A NOTE ON BERTINI IRREDUCIBILITY THEOREMS FOR SIMPLICIAL TORIC VARIETIES OVER FINITE FIELDS

NIELS LINDNER

ABSTRACT. This short note deals with extending the Bertini irreduciblity theorems obtained by Charles and Poonen in [1] to simplicial toric varieties.

1. Goal

Consider a finite field \mathbb{F}_q and fix an algebraic closure \mathbb{F} . Let \mathbb{P} be a projective normal simplicial toric variety over \mathbb{F}_q with singular locus \mathbb{P}_{sing} . Fix a Weil divisor D and an ample Cartier divisor E on \mathbb{P} .

We follow the notation in [1]: Let X be a scheme of finite type over $\mathbb{F}, Y \subseteq X$ a subscheme. Let further $\phi : X \to \mathbb{P}_{\mathbb{F}}$ be an \mathbb{F} -morphism.

- Y is called *horizontal* if dim $\overline{\phi(Y)} \ge 1$ and $\overline{\phi(Y)}$ is not contained in $(\mathbb{P}_{\mathbb{F}})_{\text{sing}}$,
- Irr Y denotes the set of irreducible components of Y,
- $\operatorname{Irr}_{\operatorname{horiz}} Y$ is the set of all horizontal irreducible components of Y,
- Y_{horiz} denotes the union of all horizontal irreducible components of Y.

For sections $f \in H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+kE))$, where k is an integer, define $X_f := \phi^{-1}(V(f))$.

Theorem 1.1. Suppose that $\phi : X \to \mathbb{P}_{\mathbb{F}}$ is an \mathbb{F} -morphism such that $\dim \overline{\phi(C)} \geq 2$ and $\dim \overline{\phi(C)} \cap (\mathbb{P}_{\mathbb{F}})_{\text{sing}} \leq \dim \overline{\phi(C)} - 2$ for each $C \in \operatorname{Irr} X$. Then

$$\lim_{k \to \infty} \frac{\#\{f \in H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+kE)) \mid \operatorname{Irr} X \to \operatorname{Irr}_{\operatorname{horiz}} X_f, C \mapsto (C \cap X_f)_{\operatorname{horiz}} \text{ is a bijection}\}}{\#H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+kE))} = 1.$$

Remarks.

(1) Suppose that D = 0 and E is a very ample Cartier divisor defining a closed immersion $i: \mathbb{P} \hookrightarrow \mathbb{P}^n$. This gives a linear map

$$i^*: H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k)) \to H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(kE)),$$

which is surjective for $k \gg 0$. In particular, Theorem 1.1 is obtained from [1, Theorem 1.6], as $V(i^*(g)) = i^{-1}(V(g))$ for $g \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k))$. Moreover, this holds for any projective variety \mathbb{P} over \mathbb{F}_q , and the conditions on $(\mathbb{P}_{\mathbb{F}})_{\text{sing}}$ may be dropped as well.

(2) The codimension two condition on the intersection with the singular locus is necessary if D is not trivial. For example, consider $\mathbb{P} = \mathbb{P}(1, 2, 3, 6)$ with coordinates x_0, x_1, x_2, x_3 . Let $X := V(x_0) \subseteq \mathbb{P}_{\mathbb{F}}$ and $\phi : X \hookrightarrow \mathbb{P}_{\mathbb{F}}$ be the inclusion. X is an irreducible surface in $\mathbb{P}_{\mathbb{F}}$ and

$$X \cap (\mathbb{P}_{\mathbb{F}})_{\text{sing}} = V(x_0, x_1) \cup V(x_0, x_2)$$

Date: October 13, 2016.

