A NOTE ON BERTINI TRREDUCIBILITY THEOREMS FOR
SIMPLICIAL TORIC VARIETIES OVER FINITE FIELDS

NIELS LINDNER

ABSTRACT. This short note deals with extending the Bertini irreduciblity theorems ob-
tained by Charles and Poonen in [1] to simplicial toric varieties.

1. GOAL

Consider a finite field F, and fix an algebraic closure F. Let [P be a projective normal
simplicial toric variety over IFy, with singular locus Pg,e. Fix a Weil divisor D and an ample
Cartier divisor £ on P.

We follow the notation in [1]: Let X be a scheme of finite type over F, Y C X a subscheme.
Let further ¢ : X — Pr be an F-morphism.

e Y is called horizontal if dim ¢(Y) > 1 and ¢(Y) is not contained in (Pg)ging,
e IrrY denotes the set of irreducible components of Y,

e Irry.i, Y is the set of all horizontal irreducible components of Y,

® Yo, denotes the union of all horizontal irreducible components of Y.

For sections f € HY(P, Op(D + kE)), where k is an integer, define X; := ¢~ (V(f)

).
Theorem 1.1. Suppose that ¢ : X — Pg is an F-morphism such that dim ¢(C) > 2 and

dim ¢(C) N (Pr)sing < dim ¢(C) — 2 for each C' € Irr X. Then

lim #{f € H'(P,Op(D + kE)) | Irt X = IrThoriz X7, C — (C N X )horiz 08 a bijection} _

Remarks.

1.

(1) Suppose that D = 0 and F is a very ample Cartier divisor defining a closed immersion
1 : P — P™. This gives a linear map

i HY(P", Opn(k)) — H°(P, Op(kE)),

which is surjective for £ > 0. In particular, Theorem is obtained from [1, Theo-
rem 1.6, as V(i*(g)) = i *(V(g)) for g € H°(P", Opn(k)). Moreover, this holds for any
projective variety PP over F,, and the conditions on (Pg)gn, may be dropped as well.

(2) The codimension two condition on the intersection with the singular locus is necessary
if D is not trivial. For example, consider P = P(1,2,3,6) with coordinates xg, z1, s, 3.
Let X := V(z9) C Pr and ¢ : X < Py be the inclusion. X is an irreducible surface in
IP)[E‘ and

X N (PF)sing = V(l’o,iCl) U V(CE(),.TQ)
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is one-dimensional. For £ > 1, let f be a weighted homogeneous polynomial of degree
6k + 1. One finds that f can be written as

k—1k—1—1¢

f= m%:pg Z Z cijxi’ixgjxlg_i_j_l + terms divisible by zy, c¢;; € F,.
=0 j=0
Thus if X N V(f) is irreducible, then f lies in a subspace of H°(P,Op(6k + 1)) of
codimension
k—1
~  k(k—=1)
k—1—1i)=——.
;( i) ==

As a consequence, the fraction of f € H°(P, Op(6k+1)) such that X NV (f) is irreducible
is at most ¢~*(*=1)/2_ In particular, the density of f for which the map Irr X — Irr X/ is
a bijection is bounded from above by limy_,, ¢ *#=1/2 = (.

(3) Let X and ¢ satisfy the hypotheses of Theorem and assume that ¢ is an immersion. If
D € Trr X and C C D is irreducible with codimp(C) < 1, then ¢(C) is not contained in
(Pr)sing: Indeed, the singular locus of Pr has codimension at least two in ¢(D), whereas
¢(C) has codimension at most one. Therefore, the subscript “horiz” may be omitted and
one obtains:

Corollary 1.2. Let X be a geometrically irreducible subscheme of a projective normal sim-
plicial toric variety P over Fy. If dim X > 2 and dim X N Pg,e < dim X — 2, then

lim #{f € H'(P,Op(D + kE)) | X NV (f) is geometrically irreducible} |
k=00 #HO(P,Op(D + kE)) B

In particular, this holds for X = P.

The proof of Theorem follows the outline of [1], some proofs being almost literally the
same. However, the presence of singularities in P rises some technical difficulties.

2. LEMMAS

From now on, a statement S(f), where f € H(X, Ox(D + kE)) for some positive integer
k, is said to hold for f in a set of density 1 if

#{f € H'(P,Op(D + kE)) | S(f) is true} .

5
e £HO(P,0p(D + kE))
Lemma 2.1. Let X be either

o a subscheme of P over Fy such that dim X \ (X NPgye) > 1, or
o a subscheme of Pp over F such that dim X \ (X N (Pg)sing) > 1.

Then for f in a set of density 1, f does not vanish on X.

