A NOTE ON BERTINI IRREDUCIBILITY THEOREMS FOR SIMPLICIAL TORIC VARIETIES OVER FINITE FIELDS

NIELS LINDNER

Abstract

This short note deals with extending the Bertini irreduciblity theorems obtained by Charles and Poonen in [1] to simplicial toric varieties.

1. Goal

Consider a finite field \mathbb{F}_{q} and fix an algebraic closure \mathbb{F}. Let \mathbb{P} be a projective normal simplicial toric variety over \mathbb{F}_{q} with singular locus $\mathbb{P}_{\text {sing }}$. Fix a Weil divisor D and an ample Cartier divisor E on \mathbb{P}.

We follow the notation in [1]: Let X be a scheme of finite type over $\mathbb{F}, Y \subseteq X$ a subscheme. Let further $\phi: X \rightarrow \mathbb{P}_{\mathbb{F}}$ be an \mathbb{F}-morphism.

- Y is called horizontal if $\operatorname{dim} \overline{\phi(Y)} \geq 1$ and $\overline{\phi(Y)}$ is not contained in $\left(\mathbb{P}_{\mathbb{F}}\right)_{\text {sing }}$,
- Irr Y denotes the set of irreducible components of Y,
- $\operatorname{Irr}_{\text {horiz }} Y$ is the set of all horizontal irreducible components of Y,
- $Y_{\text {horiz }}$ denotes the union of all horizontal irreducible components of Y.

For sections $f \in H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+k E)\right.$), where k is an integer, define $X_{f}:=\phi^{-1}(V(f))$.
Theorem 1.1. Suppose that $\phi: X \rightarrow \mathbb{P}_{\mathbb{F}}$ is an \mathbb{F}-morphism such that $\operatorname{dim} \overline{\phi(C)} \geq 2$ and $\operatorname{dim} \overline{\phi(C)} \cap\left(\mathbb{P}_{\mathbb{F}}\right)_{\text {sing }} \leq \operatorname{dim} \overline{\phi(C)}-2$ for each $C \in \operatorname{Irr} X$. Then
$\lim _{k \rightarrow \infty} \frac{\#\left\{f \in H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+k E)\right) \mid \operatorname{Irr} X \rightarrow \operatorname{Irr}_{\text {horiz }} X_{f}, C \mapsto\left(C \cap X_{f}\right)_{\text {horiz }} \text { is a bijection }\right\}}{\# H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+k E)\right)}=1$.
Remarks.
(1) Suppose that $D=0$ and E is a very ample Cartier divisor defining a closed immersion $i: \mathbb{P} \hookrightarrow \mathbb{P}^{n}$. This gives a linear map

$$
i^{*}: H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)\right) \rightarrow H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(k E)\right),
$$

which is surjective for $k \gg 0$. In particular, Theorem 1.1 is obtained from [1, Theorem 1.6], as $V\left(i^{*}(g)\right)=i^{-1}(V(g))$ for $g \in H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)\right)$. Moreover, this holds for any projective variety \mathbb{P} over \mathbb{F}_{q}, and the conditions on $\left(\mathbb{P}_{\mathbb{F}}\right)_{\text {sing }}$ may be dropped as well.
(2) The codimension two condition on the intersection with the singular locus is necessary if D is not trivial. For example, consider $\mathbb{P}=\mathbb{P}(1,2,3,6)$ with coordinates $x_{0}, x_{1}, x_{2}, x_{3}$. Let $X:=V\left(x_{0}\right) \subseteq \mathbb{P}_{\mathbb{F}}$ and $\phi: X \hookrightarrow \mathbb{P}_{\mathbb{F}}$ be the inclusion. X is an irreducible surface in $\mathbb{P}_{\mathbb{F}}$ and

$$
X \cap\left(\mathbb{P}_{\mathbb{F}}\right)_{\text {sing }}=V\left(x_{0}, x_{1}\right) \cup V\left(x_{0}, x_{2}\right)
$$