E-mail: lindnern@math.hu-berlin.de.

is one-dimensional. For $k \ge 1$, let f be a weighted homogeneous polynomial of degree 6k + 1. One finds that f can be written as

$$f = x_1^2 x_2 \sum_{i=0}^{k-1} \sum_{j=0}^{k-1-i} c_{ij} x_1^{3i} x_2^{2j} x_3^{k-i-j-1} + \text{ terms divisible by } x_0, \quad c_{ij} \in \mathbb{F}_q.$$

Thus if $X \cap V(f)$ is irreducible, then f lies in a subspace of $H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6k+1))$ of codimension

$$\sum_{i=0}^{k-1} (k-1-i) = \frac{k(k-1)}{2}.$$

As a consequence, the fraction of $f \in H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6k+1))$ such that $X \cap V(f)$ is irreducible is at most $q^{-k(k-1)/2}$. In particular, the density of f for which the map $\operatorname{Irr} X \to \operatorname{Irr} X_f$ is a bijection is bounded from above by $\lim_{k\to\infty} q^{-k(k-1)/2} = 0$.

(3) Let X and ϕ satisfy the hypotheses of Theorem 1.1 and assume that ϕ is an immersion. If $D \in \operatorname{Irr} X$ and $C \subseteq D$ is irreducible with $\operatorname{codim}_D(C) \leq 1$, then $\overline{\phi(C)}$ is not contained in $(\mathbb{P}_{\mathbb{F}})_{\operatorname{sing}}$: Indeed, the singular locus of $\mathbb{P}_{\mathbb{F}}$ has codimension at least two in $\overline{\phi(D)}$, whereas $\overline{\phi(C)}$ has codimension at most one. Therefore, the subscript "horiz" may be omitted and one obtains:

Corollary 1.2. Let X be a geometrically irreducible subscheme of a projective normal simplicial toric variety \mathbb{P} over \mathbb{F}_q . If dim $X \ge 2$ and dim $\overline{X} \cap \mathbb{P}_{sing} \le \dim X - 2$, then

$$\lim_{k \to \infty} \frac{\#\{f \in H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+kE)) \mid X \cap V(f) \text{ is geometrically irreducible}\}}{\#H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+kE))} = 1.$$

In particular, this holds for $X = \mathbb{P}$.

The proof of Theorem 1.1 follows the outline of [1], some proofs being almost literally the same. However, the presence of singularities in \mathbb{P} rises some technical difficulties.

2. Lemmas

From now on, a statement S(f), where $f \in H^0(X, \mathcal{O}_X(D+kE))$ for some positive integer k, is said to hold for f in a set of density 1 if

$$\lim_{k \to \infty} \frac{\#\{f \in H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+kE)) \mid S(f) \text{ is true}\}}{\#H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+kE))} = 1.$$

Lemma 2.1. Let X be either

- a subscheme of \mathbb{P} over \mathbb{F}_q such that $\dim X \setminus (X \cap \mathbb{P}_{sing}) \ge 1$, or
- a subscheme of $\mathbb{P}_{\mathbb{F}}$ over \mathbb{F} such that $\dim X \setminus (X \cap (\mathbb{P}_{\mathbb{F}})_{sing}) \ge 1$.

Then for f in a set of density 1, f does not vanish on X.

Proof. Replacing X by its image under the natural map $\mathbb{P}_{\mathbb{F}} \to \mathbb{P}_{\mathbb{F}_q}$, assume that X is defined over \mathbb{F}_q . Now the assertion follows as in the proof of [3, Lemma 4.5 (2)].

Lemma 2.2. Let $X \subseteq \mathbb{P}$ (or $\mathbb{P}_{\mathbb{F}}$) be a subscheme over \mathbb{F}_q (or \mathbb{F}) such that dim $X \ge 1$. Then for f in a set of density 1, $X \cap V(f) \neq \emptyset$.