Proof. Replacing X by its image under the natural map Pr — Pr_, assume that X is defined
over [F,. Now the assertion follows as in the proof of |3, Lemma 4.5 (2)]. O

Lemma 2.2. Let X C P (or P) be a subscheme over Fy (or IF) such that dim X > 1. Then

Jor fin a set of density 1, X NV (f) # 0.
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Proof. Assume again that X is defined over F,. Fix a positive integer r and denote by X,
the set of closed points of X whose degree is smaller than r. As in [3, Lemma 4.1], the
density of sections f such that V(f) N X, is empty equals

H (1 _ q_VP(D)) 7
PeX.,
where vp(D) := dimg, H*(Xp, Ox(D)|x,) and Xp is the subscheme of X corresponding to
the maximal ideal mp. If vp(D) = 0 for some point P € X_,, then the above product equals
zero. Otherwise choose a positive integer m such that mD is Cartier. This is possible since
PP is simplicial and hence Q-factorial (see e. g. |2, Proposition 4.2.7]). Using that the sheaf
Ox(mD)|x, is invertible and hence locally isomorphic to Ox,, there is an injective map

HO(XP7 OX(D)’XP) - HO(XP7 OX(mD)|XP) = HO(XPa OXp)? g gm’

thus 0 < vp(D) < deg P. As deg P necessarily divides vp(D), this implies vp(D) = deg P.
In particular, the density of f such that V(f) N X, is empty equals

1

H (1 - q—degP) _ )
PEX<T CX<’V‘(1)
This diverges to 0 as r — oo, since dim X > 1. 0

Lemma 2.3. Let X be an F-scheme of finite type, ¢ : X — Prp an F-morphism such that
dim ¢(C) > 2 for all C € Trr X. Let U be a dense open subscheme of X. Then for [ in a
set of density 1, there is a bijection

Irthoris X f = ItThori, Up, C = CNU.

Proof. If every C' € Irrpai, X5 meets U, the above map is clearly bijective with its inverse
given by taking the closure in Xjy.

There is nothing to show if Irrhom(X \ U) = (. Otherwise, let C' € Trrpei, (X \ U). Since
¢(C) is of dimension > 1 and is not contained in (Py)*"¢, Lemma E 1| states that the set of f
vanishing on ¢(C) has density 0. Excluding these f, every C' € Irrpom, Xt meets U, because
otherwise C' € IrThoi,(X \ U) and f(o(C)) = 0. O

Lemma 2.4. Let X and ¢ be as in Theorem [1.1] and suppose further that X is smooth. Let
f € H'(P,Op(D+ kE))\ {0} for some d > 0. Then Cy contains a horizontal component for
any C' € Irr X. Moreover, the following are equivalent:

(1) There is a bijection Irt X — Irthoriy X £, C = (Cf)noria-
(2) For every C € Irr X, the scheme (Cf)noriz 1S irreducible.

Proof. Let C' € Irr X. Then dim ¢(C) > 2 and thus
dim ¢(Cy) = dim ¢(C N ¢~ ({f = 0})) = dim ¢(C) N {f = 0} > dim $(C) — 1 > 1.

In particular, C; has an irreducible component C’ such that the codimension of ¢(C’) in
¢(C) is < 1. By hypothesis, the singular locus of Pg has codimension > 2 in ¢(C). Thus
#(C") is not contained in (Pr)*™8 and hence C” is horizontal.

Concerning the “moverover” part, = (2) is obvious. For (2) = (1), note that the map
is defined and surjective. By smoothness of X, the components of X do not intersect, so the

map is also injective. [
3




Lemma 2.5. Let X be a subscheme of Pr such that X is smooth and X N (Pg)sing is finite.
For f in a set of density 1, the singular locus (X )sing 1 finite.

Proof. In view of |3, Corollary 5.2|, the difficulty comes from the larger fields involved.
Splitting X into orbits under the action of the absolute Galois group of F,, we can follow the
proof of |1, Lemma 3.5] to obtain a covering of X N (IPg)*™ by finitely many open subschemes
U and global derivations Dy, ..., D,, : Oy(U) — Oy(U) such that

PeUN(Xp)™ = f(P)=Di(f)(P) == Du(f)(P) =0
Proceeding as in the proof of [3, Lemma 4.9], U N{D:(f) = --- = Dp(f)} is finite with
probability 1 — o(1) as k — oo. O

3. SURFACES

Proposition 3.1. Let X be a 2-dimensional closed integral subscheme of P such that X NPgine
is finite. For f in a set of density 1, there is a bijection Irr Xgp — Irr(Xy)r sending C to
CnNXy.