Date: October 13, 2016.
E-mail: lindnern@math.hu-berlin.de.
is one-dimensional. For $k \geq 1$, let f be a weighted homogeneous polynomial of degree $6 k+1$. One finds that f can be written as

$$
f=x_{1}^{2} x_{2} \sum_{i=0}^{k-1} \sum_{j=0}^{k-1-i} c_{i j} x_{1}^{3 i} x_{2}^{2 j} x_{3}^{k-i-j-1}+\text { terms divisible by } x_{0}, \quad c_{i j} \in \mathbb{F}_{q}
$$

Thus if $X \cap V(f)$ is irreducible, then f lies in a subspace of $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6 k+1)\right)$ of codimension

$$
\sum_{i=0}^{k-1}(k-1-i)=\frac{k(k-1)}{2}
$$

As a consequence, the fraction of $f \in H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6 k+1)\right)$ such that $X \cap V(f)$ is irreducible is at most $q^{-k(k-1) / 2}$. In particular, the density of f for which the map $\operatorname{Irr} X \rightarrow \operatorname{Irr} X_{f}$ is a bijection is bounded from above by $\lim _{k \rightarrow \infty} q^{-k(k-1) / 2}=0$.
(3) Let X and ϕ satisfy the hypotheses of Theorem 1.1 and assume that ϕ is an immersion. If $D \in \operatorname{Irr} X$ and $C \subseteq D$ is irreducible with $\operatorname{codim}_{D}(C) \leq 1$, then $\overline{\phi(C)}$ is not contained in $\left(\mathbb{P}_{\mathbb{F}}\right)_{\text {sing }}$: Indeed, the singular locus of $\mathbb{P}_{\mathbb{F}}$ has codimension at least two in $\overline{\phi(D)}$, whereas $\overline{\phi(C)}$ has codimension at most one. Therefore, the subscript "horiz" may be omitted and one obtains:

Corollary 1.2. Let X be a geometrically irreducible subscheme of a projective normal simplicial toric variety \mathbb{P} over \mathbb{F}_{q}. If $\operatorname{dim} X \geq 2$ and $\operatorname{dim} \bar{X} \cap \mathbb{P}_{\text {sing }} \leq \operatorname{dim} X-2$, then

$$
\lim _{k \rightarrow \infty} \frac{\#\left\{f \in H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+k E)\right) \mid X \cap V(f) \text { is geometrically irreducible }\right\}}{\# H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+k E)\right)}=1
$$

In particular, this holds for $X=\mathbb{P}$.
The proof of Theorem 1.1 follows the outline of [1], some proofs being almost literally the same. However, the presence of singularities in \mathbb{P} rises some technical difficulties.

2. LEMMAS

From now on, a statement $S(f)$, where $f \in H^{0}\left(X, \mathcal{O}_{X}(D+k E)\right)$ for some positive integer k, is said to hold for f in a set of density 1 if

$$
\lim _{k \rightarrow \infty} \frac{\#\left\{f \in H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+k E)\right) \mid S(f) \text { is true }\right\}}{\# H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+k E)\right)}=1
$$

Lemma 2.1. Let X be either

- a subscheme of \mathbb{P} over \mathbb{F}_{q} such that $\operatorname{dim} X \backslash\left(X \cap \mathbb{P}_{\text {sing }}\right) \geq 1$, or
- a subscheme of $\mathbb{P}_{\mathbb{F}}$ over \mathbb{F} such that $\operatorname{dim} X \backslash\left(X \cap\left(\mathbb{P}_{\mathbb{F}}\right)_{\text {sing }}\right) \geq 1$.

Then for f in a set of density 1, f does not vanish on X.
Proof. Replacing X by its image under the natural map $\mathbb{P}_{\mathbb{F}} \rightarrow \mathbb{P}_{\mathbb{F}_{q}}$, assume that X is defined over \mathbb{F}_{q}. Now the assertion follows as in the proof of [3, Lemma 4.5 (2)].

Lemma 2.2. Let $X \subseteq \mathbb{P}\left(\right.$ or $\left.\mathbb{P}_{\mathbb{F}}\right)$ be a subscheme over $\mathbb{F}_{q}($ or $\mathbb{F})$ such that $\operatorname{dim} X \geq 1$. Then for f in a set of density $1, X \cap V(f) \neq \emptyset$.