Proof. Assume again that X is defined over \mathbb{F}_q . Fix a positive integer r and denote by $X_{< r}$ the set of closed points of X whose degree is smaller than r. As in [3, Lemma 4.1], the density of sections f such that $V(f) \cap X_{< r}$ is empty equals

$$\prod_{P \in X_{< r}} \left(1 - q^{-\nu_P(D)} \right),$$

where $\nu_P(D) := \dim_{\mathbb{F}_q} H^0(X_P, \mathcal{O}_X(D)|_{X_P})$ and X_P is the subscheme of X corresponding to the maximal ideal \mathfrak{m}_P . If $\nu_P(D) = 0$ for some point $P \in X_{< r}$, then the above product equals zero. Otherwise choose a positive integer m such that mD is Cartier. This is possible since \mathbb{P} is simplicial and hence \mathbb{Q} -factorial (see e. g. [2, Proposition 4.2.7]). Using that the sheaf $\mathcal{O}_X(mD)|_{X_P}$ is invertible and hence locally isomorphic to \mathcal{O}_{X_P} , there is an injective map

$$H^{0}(X_{P}, \mathcal{O}_{X}(D)|_{X_{P}}) \to H^{0}(X_{P}, \mathcal{O}_{X}(mD)|_{X_{P}}) \cong H^{0}(X_{P}, \mathcal{O}_{X_{P}}), \quad g \mapsto g^{m},$$

thus $0 < \nu_P(D) \leq \deg P$. As $\deg P$ necessarily divides $\nu_P(D)$, this implies $\nu_P(D) = \deg P$. In particular, the density of f such that $V(f) \cap X_{< r}$ is empty equals

$$\prod_{P \in X_{< r}} \left(1 - q^{-\deg P} \right) = \frac{1}{\zeta_{X_{< r}}(1)}$$

This diverges to 0 as $r \to \infty$, since dim $X \ge 1$.

Lemma 2.3. Let X be an \mathbb{F} -scheme of finite type, $\phi : X \to \mathbb{P}_{\mathbb{F}}$ an \mathbb{F} -morphism such that $\dim \overline{\phi(C)} \geq 2$ for all $C \in \operatorname{Irr} X$. Let U be a dense open subscheme of X. Then for f in a set of density 1, there is a bijection

$$\operatorname{Irr}_{\operatorname{horiz}} X_f \to \operatorname{Irr}_{\operatorname{horiz}} U_f, \quad C \mapsto C \cap U.$$

Proof. If every $C \in \operatorname{Irr}_{\operatorname{horiz}} X_f$ meets U, the above map is clearly bijective with its inverse given by taking the closure in X_f .

There is nothing to show if $\operatorname{Irr}_{\operatorname{horiz}}(X \setminus U) = \emptyset$. Otherwise, let $C \in \operatorname{Irr}_{\operatorname{horiz}}(X \setminus U)$. Since $\overline{\phi(C)}$ is of dimension ≥ 1 and is not contained in $(\mathbb{P}_{\mathbb{F}})^{\operatorname{sing}}$, Lemma 2.1 states that the set of f vanishing on $\overline{\phi(C)}$ has density 0. Excluding these f, every $C \in \operatorname{Irr}_{\operatorname{horiz}} X_f$ meets U, because otherwise $C \in \operatorname{Irr}_{\operatorname{horiz}}(X \setminus U)$ and $f(\overline{\phi(C)}) = 0$.

Lemma 2.4. Let X and ϕ be as in Theorem 1.1 and suppose further that X is smooth. Let $f \in H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+kE)) \setminus \{0\}$ for some $d \geq 0$. Then C_f contains a horizontal component for any $C \in \operatorname{Irr} X$. Moreover, the following are equivalent:

(1) There is a bijection $\operatorname{Irr} X \to \operatorname{Irr}_{\operatorname{horiz}} X_f, C \mapsto (C_f)_{\operatorname{horiz}}.$

(2) For every $C \in \operatorname{Irr} X$, the scheme $(C_f)_{\text{horiz}}$ is irreducible.

