
A NOTE ON BERTINI IRREDUCIBILITY THEOREMS FOR

SIMPLICIAL TORIC VARIETIES OVER FINITE FIELDS

NIELS LINDNER

Abstract. This short note deals with extending the Bertini irreduciblity theorems ob-
tained by Charles and Poonen in [1] to simplicial toric varieties.

1. Goal

Consider a �nite �eld Fq and �x an algebraic closure F. Let P be a projective normal
simplicial toric variety over Fq with singular locus Psing. Fix a Weil divisor D and an ample
Cartier divisor E on P.
We follow the notation in [1]: Let X be a scheme of �nite type over F, Y ⊆ X a subscheme.

Let further φ : X → PF be an F-morphism.

• Y is called horizontal if dimφ(Y ) ≥ 1 and φ(Y ) is not contained in (PF)sing,
• IrrY denotes the set of irreducible components of Y ,
• Irrhoriz Y is the set of all horizontal irreducible components of Y ,
• Yhoriz denotes the union of all horizontal irreducible components of Y .

For sections f ∈ H0(P,OP(D + kE)), where k is an integer, de�ne Xf := φ−1(V (f)).

Theorem 1.1. Suppose that φ : X → PF is an F-morphism such that dimφ(C) ≥ 2 and

dimφ(C) ∩ (PF)sing ≤ dimφ(C)− 2 for each C ∈ IrrX. Then

lim
k→∞

#{f ∈ H0(P,OP(D + kE)) | IrrX → IrrhorizXf , C 7→ (C ∩Xf )horiz is a bijection}
#H0(P,OP(D + kE))

= 1.

Remarks.

(1) Suppose that D = 0 and E is a very ample Cartier divisor de�ning a closed immersion
i : P ↪→ Pn. This gives a linear map

i∗ : H0(Pn,OPn(k))→ H0(P,OP(kE)),

which is surjective for k � 0. In particular, Theorem 1.1 is obtained from [1, Theo-
rem 1.6], as V (i∗(g)) = i−1(V (g)) for g ∈ H0(Pn,OPn(k)). Moreover, this holds for any
projective variety P over Fq, and the conditions on (PF)sing may be dropped as well.

(2) The codimension two condition on the intersection with the singular locus is necessary
if D is not trivial. For example, consider P = P(1, 2, 3, 6) with coordinates x0, x1, x2, x3.
Let X := V (x0) ⊆ PF and φ : X ↪→ PF be the inclusion. X is an irreducible surface in
PF and

X ∩ (PF)sing = V (x0, x1) ∪ V (x0, x2)
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is one-dimensional. For k ≥ 1, let f be a weighted homogeneous polynomial of degree
6k + 1. One �nds that f can be written as

f = x21x2

k−1∑
i=0

k−1−i∑
j=0

cijx
3i
1 x

2j
2 x

k−i−j−1
3 + terms divisible by x0, cij ∈ Fq.

Thus if X ∩ V (f) is irreducible, then f lies in a subspace of H0(P,OP(6k + 1)) of
codimension

k−1∑
i=0

(k − 1− i) = k(k − 1)

2
.

As a consequence, the fraction of f ∈ H0(P,OP(6k+1)) such that X∩V (f) is irreducible
is at most q−k(k−1)/2. In particular, the density of f for which the map IrrX → IrrXf is
a bijection is bounded from above by limk→∞ q

−k(k−1)/2 = 0.
(3) Let X and φ satisfy the hypotheses of Theorem 1.1 and assume that φ is an immersion. If

D ∈ IrrX and C ⊆ D is irreducible with codimD(C) ≤ 1, then φ(C) is not contained in

(PF)sing: Indeed, the singular locus of PF has codimension at least two in φ(D), whereas

φ(C) has codimension at most one. Therefore, the subscript �horiz� may be omitted and
one obtains:

Corollary 1.2. Let X be a geometrically irreducible subscheme of a projective normal sim-
plicial toric variety P over Fq. If dimX ≥ 2 and dimX ∩ Psing ≤ dimX − 2, then

lim
k→∞

#{f ∈ H0(P,OP(D + kE)) | X ∩ V (f) is geometrically irreducible}
#H0(P,OP(D + kE))

= 1.

