given by V (x). Since all points in φ−1

n (q) have a
vanishing �rst coordinate, they are all singular points of φ−1

n (C). □

Singularities of φ−1
n (C) ([1, Section 5]). How do the singularities of φ−1

n (C) look like? The
answer is given in the following two lemmas:

Lemma 2.9. Let p ∈ Σ(C) be a singular point of C = V (f). Then the germs (C, p) and
(φ−1

n (C), q) are analytically isomorphic for all n2 points q ∈ φ−1(p).

10



2.5 Elliptic threefolds and Mordell-Weil rank

Proof: Note that φn is unrami�ed in a neighborhood of p = φn(q), as C has no singular
points on the rami�cation locus V (xyz). Let q = (α : β : 1) for some α, β ∈ C∗ and de�ne
g(x, y, z) := f(xn, yn, zn). Then g(x + α, y + β, 1) is a local equation for φ−1

n (C) around q.
Applying the analytic coordinate changes

(x, y) 7→ (x′, y′) := (x− α, y − β),

(x′, y′) 7→ (x′′, y′′) := (
n
√
x′, n
√
y′),

(x′′, y′′) 7→ (x′′ + αn, y′′ + βn)

yields f(x+ αn, y + βn, 1), which is a local equation for C around p. □

For singularities coming from the set ∆, one has:

Lemma 2.10. Let p ∈ ∆ be a point where C intersects V (xyz) with multiplicity e ≥ 2. Then
all n singularities in φ−1

n (p) are topologically equivalent to (V (xn − ye), 0).

Proof: Take q ∈ φ−1
n (p) and suppose without loss of generality that q = (0 : α : 1) for some

α ∈ C∗. Let g(x, y, z) := f(xn, yn, zn). Then g(x, y + α, 1) is a local equation for φ−1
n (C)

around q. Applying the coordinate changes

(x, y) 7→ (x′, y′) := (x, y − α),

(x′, y′) 7→ (x′′, y′′) := (x′, n
√
y′),

(x′′, y′′) 7→ (x′′, y′′ + αn)

gives f(xn, y+αn, 1). Finally note that f(x, y+αn, 1) can be transformed into x− ye, since
C intersects V (x) with multiplicity e at the smooth point p = (0 : αn : 1). □

Observe that it is always possible to �nd a change of coordinates such that ∆ = ∅. For
example, if C is a cuspidal curve of degree d with κ cusps and ∆ = ∅, then Proposition 2.8
and Lemma 2.9 state that φ−1

n (C) is a cuspidal curve of degree nd with κn2 cusps. So φn

enables to produce cuspidal curves with a high number of cusps. Using Lemma 2.10, if ∆ ̸= ∅
and the intersection with V (xyz) is su�ciently nice, then one can put even more cusps into
φ−1
n (C). This will be exploited in Chapter 5.

2.5 Elliptic threefolds and Mordell-Weil rank

The results of this section are mainly taken from [21] and [22].

Elliptic threefolds and their Mordell-Weil group. An elliptic threefold is a quadruple
(X,S, π, σ0), where X is a smooth projective threefold, S a smooth projective surface,
π : X → S a �at morphism such that the generic �ber is a curve of genus one and σ0 : S → X
is a section of π. The morphism π is also called the elliptic �bration of the elliptic threefold.

Suppose that S is a rational surface. In particular, its function �eld is given by C(x, y). Now
the function �eld of X, C(X), becomes a �eld extension of C(x, y) via the morphism π. More-
over, C(X) is the function �eld of an elliptic curve E over C(x, y), i.e., C(X) = C(u, v, x, y).

11



2 Cuspidal plane curves

Choosing a globally minimal Weierstrass equation, there are polynomials f, g ∈ C[x, y] such
that

E = V (−v2 + u3 + ug(x, y) + f(x, y)) ⊂ C(x, y)2

and no non-constant polynomial h ∈ C[x, y] satis�es h4 | g and h6 | f .

The set of all rational sections S 99K X of π carries a group structure. This group is called
the Mordell-Weil group of π : X → S. It is isomorphic to the group of C(x, y)-rational points
on the elliptic curve E. The identity element is given by the section σ0. The Mordell-Weil
group is a birational invariant.

Elliptic threefolds from cuspidal curves. Let C be a cuspidal curve of degree 6k, k ∈ N,
and pick a square-free equation f ∈ C[x, y, z]6k. Choose coordinates u, v, x, y, z on P4

C with
weights 2k, 3k, 1, 1, 1, respectively, and consider the hypersurface

Wf := V (−v2 + u3 + f(x, y, z)) ⊂ P4
C(2k, 3k, 1, 1, 1).

Let p : Wf 99K P2
C be the projection from (1 : 1 : 0 : 0 : 0) ∈ Wf o«to the plane V (u, v).

Pick now a point q ∈ P2
C. If q /∈ C, then p−1(q) is an elliptic curve with j-invariant zero.

Otherwise, p−1(q) is a cuspidal cubic. Furthermore, Wf is birational to an elliptic threefold
Xf := (X,S, π, σ0), where S is a rational surface and π : X → S is birational to p.

The Mordell-Weil group MW(Xf ) of an elliptic threefold associated to a cuspidal curve V (f)
of degree 6k is always �nitely generated. In [24, Theorem 3.11], the following bound for its
rank is shown:

Lemma 2.11. Under the above hypotheses, rkZMW(Xf ) ≤ 10k − 2.

This bound will be improved in Chapter 4. The rank of the Mordell-Weil group can be
computed more explicitly:

Theorem 2.12. Let C = V (f) be a cuspidal curve of degree 6k for some k ∈ N. Denote by
Σ the locus of cusps of C. Then the following numbers are equal:

(a) The Z-rank of the Mordell-Weil group of the elliptic threefold Xf ,

(b) 2 dimC cokerφ, where

φ : C[x, y, z]5k−3 → C#Σ, f 7→ (f(p))p∈Σ ,

(c) 2 dimC cokerψ, where

ψ : C[x, y, z]7k−3 → C2#Σ, f 7→
(
f(p),

∂f

∂ℓp
(p)

)
p∈Σ

and ℓp = 0 is a square-free equation for the cuspidal tangent at p ∈ Σ.

12



2.5 Elliptic threefolds and Mordell-Weil rank

Idea of proof: Following [21, Proposition 3.1] and [22], there is a map

θ : H4(P4
C(2k, 3k, 1, 1, 1) \Wf ) → H4

Σ(Wf ).

such that the dimension of the cokernel of θ equals rkMW(π). If ω is a primitive third root
of unity, then

ϑω :Wf →Wf , (u : v : x : y : z) 7→ (ωu : v : x : y : z)

is an automorphism ofWf leaving Σ pointwise �xed. Now θ is ϑ∗ω-equivariant, so its cokernel
may be decomposed into the eigenspaces of 1, ω and ω2. The 1-eigenspace is trivial and the
eigenspaces of ω and ω2 have the same dimension. The ω-eigenspace of the cokernel of θ has
dimension (b), whereas the ω2-eigenspace has dimension (c).

As a consequence, the Mordell-Weil rank of Xf is always an even number.

Quasi-toric relations ([24, Section 4]). Let C = V (f) be a cuspidal curve of degree 6k
and Xf an elliptic threefold birational to Wf . Then MW(Xf ) is isomorphic to the group of
C(x, y)-rational points of the elliptic curve E de�ned by the polynomial

−v2 + u3 + f(x, y, 1) ∈ C(x, y)[u, v].

Let (α, β) be a C(x, y)-rational point of E. Then there exist polynomials g1, g2, g3 ∈ C[x, y]
such that α = g1/g3 and β = g2/g3 and

g22
g23

− g31
g33

= f(x, y, 1).

Multiplying with g63 yields that

(g2g
2
3)

2 + (−g1g3)3 = g63 · f(x, y, 1).

Homogenizing, one obtains that any C(x, y)-rational point of E gives polynomials h1, h2, h3
in C[x, y, z] satisfying

h21 + h32 = h63 · f.

Conversely, if such polynomials h1, h2, h3 exist, this gives a C(x, y)-rational point of E.

Proposition 2.13. Let f ∈ C[x, y, z]6k be irreducible and suppose that V (f) is a cuspidal
curve. Then the set

{(h1, h2, h3) ∈ C[x, y, z]3 | h21 + h32 = h63 · f}

is called the set of quasi-toric relations of type (2, 3, 6) of f . Moreover, this set carries a
group structure isomorphic to rkMW(Xf ) copies of Z.

Proof: This is Theorem 4.7 in [24]. □
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3 Alexander polynomials

This chapter is inspired by [23] and [9, Chapter 2]. It introduces the Alexander polynomial in
general and for knots and curves in detail. The last section connects the Alexander polynomial
of a cuspidal curve with the Mordell-Weil group of an associated elliptic threefold.

3.1 De�nition

Let X be a topological space with the homotopy type of a �nite CW complex. Suppose that
there is a group epimorphism ε : π1(X) ↠ Z. Then ker ε gives rise to a covering X̃ → X,
called the in�nite cyclic covering, such that the group of deck transformations Aut(X̃/X)
satis�es

Aut(X̃/X) ∼= π1(X)/ ker ε ∼= Z.

Fix a generator T of Aut(X̃/X). Then the �rst homology group of X̃ with rational coe�cients
becomes a Q[t, t−1]-module via

Q[t, t−1]×H1(X̃,Q) → H1(X̃,Q), t · c 7→ H1(X̃,Q)(T )(c),

where H1(X̃,Q)(T ) is the map obtained by the functoriality of H1.

Q[t, t−1] is the localization of the principal ideal domain Q[t] at the powers of t, hence itself
a principal ideal domain. Furthermore, H1(X̃,Q) is �nitely generated as a Q[t, t−1]-module,
as it has the homotopy type of a �nite CW complex. Thus by the classi�cation of �nitely
generated modules over principal ideal domains, there are elements d1, . . . , dk ∈ Q[t, t−1]
with d1 | · · · | dk such that

H1(X̃,Q) = Q[t, t−1]r ⊕Q[t, t−1]/⟨d1⟩ ⊕ · · · ⊕Q[t, t−1]/⟨dk⟩.

This motivates the following de�nition:

De�nition 3.1. The Alexander polynomial ∆X,ε ∈ Q[t] of X relative to the epimorphism
ε : π1(X) ↠ Z is de�ned as follows:

(a) If r = 0, i. e., H1(X̃,Q) is a torsion module over Q[t, t−1], then set

∆X,ε(t) := d1 · · · dk · u · tm,

where u ∈ C∗, m ∈ Z are so chosen that ∆X,ε ∈ Q[t], ∆X,ε(0) ̸= 0 and ∆X,ε(1) = 1 if
∆X,ε(1) ̸= 0.

(b) If r > 0, then de�ne ∆X,ε := 0.

15



3 Alexander polynomials

3.2 Knots and links

A link is a closed smooth submanifold in the three-dimensional sphere S3 such that each
connected component is di�eomorphic to the circle. A knot is a connected link.

Example: Let p, q be coprime natural numbers. Consider the map

ψ : C → C2, w 7→
(
wq

√
2
,
wp

√
2

)
.

If w ∈ S1, i. e., |w| = 1, then

|ψ(w)|2 =
∣∣∣∣wq

√
2

∣∣∣∣2 + ∣∣∣∣wp

√
2

∣∣∣∣2 = |w|2q

2
+

|w|2p

2
= 1.

Hence ψ(S1) ⊆ S3. Moreover ψ|S1 is an embedding of S1 into S3. Its image is called the
(p, q)-torus knot. The (2, 3)-torus knot is also known as trefoil knot.

Trefoil knot and (17, 13)-torus knot

If L is a link with m ∈ N connected components. then H1(S3 \ L,Z) is isomorphic to Zm

([9, Chapter 2, Lemma 1.4]). In particular, if K is a knot and X := S3 \K, then Hurewicz's
theorem yields a group epimorphism

ε : π1(X) ↠ H1(X,Z)
≃−−→ Z.

Now, as shown in [23, Section 2], H1(X̃,Q) becomes a torsion module over Q[t, t−1]. Thus
the corresponding Alexander polynomial ∆K := ∆X,e is nonzero. It is called the Alexander
polynomial of the knot K.

Example: Let K be the (p, q)-torus knot for coprime numbers p, q ∈ N. Using the van
Kampen theorem, one can show (see [9, Chapter 2, Example 1.6])

π1(S3 \K) ∼= Z/pZ ∗ Z/qZ ∼= ⟨a, b | ap = bq⟩.

Using Fox calculus ([12]), the Alexander polynomial of K can be determined starting from
a presentation for the fundamental group. In this case this procedure yields ([9, Example
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2.1.13])

H1(X̃,Q) ∼= Q[t, t−1]/(∆p,q(t)), where ∆p,q(t) :=
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
∈ Q[t].

In particular, for the trefoil knot holds ∆2,3(t) = t2 − t+ 1.

3.3 Alexander polynomials associated to curves

Links from plane curve singularities. Let f ∈ C[x, y, z]d be a square-free homogeneous
polynomial of degree d ∈ N and suppose that the complex projective plane curve V (f)
intersects V (z) transversely, i. e. V (f) ∩ V (z) consists of d distinct points. Assume further
that V (f) is singular at (0 : 0 : 1). De�ne the a�ne plane curve Cz := V (f(x, y, 1)) ⊂ C2.
Now the 3-sphere S3 intersects Cz in a 1-sphere, which produces a link.

Example: Suppose f := xp−yqzp−q for coprime natural numbers p > q. Then Cz is de�ned
by the vanishing of xp − yq. That is, Cz is the image of

ψ′ : C → C2, w 7→ (wq, wp) .

We have seen the quite similar map ψ before in 3.2. Hence analogously to ψ, the embedding
ψ′|S1 yields a knot which is equivalent to the (p, q)-torus knot.

In general, any singular point of a complex projective plane curve is associated with a link.
Moreover, two singularities are topologically equivalent if and only if their induced links are
equivalent (see [2, Section III.8.3]).

Three Alexander polynomials. We will de�ne three di�erent Alexander polynomials asso-
ciated to a curve following [23] and [26].

De�nition 3.2. Let C be a complex projective plane curve and p be a singular point of C.
The Alexander polynomial of the induced link is called the local Alexander polynomial of C
at p and denoted by ∆C,p.

Lemma 3.3. Let C be a cuspidal curve with κ cusps and δ nodes. Denote by Σ the set of
all singular points of C. Then∏

p∈Σ
∆C,p(t) = (t− 1)δ(t2 − t+ 1)κ.

Proof: Suppose that p is a cusp of C. Then the corresponding analytic set germ is analytically
equivalent to (V (x2−y3), (0, 0)) by Lemma 2.7. Since analytic equivalence implies topological
equivalence, p induces a (2,3)-torus knot, i. e. a trefoil knot in virtue of the above example.
Hence ∆C,p(t) = t2 − t+ 1.