Proof. Let $C \in \operatorname{Irr} X$. Then $\dim \overline{\phi(C)} \ge 2$ and thus

$$\dim \overline{\phi(C_f)} = \dim \overline{\phi(C \cap \phi^{-1}(\{f = 0\}))} = \dim \overline{\phi(C) \cap \{f = 0\}} \ge \dim \overline{\phi(C)} - 1 \ge 1.$$

In particular, C_f has an irreducible component C' such that the codimension of $\overline{\phi(C')}$ in $\overline{\phi(C)}$ is ≤ 1 . By hypothesis, the singular locus of $\mathbb{P}_{\mathbb{F}}$ has codimension ≥ 2 in $\overline{\phi(C)}$. Thus $\overline{\phi(C')}$ is not contained in $(\mathbb{P}_{\mathbb{F}})^{\text{sing}}$ and hence C' is horizontal.

Concerning the "moverover" part, $(1) \Rightarrow (2)$ is obvious. For $(2) \Rightarrow (1)$, note that the map is defined and surjective. By smoothness of X, the components of X do not intersect, so the map is also injective.

Lemma 2.5. Let X be a subscheme of $\mathbb{P}_{\mathbb{F}}$ such that X is smooth and $X \cap (\mathbb{P}_{\mathbb{F}})_{\text{sing}}$ is finite. For f in a set of density 1, the singular locus $(X_f)_{\text{sing}}$ is finite.

Proof. In view of [3, Corollary 5.2], the difficulty comes from the larger fields involved. Splitting X into orbits under the action of the absolute Galois group of \mathbb{F}_q , we can follow the proof of [1, Lemma 3.5] to obtain a covering of $X \cap (\mathbb{P}_{\mathbb{F}})^{\mathrm{sm}}$ by finitely many open subschemes U and global derivations $D_1, \ldots, D_m : \mathcal{O}_U(U) \to \mathcal{O}_U(U)$ such that

$$P \in U \cap (X_f)^{\operatorname{sing}} \Rightarrow f(P) = D_1(f)(P) = \dots = D_m(f)(P) = 0.$$

Proceeding as in the proof of [3, Lemma 4.9], $U \cap \{D_1(f) = \cdots = D_m(f)\}$ is finite with probability 1 - o(1) as $k \to \infty$.

3. Surfaces

Proposition 3.1. Let X be a 2-dimensional closed integral subscheme of \mathbb{P} such that $X \cap \mathbb{P}_{sing}$ is finite. For f in a set of density 1, there is a bijection $\operatorname{Irr} X_{\mathbb{F}} \to \operatorname{Irr}(X_f)_{\mathbb{F}}$ sending C to $C \cap X_f$.

Proof. Since the natural map

$$H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+kE)) \to H^0(X, \mathcal{O}_{\mathbb{P}}(D+kE)|_X)$$

is surjective for sufficiently large k, densities may be calculated by counting elements X_f in $\mathbb{P}H^0(X, \mathcal{O}_{\mathbb{P}}(D + kE)|_X)$, which are Weil divisors on X for f in a set of density 1 by Lemma 2.1. The restriction of X_f to the complement of $X \cap \mathbb{P}_{\text{sing}}$ is a Cartier divisor. Let $\pi : \widetilde{X} \to X$ be a resolution of singularities of X. Taking the pullback under π and taking the closure gives a Cartier divisor on \widetilde{X} .

Step 1. For f in as set of density 1, the divisor X_f is irreducible.

Similar to [1, Proposition 4.1], one computes that for any positive constant k_0 , the number of reducible X_f is at most

$$q^{\frac{k^2 E.E}{2} - \frac{k_0 k}{2} + O(k)}.$$

It remains to determine $\#H^0(X, \mathcal{O}_{\mathbb{P}}(D+kE)|_X)$. Let C be an effective Cartier divisor on X. Then there is an exact sequence of sheaves

$$0 \to \mathcal{O}_X \to \mathcal{O}_X(C) \to \mathcal{O}_C(C) \to 0.$$

In particular, by tensoring with the k-th tensor power of the invertible sheaf $\mathcal{L} := \mathcal{O}_{\mathbb{P}}(E)|_X$, for the Euler characteristic χ holds

$$\chi(\mathcal{O}_X(C)\otimes\mathcal{L}^{\otimes k})=\chi(\mathcal{L}^{\otimes k})+\chi(\mathcal{O}_C(C)\otimes\mathcal{L}^{\otimes k}).$$