Proof. Since the natural map
H(P,Op(D + kE)) = H°(X,0p(D + kE)|x)

is surjective for sufficiently large k, densities may be calculated by counting elements X
in PHY(X,Op(D + kE)|x), which are Weil divisors on X for f in a set of density 1 by
Lemma The restriction of Xy to the complement of X N Pg,, is a Cartier divisor. Let

m: X — X be a resolution of singularities of X. Taking the pullback under m and taking
the closure gives a Cartier divisor on X.

Step 1. For f in as set of density 1, the divisor X} is irreducible.

Similar to [1, Proposition 4.1], one computes that for any positive constant kg, the number
of reducible X is at most

sz.E7@+O(k)

q 2 2 .
It remains to determine #H"(X, Op(D + kE)|x). Let C be an effective Cartier divisor on
X. Then there is an exact sequence of sheaves
0— Ox = Ox(C) = Oc(C) — 0.

In particular, by tensoring with the k-th tensor power of the invertible sheaf £ := Op(FE)|x,
for the Fuler characteristic x holds

X(Ox(C) ® L%*) = x(L¥*) + x(0c(C) & LF).

Since O¢(C) @ LZ* is supported on a codimension 1 subscheme of X, the leading terms of
the Hilbert polynomials x(Ox(C) @ L&) and x(L®*) coincide.

Pick now /¢ large enough such that Op(D +/(F) is globally generated. This allows to choose
a section g € H°(P, Op(D + (F)) which does not vanish on X. Further choose a positive
integer m such that mD is Cartier. Then there is a chain of injective maps

H(X,0p(kE)|x) — H*(X,0p(D + (k+ 0)E)|x) = --- = H*(X,0p(mD + (k + {m)E)|x)
induced by multiplication with g. As a consequence, Serre vanishing yields for k£ > 0

(L) < X(Op(D + LE)|x @ L) < X(Op(mD + tmE)|x @ L).
4



But Op(mD + ¢mE)|x is the sheaf of an effective Cartier divisor, so by the previous, the
leading terms of these three Hilbert polynomials agree. Thus

2
#HO(X, Op(D + kE)|x) = XE*H0®) = (555400 |50,

?

Choosing ky large enough, we obtain that the density of reducible X/ is 0.
Step 2. For f in a set of density 1, there is a bijection Irr Xy — Irr(Xy)p, C — C N X5.

Due to the assumption that X NPy, be finite, Lemma [2.2] and [2.4] can be applied to
show that the density of f for which the claim fails is 0 as in |1, Proposition 4.1]|. O

4. INDUCTION

Lemma 4.1. Let X C Py be a smooth irreducible subscheme of dimension m > 3. Suppose
that dim X N (Pg)*"& < m — 2. Then:
(1) There exists a hypersurface J C P defined over k such that
e JN X is irreducible,
e dimJNX =m—1,
o dimJN(X\X)<m-—2,
o dimJ N X N (Pg)se < m — 3.
(2) For any J as in , there is a density 1 set of f for which the implication

(J N X)y irreducible = X irreducible
holds.

Proof. (1) Pick a positive integer k and choose sections h; € H*(P,kE), i = 0,...,m, such
that dim V' (hg, ..., h,)NX =m—r—1forr=0,...,m—1and V(hg,...,hyn)NX = 0.
This is possible since kE has no base points for £ > 0. The sections hy, ..., h,, give rise
to a map

7: X PP P (ho(P) it hp(P)).
The fiber over (0 : --- : 0 : 1) is zero-dimensional, therefore 7 is a generically finite
dominant morphism. Define

Z :={P Py | codimg 7 *(P) = 1}
U{m(C) C Py [C € Irr(X \ X) UIrr(X N (Pg)¥°8), dim 7(C) = 0}.

Then Z is finite. By [4, Theorem 1.2, Proposition 2.7|, Lemma and |1, Lemma 5.2,
there is a positive density of homogeneous polynomials g € k[z, ..., z,,] such that

e {g =0} is geometrically integral,

e {g=0}NZ=10,

o 7(C) € {g =0} for any C € Irr(X \ X) UTIrr(X N (Pg)¥"8) with dim 7(C) > 1,

e X N7 !({g=0}) is irreducible of dimension m — 1.
Pick such a g and set J := g(hq, ..., h,) € H(P,kdegg- E). Then:

e JNX =Xn7r({g=0}),

e J contains no irreducible component of X \ X or X N (Pr)*"¢, whence

dimJN(X\X)<m—-2 and dimJNXN(Pp)™¢ <m—3.



(2) Similar to [1, Lemma 5.3], if (JNX) is irreducible and X is reducible, then X; = VUV,
for subschemes Vi, V5 such that V; € V5, Vo € Vi and dim Vi, dim Vo > m — 1. Moreover,
for i = 1,2, J NV, is nonempty of dimension > m — 2. For f in a set of density 1,
Lemma [2.1] implies that

dim J N (V;\ Vi) <dimJ N (X \ X)NX; <m - 3.
This implies that J NV is of dimension > m — 2. Using that (J N X); is irreducible, we
can assume w. 1. o. g. that JNV; C JN V5. As a consequence,
m—2<dimJNV;, <dimJNV;NV, <dimJ N (Xf)*"e.