If p is a node of C, then the corresponding analytic set germ is analytically equivalent to
(V (x2− y2), (0, 0)) also by Lemma 2.7. This set germ is not irreducible and the induced link

17
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is not a knot. However, this link is rather simple, as it is equivalent to two linked circles ([2,
Proposition 13 in II.8.3]). The resulting Alexander polynomial is t−1 (see e. g. [9, Theorem
6.4.5]). □

Let C be a complex projective plane curve that intersects V (z) transversely and consider the
associated a�ne plane curve Cz. Note that

π1(C2 \ Cz) ∼= π1(P2
C \ (C ∪ V (z))).

If r is the number of irreducible components of Cz, then the �rst singular homology group of
C2 \ Cz is isomorphic to Zr, as Cz is an a�ne curve ([9, Corollary 4.1.4]). Using Hurewicz's
theorem, this motivates a group epimorphism

ε : π1(C2 \ Cz) ↠ H1(C2 \ Cz,Z)
≃−−→ Zr ↠ Z,

where the last arrow denotes the summation Zr ∋ (a1, . . . , am) 7→ a1 + · · ·+ am ∈ Z.

De�nition 3.4. With the above notation, de�ne ∆C := ∆C2\Cz ,ε. This is called the (global)
Alexander polynomial of the complex projective plane curve C.

There is one more de�nition: The intersection of Cz with a very large 3-sphere yields also a
link L∞. The Alexander polynomial associated to L∞ is called the Alexander polynomial of
C at in�nity and denoted by ∆C,∞.

The connection between these three Alexander polynomials associated to a curve is given by
the following theorem:

Theorem 3.5 (Libgober's divisibility theorems [23]). Suppose that C is a complex projective
plane curve of degree d ≥ 2 with singular locus Σ. Then

(a) ∆C(t) |
∏

p∈Σ∆C,p(t).

(b) ∆C(t) | ∆C,∞(t) = (td − 1)d−2(t− 1).

For cuspidal curves one has the following result:

Theorem 3.6. Assume that C is a cuspidal curve of degree d with r components and κ cusps.
Then

∆C(t) =

{
(t2 − t+ 1)s for some s ∈ {0, . . . , κ} if C is irreducible and 6 | d,
(t− 1)r−1 otherwise.

Proof: By Libgober's divisibility theorem and Lemma 3.3,

∆C(t) | (t− 1)δ(t2 − t+ 1)κ,

where δ denotes the number of nodes of C. As both t − 1 and t2 − t + 1 are irreducible
polynomials in Q[t], this implies ∆C(t) = (t−1)ρ(t2− t+1)s for some ρ ∈ N0 with 0 ≤ ρ ≤ δ

18
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and some s ∈ N0 with 0 ≤ s ≤ κ. By [26, Lemma 21], ρ = r − 1.

Assume now s ≥ 1. Then C has at least one cusp, hence d ≥ 3. By the second divisibility
condition

(t− 1)r−1(t2 − t+ 1)s | (td − 1)d−2(t− 1).

In particular, any complex root of t2 − t+ 1 has to be a root of (td − 1)d−2(t− 1). Since the
two roots of t2 − t+ 1 are the two primitive sixth roots of unity, this implies 6 | d.

By [26, Theorem 34], s = 0 if C is not irreducible. □

The global Alexander polynomial ∆C(t) is said to be trivial if it equals (t − 1)r−1, where
r is the number of irreducible components of C. Theorem 3.6 states that the Alexander
polynomial of an irreducible cuspidal curve is trivial if its degree is not divisible by six. The
Alexander polynomial is trivial in even more cases, e. g. if π1(P2

C \C) is �nite ([26, Corollary
30]) or abelian ([26, Lemma 36]).

3.4 Irregularity of cyclic multiple planes and the Mordell-Weil

group revisited

Cyclic multiple planes ([23]). Let C = V (f) ⊂ P2
C be an irreducible cuspidal curve of

degree d in the complex projective plane. Suppose that C intersects V (z) transversely. For
m ∈ N consider the surface

Sm := V (zm − f(x, y, 1)) ⊂ C3.

Sm is called a cyclic multiple plane. Note that

ψm : Sm → C2, (x, y, z) 7→ (x, y)

is a rami�ed covering of C2 of degree m. The cardinality of a �ber ψ−1
m (p) for a point p ∈ C2

drops to one if and only if p lies on the a�ne plane curve de�ned by f(x, y, 1).

Let S̃m be a desingularization of the projective closure of Sm in P3
C. The irregularity of S̃m

is de�ned via q(S̃m) := dimQH1(S̃m,Q).

Proposition 3.7 (Libgober). Under the above hypotheses, suppose that the global Alexander

polynomial of C is given by ∆C(t) = (t2 − t + 1)s with s ∈ N0. Then q(S̃6k) = 2s for any
k ∈ N.

Proof: [23, Corollary 3.2] states that q(S̃m) =
∑

i ai, where ai ∈ N0 is the number of common
roots of t6k − 1 and the i-th irreducible factor in ∆C(t). Since the roots of t2 − t + 1 are
precisely the two primitive sixth roots of unity, the claim follows. □

Already in 1931, Zariski proved:
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Theorem 3.8 ([31]). With the above notations, q(S̃m) = 0 unless m and d are both divisible

by six. If d = 6k for some k ∈ N and 6 | m, then q(S̃m) = 2 dimC cokerφ, where

φ : C[x, y, z]5k−3 → C#Σ, f 7→ (f(p))p∈Σ,

and Σ is the locus of cusps of C.

This map φ occured already in Theorem 2.12. Hence for irreducible curves, this gives imme-
diately the following corollary:

Theorem 3.9. Let k ∈ N and f ∈ C[x, y, z]6k be an irreducible homogeneous polynomial of
degree 6k. Suppose that C := V (f) ∈ P2

C is a cuspidal curve intersecting V (z) transversely.
Then the following numbers coincide:

(a) 2s, where ∆C(t) = (t2 − t+ 1)s,

(b) the irregularity of a resolution of singularities of the projective closure of S6, where S6 is
the cyclic multiple plane V (z6 − f(x, y, 1)) ⊂ C3,

(c) the Z-rank of the Mordell-Weil group of an elliptic threefold birational to Wf ,

(d) 2 dimC cokerφ, where

φ : C[x, y, z]5k−3 → C#Σ, f 7→ (f(p))p∈Σ ,

(e) 2 dimC cokerψ, where

ψ : C[x, y, z]7k−3 → C2#Σ, f 7→
(
f(p),

∂f

∂ℓp
(p)

)
p∈Σ

,

and ℓp = 0 is a reduced equation for the cuspidal tangent at p ∈ Σ.

The paper [24] gives another proof for (a) = (b) = (c). In the next chapter, the numbers (d)
and (e) will be explored in terms of commutative algebra.
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4 Ideals of cusps

For the whole chapter, de�ne S := C[x, y, z]. The locus of cusps of a cuspidal plane curve
gives rise to three di�erent ideals in S. The syzygies of these ideals are strongly related with
the Alexander polynomial of the curve.

4.1 Some commutative algebra background

A reference for this section is e. g. [11].

Free resolutions. The ring S becomes a graded ring in a natural way by assigning to each
of the variables x, y, z the degree one. Let M =

⊕
d∈ZMd be a �nitely generated graded

S-module. A graded free resolution of M is an exact sequence of graded S-modules

F : 0 → F3 → F2 → F1 → F0 →M → 0,

where either Fi = 0 or Fi is a free graded S-module of �nite rank, i = 0, 1, 2, 3. Such a free
module Fi may be written as a �nite direct sum Fi =

⊕
j S(−aij) with aij ∈ N0 for all j. The

numbers aij are unique if F is a minimal graded free resolution, i. e. if im(Fi) ⊆ ⟨x, y, z⟩Fi−1

for i = 1, 2, 3.

By Hilbert's syzygy theorem (see [10, Corollary 19.7]), any �nitely generated graded S-
module M possesses a minimal graded free resolution. The number max{i | Fi ̸= 0} is called
the projective dimension of M and denoted by pdM .

Hilbert function, Hilbert polynomial and Castelnuovo-Mumford regularity. The Hilbert
function hM of a �nitely generated graded S-module M is de�ned via

hM : Z → N0, d 7→ dimCMd.

Consider an exact sequence of �nitely generated graded S-modules

0 →M1 →M2 →M3 → 0.

Then hM2(d) = hM1(d) + hM3(d) for all d ∈ Z.

For example, if I, J ⊴ S are homogeneous ideals such that I ⊆ J , then

0 → J/I → S/I → S/J → 0
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4 Ideals of cusps

is an exact sequence of �nitely generated graded S-modules and hJ/I(d) = hS/I(d)−hS/J(d).
Now suppose that

F : 0 →
⊕
j

S(−a3,j) →
⊕
j

S(−a2,j) →
⊕
j

S(−a1,j) →
⊕
j

S(−a0,j) →M → 0

is a graded free resolution of some graded S-module M . Then

hM (d) =

3∑
i=0

(−1)i
∑

j: d≥aij

(
d− aij + 2

2

)
.

In particular, for d≫ 0, hM (d) coincides with

pM (d) =

3∑
i=0

(−1)i
∑
j

(d− aij + 2)(d− aij + 1)

2
.

pM is called the Hilbert polynomial of M .

If F is minimal, the number regM := maxi,j{aij − i} is called the Castelnuovo-Mumford
regularity of M . If d ≥ regM , then hM (d) = pM (d). The converse is true if M is a Cohen-
Macaulay module.

4.2 Zero-dimensional subschemes of P2
C

Projective subschemes of P2
C and saturated ideals. The complex projective plane P2

C may
be considered as the projective scheme

ProjS := {P | P a homogeneous prime ideal of S such that ⟨x, y, z⟩ ̸⊆ P}.

A projective subscheme of P2
C is given by ProjS/I, where I ⊴ S is a homogeneous ideal.

If I ⊴ S is a homogeneous ideal, then its saturation Isat is de�ned as

Isat :=
∪
m∈N

I : ⟨x, y, z⟩m = {f ∈ S | ∃m ∈ N : f · ⟨x, y, z⟩m ⊆ I}.

Since S is noetherian and I : ⟨x, y, z⟩m ⊆ I : ⟨x, y, z⟩n for m ≤ n, Isat is well-de�ned.
Moreover, it is a homogeneous ideal and always I ⊆ Isat. An ideal I is called saturated
if I = Isat. The geometric signi�cance of saturated ideals is as follows: There is a 1-to-1
correspondence

{closed subschemes of P2
C} ↔ {saturated homogeneous ideals in C[x, y, z]}.

Two homogeneous ideals I, J ⊴ S de�ne the same projective subscheme if and only if their
saturations coincide ([19, Exercise II.5.10]).

22



4.2 Zero-dimensional subschemes of P2
C

Zero-dimensional subschemes of P2
C. Let I ⊴ S be a saturated homogeneous ideal and

X := ProjS/I the corresponding projective subscheme of P2
C. The Hilbert function and the

Hilbert polynomial of X are de�ned to be hX := hS/I and pX := pS/I , respectively. X is
called zero-dimensional if the Hilbert polynomial pX is constant. In this case, the value of pX
is called the degree of X and denoted by degX. Note that degX is in fact a natural number
and may be interpreted as the number of points in X counted with appropriate multiplicities.
In fact, Bézout's theorem (Theorem 2.1) may be rephrased as follows ([19, Exercise II.6.2]):

Theorem 2.1 reformulated. Let C and C ′ be two complex projective plane curves without
a common component. Then

degC ∩ C ′ = degC · degC ′.

Ideals of cusps as zero-dimensonial subschemes of P2
C. Let C ⊂ P2

C be a complex projec-
tive plane curve de�ned by the square-free homogeneous polynomial f ∈ C[x, y, z]. Denote
the singular locus of C by Σ and assume that Σ ̸= ∅. Then one can associate the following
three ideals to Σ:

(a) I(Σ), the homogeneous radical ideal de�ning Σ as a Zariski-closed subset of P2
C,

(b) J(f) = ⟨∂f∂x ,
∂f
∂y ,

∂f
∂z ⟩, the Jacobian ideal of f ,

(c) J(f)sat, the saturation of J(f).

All three ideals are homogeneous and have the same vanishing set, namely Σ. Moreover
J(f) ⊆ J(f)sat ⊆ I(Σ). But I(Σ) and J(f)sat de�ne di�erent projective subschemes. The
reason is that I(Σ) induces the so-called reduced scheme structure, while J(f)sat puts more
geometry into the scheme structure:

Example: Consider the cuspidal cubic C = V (f), where f := x2z − y3 ∈ S3. Its singular
locus is Σ := {(0 : 0 : 1)}. Then

I(Σ) = ⟨x, y⟩, J(f) = ⟨xz, y2, x2⟩, J(f)sat = ⟨x, y2⟩.

For example, the line V (y) passes through Σ and y /∈ J(f)sat. On the other hand, V (y2)
does also pass through Σ, but y2 ∈ J(f)sat. Observe that ∂

∂yy
2 = 2y vanishes at p, whereas

∂
∂yy = 1 does not. Since ∂

∂y is the directional derivative in the direction of the cuspidal

tangent V (x) at (0 : 0 : 1), this means visually that J(f)sat contains only polynomials that
respect the cuspidal tangent appropriately.

Lemma 4.1. Let C = V (f) be a complex projective plane curve such that all singular points
are ordinary cusps. Denote by Σ the locus of cusps of C. Then

J(f)sat =

⟨
g ∈ S homogeneous

∣∣∣∣ g(p) = 0 and
∂g

∂ℓp
(p) = 0 for all p ∈ Σ

⟩
.
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4 Ideals of cusps

æ

æ æ

æ

æ æ

ProjS/I(Σ) versus ProjS/J(f)sat

Proof: Call the right-hand side K.

• K is a saturated ideal: Let g ∈ C[x, y, z] be a homogeneous polynomial satisfying
g·⟨x, y, z⟩m ⊆ K for somem ∈ N. Fix a cusp p = (α : β : 1). Then 0 = (gzm)(p) = g(p).
Moreover

0 =
∂(gzm)

∂ℓp
(p) =

∂zm

∂ℓp
(p) · g(p) + 1m · ∂g

∂ℓp
(p) =

∂g

∂ℓp
(p).

Consequently g ∈ K.