Since $\mathcal{O}_C(C) \otimes \mathcal{L}^{\otimes k}$ is supported on a codimension 1 subscheme of X, the leading terms of the Hilbert polynomials $\chi(\mathcal{O}_X(C) \otimes \mathcal{L}^{\otimes k})$ and $\chi(\mathcal{L}^{\otimes k})$ coincide.

Pick now ℓ large enough such that $\mathcal{O}_{\mathbb{P}}(D+\ell E)$ is globally generated. This allows to choose a section $g \in H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+\ell E))$ which does not vanish on X. Further choose a positive integer m such that mD is Cartier. Then there is a chain of injective maps

$$H^{0}(X, \mathcal{O}_{\mathbb{P}}(kE)|_{X}) \to H^{0}(X, \mathcal{O}_{\mathbb{P}}(D+(k+\ell)E)|_{X}) \to \dots \to H^{0}(X, \mathcal{O}_{\mathbb{P}}(mD+(k+\ell m)E)|_{X})$$

induced by multiplication with g. As a consequence, Serre vanishing yields for $k \gg 0$

$$\chi(\mathcal{L}^{\otimes k}) \leq \chi(\mathcal{O}_{\mathbb{P}}(D+\ell E)|_X \otimes \mathcal{L}^{\otimes k}) \leq \chi(\mathcal{O}_{\mathbb{P}}(mD+\ell mE)|_X \otimes \mathcal{L}^{\otimes k}).$$

But $\mathcal{O}_{\mathbb{P}}(mD + \ell mE)|_X$ is the sheaf of an effective Cartier divisor, so by the previous, the leading terms of these three Hilbert polynomials agree. Thus

$$#H^0(X, \mathcal{O}_{\mathbb{P}}(D+kE)|_X) = q^{\chi(\mathcal{L}^{\otimes k}) + O(k)} = q^{\frac{k^2 E \cdot E}{2} + O(k)}, \quad k \gg 0.$$

Choosing k_0 large enough, we obtain that the density of reducible X_f is 0.

Step 2. For f in a set of density 1, there is a bijection $\operatorname{Irr} X_{\mathbb{F}} \to \operatorname{Irr}(X_f)_{\mathbb{F}}, C \mapsto C \cap X_f.$

Due to the assumption that $X \cap \mathbb{P}_{sing}$ be finite, Lemma 2.2, 2.3 and 2.4 can be applied to show that the density of f for which the claim fails is 0 as in [1, Proposition 4.1].

4. INDUCTION

Lemma 4.1. Let $X \subseteq \mathbb{P}_{\mathbb{F}}$ be a smooth irreducible subscheme of dimension $m \geq 3$. Suppose that dim $\overline{X} \cap (\mathbb{P}_{\mathbb{F}})^{\text{sing}} \leq m-2$. Then:

(1) There exists a hypersurface $J \subseteq \mathbb{P}$ defined over k such that

- $J \cap X$ is irreducible,
- dim $J \cap X = m 1$,
- dim $J \cap (\overline{X} \setminus X) \le m 2$,
- dim $J \cap \overline{X} \cap (\mathbb{P}_{\mathbb{F}})^{\text{sing}} \leq m 3.$

(2) For any J as in (1), there is a density 1 set of f for which the implication

 $(J \cap X)_f$ irreducible $\Rightarrow X_f$ irreducible

holds.