In particular, this holds for X = P.

The proof of Theorem 1.1 follows the outline of [1], some proofs being almost literally the
same. However, the presence of singularities in P rises some technical di�culties.

2. Lemmas

From now on, a statement S(f), where f ∈ H0(X,OX(D+ kE)) for some positive integer
k, is said to hold for f in a set of density 1 if

lim
k→∞

#{f ∈ H0(P,OP(D + kE)) | S(f) is true}
#H0(P,OP(D + kE))

= 1.

Lemma 2.1. Let X be either

• a subscheme of P over Fq such that dimX \ (X ∩ Psing) ≥ 1, or
• a subscheme of PF over F such that dimX \ (X ∩ (PF)sing) ≥ 1.

Then for f in a set of density 1, f does not vanish on X.

Proof. Replacing X by its image under the natural map PF → PFq , assume that X is de�ned
over Fq. Now the assertion follows as in the proof of [3, Lemma 4.5 (2)]. �

Lemma 2.2. Let X ⊆ P (or PF) be a subscheme over Fq (or F) such that dimX ≥ 1. Then
for f in a set of density 1, X ∩ V (f) 6= ∅.
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Proof. Assume again that X is de�ned over Fq. Fix a positive integer r and denote by X<r

the set of closed points of X whose degree is smaller than r. As in [3, Lemma 4.1], the
density of sections f such that V (f) ∩X<r is empty equals∏

P∈X<r

(
1− q−νP (D)

)
,

where νP (D) := dimFq H
0(XP ,OX(D)|XP

) and XP is the subscheme of X corresponding to
the maximal ideal mP . If νP (D) = 0 for some point P ∈ X<r, then the above product equals
zero. Otherwise choose a positive integer m such that mD is Cartier. This is possible since
P is simplicial and hence Q-factorial (see e. g. [2, Proposition 4.2.7]). Using that the sheaf
OX(mD)|XP

is invertible and hence locally isomorphic to OXP
, there is an injective map

H0(XP ,OX(D)|XP
)→ H0(XP ,OX(mD)|XP

) ∼= H0(XP ,OXP
), g 7→ gm,

thus 0 < νP (D) ≤ degP . As degP necessarily divides νP (D), this implies νP (D) = degP .
In particular, the density of f such that V (f) ∩X<r is empty equals∏

P∈X<r

(
1− q−degP

)
=

1

ζX<r(1)
.

This diverges to 0 as r →∞, since dimX ≥ 1. �

Lemma 2.3. Let X be an F-scheme of �nite type, φ : X → PF an F-morphism such that
dimφ(C) ≥ 2 for all C ∈ IrrX. Let U be a dense open subscheme of X. Then for f in a
set of density 1, there is a bijection

IrrhorizXf → Irrhoriz Uf , C 7→ C ∩ U.

Proof. If every C ∈ IrrhorizXf meets U , the above map is clearly bijective with its inverse
given by taking the closure in Xf .
There is nothing to show if Irrhoriz(X \ U) = ∅. Otherwise, let C ∈ Irrhoriz(X \ U). Since

φ(C) is of dimension ≥ 1 and is not contained in (PF)
sing, Lemma 2.1 states that the set of f

vanishing on φ(C) has density 0. Excluding these f , every C ∈ IrrhorizXf meets U , because

otherwise C ∈ Irrhoriz(X \ U) and f(φ(C)) = 0. �

Lemma 2.4. Let X and φ be as in Theorem 1.1 and suppose further that X is smooth. Let
f ∈ H0(P,OP(D+ kE)) \ {0} for some d ≥ 0. Then Cf contains a horizontal component for
any C ∈ IrrX. Moreover, the following are equivalent:

(1) There is a bijection IrrX → IrrhorizXf , C 7→ (Cf )horiz.
(2) For every C ∈ IrrX, the scheme (Cf )horiz is irreducible.

Proof. Let C ∈ IrrX. Then dimφ(C) ≥ 2 and thus

dimφ(Cf ) = dimφ(C ∩ φ−1({f = 0})) = dimφ(C) ∩ {f = 0} ≥ dimφ(C)− 1 ≥ 1.