• Let κ := #Σ and decompose

J(f)sat = Q1 ∩ · · · ∩Qκ, K = Q′
1 ∩ · · · ∩Q′

κ

into an intersection of primary ideals, where
√
Qi =

√
Q′

i is the prime ideal correspond-
ing to the i-th cusp of C, i = 1, . . . , κ. Suppose that p is the cusp corresponding to Qi

resp. Q′
i. Then, after a suitable coordinate change, p = (0 : 0 : 1), f(x, y, 1) = x2 − y3

and ℓp = V (x). Now one sees that Qi = ⟨x, y2⟩ = Q′
i. □

If C is a cuspidal curve that has also nodes as singularities, decompose

J(f)sat =
∩

p cusp of C

Qp ∩
∩

q node of C

Qq,

where Qp resp. Qq is a primary ideal with respect to the prime ideal at p resp. q. Then
Lemma 4.1 still holds true when J(f)sat is replaced by

∩
p cusp of C Qp.

4.3 Codimension two ideals in C[x, y, z]

All three ideals of cusps mentioned in the previous section have codimension two, as they
de�ne zero-dimensional subschemes of P2

C. The following section explores the properties of
codimension two ideals of S in general. The main ideas for this section are taken from [11,
Chapter 3].
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Projective dimension.

Lemma 4.2. Let I ⊴ S be a homogeneous ideal of codimension 2. Then the projective
dimension of the graded S-module S/I is either 2 or 3.

Proof: LetM be a graded S-module. Then depthM is de�ned to be the length of a maximal
regular sequence in M with respect to the maximal ideal ⟨x, y, z⟩⊴ S. Clearly depthS = 3,
as (x, y, z) is a maximal regular sequence. Using the Auslander-Buchsbaum formula [10,
Theorem 19.9] and the fact that depthS/I ≤ dimS/I [10, Proposition 18.2], one obtains

pdS/I = depthS − depthS/I ≥ depthS − dimS/I = 3− 1 = 2.

Hilbert's syzygy theorem [10, Corollary 19.7] shows that pdS/I ≤ 3. □

The following lemma (inspired by [4, Proposition 5.2]) provides some tools to compute the
projective dimension of a codimension two ideal.

Lemma 4.3. Let I ⊴ S be a homogeneous ideal of codimension 2. Then the following are
equivalent:

(a) pdS/I = 2,

(b) S/I is a Cohen-Macaulay module over S,

(c) ⟨x, y, z⟩ is not an associated prime of S/I,

(d) I : ⟨x, y, z⟩ = I,

(e) I is a saturated ideal.

Proof:

(a) ⇔ (b) : S/I is Cohen-Macaulay if and only if depthS/I = dimS/I, i. e. the bound in
the proof of the previous lemma is sharp.

(a) ⇔ (c) : The ring S is a Cohen-Macaulay ring, depthS = dimS = 3. Thus the graded
version of [10, Corollary 19.10] implies that pdS/I = 3 if and only if ⟨x, y, z⟩ is an
associated prime of S/I. By Lemma 4.2, pdS/I ∈ {2, 3}.

(c) ⇔ (d) : If ⟨x, y, z⟩ is an associated prime of S/I, then there is some f ∈ S such that
⟨x, y, z⟩ = A(f) := {g ∈ S | fg ∈ I}. In particular f /∈ I, because otherwise A(f) = S.
Moreover f ∈ I : ⟨x, y, z⟩ = {h ∈ S | h⟨x, y, z⟩ ⊆ I}.
Conversely, if there exists some f ∈ (I : ⟨x, y, z⟩) \ I, then A(f) ⊇ ⟨x, y, z⟩. Since
f · 1 /∈ I, the ideal A(f) is not the whole ring S. As ⟨x, y, z⟩ ⊴ S is a maximal ideal,
this shows A(f) = ⟨x, y, z⟩. Hence ⟨x, y, z⟩ is associated to S/I.

(d) ⇔ (e) : This is clear by the de�nition of saturation. □
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4 Ideals of cusps

Syzygies and regularity in the case pdS/I = 2.

Lemma 4.4. If I ⊴ S is a codimension two ideal with pdS/I = 2, then a minimal graded
free resolution of the S-module S/I is of the form

0 →
t⊕

i=1

S(−bi) →
t+1⊕
i=1

S(−ai) → S → S/I → 0

with the properties

(a) t, a1, . . . , at+1, b1, . . . , bt ∈ N,

(b) bi ≥ ai + 1 ≥ ai+1 + 1 for i = 1, . . . , t, a1 ≥ · · · ≥ at+1 and b1 ≥ · · · ≥ bt.

(c)
∑t+1

i=1 ai =
∑t

i=1 bi,

(d)
∑t

i=1 b
2
i −

∑t+1
i=1 a

2
i = 2deg ProjS/I.

Proof: Since S/I has projective dimension two, the Hilbert-Burch Theorem ([11, Theorem
3.2]) states that a minimal graded free resolution of S/I is of the form

0 → F → G→ S → S/I → 0,

where F and G are free graded S-modules of �nite rank such that rkG = rkF + 1. Let
t := rkF ∈ N. Write F =

⊕t
i=1 S(−bi) and G =

⊕t+1
i=1 S(−ai) for natural numbers a1 ≥

· · · ≥ at+1 and b1 ≥ · · · ≥ bt. By [11, Proposition 3.7], bi ≥ ai + 1 ≥ ai+1 + 1 for i = 1, . . . , t,
and moreover

t+1∑
i=1

ai =

t∑
i=1

bi.

Since ProjS/I is zero-dimensional, the Hilbert polynomial pS/I is constant. Consequently

deg ProjS/I = pS/I(0)

=

(
2

2

)
−

t+1∑
i=1

(−ai + 2)(−ai + 1)

2
+

t∑
i=1

(−bi + 2)(−bi + 1)

2

= 1 +
1

2

(
t∑

i=1

(b2i − 3bi + 2)−
t+1∑
i=1

(a2i − 3ai + 2)

)

=
1

2

(
t∑

i=1

b2i −
t+1∑
i=1

a2i

)
− 3

2

(
t∑

i=1

bi −
t+1∑
i=1

ai

)
+ 1 + t− (t+ 1)

=
1

2

(
t∑

i=1

b2i −
t+1∑
i=1

a2i

)
.

□

The following technical proposition gives a bound on the numbers appearing in a minimal
resolution of S/I.
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4.3 Codimension two ideals in C[x, y, z]

Proposition 4.5. Let I ⊴ S be a codimension two ideal with pdS/I = 2. Suppose further
that there exists some r ∈ Q, r ≥ 3 such that

∀n0 ∈ N ∃n ≥ n0 : rn ∈ N and pS/φ∗
n(I)

(rn− 3)− hS/φ∗
n(I)

(rn− 3) ≤ rn,

where φn is the Kummer covering from Chapter 2. Then

hS/I(m) = pS/I(m) for m > r − 3.

Moreover, if

0 →
t⊕

i=1

S(−bi) →
t+1⊕
i=1

S(−ai) → S → S/I → 0

is a minimal graded free resolution of S/I, then ai ≤ r− 1 for i = 1, . . . , t+1 and bi ≤ r for
i = 1, . . . , t. Furthermore, if r ∈ N, then

pS/I(r − 3)− hS/I(r − 3) = #{i ∈ {1, . . . , t} | bi = r}.

Proof: The proof is analogous to the proof of [21, Proposition 3.3].

• By Lemma 4.4, I has a minimal graded free resolution in the described form. The
Hilbert function of S/I evaluated at m ∈ N0 is

hS/I(m) =

(
m+ 2

2

)
−
∑

i:ai≤m

(
m− ai + 2

2

)
+
∑

i:bi≤m

(
m− bi + 2

2

)
.

The Hilbert polynomial is given by

pS/I(m) =

(
m+ 2

2

)
−

t+1∑
i=1

(m− ai + 2)(m− ai + 1)

2
+

t∑
i=1

(m− bi + 2)(m− bi + 1)

2
.

This implies that

pS/I(m)− hS/I(m)

=
∑

i:bi≥m+1

(m− bi + 2)(m− bi + 1)

2
−

∑
i:ai≥m+1

(m− ai + 2)(m− ai + 1)

2

=
∑

i:bi≥m+3

(m− bi + 2)(m− bi + 1)

2
−

∑
i:ai≥m+3

(m− ai + 2)(m− ai + 1)

2
.

• Assume now that bi > r for some i. Choose a number n0 ∈ N such that

(∗)


(n0(bi − r) + 2)(n0(bi − r) + 1) > 2rn0 if ai < r,

(n0(bi − r) + 2)(n0(bi − r) + 1)

−(n0(ai − r) + 2)(n0(ai − r) + 1) > 2rn0 if ai ≥ r.
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4 Ideals of cusps

Select n ≥ n0 such that rn ∈ N and pS/φ∗
n(I)

(rn− 3)− hS/φ∗
n(I)

(rn− 3) ≤ rn. Then n
is still satisfying (∗) when n0 is replaced by n.

A minimal graded free resolution of S/φ∗
n(I) is now given by

0 →
t⊕

i=1

S(−nbi) →
t+1⊕
i=1

S(−nai) → S → S/φ∗
n(I) → 0.

Thus, as above,

pS/φ∗
n(I)

(rn− 3)− hS/φ∗
n(I)

(rn− 3)

=
∑
i:bi≥r

(n(r − bi)− 1)(n(r − bi)− 2)

2
−
∑
i:ai≥r

(n(r − ai)− 1)(n(r − ai)− 2)

2

=
∑
i:bi≥r

(n(bi − r) + 1)(n(bi − r) + 2)

2
−
∑
i:ai≥r

(n(ai − r) + 1)(n(ai − r) + 2)

2

(∗)
> rn.

This contradicts the hypothesis pS/φ∗
n(I)

(rn− 3)− hS/φ∗
n(I)

(rn− 3) ≤ rn.

Consequently, bi ≤ r for i = 1, . . . , t. Due to the properties of the resolution of S/I
(see Lemma 4.4), ai ≤ bi − 1 ≤ r − 1 for i = 1, . . . , t and at+1 ≤ at ≤ bt − 1 ≤ r − 1.

• If r ∈ N, then the bounds ai ≤ r − 1 and bi ≤ r give

pS/I(r − 3)− hS/I(r − 3)

=
∑
i:bi≥r

(r − bi − 1)(r − bi − 2)

2
−
∑
i:ai≥r

(r − ai − 1)(r − ai − 2)

2

= #{i ∈ {1, . . . , t} | bi = r}.

• Finally let m > r − 3. Then

pS/I(m)− hS/I(m)

=
∑
i:bi>r

(m− bi + 2)(m− bi + 1)

2
−
∑
i:ai>r

(m− ai + 2)(m− ai + 1)

2

= 0,

which �nishes the proof. □

Since pdS/I = 2 means that S/I is a Cohen-Macaulay module, this proposition also gives
the Castelnuovo-Mumford regularity if at least one bi is equal to r.
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4.4 Ideals of cusps and the Alexander polynomial

We will now apply the results on codimension two ideals in S to the three ideals of cusps
associated to a cuspidal curve C. This will establish a connection to the global Alexander
polynomial of ∆C . Throughout this section, C is assumed to be a singular curve having only
ordinary cusps as singularities. The set of cusps of C will be denoted by Σ.

A �rst result is:

Corollary 4.6. Let C = V (f) be of degree 6k for some k ∈ N. Then the following numbers
are equal:

(a) 1
2 rkMW(Xf ), where Xf is an associated elliptic threefold to C,

(b) #Σ− hS/I(Σ)(5k − 3),

(c) 2#Σ− hS/J(f)sat(7k − 3).

Proof: By Theorem 2.12, 1
2 rkMW(Xf ) = dimC cokerφ, where

φ : S5k−3 → C#Σ, f 7→ (f(p))p∈Σ .

Now the dimension of cokerφ can be computed as follows:

dimC cokerφ = dimCC#Σ − dimC S5k−3 + dimC kerφ

= #Σ− dimC S5k−3 + dimC I(Σ)5k−3

= #Σ− hS/I(Σ)(5k − 3).

Using Lemma 4.1, (c) follows in a similar way. □

Ideals of cusps and Kummer coverings. The following lemma investigates the e�ect of the
Kummer covering φn on the ideal of cusps and on the saturation of the Jacobian ideal.

Lemma 4.7. Let C = V (f) satisfy the hypotheses of Proposition 2.8, i. e. C intersects
V (xyz) in smooth points only and C does not contain any of the points (1 : 0 : 0), (0 : 1 : 0)
and (0 : 0 : 1). Then for n ∈ N, the morphism φn satis�es

(a) I(φ−1
n (Σ)) = φ∗

n(I(Σ)),

(b) J(φ∗
n(f))

sat = φ∗
n(J(f)

sat).

Proof:

(a) The vanishing set of the ideal φ∗
n(I(Σ)) is precisely φ

−1
n (Σ). Thus in view of Hilbert's

Nullstellensatz, it su�ces to show that φ∗
n(I(Σ)) is a radical ideal. Since no point of Σ

lies on V (z), the radical ideal I(Σ) is the homogenization of some radical ideal I⊴C[x, y].
Observe that φ∗

n satis�es

φ∗
n(I(Σ)) = φ∗

n(I
hom) = φ∗

n(I)
hom,
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4 Ideals of cusps

where (·)hom denotes the homogenization. Because homogenizations of radical ideals
are radical, it is enough to show that φ∗

n(I) is a radical ideal. The latter ideal is zero-
dimensional and therefore [16, Proposition 4.5.1] yields√

φ∗
n(I) = φ∗

n(I) + ⟨g′x, g′y⟩,

where φ∗
n(I)∩C[x] = ⟨gx⟩ and g′x is the square-free part of gx (analogously for gy). That

is, g′x is the square-free part of
∏
(xn − α) ∈ φ∗

n(I), where the product is taken over all
α ∈ C∗ such that there exists some β ∈ C∗ with (α, β) ∈ V (I) ⊂ C2. But this polynomial
has no multiple factor, thus g′x = gx ∈ φ∗

n(I). By the same reasoning, g′y ∈ φ∗
n(I). Hence

φ∗
n(I) is a radical ideal, and so is φ∗

n(I(Σ)).

(b) Since both ideals de�ne the same subscheme of P2
C, it su�ces to show that φ∗

n(J(f)
sat)

is saturated. The ideal J(f)sat is saturated and of codimension two, hence S/J(f)sat

has projective dimension 2 by Lemma 4.3. Following Lemma 4.4, a minimal graded free
resolution of S/J(f)sat is of the form

0 →
t⊕

i=1

S(−bi) →
t+1⊕
i=1

S(−ai) → S → S/J(f)sat → 0.