Proof. (1) Pick a positive integer k and choose sections $h_i \in H^0(\mathbb{P}, kE)$, $i = 0, \ldots, m$, such that dim $V(h_0, \ldots, h_r) \cap \overline{X} = m - r - 1$ for $r = 0, \ldots, m - 1$ and $V(h_0, \ldots, h_m) \cap \overline{X} = \emptyset$. This is possible since kE has no base points for $k \gg 0$. The sections h_0, \ldots, h_m give rise to a map

$$\pi: \overline{X} \to \mathbb{P}^m_{\mathbb{F}}, \quad P \mapsto (h_0(P): \cdots: h_m(P)).$$

The fiber over $(0 : \cdots : 0 : 1)$ is zero-dimensional, therefore π is a generically finite dominant morphism. Define

$$Z := \{ P \in \mathbb{P}_{\mathbb{F}_q}^m \mid \operatorname{codim}_{\overline{X}} \pi^{-1}(P) = 1 \} \\ \cup \{ \pi(C) \subseteq \mathbb{P}_{\mathbb{F}_q}^m \mid C \in \operatorname{Irr}(\overline{X} \setminus X) \cup \operatorname{Irr}(\overline{X} \cap (\mathbb{P}_{\mathbb{F}})^{\operatorname{sing}}), \dim \pi(C) = 0 \}$$

Then Z is finite. By [4, Theorem 1.2, Proposition 2.7], Lemma 2.1 and [1, Lemma 5.2], there is a positive density of homogeneous polynomials $g \in k[x_1, \ldots, x_m]$ such that

- $\{g = 0\}$ is geometrically integral,
- $\{g=0\} \cap Z = \emptyset$,
- $\pi(C) \not\subseteq \{g=0\}$ for any $C \in \operatorname{Irr}(\overline{X} \setminus X) \cup \operatorname{Irr}(\overline{X} \cap (\mathbb{P}_{\mathbb{F}})^{\operatorname{sing}})$ with $\dim \pi(C) \geq 1$,
- $X \cap \pi^{-1}(\{g=0\})$ is irreducible of dimension m-1.

Pick such a g and set $J := g(h_0, \ldots, h_m) \in H^0(\mathbb{P}, k \deg g \cdot E)$. Then:

- $J \cap X = X \cap \pi^{-1}(\{g = 0\}),$
- J contains no irreducible component of $\overline{X} \setminus X$ or $\overline{X} \cap (\mathbb{P}_{\mathbb{F}})^{\text{sing}}$, whence

 $\dim J \cap (\overline{X} \setminus X) \le m - 2 \quad \text{and} \quad \dim J \cap X \cap (\mathbb{P}_{\mathbb{F}})^{\text{sing}} \le m - 3.$

(2) Similar to [1, Lemma 5.3], if $(J \cap X)_f$ is irreducible and X_f is reducible, then $X_f = V_1 \cup V_2$ for subschemes V_1, V_2 such that $V_1 \not\subseteq V_2, V_2 \not\subseteq V_1$ and dim V_1 , dim $V_2 \ge m-1$. Moreover, for $i = 1, 2, J \cap \overline{V_i}$ is nonempty of dimension $\ge m-2$. For f in a set of density 1, Lemma 2.1 implies that

$$\dim J \cap (\overline{V}_i \setminus V_i) \le \dim J \cap (\overline{X} \setminus X) \cap X_f \le m - 3.$$

This implies that $J \cap V_i$ is of dimension $\geq m-2$. Using that $(J \cap X)_f$ is irreducible, we can assume w. l. o. g. that $J \cap V_1 \subseteq J \cap V_2$. As a consequence,

$$m-2 \leq \dim J \cap V_1 \leq \dim J \cap V_1 \cap V_2 \leq \dim J \cap (X_f)^{\operatorname{sing}}.$$