In particular, Cf has an irreducible component C ′ such that the codimension of φ(C ′) in

φ(C) is ≤ 1. By hypothesis, the singular locus of PF has codimension ≥ 2 in φ(C). Thus

φ(C ′) is not contained in (PF)
sing and hence C ′ is horizontal.

Concerning the �moverover� part, (1) ⇒ (2) is obvious. For (2) ⇒ (1), note that the map
is de�ned and surjective. By smoothness of X, the components of X do not intersect, so the
map is also injective. �
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Lemma 2.5. Let X be a subscheme of PF such that X is smooth and X ∩ (PF)sing is �nite.
For f in a set of density 1, the singular locus (Xf )sing is �nite.

Proof. In view of [3, Corollary 5.2], the di�culty comes from the larger �elds involved.
Splitting X into orbits under the action of the absolute Galois group of Fq, we can follow the
proof of [1, Lemma 3.5] to obtain a covering of X ∩ (PF)

sm by �nitely many open subschemes
U and global derivations D1, . . . , Dm : OU(U)→ OU(U) such that

P ∈ U ∩ (Xf )
sing ⇒ f(P ) = D1(f)(P ) = · · · = Dm(f)(P ) = 0.

Proceeding as in the proof of [3, Lemma 4.9], U ∩ {D1(f) = · · · = Dm(f)} is �nite with
probability 1− o(1) as k →∞. �

3. Surfaces

Proposition 3.1. Let X be a 2-dimensional closed integral subscheme of P such that X∩Psing

is �nite. For f in a set of density 1, there is a bijection IrrXF → Irr(Xf )F sending C to
C ∩Xf .

Proof. Since the natural map

H0(P,OP(D + kE))→ H0(X,OP(D + kE)|X)
is surjective for su�ciently large k, densities may be calculated by counting elements Xf

in PH0(X,OP(D + kE)|X), which are Weil divisors on X for f in a set of density 1 by
Lemma 2.1. The restriction of Xf to the complement of X ∩ Psing is a Cartier divisor. Let

π : X̃ → X be a resolution of singularities of X. Taking the pullback under π and taking
the closure gives a Cartier divisor on X̃.

Step 1. For f in as set of density 1, the divisor Xf is irreducible.

Similar to [1, Proposition 4.1], one computes that for any positive constant k0, the number
of reducible Xf is at most

q
k2E.E

2
− k0k

2
+O(k).

It remains to determine #H0(X,OP(D+ kE)|X). Let C be an e�ective Cartier divisor on
X. Then there is an exact sequence of sheaves

0→ OX → OX(C)→ OC(C)→ 0.

In particular, by tensoring with the k-th tensor power of the invertible sheaf L := OP(E)|X ,
for the Euler characteristic χ holds

χ(OX(C)⊗ L⊗k) = χ(L⊗k) + χ(OC(C)⊗ L⊗k).
Since OC(C) ⊗ L⊗k is supported on a codimension 1 subscheme of X, the leading terms of
the Hilbert polynomials χ(OX(C)⊗ L⊗k) and χ(L⊗k) coincide.
Pick now ` large enough such that OP(D+`E) is globally generated. This allows to choose

a section g ∈ H0(P,OP(D + `E)) which does not vanish on X. Further choose a positive
integer m such that mD is Cartier. Then there is a chain of injective maps

H0(X,OP(kE)|X)→ H0(X,OP(D + (k + `)E)|X)→ · · · → H0(X,OP(mD + (k + `m)E)|X)
induced by multiplication with g. As a consequence, Serre vanishing yields for k � 0

χ(L⊗k) ≤ χ(OP(D + `E)|X ⊗ L⊗k) ≤ χ(OP(mD + `mE)|X ⊗ L⊗k).
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But OP(mD + `mE)|X is the sheaf of an e�ective Cartier divisor, so by the previous, the
leading terms of these three Hilbert polynomials agree. Thus

#H0(X,OP(D + kE)|X) = qχ(L
⊗k)+O(k) = q

k2E.E
2

+O(k), k � 0.

Choosing k0 large enough, we obtain that the density of reducible Xf is 0.

Step 2. For f in a set of density 1, there is a bijection IrrXF → Irr(Xf )F, C 7→ C ∩Xf .