Consequently

0 →
t⊕

i=1

S(−nbi) →
t+1⊕
i=1

S(−nai) → S → S/φ∗
n(J(f)

sat) → 0

is a graded free resolution of φ∗
n(J(f)

sat). Therefore pdS/φ∗
n(J(f)

sat) ≤ 2. Since
φ∗
n(J(f)

sat) is an ideal of codimension two, this shows by Lemma 4.2 and Lemma 4.3
that φ∗

n(J(f)
sat) is indeed a saturated ideal. □

Syzygies of I(Σ) and J(f)sat. In the sequel, Proposition 4.5 and Corollary 4.6 are used to
obtain upper bounds on the degrees of the syzygies of S/I(Σ) and S/J(f)sat.

Corollary 4.8. Let C = V (f) be irreducible of degree d and de�ne I := I(Σ). Then S/I has
a minimal graded free resolution as in Lemma 4.4 such that ai ≤ 5

6d− 1 and bi ≤ 5
6d for all

i. Moreover

#Σ− hS/I(m) =

{
#{i | bi = 5

6d} if m = 5
6d− 3 and 6 | d,

0 if m > 5
6d− 3.

In particular, ∆C(t) = (t2 − t+ 1)s, where s = #{i | bi = 5
6d}.

Proof: The maximal ideal ⟨x, y, z⟩ is not associated to S/I, hence pdS/I = 2. Consequently,
S/I has a minimal graded free resolution in the desired shape by Lemma 4.3.

The Hilbert polynomial of S/I is constant, namely pS/I(m) = #Σ for all m. Fix n0 ∈ N
and de�ne n := 6n0. If necessary, perform a projective change of coordinates such that C
satis�es the prerequisites of Proposition 2.8 with ∆ = ∅. Then the preimage φ−1

n (C) is a
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4.4 Ideals of cusps and the Alexander polynomial

cuspidal curve of degree dn = 6dn0, whose ideal of cusps is given by φ∗
n(I(Σ)) according to

Lemma 4.7. By Corollary 4.6 and Lemma 2.11,

pS/φ∗
n(I)

(5dn0 − 3)− hS/φ∗
n(I)

(5dn0 − 3) =
1

2
rkMW(Xφ∗

n(f)
) ≤ 5dn0 − 1,

where Xφ∗
n(f)

is an elliptic threefold associated to φ−1
n (C). Thus Proposition 4.5 applies with

n = 6n0 and r = 5
6d.

For the �in particular� statement, assume �rst that d = 6k for some k ∈ N. Theorem 3.6
guarantees ∆C(t) = (t2 − t+ 1)s for some s ∈ N0. Now

s =
1

2
rkMW(Xf ) = pS/I(5k − 3)− hS/I(5k − 3) = #{i | bi = 5k}

in virtue of Theorem 3.9. If d is not divisible by six, then ∆C(t) = 1 again by Theorem 3.6
and obviously #{i | bi = 5

6d} = 0. □

For the saturation of the Jacobian, one has:

Corollary 4.9. Let C = V (f) be irreducible of degree d and de�ne J := J(f)sat. Then S/J
has a minimal graded free resolution of the form as in Lemma 4.4 such that ai ≤ 7

6d− 1 and
bi ≤ 7

6d for all i. Moreover

2#Σ− hS/Jsat(m) =

{
#{i | bi = 7

6d} if m = 7
6d− 3 and 6 | d,

0 if m > 7
6d− 3.

In particular, ∆C(t) = (t2 − t+ 1)s, where s = #{i | bi = 7
6d}.

Proof: Since J is saturated, Lemma 4.3 yields pdS/J = 2 and Lemma 4.4 applies.

The Hilbert polynomial of S/J is constantly 2#Σ, as each cusp counts with multiplicity two:
If p = (α : β : 1), then ∂f

∂x (x, y, 1) and
∂f
∂y (x, y, 1) intersect with multiplicity two at p as shown

in the proof of Lemma 2.7. This intersection multiplicity and the degree of the component
of ProjS/J located at p are equal, as can be seen by comparing the two versions of Bézout's
theorem.

Now the proof goes along the same lines as for the previous corollary: Fix n0 ∈ N and let
n := 6n0. After a suitable coordinate change, the ideal φ

∗
n(J) is by Lemma 4.7 the saturation

of the Jacobian ideal of the cuspidal curve φ−1
n (C) of degree dn = 6dn0. Due to Corollary

4.6 and Lemma 2.11,

pS/φ∗
n(J)

(7dn0 − 3)− hS/φ∗
n(J)

(7dn0 − 3) =
1

2
rkMW(Xφ∗

n(f)
) ≤ 5dn0 − 1 ≤ 7dn0.

Now use Proposition 4.5 with n = 6n0 and r =
7
6d to obtain the assertion. The �in particular�

statement can be proven as in Corollory 4.8. □

One can also give a lower bound on the degree of the syzygies ([21, Proposition 2.5]): Let

0 →
t⊕

i=1

S(−bi) →
t+1⊕
i=1

S(−ai) → S → S/I → 0
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4 Ideals of cusps

be a minimal graded free resolution of S/I, where I := I(Σ). Suppose that a1 ≥ · · · ≥ at+1.
Then all cusps of C lie on a curve of degree at+1, say C

′. De�ne κ := #Σ. Bézout's theorem
2.1 yields 2κ ≤ at+1d or C and C ′ have a common irreducible component C ′′ of degree
d′′ ≤ min(at+1, d). In the latter case, as cusps are irreducible singularities, all cusps of C
are necessarily cusps of C ′′. The number of cusps of C ′′ is bounded by d′′(d′′ − 2)/3 due to
Proposition 2.5. Hence

(d′′)2

2
≤ at+1d

2
≤ κ ≤ d′′(d′′ − 2)

3
,

which implies d′′ = 0. Consequently, C and C ′ have no common irreducible component and

at+1 ≥
2κ

d
.

Let J denote the saturation of the Jacobian ideal of f . If g is a generator of minimal degree,
then g ∈ I, as J ⊆ I. Thus deg g ≥ 2κ/d. This shows the following lemma:

Lemma 4.10. Let C be a cuspidal curve of degree d with κ cusps. If

0 →
t⊕

i=1

S(−bi) →
t+1⊕
i=1

S(−ai) → S → S/I → 0

is a minimal graded free resolution of I, where I is either the locus of cusps of C or the
saturation of the Jacobian ideal of C, then ai ≥ 2κ/d, i = 1, . . . , t + 1 and bi ≥ 2κ/d + 1,
i = 1, . . . , t.

Syzygies of the Jacobian ideal. One can now compute the Alexander polynomial of an
irreducible cuspidal curve from a minimal graded free resolution or the Hilbert function of
S/I, where I is either I(Σ) or J(f)sat. Furthermore, it is also possible to use the Jacobian
ideal J(f) directly.

Lemma 4.11. Let C be of degree d with Jacobian ideal J . Assume that J is not saturated.
A minimal graded free resolution of S/J is of the form

0 →
t⊕

i=1

S(−ci) →
t+2⊕
i=1

S(−bi) → S(−d+ 1)3 → S → S/J → 0

with the properties

(a) t, b1, . . . , bt+2, c1, . . . , ct ∈ N.

(b) ci ≥ bi + 1 for i = 1, . . . , t, c1 ≥ · · · ≥ ct and b1 ≥ · · · ≥ bt+2.

Proof: Since J is not saturated, pd(S/J) = 3 by Lemma 4.3. Now [20, Lemma 1.1] applies.
□

The following is the analogue of Corollary 4.8 and Corollary 4.9.
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4.4 Ideals of cusps and the Alexander polynomial

Proposition 4.12. Let C be irreducible of degree d with Jacobian ideal J . Suppose that S/J
has a minimal graded free resolution as in Lemma 4.11. Then

3d− 4 ≥ bi ≥
11

6
d− 3 for i = 1, . . . , t+ 2,

3d− 3 ≥ ci ≥
11

6
d− 2 for i = 1, . . . , t.

Moreover, ∆C(t) = (t2 − t+ 1)s, where s = #{i ∈ {1, . . . , t+ 2} | bi = 11
6 d− 3}.

Proof:

• [20, Theorem 1.3 (i)] states that the graded S-module J sat/J has the minimal graded
free resolution

0 →
t⊕

i=1

S(−ci) →
t+2⊕
i=1

S(−bi) →
t+2⊕
i=1

S(bi−3d+3) →
t⊕

i=1

S(ci−3d+3) → J sat/J → 0

if ∂f
∂x ,

∂f
∂y ,

∂f
∂z are linearly independent. Assume the contrary, say ∂f

∂z is some linear

combination of ∂f
∂x ,

∂f
∂y . Then ∂f

∂x and ∂f
∂y have precisely κ common roots, where κ is

the number of cusps of C. Applying Bézout's theorem yields 2κ = (d − 1)2, which is
impossible by Proposition 2.5.

• Suppose that there is some i ∈ {1, . . . , t+2} such that bi < 11
6 d−3. Then 3d−3−bi > 7

6d,
i. e. J sat/J has a syzygy of degree > 7

6d. This contradicts Corollary 4.9. Due to Lemma
4.11, ci ≥ bi+1 ≥ 11

6 d−2 for all i = 1, . . . , t. The bound ci ≤ 3d−3 for all i is obvious
in view of the resolution of J sat/J , and thus bt+2 ≤ bt+1 ≤ bi ≤ ci − 1 ≤ 3d− 4 for all
i = 1, . . . , t.

• The Hilbert function of J sat/J is symmetric: Let m ∈ Z. Then

hJsat/J(m) =

t∑
i=1

(
m+ 2 + (ci − 3d+ 3)

2

)
−

t+2∑
i=1

(
m+ 2 + (bi − 3d+ 3)

2

)

+
t+2∑
i=1

(
m+ 2− bi

2

)
−

t∑
i=1

(
m+ 2− ci

2

)

=

t∑
i=1

((
m− 3d+ 5 + ci

2

)
−
(
m+ 2− ci

2

))

+
t+2∑
i=1

((
m+ 2− bi

2

)
−
(
m− 3d+ 5− bi

2

))

=
t∑

i=1

((
(3d− 6−m) + 2− ci

2

)
−
(
(3d− 6−m)− 3d− 5 + ci

2

))

+

t+2∑
i=1

((
(3d− 6−m)− 3d− 5 + bi

2

)
−
(
(3d− 6−m) + 2− bi

2

))
= hJsat/J(3d− 6−m).
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4 Ideals of cusps

• Assume now that d = 6k. Since hJsat/J(m) = hS/J(m) − hS/Jsat(m) for any m ∈ Z,
this implies

hS/J(7k − 3)− hS/Jsat(7k − 3) = hS/J(11k − 3)− hS/Jsat(11k − 3).

If ∆C(t) = (t2 − t+ 1)s, then by Corollary 4.9

hS/Jsat(11k − 3)− hS/Jsat(7k − 3) = 2#Σ− hS/Jsat(7k − 3) = s,

thus

s = hS/J(11k − 3)− hS/J(7k − 3)

=

(
11k − 1

2

)
− 3

(
5k

2

)
+

t+2∑
i=1

(
11k − 1− bi

2

)
−

t∑
i=1

(
11k − 1− ci

2

)

−
(
7k − 1

2

)
+ 3

(
k

2

)
−

t+2∑
i=1

(
7k − 1− bi

2

)
+

t∑
i=1

(
7k − 1− ci

2

)

=
t+2∑
i=1

(
11k − 1− bi

2

)
−

t∑
i=1

(
11k − 1− ci

2

)

−
t+2∑
i=1

(
7k − 1− bi

2

)
+

t∑
i=1

(
7k − 1− ci

2

)
.

Since ci ≥ 11k − 2 and bi ≥ 11k − 3 for all i,

s = #{i ∈ {1, . . . , t+ 2} | bi = 11k − 3}.

If d is not divisible by six, then s = 0 = #{i | bi = 11
6 d− 3}. □

4.5 Applications

Cuspidal plane sextics.

Theorem 4.13. Let C be an irreducible cuspidal sextic with κ cusps and ∆C(t) = (t2−t+1)s.
Then

s =


0 if κ < 6,

κ− 6 if κ > 6,

1 if κ = 6 and all cusps lie on a conic,

0 if κ = 6 and the cusps do not lie on a conic.

Proof:

• If C is smooth, then its Alexander polynomial is trivial by Theorem 1.1. Otherwise
denote by I the ideal of cusps of C. Then κ = degProjS/I and s = #{i | bi = 5},
where

0 →
t⊕

i=1

S(−bi) →
t+1⊕
i=1

S(−ai) → S → S/I → 0
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4.5 Applications

is a minimal graded free resolution of S/I in virtue of Corollary 4.8. Obviously s ≤ t.
An upper bound for t may be obtained as follows: Suppose that all cusps of C lie on a
curve of degree d. This is guaranteed if

κ ≤ dimSd − 1 =

(
d+ 2

2

)
− 1.

Solving this for d yields

d ≥ 1

2
(
√
8κ+ 9− 3).

Now [11, Corollary 3.8] gives the upper bound

t ≤
⌈
1

2
(
√
8κ+ 9− 3)

⌉
=: T (κ).

• A sextic can have at most nine cusps due to Proposition 2.5. For κ = 1, . . . , 9 enumerate
all sequences

(A1, A2, . . . , At, At+1, B1, B2 . . . , Bt) ∈ N2t+1, where t = 1, . . . , T (κ),

satisfying

(a) Bi ≥ Ai + 1 ≥ Ai+1 + 1 for i = 1, . . . , t,

(b) A1 ≥ · · · ≥ At+1, B1 ≥ · · · ≥ Bt,

(c)
∑t+1

i=1 Ai =
∑t

i=1Bi,

(d)
∑t

i=1B
2
i −

∑t+1
i=1 A

2
i = 2κ,

(e) B1 ≤ 5,

(f) At+1 ≥ κ/3.

In view of Section 4.4, all possible minimal graded free resolutions of S/I are enumer-
ated. These are

κ Resolution of S/I

1 0 → S(−2) → S(−1)2 → S → S/I → 0

2 0 → S(−3) → S(−2)⊕ S(−1) → . . .

3 0 → S(−4) → S(−3)⊕ S(−1) → . . .
0 → S(−3)2 → S(−2)3 → . . .

4 0 → S(−4) → S(−2)2 → . . .
0 → S(−4)⊕ S(−3) → S(−3)⊕ S(−2)2 → . . .

5 0 → S(−4)2 → S(−3)2 ⊕ S(−2) → . . .
0 → S(−5)⊕ S(−3) → S(−4)⊕ S(−2)2 → . . .

6 0 → S(−4)3 → S(−3)4 → . . .
0 → S(−5) → S(−3)⊕ S(−2) → . . .
0 → S(−5)⊕ S(−4) → S(−4)⊕ S(−3)⊕ S(−2) → . . .

7 0 → S(−5)⊕ S(−4) → S(−3)3 → . . .
0 → S(−5)⊕ S(−4)2 → S(−4)⊕ S(−3)3 → . . .