Let $U := X \cap \mathbb{P}^{\text{sm}}$. Clearly $(X_f)^{\text{sing}} \subseteq (U_f)^{\text{sing}} \cup (X \cap (\mathbb{P}_{\mathbb{F}})^{\text{sing}})$. By Lemma 2.5, $(U_f)^{\text{sing}}$ is finite for f in a set of density 1, as U is smooth and does not meet $(\mathbb{P}_{\mathbb{F}})^{\text{sing}}$. In particular, for these f,

$$\dim J \cap (X_f)^{\operatorname{sing}} \leq \max\{\dim J \cap (U_f)^{\operatorname{sing}}, \dim J \cap X \cap (\mathbb{P}_{\mathbb{F}})^{\operatorname{sing}}\} \\ \leq \max\{0, \dim J \cap \overline{X} \cap (\mathbb{P}_{\mathbb{F}})^{\operatorname{sing}}\} \\ \leq m - 3.$$

This leads to the contradiction

$$m-2 \le \dim J \cap (X_f)^{\operatorname{sing}} \le m-3.$$

Thus for f in a set of density 1, $(J \cap X)_f$ irreducible implies X_f irreducible.

Proposition 4.2. Let X be an irreducible subscheme of \mathbb{P} of dimension $m \geq 2$ such that $\dim \overline{X} \cap \mathbb{P}_{sing} \leq m-2$. For f in a set of density 1, there is a bijection $\operatorname{Irr} X_{\mathbb{F}} \to \operatorname{Irr}(X_f)_{\mathbb{F}}$ sending C to C_f .

Proof. We may assume that X is reduced. For surfaces note that $\overline{X} \cap \mathbb{P}^{\text{sing}}$ is finite, thus the assertion for \overline{X} follows from Proposition 3.1. Now Lemma 2.3 allows to proceed to X.

For $m \geq 3$, we can assume that X is smooth by Lemma 2.3. Pick an irreducible component $C \in \operatorname{Irr} X_{\mathbb{F}}$. Then C is a smooth irreducible subscheme of $\mathbb{P}_{\mathbb{F}}$ of dimension $m \geq 3$ and

$$\dim \overline{C} \cap (\mathbb{P}_{\mathbb{F}})^{\operatorname{sing}} \leq \dim \overline{X} \cap \mathbb{P}^{\operatorname{sing}} \leq m - 2.$$

Lemma 4.1 applied to C produces a hypersurface $J \subseteq \mathbb{P}$ defined over k such that $J \cap C$ is irreducible of dimension m-1 and

$$\dim J \cap \overline{C} \cap (\mathbb{P}_{\mathbb{F}})^{\operatorname{sing}} \le m - 3.$$

Using the map $C \hookrightarrow X_{\mathbb{F}} \to X$, this means that $J \cap X$ is irreducible of dimension m-1 as well and

$$\dim J \cap \overline{X} \cap (\mathbb{P}_{\mathbb{F}})^{\operatorname{sing}} \le m - 3.$$

Performing induction on $J \cap X$ shows that for f in a set of density 1, $(J \cap C)_f$ is irreducible for any $C \in \operatorname{Irr} X_{\mathbb{F}}$. For a possibly smaller set of density 1, this implies that C_f is irreducible by part 2 of Lemma 4.1. Moreover every C_f is horizontal, since dim $C_f \geq m - 1$, whereas

$$\dim C_f \cap (\mathbb{P}_{\mathbb{F}})_{\operatorname{sing}} \leq \dim X \cap (\mathbb{P}_{\mathbb{F}})_{\operatorname{sing}} \leq m-2.$$

Finally Lemma 2.4 yields a bijection

$$\operatorname{Irr} X_{\mathbb{F}} \xrightarrow{\sim} \operatorname{Irr}_{\operatorname{horiz}}(X_f)_{\mathbb{F}} \xrightarrow{\sim} \operatorname{Irr}(X_f)_{\mathbb{F}}, \quad C \mapsto C_f.$$

5. Finishing the proof

Lemma 5.1. Let X and Y be irreducible finite type \mathbb{F} -schemes. Suppose that $X \xrightarrow{\pi} Y \xrightarrow{\psi} \mathbb{P}_{\mathbb{F}}$ are morphisms such that π is finite and étale, ψ has relative dimensions at each point and $\dim \overline{\psi(Y)} \geq 2$. Then for f in a set of density 1, the implication

$$Y_f$$
 irreducible $\Rightarrow X_f$ irreducible

holds.