Due to the assumption that X ∩Psing be �nite, Lemma 2.2, 2.3 and 2.4 can be applied to
show that the density of f for which the claim fails is 0 as in [1, Proposition 4.1]. �

4. Induction

Lemma 4.1. Let X ⊆ PF be a smooth irreducible subscheme of dimension m ≥ 3. Suppose
that dimX ∩ (PF)

sing ≤ m− 2. Then:

(1) There exists a hypersurface J ⊆ P de�ned over k such that
• J ∩X is irreducible,
• dim J ∩X = m− 1,
• dim J ∩ (X \X) ≤ m− 2,
• dim J ∩X ∩ (PF)

sing ≤ m− 3.
(2) For any J as in (1), there is a density 1 set of f for which the implication

(J ∩X)f irreducible ⇒ Xf irreducible

holds.

Proof. (1) Pick a positive integer k and choose sections hi ∈ H0(P, kE), i = 0, . . . ,m, such
that dimV (h0, . . . , hr)∩X = m− r− 1 for r = 0, . . . ,m− 1 and V (h0, . . . , hm)∩X = ∅.
This is possible since kE has no base points for k � 0. The sections h0, . . . , hm give rise
to a map

π : X → PmF , P 7→ (h0(P ) : · · · : hm(P )).
The �ber over (0 : · · · : 0 : 1) is zero-dimensional, therefore π is a generically �nite
dominant morphism. De�ne

Z := {P ∈ PmFq
| codimX π

−1(P ) = 1}
∪ {π(C) ⊆ PmFq

| C ∈ Irr(X \X) ∪ Irr(X ∩ (PF)
sing), dimπ(C) = 0}.

Then Z is �nite. By [4, Theorem 1.2, Proposition 2.7], Lemma 2.1 and [1, Lemma 5.2],
there is a positive density of homogeneous polynomials g ∈ k[x1, . . . , xm] such that
• {g = 0} is geometrically integral,
• {g = 0} ∩ Z = ∅,
• π(C) 6⊆ {g = 0} for any C ∈ Irr(X \X) ∪ Irr(X ∩ (PF)

sing) with dimπ(C) ≥ 1,
• X ∩ π−1({g = 0}) is irreducible of dimension m− 1.

Pick such a g and set J := g(h0, . . . , hm) ∈ H0(P, k deg g · E). Then:
• J ∩X = X ∩ π−1({g = 0}),
• J contains no irreducible component of X \X or X ∩ (PF)

sing, whence

dim J ∩ (X \X) ≤ m− 2 and dim J ∩X ∩ (PF)
sing ≤ m− 3.
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(2) Similar to [1, Lemma 5.3], if (J∩X)f is irreducible and Xf is reducible, then Xf = V1∪V2
for subschemes V1, V2 such that V1 6⊆ V2, V2 6⊆ V1 and dimV1, dimV2 ≥ m− 1. Moreover,
for i = 1, 2, J ∩ Vi is nonempty of dimension ≥ m − 2. For f in a set of density 1,
Lemma 2.1 implies that

dim J ∩ (V i \ Vi) ≤ dim J ∩ (X \X) ∩Xf ≤ m− 3.

This implies that J ∩ Vi is of dimension ≥ m− 2. Using that (J ∩X)f is irreducible, we
can assume w. l. o. g. that J ∩ V1 ⊆ J ∩ V2. As a consequence,

m− 2 ≤ dim J ∩ V1 ≤ dim J ∩ V1 ∩ V2 ≤ dim J ∩ (Xf )
sing.

Let U := X ∩Psm. Clearly (Xf )
sing ⊆ (Uf )

sing∪ (X ∩ (PF)
sing). By Lemma 2.5, (Uf )

sing is
�nite for f in a set of density 1, as U is smooth and does not meet (PF)

sing. In particular,
for these f ,

dim J ∩ (Xf )
sing ≤ max{dim J ∩ (Uf )

sing, dim J ∩X ∩ (PF)
sing}

≤ max{0, dim J ∩X ∩ (PF)
sing}

≤ m− 3.

This leads to the contradiction

m− 2 ≤ dim J ∩ (Xf )
sing ≤ m− 3.