8 0 → S(−5)2 → S(−4)⊕ S(−3)2 → . . .
0 → S(−5)2 ⊕ S(−4) → S(−4)2 ⊕ S(−3)2 → . . .

9 0 → S(−5)3 → S(−4)3 ⊕ S(−3) → . . .
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4 Ideals of cusps

Since s = #{i | bi = 5}, this yields that s = 0 if κ < 5 and s = κ−6 if κ > 6. Moreover
s ∈ {0, 1} for κ ∈ {5, 6}. If κ = 6, then s = #{i | bi = 5} = 1 if and only if I has a
generator of degree two, i. e. a conic.

• In order to prove the theorem, it su�ces to show that

0 → S(−5)⊕ S(−3) → S(−4)⊕ S(−2)2 → S → S/I → 0

cannot be a minimal graded free resolution of S/I, where I is the ideal of cusps of a
reduced �ve-cuspidal sextic C.

Assume the contrary. Then I is minimally generated by a quartic and two conics
q1 ̸= q2. Since q1 and q2 intersect in 5 > 4 = deg q1 · deg q2 points, they contain a
common irreducible component by Bézout's theorem. Thus there are lines ℓ, ℓ1, ℓ2 such
that q1 = ℓℓ1 and q2 = ℓℓ2. As ℓ1 ̸= ℓ2 (otherwise q1 = q2), at least four cusps of C lie
on the line ℓ. Again by Bézout, C must contain ℓ, that is, C is the union of ℓ and a
quintic C ′. But as a line cannot have cusps, C ′ has �ve cusps, four of which lie on ℓ.
A �nal application of Bézout's theorem yields that ℓ is also a component of the quintic
C ′. This implies that C is not reduced, contradicting the assumption. □

Thus the relationship between the number of cusps and the exponent of t2 − t + 1 may be
visualized in the following table:

κ s = 0 s = 1 s = 2 s = 3

0 •
1 •
2 •
3 •
4 •
5 •
6 • •
7 •
8 •
9 •

Theorem 4.13 is sharp in the sense that a black dot at (κ, s) implies the existence of some
cuspidal sextic curve with κ cusps and Alexander polynomial (t2 − t + 1)s. For details see
Chapter 5.

The general case. In general, if C is a cuspidal curve of degree 6k for some k ∈ N, then the
connection between the number κ of cusps and the exponent s of t2 − t+1 in the Alexander
polynomial is more sophisticated. An easy bound is:

Corollary 4.14. With the above notation,

s ≥ κ−
(
5k − 1

2

)
.
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Proof: If Σ denotes the locus of cusps of C, then s is the dimension of the cokernel of

φ : S5k−3 → Cκ, f 7→ f(p)p∈Σ

by Corollary 4.6. Now

s = dimC cokerφ = dimCCκ − dimC S5k−3 + dimkerφ

≥ dimCCκ − dimC S5k−3

= κ−
(
5k − 1

2

)
.

□

Analyzing the possible minimal graded free resolutions of the ideal of cusps gives

Proposition 4.15 ([21]). Suppose that s ≥ 1. Then

κ ≥ 3k

2

(
s− 1 + 2k +

√
−s2 + 4ks+ 1− 4k + 4k2

)
.

Idea of proof: As in the proof of Theorem 4.13, the strategy is to consider all possible minimal
graded free resolutions associated to the ideal of cusps I subject to the restrictions derived
in the previous section. It turns out that it su�ces to look at three special cases of sequences
(A1, . . . , At+1, B1, . . . , Bt+1) where additionally Ai ≤ Bi+1. Then the bound can be proved
for each case individually.

Using the second bound on the number of cusps (Proposition 2.6), one obtains:

Corollary 4.16. Again under the above assumptions,

s ≤ 1

4

(
15k − 1−

√
15k2 − 18k + 7

)
.

Proof: See [21, Theorem 5.2]. □

Consequences for degree 12. The relationship between the number of cusps of cuspidal
curves of degree 12 and their Alexander polynomials can now be summarized as follows:

Theorem 4.17. Let C be an irreducible cuspidal curve of degree 12 with κ cusps. The
possible values for the exponent s of t2 − t + 1 in ∆C(t) are indicated with �◦� or �•� at
position (κ, s) in the following table:
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4 Ideals of cusps

κ s = 0 s = 1 s = 2 s = 3 s = 4 s = 5

0 •
...

...
23 ◦
24 • •
25 ◦ ◦
26 • •
27 • •
28 • •
29 ◦ ◦ ◦
30 • • ◦
31 ◦ ◦ ◦
32 • • •
33 ◦ ◦ • ◦
34 ◦ • • ◦
35 ◦ ◦ ◦ ◦
36 ◦ ◦ ◦ • ◦
37 ◦ ◦ ◦ ◦
38 ◦ • ◦
39 ◦ • ◦
40 ◦ ◦

Moreover, �•� at (κ, s) means that there exists some cuspidal curve of degree 12 with κ cusps
and ∆C(t) = (t2 − t+ 1)s.

Proof: The �rst part is a straightforward consequence of Corollary 4.14 and Proposition 4.15.
The dot at (0, 0) follows from Theorem 1.1. The examples in Chapter 5 prove the rest of the
�moreover� part. □
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5 Examples

Let S := C[x, y, z].

5.1 Strategy

Creating cuspidal curves of degree 12 using Kummer coverings. Suppose that C is a
cuspidal curve of degree d. Consider the Kummer covering φn. As remarked in Chapter 2,
if C has a su�ciently nice position, then φ−1

n (C) is also a cuspidal curve and has degree nd.
This will be clari�ed here.

For example, let C be a cuspidal quartic. Assume that C satis�es the prerequisites of
Proposition 2.8 and that C intersects V (xyz) with multiplicity at most two at each point in
C ∩ V (xyz). Then applying the Kummer covering φ3 yields a cuspidal curve of degree 12.
This motivates the following recipe, called the Kummer covering rami�ed along ℓ1, ℓ2, ℓ3:

(1) Given a cuspidal quartic C, pick three linearly independent lines ℓ1, ℓ2, ℓ3 such that each
of these lines either intersects C transversely or is an ordinary (bi)tangent to C.

(2) Perform a coordinate change such that ℓ1, ℓ2, ℓ3 become the lines V (x), V (y), V (z), re-
spectively.

(3) If C does not contain any of the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), then φ−1
3 (C) is a

cuspidal curve of degree 12.

Suppose that C has κ cusps and that there are m points of C where the curve intersects
V (xyz) with multiplicity two. Then φ−1

3 (C) has 9κ+ 3m cusps.

An analogous method may be applied for sextics: One requires here that ℓ1, ℓ2, ℓ3 either
intersect C transversely or are in�ectional (bi)tangents to C. Applying the Kummer covering
φ2 yields a cuspidal curve of degree 12. If the base sextic has κ cusps and there are m points
of C where the sextic intersects V (xyz) with multiplicity three, then φ−1

2 (C) has 4κ + 2m
cusps.

Obtaining cuspidal curves of degree 12 by applying φ4 to cubics, φ6 to conics or even φ12 to
lines is not very helpful: In all these cases, the pullback via the corresponding morphism φn is
only a cuspidal curve if V (xyz) intersects the base curve transversely. Therefore the number
of cusps of the pullback will be equal to n2 times the number of cusps of the base curve.
Since lines and conics cannot have cusps, and cubics can have at most one cusp, the pullback
curve will have at most 16 cusps and the Alexander polynomial will always be trivial.
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Behavior of the Alexander polynomial.

Corollary 5.1. Let C = V (f) be an irreducible cuspidal curve satisfying the prerequisites of
Proposition 2.8. Let further n ∈ N and assume that φ−1

n (C) is also an irreducible cuspidal
curve. Then

(a) ∆C(t) | ∆φ−1
n (C)(t).

(b) If C intersects V (xyz) transversely, i. e. ∆ = ∅ in the notation of Proposition 2.8, then
the exponents of the factor t2 − t+ 1 in ∆C(t) and ∆φ−1

n (C)(t) coincide.

Proof: By Theorem 3.6,

∆C(t) = (t2 − t+ 1)s, ∆φ−1
n (C)(t) = (t2 − t+ 1)s

′

for some s, s′ ∈ N0.

Let I be the ideal of cusps of C and In the ideal of cusps of φ−1
n (C). By Proposition 2.8 and

Lemma 4.7, φ∗
n(I) contains In. Now, if C has degree 6k, then φ−1

n (C) has degree 6kn. Due
to Corollary 4.8,

hS/φ∗
n(I)

(5kn− 3) = hS/I(5k − 3) = s and hS/In(5kn− 3) = s′.

Combining this with

hS/In(5kn− 3)− hS/φ∗
n(I)

(5kn− 3) = hφ∗
n(I)/In

(5kn− 3) ≥ 0

yields that s′ ≥ s. This shows (a).

For (b) note that if ∆ = ∅, then Proposition 2.8 and Lemma 4.7 imply φ∗
n(I) = In. □

The covering φn will be called general if the assumptions of (b) are satis�ed, which can be
assumed after a change of coordinates.

Computation of the Alexander polynomial. If C ′ is a curve obtained by a Kummer covering
of some irreducible cuspidal curve C rami�ed along three lines, check at �rst whether C ′ is
irreducible. If the covering was general, then by Corollary 5.1 (b) the Alexander polynomials
of C and C ′ coincide. Otherwise, compute a minimal graded free resolution of one of the
three ideals of cusps of Chapter 4. This will be done using the computer algebra system
Singular ([5]). In the most cases, the Jacobian ideal is the easiest for this purpose. Finally
apply Corollary 4.8, Corollary 4.9 or Proposition 4.12, i. e. count the number of syzygies of
degrees 10, 14 or 19, respectively.

Index of the examples. The following table is basically the same as in Theorem 4.17. An
example for a curve with κ cusps and Alexander polynomial (t2− t+1)s can be found in the
next two sections at the indicated label.
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5.2 Coverings of quartic curves

κ s = 0 s = 1 s = 2 s = 3 s = 4 s = 5
...

...
23 ◦
24 (4.1), (6.5) (4.2), (6.1)
25 ◦ ◦
26 (6.6) (6.2)
27 (4.3), (4.6) (4.4)
28 (6.7), (6.8) (6.3), (6.14)
29 ◦ ◦ ◦
30 (6.9), (6.10) (4.5), (4.7), ◦

(6.4), (6.15)
31 ◦ ◦ ◦
32 (6.11) (6.12), (6.16) (6.18), (6.22)
33 ◦ ◦ (4.8), (4.9) ◦
34 ◦ (6.13), (6.17) (6.19), (6.23) ◦
35 ◦ ◦ ◦ ◦
36 ◦ ◦ ◦ (4.10), (4.11), (6.20) ◦

(6.24), (6.25)
37 ◦ ◦ ◦ ◦
38 ◦ (6.21) ◦
39 ◦ (4.12) ◦
40 ◦ ◦

5.2 Coverings of quartic curves

Let C ⊂ P2
C be a cuspidal quartic. If one requires the Kummer covering along three lines

to produce a curve with at least 24 cusps, then C needs to have at least two cusps. By
Proposition 2.5, C can have at most three cusps.

Quartic with two cusps

Consider the curve C de�ned via

(x2 − z2)(x− z)2 + (2y2 − z2)2 = 0.

C is a two-cuspidal quartic with cusps at (1 : 1 : 1) and (1 : −1 : 1). De�ne the following
tangent lines:

b := V (x+ z), t1 := V (x), t2 := V (x+ 4y − 4z), t3 := V (x− 4y − 4z).

The line b is the single bitangent to C and t1, t2, t3 are the tangents at (0 : 0 : 1), (0 : 1 : 1),
(0 : −1 : 1), respectively. Further pick the lines ℓ1 := V (2y − z) and ℓ2 := V (2y + z), that
intersect C transversely.
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The two-cuspidal quartic V
(
(x2 − 1)(x− 1)2 + (2y2 − 1)2

)
⊂ R2

(4.1) Covering rami�ed along t2, t3 and ℓ1. This produces the curve C4.1 de�ned by the
irreducible polynomial

3501x12 − 3604x9y3 + 1326x6y6 − 212x3y9 + 13y12 − 35232x9z3 + 26976x6y3z3

− 6624x3y6z3 + 544y9z3 + 132800x6z6 − 67456x3y3z6 + 8384y6z6 − 222208x3z9

+ 56320y3z9 + 139264z12.

C4.1 is a cuspidal curve of degree 12 with 24 cusps. Let J be the Jacobian ideal. Then S/J
has the following minimal graded free resolution:

0 → S(−27)⊕S(−24)⊕S(−23) → S(−22)3⊕S(−21)⊕S(−20) → S(−11)3 → S → S/J → 0

By Proposition 4.12, this implies that ∆C4.1(t) = 1.

(4.2) Covering rami�ed along b, ℓ1 and ℓ2. The result is the curve C4.2

64x12 + 192x9y3 + 192x6y6 + 64x3y9 + y12 − 192x9z3 − 384x6y3z3 − 192x3y6z3 − 12y9z3

+ 192x6z6 + 192x3y3z6 + 38y6z6 − 64x3z9 − 12y3z9 + z12 = 0.

This is an irreducible curve with 24 cusps as the only singularities. If J denotes the Jacobian
ideal, then S/J has the minimal resolution

0 → S(−27)⊕ S(−25) → S(−22)3 ⊕ S(−19) → S(−11)3 → S → S/J → 0.

Hence ∆C4.2(t) = t2 − t+ 1.

(4.3) Covering rami�ed along t1, t2 and t3. For this covering, consider the following slight
modi�cation of the base curve C:

(x2 − z2)(x− z)2 + ((1 + a)y2 − az2)2 = 0, where a :=
√
3/4.
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The tangents t2 and t3 become V (2x± (4 +
√
3)y − (4 +

√
3)z), and t1 becomes V (2x− z).

The Kummer covering φ3 rami�ed along these new tangent lines produce the irreducible
27-cuspidal curve C4.3 given by the vanishing of

243x12 + 129
√
3x12 − 8244x9y3 − 4752

√
3x9y3 + 16002x6y6 + 9246

√
3x6y6 − 8244x3y9

− 4752
√
3x3y9 + 243y12 + 129

√
3y12 − 3012x9z3 − 1624

√
3x9z3 − 38124x6y3z3

− 21816
√
3x6y3z3 − 38124x3y6z3 − 21816

√
3x3y6z3 − 3012y9z3 − 1624

√
3y9z3

− 18216x6z6 − 10872
√
3x6z6 − 7344x3y3z6 − 4800

√
3x3y3z6 − 18216y6z6 − 10872

√
3y6z6

+ 167184x3z9 + 96864
√
3x3z9 + 167184y3z9 + 96864

√
3y3z9 + 874416z12 + 504656

√
3z12.