Proof. Following the proof of [1, Lemma 5.1], we only need to adjust the density estimate for f such that V(f) misses at least $(c' + o(1))r^{me}/e$ points of $\overline{\psi(Y)}$ with residue field of size at most r^e , for fixed c' > 0, $e, m, r \in \mathbb{N}$, $m \ge 2$. As in the proof of Lemma 2.2, this density either equals zero or is bounded from above by

$$(1 - r^{-e})^{(c'+o(1))r^{me}/e}$$

As $e \to \infty$, this quantity goes to zero due to $m \ge 2$.

Lemma 5.2. Let X and Y be irreducible finite type \mathbb{F} -schemes with morphisms $X \xrightarrow{\pi} Y \xrightarrow{\psi} \mathbb{P}_{\mathbb{F}}$ such that π is dominant, dim $\overline{\psi(Y)} \ge 2$ and dim $\overline{\psi(Y)} \cap (\mathbb{P}_{\mathbb{F}})^{\text{sing}} \le \dim \overline{\psi(Y)} - 2$. Then for f in a set of density 1, the implication

 $(Y_f)_{\text{horiz}}$ irreducible $\Rightarrow (X_f)_{\text{horiz}}$ irreducible

holds.

Proof. As in [1, Lemma 5.2].

Proposition 5.3. Let X be a \mathbb{F}_q -scheme of finite type. Let $\phi : X \to \mathbb{P}$ be a morphism such that $\dim \overline{\phi(C)} \geq 2$ and $\dim \overline{\phi(C)} \cap (\mathbb{P}_{\mathbb{F}})_{\text{sing}} \leq \dim \overline{\phi(C)} - 2$ for each $C \in \operatorname{Irr} X$. Then for f in a set of density 1, there is a bijection $\operatorname{Irr} X_{\mathbb{F}} \to \operatorname{Irr}_{\text{horiz}}(X_f)_{\mathbb{F}}$ sending C to $(C_f)_{\text{horiz}}$.

Proof. By Lemma 2.3, we may again assume that X is reduced and smooth, so its irreducible components are disjoint. Without loss of generality, we can thus further suppose that X is irreducible. Let $C \in \operatorname{Irr} X_{\mathbb{F}}$, then $\overline{\phi(C)}$ is an irreducible component of $\overline{\phi(X)}_{\mathbb{F}}$. By Proposition 4.2, $\overline{\phi(C)}_f$ is irreducible for f in a set of density 1. Applying Lemma 5.2 to $C \to \overline{\phi(C)} \hookrightarrow \mathbb{P}_{\mathbb{F}}$ shows that $(C_f)_{\text{horiz}}$ is irreducible. Together with Lemma 2.4, this implies the existence of a bijection $\operatorname{Irr} X_{\mathbb{F}} \to \operatorname{Irr}_{\text{horiz}}(X_f)_{\mathbb{F}}$ sending C to $(C_f)_{\text{horiz}}$.

Proof of Theorem 1.1. The proof is as in [1, Theorem 1.6], adjusting the notion of horizontal components. \Box

References

- F. Charles and B. Poonen, Bertini irreducibility theorems over finite fields, J. Am. Math. Soc. 29 (2016), no. 1, 81-94.
- [2] D. A. Cox, J. B. Little, and H. K. Schenck, *Toric varieties*, Providence, RI: American Mathematical Society (AMS), 2011.
- [3] N. Lindner, Density of quasismooth hypersurfaces in simplicial toric varieties (2014), available at arXiv: 1409.6506. To appear in J. Théor. Nombres Bordeaux.
- [4] B. Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099–1127.