Thus for f in a set of density 1, (J ∩X)f irreducible implies Xf irreducible. �

Proposition 4.2. Let X be an irreducible subscheme of P of dimension m ≥ 2 such that
dimX ∩ Psing ≤ m − 2. For f in a set of density 1, there is a bijection IrrXF → Irr(Xf )F
sending C to Cf .

Proof. We may assume that X is reduced. For surfaces note that X ∩Psing is �nite, thus the
assertion for X follows from Proposition 3.1. Now Lemma 2.3 allows to proceed to X.
Form ≥ 3, we can assume thatX is smooth by Lemma 2.3. Pick an irreducible component

C ∈ IrrXF. Then C is a smooth irreducible subscheme of PF of dimension m ≥ 3 and

dimC ∩ (PF)
sing ≤ dimX ∩ Psing ≤ m− 2.

Lemma 4.1 applied to C produces a hypersurface J ⊆ P de�ned over k such that J ∩C is
irreducible of dimension m− 1 and

dim J ∩ C ∩ (PF)
sing ≤ m− 3.

Using the map C ↪→ XF → X, this means that J ∩X is irreducible of dimension m − 1 as
well and

dim J ∩X ∩ (PF)
sing ≤ m− 3.

Performing induction on J∩X shows that for f in a set of density 1, (J∩C)f is irreducible
for any C ∈ IrrXF. For a possibly smaller set of density 1, this implies that Cf is irreducible
by part 2 of Lemma 4.1. Moreover every Cf is horizontal, since dimCf ≥ m− 1, whereas

dimCf ∩ (PF)sing ≤ dimX ∩ (PF)sing ≤ m− 2.

Finally Lemma 2.4 yields a bijection

IrrXF
∼−→ Irrhoriz(Xf )F

∼−→ Irr(Xf )F, C 7→ Cf . �
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5. Finishing the proof

Lemma 5.1. Let X and Y be irreducible �nite type F-schemes. Suppose that X
π−→ Y

ψ−→ PF
are morphisms such that π is �nite and étale, ψ has relative dimension s at each point and
dimψ(Y ) ≥ 2. Then for f in a set of density 1, the implication

Yf irreducible ⇒ Xf irreducible

holds.

Proof. Following the proof of [1, Lemma 5.1], we only need to adjust the density estimate

for f such that V (f) misses at least (c′+ o(1))rme/e points of ψ(Y ) with residue �eld of size
at most re, for �xed c′ > 0, e,m, r ∈ N, m ≥ 2. As in the proof of Lemma 2.2, this density
either equals zero or is bounded from above by

(1− r−e)(c′+o(1))rme/e.

As e→∞, this quantity goes to zero due to m ≥ 2. �

Lemma 5.2. Let X and Y be irreducible �nite type F-schemes with morphisms X
π−→ Y

ψ−→ PF
such that π is dominant, dimψ(Y ) ≥ 2 and dimψ(Y ) ∩ (PF)

sing ≤ dimψ(Y ) − 2. Then for
f in a set of density 1, the implication

(Yf )horiz irreducible ⇒ (Xf )horiz irreducible

holds.

Proof. As in [1, Lemma 5.2]. �

Proposition 5.3. Let X be a Fq-scheme of �nite type. Let φ : X → P be a morphism such

that dimφ(C) ≥ 2 and dimφ(C) ∩ (PF)sing ≤ dimφ(C)− 2 for each C ∈ IrrX. Then for f
in a set of density 1, there is a bijection IrrXF → Irrhoriz(Xf )F sending C to (Cf )horiz.

Proof. By Lemma 2.3, we may again assume that X is reduced and smooth, so its irre-
ducible components are disjoint. Without loss of generality, we can thus further suppose
that X is irreducible. Let C ∈ IrrXF, then φ(C) is an irreducible component of φ(X)F. By

Proposition 4.2, φ(C)f is irreducible for f in a set of density 1. Applying Lemma 5.2 to

C → φ(C) ↪→ PF shows that (Cf )horiz is irreducible. Together with Lemma 2.4, this implies
the existence of a bijection IrrXF → Irrhoriz(Xf )F sending C to (Cf )horiz. �

Proof of Theorem 1.1. The proof is as in [1, Theorem 1.6], adjusting the notion of horizontal
components. �
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