The minimal resolution of the Jacobian ideal of C4.3 is

0 → S(−25)⊕ S(−24)2 ⊕ S(−23) → S(−22)4 ⊕ S(−21)⊕ S(−20)

→ S(−11)3 → S → S/J → 0,

thus ∆C4.3(t) = 1.

(4.4) Covering rami�ed along b, t1 and ℓ1. This results in the curve C4.4 given by

3x12 − 20x9y3 + 42x6y6 − 28x3y9 − y12 + 4x9z3 − 12x6y3z3 + 12x3y6z3 − 4y9z3 − 2x6z6

+ 4x3y3z6 − 2y6z6 − 4x3z9 + 4y3z9 − z12 = 0.

It has 27 cusps and Alexander polynomial t2 − t + 1: The Jacobian ideal J has the free
resolution

0 → S(−25)2 ⊕ S(−24) → S(−22)4 ⊕ S(−19) → S(−11)3 → S → S/J → 0.

(4.5) Covering rami�ed along b, t2 and t3. This produces the curve C4.5 with the equation

139264x12 + 136192x9y3 + 46016x6y6 + 6208x3y9 + 289y12 + 136192x9z3 + 98432x6y3z3

+ 12224x3y6z3 − 2244y9z3 + 46016x6z6 + 12224x3y3z6 + 4934y6z6 + 6208x3z9 − 2244y3z9

+ 289z12 = 0.

This is a 30-cuspidal curve with Alexander polynomial t2 − t + 1. A minimal resolution of
the Jacobian ideal is given by

0 → S(−25)⊕S(−24)⊕S(−23) → S(−22)3⊕S(−20)⊕S(−19) → S(−11)3 → S → S/J → 0.

Quartic with three cusps

De�ne C to be the vanishing locus in P2
C of the homogeneous polynomial

x2y2 + x2z2 + y2z2 − 2xyz(x+ y + z).
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Then C is a three-cuspidal quartic whose cusps are situated in (1 : 0 : 0), (0 : 1 : 0) and
(0 : 0 : 1). Its single bitangent is given by b := V (x + y + z). De�ne the following tangent
lines:

t1 := V (−8x+ y + z) at (1 : 4 : 4),

t2 := V (x− 8y + z) at (4 : 1 : 4),

t3 := V (x+ y − 8z) at (4 : 4 : 1).

Further choose the two general lines ℓ1 := V (x+ y − z) and ℓ2 := V (x− y − z).

Real part of C and t1, t2, t3 in the a�ne chart x+ y + z = 1

(4.6) General covering. Due to Theorem 3.6 and Corollary 5.1, this produces a cuspidal
curve of degree 12 with 27 cusps and Alexander polynomial 1.

(4.7) Covering rami�ed along t1, ℓ1 and ℓ2. An equation for the pullback curve under the
covering is given by

16x12 + 336x9y3 + 1372x6y6 + 1372x3y9 + 2401y12 − 48x9z3 + 1400x6y3z3 + 4116x3y6z3

+ 1372y9z3 − 1220x6z6 + 420x3y3z6 − 2058y6z6 − 3604x3z9 − 644y3z9 − 47z12 = 0.

This curve has 30 cusps. Computing a minimal graded free resolution of S/J , where J is the
Jacobian ideal, shows that the Alexander polynomial equals t2 − t+ 1.

(4.8) Covering rami�ed along t1, t2 and ℓ1. The result is the 33-cuspidal curve C4.8 de�ned
via

47x12 + 11638x9y3 + 22557x6y6 + 11638x3y9 + 47y12 + 2916x9z3 + 154548x6y3z3

+ 154548x3y6z3 + 2916y9z3 + 54918x6z6 + 559386x3y3z6 + 54918y6z6

+ 288684x3z9 + 288684y3z9 + 177147z12 = 0.
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A minimal resolution of the Jacobian ideal J is

0 → S(−24)2 → S(−22)⊕ S(−21)⊕ S(−19)2 → S(−11)3 → S/J → S → 0.

Hence C4.8 has the Alexander polynomial (t2 − t+ 1)2.

(4.9) Covering rami�ed along b, ℓ1, ℓ2. This yields also a curve C4.9 of degree 12 with 33
cusps. Its equation is

x12 − 6x9y3 + 7x6y6 − 2x3y9 + y12 + 6x9z3 − 16x6y3z3 + 12x3y6z3 − 2y9z3 + 7x6z6

− 12x3y3z6 + 3y6z6 + 2x3z9 − 2y3z9 + z12 = 0,

the minimal resolution of the Jacobian ideal J is given by

0 → S(−24)2 ⊕ S(−22) → S(−22)2 ⊕ S(−21)⊕ S(−19)2 → S(−11)3 → S/J → S → 0.

Again, the Alexander polynomial equals (t2 − t+ 1)2.

(4.10) Covering rami�ed along t1, t2, t3. The covering gives the curve C4.10 with 36 cusps
with de�ning polynomial

x12 + 12x9y3 − 26x6y6 + 12x3y9 + y12 + 12x9z3 + 244x6y3z3 + 244x3y6z3 + 12y9z3

− 26x6z6 + 244x3y3z6 − 26y6z6 + 12x3z9 + 12y3z9 + z12.

Minimal resolution of the Jacobian ideal J :

0 → S(−24) → S(−19)3 → S(−11)3 → S/J → S → 0.

Hence ∆C4.10(t) = (t2 − t+ 1)3.

(4.11) Covering rami�ed along b, t1 and ℓ1. This does also produce a degree 12 curve
with 36 cusps. Its equation is

47x12 − 4580x9y3 − 1932x6y6 − 80x3y9 − 16y12 − 828x9z3 − 1404x6y3z3 + 2376x3y6z3

− 144y9z3 + 3402x6z6 + 10692x3y3z6 − 972y6z6 + 2916x3z9 − 2916y3z9 − 6561z12 = 0.

The minimal resolution of the Jacobian ideal J is

0 → S(−24)⊕ S(−22) → S(−22)⊕ S(−19)3 → S(−11)3 → S/J → S → 0.

The Alexander polynomial is again (t2 − t+ 1)3.

(4.12) Covering rami�ed along b, t1 and t2 ([24, Example 6.3]). The resulting curve C4.12

has the equation

27x12 − 36x9y3 − 42x6y6 − 12x3y9 − y12 − 36x9z3 + 138x6y3z3 + 12x3y6z3 − 2y9z3

− 42x6z6 + 12x3y3z6 − 3y6z6 − 12x3z9 − 2y3z9 − z12 = 0.

The minimal graded free resolution of the Jacobian ideal J is

0 → S(−22)⊕ S(−21) → S(−19)4 → S(−11)3 → S/J → S → 0.

Thus the Alexander polynomial equals (t2 − t + 1)4. Note that C4.12 has 39 cusps, which
shows that the bound on the number of cusps given in Proposition 2.5 is quite realistic.
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5.3 Coverings of sextic curves

In this section, Kummer coverings of six-, seven-, eight- and nine-cuspidal sextics are com-
puted. In order to construct such curves, the so-called sextics of torus type are useful:
Suppose that C2 = V (f2) is a conic and that C3 = V (f3) is a cubic in P2

C. The intersection
C2 ∩ C3 consists of six points counted with multiplicity by Bézout's theorem. If these six
points are all distinct, then the curve C := V (f32 +f

2
3 ) has six cusps at precisely these points.

A curve arising in this way is called of torus type. In fact, one can show:

Theorem 5.2. Let C be an irreducible cuspidal sextic. Then C is of torus type if and only
if ∆C(t) is not trivial.

Proof: If C = V (f) is of torus type, then f has a quasi-toric relation of type (2, 3, 6).
Hence Proposition 2.13 implies that rkMW(Xf ) > 0. By Theorem 3.9, this means that
deg∆C(t) > 0. For the converse see [7, Theorem 1.1.2] or [28, Theorem 0.4]. □

In particular, all presented sextics in the sequel (with the exception of the non-conical six-
cuspidal sextic) are of torus type.

In the case of Kummer coverings of sextics, one looks for in�ectional (bi)tangents. These are
harder to �nd than (bi)tangents in the quartic case. Moreover, they are often not de�ned
over Q. Thus sometimes, it is infeasible to compute a minimal graded free resolution or even
the Hilbert function of one of the three ideals of cusps. If this happens, then reductions
modulo a prime number are considered, which give an upper bound on the degree of the
Alexander polynomial. This will be explained in Example (6.4).

Sextic with six cusps on a conic

V
(
(x2 − 2y2)3 + (x3 + 1)2

)
and the degenerate conic V (x2 − 2y2) in R2

Consider the curve C given by

(x2 − 2y2)3 + (x3 + z3)2 = 0.
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This is an irreducible sextic with six cusps as the only singularities. All the cusps are situated
on the six intersection points of the conic V (x2 − 2y2) with the cubic V (x3 + z3). Hence by
Theorem 4.13, ∆C(t) = t2 − t + 1. Pick the two in�ectional tangents t1/2 := V (x ± y) at
(1 : ∓1 : 0). Further choose the lines ℓ1 := V (z) and ℓ2 := V (x + 2y + z) that intersect C
transversely.

(6.1) General covering. This produces a curve with 24 cusps and Alexander polynomial
t2 − t+ 1 following Corollary 5.1 (b).

(6.2) Covering rami�ed along t1, ℓ1 and ℓ2. The result is the curve C6.2 de�ned via

72x12 + 192x10y2 + 228x8y4 + 176x6y6 + 90x4y8 + 24x2y10 + 3y12 − 192x10z2 − 456x8y2z2

− 480x6y4z2 − 288x4y6z2 − 84x2y8z2 − 6y10z2 + 228x8z4 + 480x6y2z4 + 396x4y4z4

+ 132x2y6z4 + 6y8z4 − 160x6z6 − 264x4y2z6 − 120x2y4z6 − 2y6z6 + 66x4z8 + 60x2y2z8

− 12x2z10 = 0.

This curve has 26 cusps and Alexander polynomial t2 − t + 1, as a minimal graded free
resolution of S/J , where J is the Jacobian ideal, is given by

0 → S(−26)⊕ S(−25) → S(−22)2 ⊕ S(−21)⊕ S(−19) → S(−11)3 → S → S/J → 0.

(6.3) Covering rami�ed along t1, t2 and ℓ2 This gives

675x12 − 1542x10y2 + 1101x8y4 − 212x6y6 + 45x4y8 − 6x2y10 + 3y12 − 2808x10z2

+ 5112x8y2z2 − 3120x6y4z2 + 1008x4y6z2 − 216x2y8z2 + 24y10z2 + 4788x8z4 − 6672x6y2z4

+ 3096x4y4z4 − 720x2y6z4 + 84y8z4 − 4304x6z6 + 4368x4y2z6 − 1392x2y4z6 + 176y6z6

+ 2160x4z8 − 1440x2y2z8 + 240y4z8 − 576x2z10 + 192y2z10 + 64z12 = 0.

The minimal resolution of the Jacobian ideal is

0 → S(−25)2 ⊕ S(−23) → S(−22)3 ⊕ S(−21)⊕ S(−19) → S(−11)3 → S → S/J → 0.

This is an example of a cuspidal curve of degree 12 with 28 cusps and Alexander polynomial
t2 − t+ 1.

(6.4) Covering rami�ed along three in�ectional tangents. One �nds that a third in-
�ectional tangent of C is given by V (x + ay + bz), where a6 − 39a4 − 10a2 − 4 = 0 and
b9 + 78b6 − 40b3 + 32 = 0. Computing a minimal free resolution of any of the ideals of
cusps of the curve C6.4 turns out to be infeasible. Thus work in positive characteristic. The
smallest prime p where the minimal polynomials for a and b split and the reduction C6.4

p

modulo p of C6.4 has still 30 cusps and no further singularities, is p = 66751. An equation
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for C6.4
66751

is given by

− 25230x12 − 3738x10y2 − 12543x8y4 − 15763x6y6 + 17200x4y8 + 29861x2y10 + 18489y12

+ 31730x10z2 − 13101x8y2z2 − 29625x6y4z2 − 191x4y6z2 + 28878x2y8z2 − 9627y10z2

− 7674x8z4 − 4185x6y2z4 − 252x4y4z4 + 25917x2y6z4 + 12974y8z4 + 31631x6z6

− 27967x4y2z6 − 16899x2y4z6 + 12986y6z6 + 29725x4z8 − 18156x2y2z8 + 24254y4z8

− 21609x2z10 + 20630y2z10 − 10962z12 = 0.

The theory of free resolutions and Hilbert functions as presented in Section 4.1 can easily
be adapted for the graded ring S := F66571[x, y, z]. A minimal graded free resolution of the

ideal I of cusps of C6.4
66751

is given by

0 → S(−10)⊕ S(−8)3 → S(−7)4 ⊕ S(−6) → S → S/I → 0.

Computing the Hilbert function of S/I from this resolution, one sees dim I7 = 7. Following
[3, Proposition 2.5], dimC I7 ≤ dimC I7, where I is the ideal of cusps of C6.4. Consequently,
if s denotes the exponent of t2 − t+ 1 in ∆C6.4(t), then

s = pS/I(7)− hS/I(7) = pS/I(7)− dimC S7 + dimC I7 ≤ 30− 36 + 7 = 1.

By Corollary 5.1 (a), s ≥ 1. Therefore ∆C6.4(t) = t2 − t+ 1.

Sextic with six cusps not on a conic

Let ξ be a primitive third root of unity. Then the curve C given by the vanishing of

(y2 + ξx2)3 − (x2 + ξy2)3 − (z2 + ξy2 + ξ2x2)3

de�nes an irreducible six-cuspidal sextic whose cusps do not lie on a conic. In particular,
∆C(t) = 1 in virtue of Theorem 4.13 or Theorem 5.2. The curve C can be obtained via
a Kummer covering of degree 2 of a smooth cubic rami�ed along three special in�ectional
tangents (see [3, Section 1]).

This curve is a lucky curve: It has two in�ectional bitangents b1/2 given by V (x ± y). Pick
further the lines ℓ1/2 := V (x± y + z) that intersect C transversely.

C is also an unlucky curve: All other in�ectional tangents are not de�ned over Q(ξ). Thus
we will have to work in positive characteristic as in (6.4).

(6.5) General covering. This produces a cuspidal degree 12 curve with 24 cusps and trivial
Alexander polynomial.