Proof. Assume again that X is defined over \mathbb{F}_{q}. Fix a positive integer r and denote by $X_{<r}$ the set of closed points of X whose degree is smaller than r. As in [3, Lemma 4.1], the density of sections f such that $V(f) \cap X_{<r}$ is empty equals

$$
\prod_{P \in X_{<r}}\left(1-q^{-\nu_{P}(D)}\right)
$$

where $\nu_{P}(D):=\operatorname{dim}_{\mathbb{F}_{q}} H^{0}\left(X_{P},\left.\mathcal{O}_{X}(D)\right|_{X_{P}}\right)$ and X_{P} is the subscheme of X corresponding to the maximal ideal \mathfrak{m}_{P}. If $\nu_{P}(D)=0$ for some point $P \in X_{<r}$, then the above product equals zero. Otherwise choose a positive integer m such that $m D$ is Cartier. This is possible since \mathbb{P} is simplicial and hence \mathbb{Q}-factorial (see e. g. [2, Proposition 4.2.7]). Using that the sheaf $\left.\mathcal{O}_{X}(m D)\right|_{X_{P}}$ is invertible and hence locally isomorphic to $\mathcal{O}_{X_{P}}$, there is an injective map

$$
H^{0}\left(X_{P},\left.\mathcal{O}_{X}(D)\right|_{X_{P}}\right) \rightarrow H^{0}\left(X_{P},\left.\mathcal{O}_{X}(m D)\right|_{X_{P}}\right) \cong H^{0}\left(X_{P}, \mathcal{O}_{X_{P}}\right), \quad g \mapsto g^{m}
$$

thus $0<\nu_{P}(D) \leq \operatorname{deg} P$. As $\operatorname{deg} P$ necessarily divides $\nu_{P}(D)$, this implies $\nu_{P}(D)=\operatorname{deg} P$. In particular, the density of f such that $V(f) \cap X_{<r}$ is empty equals

$$
\prod_{P \in X_{<r}}\left(1-q^{-\operatorname{deg} P}\right)=\frac{1}{\zeta_{X_{<r}}(1)} .
$$

This diverges to 0 as $r \rightarrow \infty$, since $\operatorname{dim} X \geq 1$.
Lemma 2.3. Let X be an \mathbb{F}-scheme of finite type, $\phi: X \rightarrow \mathbb{P}_{\mathbb{F}}$ an \mathbb{F}-morphism such that $\operatorname{dim} \overline{\phi(C)} \geq 2$ for all $C \in \operatorname{Irr} X$. Let U be a dense open subscheme of X. Then for f in a set of density 1, there is a bijection

$$
\operatorname{Irr}_{\text {horiz }} X_{f} \rightarrow \operatorname{Irr}_{\text {horiz }} U_{f}, \quad C \mapsto C \cap U .
$$

Proof. If every $C \in \operatorname{Irr}_{\text {horiz }} X_{f}$ meets U, the above map is clearly bijective with its inverse given by taking the closure in X_{f}.

There is nothing to show if $\operatorname{Irr}_{\text {horiz }}(X \backslash U)=\emptyset$. Otherwise, let $C \in \operatorname{Irr}_{\text {horiz }}(X \backslash U)$. Since $\overline{\phi(C)}$ is of dimension ≥ 1 and is not contained in $\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }}$, Lemma 2.1 states that the set of f vanishing on $\overline{\phi(C)}$ has density 0 . Excluding these f, every $C \in \operatorname{Irr}_{\text {horiz }} X_{f}$ meets U, because otherwise $C \in \operatorname{Irr}_{\text {horiz }}(X \backslash U)$ and $f(\overline{\phi(C)})=0$.
Lemma 2.4. Let X and ϕ be as in Theorem 1.1 and suppose further that X is smooth. Let $f \in H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+k E)\right) \backslash\{0\}$ for some $d \geq 0$. Then C_{f} contains a horizontal component for any $C \in \operatorname{Irr} X$. Moreover, the following are equivalent:
(1) There is a bijection $\operatorname{Irr} X \rightarrow \operatorname{Irr}_{\text {horiz }} X_{f}, C \mapsto\left(C_{f}\right)_{\text {horiz }}$.
(2) For every $C \in \operatorname{Irr} X$, the scheme $\left(C_{f}\right)_{\text {horiz }}$ is irreducible.