Let U := X NP™. Clearly (X;)*"8 C (Uy)™8 U (X N (P)*"¢). By Lemmal2.5 (U;)*"¢ is
finite for f in a set of density 1, as U is smooth and does not meet (Py)*8. In particular,
for these f,

dim J N (X;)*¢ < max{dim J N (U;)*"¢, dim J N X N (Pg)*"¢}
< max{0,dim J N X N (Pg)¥"8}
<m - 3.
This leads to the contradiction
m —2 < dimJ N (X;)"¢ <m — 3.
Thus for f in a set of density 1, (J N X); irreducible implies X irreducible. O

Proposition 4.2. Let X be an wrreducible subscheme of P of dimension m > 2 such that
dim X NPgne < m — 2. For f in a set of density 1, there is a bijection Irr Xp — Irr(Xy)p
sending C' to Cy.

Proof. We may assume that X is reduced. For surfaces note that X NP is finite, thus the
assertion for X follows from Proposition [3.1 Now Lemma allows to proceed to X.

For m > 3, we can assume that X is smooth by Lemmal[2.3] Pick an irreducible component
C € Irr Xg. Then C is a smooth irreducible subscheme of Pp of dimension m > 3 and

dim C N (Pp)*™8 < dim X NP¥"¢ < m — 2.

Lemma [4.1| applied to C' produces a hypersurface J C P defined over k such that JNC' is

irreducible of dimension m — 1 and
dim J N C N (Pg)*"8 < m — 3.

Using the map C' — Xy — X, this means that J N X is irreducible of dimension m — 1 as
well and

dim J N X N (Pg)¥"8 < m — 3.
Performing induction on JNX shows that for f in a set of density 1, (JNC)y is irreducible

for any C' € Irr X. For a possibly smaller set of density 1, this implies that C/ is irreducible
by part [2] of Lemma [£.1, Moreover every Cy is horizontal, since dim Cy > m — 1, whereas

dim Cf N (IP)F)sing S dlmy N (IP)F)sing S m — 2.
Finally Lemma yields a bijection

Irr X5 = Ithoriz (X p)r — Irr(Xp)p,  C— Cf. O
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5. FINISHING THE PROOF

Lemma 5.1. Let X and Y be irreducible finite type F-schemes. Suppose that X Y AN Pr
are morphisms such that w is finite and étale, 1 has relative dimension s at each point and
dim(Y') > 2. Then for f in a set of density 1, the implication

Yy dirreducible = Xy irreducible

holds.
Proof. Following the proof of |1, Lemma 5.1], we only need to adjust the density estimate

for f such that V' (f) misses at least (¢’ +o(1))r™¢/e points of 1(Y) with residue field of size
at most r¢, for fixed ¢ > 0, e,m,r € N, m > 2. As in the proof of Lemma [2.2] this density
either equals zero or is bounded from above by

(1 . T—e)(c’-l—o(l))rme/e‘
As e — oo, this quantity goes to zero due to m > 2. 0

Lemma 5.2. Let X andY be irreducible finite type F-schemes with morphisms X =Y N Pr

such that 7 is dominant, dimy(Y) > 2 and dim(Y) N (Pg)*"¢ < dim(Y) — 2. Then for
f in a set of density 1, the implication

(Y¢)horiz irreducible = (X f)noriz irreducible
holds.

Proof. As in [1, Lemma 5.2]. O
Proposition 5.3. Let X be a F,-scheme of finite type. Let ¢ : X — P be a morphism such

that dim ¢(C') > 2 and dim ¢(C) N (Pr)sing < dim ¢(C) — 2 for each C € Irr X. Then for f

in a set of density 1, there is a bijection Irr Xp — Itthon, (X 7)r sending C to (Cf)noriz-

Proof. By Lemma we may again assume that X is reduced and smooth, so its irre-
ducible components are disjoint. Without loss of generality, we can thus further suppose
that X is irreducible. Let C' € Irr Xg, then ¢(C) is an irreducible component of ¢(X),. By
Proposition , mf is irreducible for f in a set of density 1. Applying Lemma to
C — M — Pr shows that (Cf)neris is irreducible. Together with Lemma this implies
the existence of a bijection Irr Xp — Irryen, (X 7)r sending C' to (Cf)noriz- O

Proof of Theorem 1.1l The proof is as in |1, Theorem 1.6], adjusting the notion of horizontal
components. 0
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