(6.6) Covering rami�ed along one in�ectional tangent, ℓ1 and ℓ2. The minimal �eld of
de�nition of the resulting curve is computationally infeasible. Thus use the same methods as
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in (6.4): The reduction C6.6
229

of C6.6 modulo 229 has 26 cusps and no further singularities.
An equation is

− 57x12 − 64x10y2 + 10x8y4 + 114x6y6 − 100x4y8 + 71x2y10 + 32y12 + 95x10z2 + 13x8y2z2

+ 32x6y4z2 − 4x4y6z2 + 79x2y8z2 + 56y10z2 − 19x8z4 − 88x6y2z4 + 12x4y4z4 − 21x2y6z4

− 54y8z4 − 44x6z6 − 69x4y2z6 − 100x2y4z6 − 26y6z6 + 15x4z8 − 47x2y2z8 − 16y4z8

− 74x2z10 − 31y2z10 + 55z12 = 0.

The ideal I ⊴ S := F229[x, y, z] of cusps of C6.6
229

has the minimal resolution

0 → S(−9)⊕ S(−8)2 → S(−7)⊕ S(−6)3 → S → S/I → 0.

Analogously to (6.4), one obtains that C6.6 is a 26-cuspidal curve with Alexander polynomial
∆C6.6(t) = 1.

(6.7) Covering rami�ed along two in�ectional tangents and ℓ1. Stay in characteristic

229. The reduction C6.7
229

of C6.7 has 28 cusps and is given by

30x12 − 108x10y2 − 114x8y4 + 64x6y6 + 54x4y8 + 37x2y10 − 20y12 + 87x10z2 + 29x8y2z2

− 13x6y4z2 − 3x4y6z2 − 98x2y8z2 + 29y10z2 − 62x8z4 − 27x6y2z4 − 45x4y4z4 − 42x2y6z4

− 49y8z4 − 32x6z6 + 103x4y2z6 − 56x2y4z6 − y6z6 + 72x4z8 + 114x2y2z8 − 103y4z8

+ 27x2z10 + 110y2z10 + 16z12 = 0.

The ideal I ⊴ S := F229[x, y, z] of cusps of C6.7
229

has the minimal resolution

0 → S(−9)2 ⊕ S(−8) → S(−7)2 ⊕ S(−6)2 → S → S/I → 0.

Consequently, ∆C6.7(t) = 1.

(6.8) Covering rami�ed along b1, ℓ1, ℓ2. Here, one can switch back to characteristic zero.
This covering produces the curve C6.8 with the de�ning polynomial

64x12 + (−192ξ − 384)x10y2 + (624ξ + 672)x8y4 + (−768ξ − 384)x6y6 + (420ξ − 60)x4y8

+ (−84ξ + 120)x2y10 − 27y12 + (−192ξ)x10z2 + (672ξ − 192)x8y2z2

+ (−960ξ + 384)x6y4z2 + (624ξ − 336)x4y6z2 + (−156ξ + 192)x2y8z2 − 54y10z2

+ (−336ξ − 288)x8z4 + (1152ξ + 768)x6y2z4 + (−1224ξ − 744)x4y4z4

+ (408ξ + 240)x2y6z4 − 9y8z4 + (−192ξ − 256)x6z6 + (432ξ + 432)x4y2z6

+ (−216ξ − 192)x2y4z6 + 28y6z6 + (−60ξ − 60)x4z8 + (60ξ + 24)x2y2z8 + 3y4z8

+ (−12ξ)x2z10 − 6y2z10 + z12.

The Jacobian ideal J has the following minimal resolution:

0 → S(−26)⊕ S(−23)2 → S(−22)2 ⊕ S(−21)⊕ S(−20)2 → S(−11)3 → S → S/J → 0

Hence C6.8 is an example of a degree 12 curve with 28 cusps and Alexander polynomial 1.
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(6.9) Covering rami�ed along three in�ectional tangents. Return to F229. The reduction

C6.9
229

of C6.9 has 30 cusps and is found to be

8x12 − 54x10y2 + 19x8y4 + 59x6y6 + 57x4y8 − 113x2y10 + 13y12 − 6x10z2 + 57x8y2z2

− 32x6y4z2 + 46x4y6z2 + 30x2y8z2 + 35y10z2 + 98x8z4 − 27x6y2z4 + 92x4y4z4 + 49x2y6z4

− 84y8z4 − 16x6z6 + 51x4y2z6 + 32x2y4z6 − 104y6z6 − 72x4z8 − 90x2y2z8 + 61y4z8

+ 32x2z10 + 98y2z10 − 11z12 = 0.

The ideal I of cusps has the minimal resolution

0 → S(−9)3 → S(−7)3 ⊕ S(−6) → S → S/I → 0.

The Alexander polynomial is hence ∆C6.9(t) = 1.

(6.10) Covering rami�ed along b1, one in�ectional tangent and ℓ1. The reduction C6.10
229

of C6.10 is a curve with 30 cusps as the only singularities. A de�ning polynomial in F229[x, y, z]
is given by

36x12 − 100x10y2 + 2x8y4 + 71x6y6 + 36x4y8 + 19x2y10 − 43y12 − 2x10z2 − 50x8y2z2

+ 80x6y4z2 − 49x4y6z2 − 84x2y8z2 + 30y10z2 + 92x8z4 − 68x6y2z4 + 109x4y4z4

− 48x2y6z4 + 89y8z4 + 61x6z6 − 50x4y2z6 + 50x2y4z6 + 26y6z6 − 77x4z8 − 62x2y2z8

− 112y4z8 + 22x2z10 + 65y2z10 − 44z12.

The ideal I of cusps has the minimal resolution

0 → S(−9)3 → S(−7)3 ⊕ S(−6) → S → S/I → 0.

As a consequence, again ∆C6.10(t) = 1.

(6.11) Covering rami�ed along b1 and two in�ectional tangents. The reduction C6.11
229

of C6.11 is a curve with 32 cusps as the only singularities de�ned via

− 17x12 − 76x10y2 + 52x8y4 − 89x6y6 − 88x4y8 + 109x2y10 + 17y12 − 64x10z2 + 3x8y2z2

+ 21x6y4z2 + 106x4y6z2 − 45x2y8z2 + 81y10z2 − 55x8z4 − 31x6y2z4 − 45x4y4z4

− 104x2y6z4 − 95y8z4 + 81x6z6 + 40x4y2z6 − 93x2y4z6 + 55y6z6 − 13x4z8 − 32x2y2z8

+ 111y4z8 + 99x2z10 + 27y2z10 + 44z12 = 0.

The ideal I of cusps has the minimal resolution

0 → S(−9)4 → S(−8)⊕ S(−7)4 → S → S/I → 0.

The Alexander polynomial is trivial.
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(6.12) Covering rami�ed along b1, b2 and ℓ1. This yields the curve C6.12 de�ned over
Q(ξ), where ξ a primitive third root of unity, by

− 27x12 + (84ξ + 42)x10y2 + 135x8y4 + (−72ξ − 36)x6y6 − 45x4y8 + (−12ξ − 6)x2y10

+ y12 + 216x10z2 + (−576ξ − 288)x8y2z2 − 432x6y4z2 + (192ξ + 96)x4y6z2 + 24x2y8z2

− 684x8z4 + (1056ξ + 528)x6y2z4 + 408x4y4z4 + (−96ξ − 48)x2y6z4 − 12y8z4 + 1088x6z6

+ (−768ξ − 384)x4y2z6 − 192x2y4z6 − 912x4z8 + (192ξ + 96)x2y2z8 + 48y4z8 + 384x2z10

− 64z12 = 0,

whose Jacobian ideal J has the free resolution

0 → S(−25)⊕ S(−23) → S(−22)⊕ S(−20)2 ⊕ S(−19) → S(−11)3 → S → S/J → 0.

This is an example of a degree 12 curve with 32 cusps and Alexander polynomial t2 − t+ 1.

(6.13) Covering rami�ed along b1, b2 and another in�ectional tangent. This is the �nal
example coming from the non-conical six-cuspidal sextic. For the last time, consider the

reduction modulo 229. The curve C6.13
229

has 34 cusps and the equation

− 104x12 − 105x10y2 − 82x8y4 + 11x6y6 − 44x4y8 − 30x2y10 + 108y12 − 39x10z2

+ 27x8y2z2 + 61x6y4z2 + 19x4y6z2 − 26x2y8z2 + 47y10z2 + 30x8z4 + 53x6y2z4 − 42x4y4z4

− 81x2y6z4 + 40y8z4 − 38x6z6 − 73x4y2z6 + 4x2y4z6 + 89y6z6 − 114x4z8 + 85x2y2z8

+ 29y4z8 − 96x2z10 + 30y2z10 + 11z12 = 0.

The ideal I of cusps in the ring S := F229[x, y, z] has the minimal resolution

0 → S(−10)⊕ S(−9)3 → S(−8)2 ⊕ S(−7)3 → S → S/I → 0,

which shows that the exponent s of t2 − t+ 1 in ∆C6.13(t) is at most one. Denote by Σ the
set of cusps of C6.13. Let Σ1 be set of the 32 cusps coming from the base curve and the two
in�ectional bitangents and de�ne Σ2 := Σ \ Σ1. Then

hS/I(Σ)(7) = hS/I(Σ1)(7) + hS/I(Σ2)(7)− hS/(I(Σ1)+I(Σ2))(7) ≤ hS/I(Σ1)(7) + hS/I(Σ2)(7).

By the preceding example, hS/I(Σ1)(7) = 31. Σ2 is a set of two points, hence a minimal
graded free resolution of S/I(Σ2) looks like

0 → S(−3) → S(−2)⊕ S(−1) → S → S/I(Σ2) → 0

and hS/I(Σ2)(7) = 2. As a consequence,

s = pS/I(Σ)(7)− hS/I(Σ)(7) ≥ 34− 31− 2 = 1.

That is, ∆C6.13(t) = t2 − t+ 1.
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A seven-cuspidal sextic whose cusps are all real:
−4x2 + 12x3 − 13x4 + 6x5 − x6 + 24xy − 40x2y + 18x3y − 2x4y − 36y2

−48xy2 + 93x2y2 − 36x3y2 + 2x4y2 + 108y3 − 6xy3 − 52x2y3 + 18x3y3

−117y4 + 48xy4 − x2y4 + 54y5 − 18xy5 − 9y6 = 0

Sextic with seven cusps

Consider the curve C de�ned by the vanishing of

− 12x5y − 40x3y3 − 12xy5 + 6x5z + 30x4yz + 60x3y2z + 60x2y3z + 30xy4z + 6y5z − 3x4z2

− 108x3yz2 − 18x2y2z2 − 108xy3z2 − 3y4z2 + 36x3z3 + 108x2yz3 + 108xy2z3 + 36y3z3

− 15x2z4 − 222xyz4 − 15y2z4 + 54xz5 + 54yz5 − 17z6 = 0.

This equation is given in [25, Formula (4.9)]. C is an irreducible sextic with seven cusps as
the only singularities. Its Alexander polynomial equals t2 − t+ 1. Two in�ectional tangents
are given by t1 := V (x−y+2az) and t2 := V (x−y−2bz), where a4+3a2+3 = b4+3b2+3 = 0
and b /∈ {a,−a}. De�ne further ℓ1 := V (x+ y + z) and ℓ2 := V (x+ 2y + z). These are lines
intersecting C transversely.

(6.14) General covering. This gives a curve of degree 12 with 28 cusps and Alexander
polynomial t2 − t+ 1.
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(6.15) Covering rami�ed along t1, ℓ1 and ℓ2. The resulting curve C6.15 has 30 cusps and
is given by

− 131x12 + (−132a+ 2424)x10y2 + (3516a2 − 1536a− 17796)x8y4 + (−13280a3 − 22272a2

+ 20352a+ 67792)x6y6 + (51456a3 − 40464a2 − 81600a− 244428)x4y8 + (72960a3

+ 175200a2 + 283800a+ 421836)x2y10 + (−20576a3 − 45804a2 − 99420a− 52201)y12

+ (600a− 1872)x10z2 + (−6480a2 − 3840a+ 27120)x8y2z2 + (29376a3 + 61824a2 − 14016a

− 153600)x6y4z2 + (−157440a3 + 52992a2 + 158400a+ 707424)x4y6z2 + (−198528a3

− 519552a2 − 886272a− 1506480)x2y8z2 + (52608a3 + 163776a2 + 380976a+ 283800)y10z2

+ (2160a2 + 3840a− 10320)x8z4 + (−19584a3 − 48384a2 − 14208a+ 115968)x6y2z4

+ (165888a3 − 1152a2 − 78336a− 761472)x4y4z4 + (224256a3 + 582912a2 + 1063296a

+ 2119872)x2y6z4 + (−43008a3 − 208512a2 − 575232a− 573360)y8z4 + (4352a3 + 10752a2

+ 9984a− 29184)x6z6 + (−73728a3 − 13824a2 − 12288a+ 365568)x4y2z6 + (−138240a3

− 319488a2 − 602112a− 1485312)x2y4z6 + (11264a3 + 112128a2 + 432384a+ 583808)y6z6

+ (12288a3 + 2304a2 + 12288a− 66048)x4z8 + (46080a3 + 92160a2 + 153600a

+ 522240)x2y2z8 + (−21504a2 − 162816a− 327936)y4z8 + (−6144a3 − 12288a2 − 12288a

− 73728)x2z10 + (24576a+ 98304)y2z10 − 12288z12 = 0.

Let J be the Jacobian ideal. Here, computing a minimal resolution of J sat is faster than
computing a resolution of J . The result is

0 → S(−14)⊕ S(−13) → S(−10)⊕ S(−9)⊕ S(−8) → S → S/J sat → 0.

By Corollary 4.9, ∆C6.15(t) = t2 − t+ 1.

(6.16) Covering rami�ed along t1, t2 and ℓ1. The resulting curve C6.16 has 32 cusps. Since

its minimal �eld of de�nition is too large, work modulo 37. Then the reduction C6.16
37

has
still 32 cusps and no further singularities and is given by the polynomial

3x12 − 13x10y2 − 9x8y4 + 5x4y8 + 12x2y10 + 3y12 + 15x10z2 − x8y2z2 + 2x6y4z2 − 2x4y6z2

+ x2y8z2 − 15y10z2 + 12x8z4 − 11x6y2z4 − 2x4y4z4 − 11x2y6z4 + 12y8z4 − 16x6z6

+ 11x4y2z6 − 11x2y4z6 + 16y6z6 − 17x4z8 − 3x2y2z8 − 17y4z8 + 10x2z10 − 10y2z10 − z12.

The ideal I ⊴ S := F37[x, y, z] of cusps of C6.16
37

has the minimal resolution

0 → S(−10)⊕ S(−9)2 → S(−8)⊕ S(−7)2 ⊕ S(−6) → S → S/I → 0.

As in (6.4), ∆C6.16(t) = t2 − t+ 1.