Proof. Let $C \in \operatorname{Irr} X$. Then $\operatorname{dim} \overline{\phi(C)} \geq 2$ and thus

$$
\operatorname{dim} \overline{\phi\left(C_{f}\right)}=\operatorname{dim} \overline{\phi\left(C \cap \phi^{-1}(\{f=0\})\right)}=\operatorname{dim} \overline{\phi(C) \cap\{f=0\}} \geq \operatorname{dim} \overline{\phi(C)}-1 \geq 1
$$

In particular, C_{f} has an irreducible component C^{\prime} such that the codimension of $\overline{\phi\left(C^{\prime}\right)}$ in $\overline{\phi(C)}$ is ≤ 1. By hypothesis, the singular locus of $\mathbb{P}_{\mathbb{F}}$ has codimension ≥ 2 in $\overline{\phi(C)}$. Thus $\overline{\phi\left(C^{\prime}\right)}$ is not contained in $\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }}$ and hence C^{\prime} is horizontal.

Concerning the "moverover" part, (1) $\Rightarrow(2)$ is obvious. For $(2) \Rightarrow(1)$, note that the map is defined and surjective. By smoothness of \bar{X}, the components of X do not intersect, so the map is also injective.

Lemma 2.5. Let X be a subscheme of $\mathbb{P}_{\mathbb{F}}$ such that X is smooth and $X \cap\left(\mathbb{P}_{\mathbb{F}}\right)_{\operatorname{sing}}$ is finite. For f in a set of density 1 , the singular locus $\left(X_{f}\right)_{\operatorname{sing}}$ is finite.

Proof. In view of [3, Corollary 5.2], the difficulty comes from the larger fields involved. Splitting X into orbits under the action of the absolute Galois group of \mathbb{F}_{q}, we can follow the proof of [1, Lemma 3.5] to obtain a covering of $X \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sm }}$ by finitely many open subschemes U and global derivations $D_{1}, \ldots, D_{m}: \mathcal{O}_{U}(U) \rightarrow \mathcal{O}_{U}(U)$ such that

$$
P \in U \cap\left(X_{f}\right)^{\text {sing }} \Rightarrow f(P)=D_{1}(f)(P)=\cdots=D_{m}(f)(P)=0
$$

Proceeding as in the proof of [3, Lemma 4.9], $U \cap\left\{D_{1}(f)=\cdots=D_{m}(f)\right\}$ is finite with probability $1-o(1)$ as $k \rightarrow \infty$.

3. Surfaces

Proposition 3.1. Let X be a 2-dimensional closed integral subscheme of \mathbb{P} such that $X \cap \mathbb{P}_{\text {sing }}$ is finite. For f in a set of density 1, there is a bijection $\operatorname{Irr} X_{\mathbb{F}} \rightarrow \operatorname{Irr}\left(X_{f}\right)_{\mathbb{F}}$ sending C to $C \cap X_{f}$.

Proof. Since the natural map

$$
H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+k E)\right) \rightarrow H^{0}\left(X,\left.\mathcal{O}_{\mathbb{P}}(D+k E)\right|_{X}\right)
$$

is surjective for sufficiently large k, densities may be calculated by counting elements X_{f} in $\mathbb{P} H^{0}\left(X,\left.\mathcal{O}_{\mathbb{P}}(D+k E)\right|_{X}\right)$, which are Weil divisors on X for f in a set of density 1 by Lemma 2.1. The restriction of X_{f} to the complement of $X \cap \mathbb{P}_{\text {sing }}$ is a Cartier divisor. Let $\pi: \widetilde{X} \rightarrow X$ be a resolution of singularities of X. Taking the pullback under π and taking the closure gives a Cartier divisor on \widetilde{X}.
Step 1. For f in as set of density 1 , the divisor X_{f} is irreducible.
Similar to [1, Proposition 4.1], one computes that for any positive constant k_{0}, the number of reducible \bar{X}_{f} is at most

$$
q^{\frac{k^{2} E \cdot E}{2}-\frac{k_{0} k}{2}+O(k)}
$$

It remains to determine $\# H^{0}\left(X,\left.\mathcal{O}_{\mathbb{P}}(D+k E)\right|_{X}\right)$. Let C be an effective Cartier divisor on X. Then there is an exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(C) \rightarrow \mathcal{O}_{C}(C) \rightarrow 0
$$