(6.17) Covering rami�ed along three in�ectional tangents. Take t1 and t2 as above.
Another in�ectional tangent t3 is de�ned by V (αx+βy+γz) where, the minimal polynomials
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of α, β, γ are always of degree 12. Thus the curve C6.17 is not de�ned over a computationally
feasible �eld extension of Q. Again, work in positive characteristic. It turns out that modulo
349, the reduction of C6.17 has 34 cusps and is given by

107x12 + 11x10y2 + 162x8y4 − 23x6y6 − 130x4y8 − 18x2y10 + 174y12 − 64x10z2 + 6x8y2z2

− 118x6y4z2 + 152x4y6z2 − 77x2y8z2 − 108y10z2 − 145x8z4 − 69x6y2z4 + 76x4y4z4

− 133x2y6z4 + 163y8z4 − 19x6z6 − 114x4y2z6 + 167x2y4z6 + 162y6z6 + 80x4z8 − 70x2y2z8

+ 168y4z8 + 150x2z10 − 22y2z10 + 139z12 = 0.

A minimal free resolution of the ideal I ⊴ S := F349[x, y, z] of cusps is given by

0 → S(−10)⊕ S(−9)3 → S(−8)2 ⊕ S(−7)3 → S → S/I → 0.

Hence with the same reasoning as in (6.4), ∆C6.17(t) = t2 − t+ 1.

Sextic with eight cusps

Consider the curve C de�ned by the polynomial (compare [25, Formula (4.10)])

745x6 − 4278x5y + 11175x4y2 − 14260x3y3 + 11175x2y4 − 4278xy5 + 745y6 + 120x5z

− 264x4yz − 1392x3y2z − 1392x2y3z − 264xy4z + 120y5z − 1866x4z2 + 6792x3yz2

− 6012x2y2z2 + 6792xy3z2 − 1866y4z2 + 144x3z3 − 2160x2yz3 − 2160xy2z3 + 144y3z3

+ 1521x2z4 + 126xyz4 + 1521y2z4 − 648xz5 − 648yz5.

This is an eight-cuspidal sextic with ∆C(t) = (t2−t+1)2. The following in�ectional tangents
will be used:

t1/2 := V (x− y ± 2
√
2/3z),

t3 := V

(
x+ y · 1

67

(
−77− 18i

√
3
)
+ z · 1

67

(
−51 + 2i

√
3
))

.

Further choose the following lines intersecting C transversely:

ℓ1 := V (x+ y + z), ℓ2 := V (x+ y + 2z).

(6.18) General covering. This gives a degree 12 curve with 32 cusps and Alexander poly-
nomial (t2 − t+ 1)2.

(6.19) One in�ectional tangent. Pick t1 as in�ectional tangent and the two lines ℓ1, ℓ2 for
the covering. This produces the curve C6.19 de�ned over Q(

√
2) with the equation

729x12 + 2916
√
2x10y2 + 8262x8y4 + 4752

√
2x6y6 − 4023x4y8 − 7668

√
2x2y10 + 11448y12

− 2916
√
2x10z2 − 16524x8y2z2 − 14256

√
2x6y4z2 + 10260x4y6z2 + 30564

√
2x2y8z2

− 45576y10z2 + 8262x8z4 + 14256
√
2x6y2z4 − 8586x4y4z4 − 48168

√
2x2y6z4 + 75528y8z4

− 4752
√
2x6z6 + 2268x4y2z6 + 37512

√
2x2y4z6 − 66680y6z6 + 81x4z8 − 14436

√
2x2y2z8

+ 33072y4z8 + 2196
√
2x2z10 − 8736y2z10 + 960z12 = 0.
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The Jacobian ideal J has the minimal resolution

0 → S(−24)⊕ S(−23)2 ⊕ S(−21) → S(−22)3 ⊕ S(−20)⊕ S(−19)2

→ S(−11)3 → S → S/J → 0.

Hence C6.19 is an example of a degree 12 curve with 34 cusps and Alexander polynomial
(t2 − t+ 1)2.

(6.20) Two in�ectional tangents. The covering rami�ed along t1, t2 and ℓ1 yields the curve
C6.20 de�ned via

21870x12 − 264627x10y2 + 1001646x8y4 − 771282x6y6 + 1001646x4y8 − 264627x2y10

+ 21870y12 − 90396
√
2x10z2 + 731916

√
2x8y2z2 − 1743768

√
2x6y4z2 + 1743768

√
2x4y6z2

− 731916
√
2x2y8z2 + 90396

√
2y10z2 + 307152x8z4 − 1601856x6y2z4 + 2589408x4y4z4

− 1601856x2y6z4 + 307152y8z4 − 275616
√
2x6z6 + 909792

√
2x4y2z6 − 909792

√
2x2y4z6

+ 275616
√
2y6z6 + 276480x4z8 − 552960x2y2z8 + 276480y4z8 − 73728

√
2x2z10

+ 73728
√
2y2z10 + 16384z12 = 0.

with 36 cusps and Alexander polynomial ∆C6.20(t) = (t2 − t + 1)3. The minimal resolution
for the Jacobian ideal J is given by

0 → S(−23)3 ⊕ S(−21) → S(−22)3 ⊕ S(−19)3 → S(−11)3 → S → S/J → 0.

(6.21) Three in�ectional tangents. Pick t1, t2 and t3 for the covering. The resulting curve
C6.21 has a very long equation, which will not be displayed here. However, C6.21 is de�ned
over Q(

√
2, i

√
3), and it is still fesible to compute a minimal resolution of the saturation J sat

of the Jacobian ideal:

0 → S(−14)3 ⊕ S(−13)⊕ S(−12)2 → S(−12)2 ⊕ S(−11)5 → S → S/J sat → 0

Thus C6.21 is an example for a cuspidal curve of degree 12 with 38 cusps and Alexander
polynomial (t2 − t+ 1)3.

Nodal eight-cuspidal sextic

In the de�nition of cuspidal curve, also ordinary double points were allowed as singularities.
However, the presence of nodes does not seem to in�uence the Alexander polynomial. As an
example, some Kummer coverings of a nodal eight-cuspidal sextic are presented here.

Consider the two-cuspidal quartic presented in the previous section. Cancelling the factor
2 before y2 yields also a two-cuspidal quartic C ′. The dual curve C is an irreducible eight-
cuspidal sextic with additionally one ordinary double point at (1 : 0 : 1). C is given by

8x4y2 − 3x2y4 + 11y6 − 32x5z − 54xy4z + 64x4z2

+ 24x2y2z2 + 21y4z2 − 48x2z4 − 48y2z4 + 16z6 = 0.
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Due to the presence of the node, C has only two in�ection points by the Plücker formulas.
These are situated at (0 : ±1 : 1), the corresponding in�ectional tangents are t1/2 := V (x±
y + z). Pick the two transversely intersecting lines ℓ1 := 2y − z and ℓ2 := x− 2y + z.

The nodal eight-cuspidal sextic C and t1, t2 in the a�ne chart z = 1

(6.22) General covering. This yields a curve of degree 12 with 4 nodes and 32 cusps with
Alexander polynomial (t2 − t+ 1)2.

(6.23) Covering rami�ed along t1, ℓ1 and ℓ2. This produces the curve

13x12 − 90x10y2 + 30x8y4 + 520x6y6 − 243x4y8 − 1398x2y10 + 1168y12 − 192x10z2

+ 528x8y2z2 + 1248x6y4z2 − 1824x4y6z2 − 6432x2y8z2 + 7536y10z2 + 696x8z4 + 96x6y2z4

− 3096x4y4z4 − 11856x2y6z4 + 20208y8z4 − 736x6z6 − 1392x4y2z6 − 11136x2y4z6

+ 28816y6z6 + 144x4z8 − 5472x2y2z8 + 23040y4z8 − 1152x2z10 + 9792y2z10 + 1728z12 = 0

with 4 nodes and 34 cusps. The minimal graded free resolution of the ideal I of the 34 cusps
is given by

0 → S(−10)2 ⊕ S(−9) → S(−8)2 ⊕ S(−7)⊕ S(−6) → S → S/I → 0,

so the Alexander polynomial equals (t2 − t+ 1)2.

(6.24) Covering rami�ed along t1, t2 and ℓ1. The result is the curve given by

28x12 − 235x10y2 + 2304x8y4 − 10818x6y6 + 22896x4y8 − 22059x2y10 + 7884y12 − 328x10z2

+ 3096x8y2z2 − 20112x6y4z2 + 59760x4y6z2 − 75816x2y8z2 + 33912y10z2 + 1552x8z4

− 14048x6y2z4 + 60000x4y4z4 − 104544x2y6z4 + 60624y8z4 − 3808x6z6 + 27872x4y2z6

− 72480x2y4z6 + 57632y6z6 + 5120x4z8 − 25344x2y2z8 + 30720y4z8 − 3584x2z10

+ 8704y2z10 + 1024z12 = 0.
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This is an irreducible degree 12 curve with 4 nodes and 36 cusps. Its Alexander polynomial
is (t2− t+1)3, as can be seen from the minimal graded free resolution of the ideal I of cusps:

0 → S(−10)3 → S(−8)3 ⊕ S(−6) → S → S/I → 0.

Thus these curves have the same Alexander polynomial as the coverings of the eight-cuspidal
sextic without nodes. The same phenomenon happens when considering coverings from other
cuspidal curves with nodes, e. g. nodal two-cuspidal quartics or seven-cuspidal sextics with
two nodes. The corresponding computations are omitted here.

Sextic with nine cusps

Finally consider the curve C given by

x6 + y6 + z6 − 2(x3y3 + x3z3 + y3z3) = 0.

This is a nine-cuspidal sextic. Any nine-cuspidal sextic is dual to a smooth cubic, and hence
has no in�ection points at all. Thus only the general covering may be applied to obtain a
cuspidal curve of degree 12.

(6.25) General covering. The minimal graded free resolution of the ideal I of the nine
cusps of C is

0 → S(−5)3 → S(−4)3 ⊕ S(−3) → S → S/I → 0.

Hence ∆C(t) = (t2 − t+ 1)3. This is also the Alexander polynomial of the 36-cuspidal curve
obtained via a general covering of degree two.

5.4 Concluding remarks

Limitations of the strategy. The Kummer coverings of quartics and sextics produce many
good examples of cuspidal curves of degree 12. However, these curves are very special. For
example, it is impossible to obtain curves whose number of cusps is neither divisible by two
or three.

Furthermore, the choice of the base curves and the lines involved in the cover may in�uence
the Alexander polynomial. Based on numerous computations, this does not seem to be the
case. For example, all three-cuspidal quartics are projectively equivalent, as this holds for
their dual curves, which are nodal cubics. Moreover, if a transversely intersecting line is
replaced by another such line, then the preimages of the two base curves under the Kummer
covering are equivalent with respect to equisingular deformation. That is, there exists a
path in some equisingular stratum in S12 connecting the two curves. This implies that the
complements are homeomorphic and thus the Alexander polynomial does not change ([6]).

An application (compare [3, Section 4]). De�ne C34,2 ⊆ S12 to be the equisingular defor-
mation space (see [17] for a precise de�nition) of the 34-cuspidal curve C6.19 with Alexander
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polynomial (t2 − t+ 1)2. This space has codimension 68 in S12:

Let f ∈ C[x, y, z]12 be an equation for the curve C6.19. [17, Proposition 2.5] states that the
Zariski tangent space of C34,2 at C6.19 has codimension hS/J(f)sat(12) in S12. By Corollary
4.9, the codimension is thus hS/J(f)sat(12) = pS/J(f)sat(12) = 68. Hence the codimension of
the space C34,2 itself is at least 68. Any curve in this space has 34 cusps, which are double
points. This shows that also codimS12 C34,2 ≤ 2 · 34 = 68.
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Summary

Let C ⊆ P2
C be a reduced curve in the complex projective plane. Then an invariant of the

fundamental group π1(P2
C \ C) is given by the Alexander polynomial ∆C(t) ∈ Q[t] of C. If

C is irreducible of degree 6k for some k ∈ N and has only A1 and A2 singularities, then

∆C(t) = (t2 − t+ 1)s, where s ∈ N0 and s ≤ 1

4

(
15k − 1−

√
15k2 − 18k + 7

)
.

The Alexander polynomial has many other interpretations:

Theorem. Let f ∈ C[x, y, z]6k be a homogeneous irreducible polynomial of degree 6k for
some k ∈ N such that C := V (f) is a singular curve and each singular point is either of type
A1 or of type A2. Denote by Σ the set of ordinary cusps of C. Then the following numbers
coincide:

(a) The degree of the Alexander polynomial ∆C(t),

(b) the irregularity of a desingularization of the cyclic multiple plane u6k = f(x, y, z),

(c) the rank of the Mordell-Weil group of an elliptic threefold birational to the hypersurface
de�ned by −v2 + u3 + f(x, y, z) = 0 in the weighted projective space P4

C(2k, 3k, 1, 1, 1),

(d) the rank of the group of quasi-toric relations of type (2, 3, 6) of f ,

(e) 2 dimC cokerφ, where

φ : C[x, y, z]5k−3 → C#Σ, f 7→ (f(p))p∈Σ ,

(f) 2 dimC cokerψ, where

ψ : C[x, y, z]7k−3 → C2#Σ, f 7→
(
f(p),

∂f

∂ℓp
(p)

)
p∈Σ

and ℓp = 0 is a square-free equation for the cuspidal tangent at p ∈ Σ,

(g) the di�erence between #Σ and the Hilbert polynomial of S/I(Σ) evaluated at 5k − 3,

(h) the di�erence between 2#Σ and the Hilbert polynomial of S/J(f)sat evaluated at 7k − 3,
where J(f) denotes the Jacobian ideal of f ,

(i) #{i ∈ {0, . . . , t} | bi = 5k}, where

0 →
t⊕

i=1

S(−bi) →
t+1⊕
i=1

S(−ai) → S → S/I(Σ) → 0

is a minimal graded free resolution of S/I(Σ),
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(j) #{i ∈ {0, . . . , t} | bi = 7k}, where

0 →
t⊕

i=1

S(−bi) →
t+1⊕
i=1

S(−ai) → S → S/J(f)sat → 0

is a minimal graded free resolution of S/J(f)sat,

(k) #{i ∈ {0, . . . , t+ 2} | bi = 11k − 3}, where

0 →
t⊕

i=1

S(−ci) →
t+2⊕
i=1

S(−bi) → S(−6k + 1)3 → S → S/J(f) → 0

is a minimal graded free resolution of S/J(f).

Except for one case, it is possible to determine the Alexander polynomial from the number
of cusps of some degree 6k curve C if k = 1. For k = 2, this turns out more di�cult. In this
diploma thesis, in total 37 cuspidal curves of degree 12 and their Alexander polynomials are
computed to gain more insight into this matter.
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