In particular, by tensoring with the k-th tensor power of the invertible sheaf $\mathcal{L}:=\left.\mathcal{O}_{\mathbb{P}}(E)\right|_{X}$, for the Euler characteristic χ holds

$$
\chi\left(\mathcal{O}_{X}(C) \otimes \mathcal{L}^{\otimes k}\right)=\chi\left(\mathcal{L}^{\otimes k}\right)+\chi\left(\mathcal{O}_{C}(C) \otimes \mathcal{L}^{\otimes k}\right)
$$

Since $\mathcal{O}_{C}(C) \otimes \mathcal{L}^{\otimes k}$ is supported on a codimension 1 subscheme of X, the leading terms of the Hilbert polynomials $\chi\left(\mathcal{O}_{X}(C) \otimes \mathcal{L}^{\otimes k}\right)$ and $\chi\left(\mathcal{L}^{\otimes k}\right)$ coincide.

Pick now ℓ large enough such that $\mathcal{O}_{\mathbb{P}}(D+\ell E)$ is globally generated. This allows to choose a section $g \in H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(D+\ell E)\right)$ which does not vanish on X. Further choose a positive integer m such that $m D$ is Cartier. Then there is a chain of injective maps
$H^{0}\left(X,\left.\mathcal{O}_{\mathbb{P}}(k E)\right|_{X}\right) \rightarrow H^{0}\left(X,\left.\mathcal{O}_{\mathbb{P}}(D+(k+\ell) E)\right|_{X}\right) \rightarrow \cdots \rightarrow H^{0}\left(X,\left.\mathcal{O}_{\mathbb{P}}(m D+(k+\ell m) E)\right|_{X}\right)$ induced by multiplication with g. As a consequence, Serre vanishing yields for $k \gg 0$

$$
\chi\left(\mathcal{L}^{\otimes k}\right) \leq \chi\left(\left.\mathcal{O}_{\mathbb{P}}(D+\ell E)\right|_{X} \otimes \mathcal{L}_{4}^{\otimes k}\right) \leq \chi\left(\left.\mathcal{O}_{\mathbb{P}}(m D+\ell m E)\right|_{X} \otimes \mathcal{L}^{\otimes k}\right)
$$

But $\left.\mathcal{O}_{\mathbb{P}}(m D+\ell m E)\right|_{X}$ is the sheaf of an effective Cartier divisor, so by the previous, the leading terms of these three Hilbert polynomials agree. Thus

$$
\# H^{0}\left(X,\left.\mathcal{O}_{\mathbb{P}}(D+k E)\right|_{X}\right)=q^{\chi\left(\mathcal{L}^{\otimes k}\right)+O(k)}=q^{\frac{k^{2} E \cdot E}{2}+O(k)}, \quad k \gg 0 .
$$

Choosing k_{0} large enough, we obtain that the density of reducible X_{f} is 0 .
Step 2. For f in a set of density 1 , there is a bijection $\operatorname{Irr} X_{\mathbb{F}} \rightarrow \operatorname{Irr}\left(X_{f}\right)_{\mathbb{F}}, C \mapsto C \cap X_{f}$.
Due to the assumption that $X \cap \mathbb{P}_{\text {sing }}$ be finite, Lemma 2.2, 2.3 and 2.4 can be applied to show that the density of f for which the claim fails is 0 as in [1, Proposition 4.1].

4. Induction

Lemma 4.1. Let $X \subseteq \mathbb{P}_{\mathbb{F}}$ be a smooth irreducible subscheme of dimension $m \geq 3$. Suppose that $\operatorname{dim} \bar{X} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }} \leq m-2$. Then:
(1) There exists a hypersurface $J \subseteq \mathbb{P}$ defined over k such that

- $J \cap X$ is irreducible,
- $\operatorname{dim} J \cap X=m-1$,
- $\operatorname{dim} J \cap(\bar{X} \backslash X) \leq m-2$,
- $\operatorname{dim} J \cap \bar{X} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }} \leq m-3$.
(2) For any J as in (1), there is a density 1 set of f for which the implication

$$
(J \cap X)_{f} \text { irreducible } \Rightarrow X_{f} \text { irreducible }
$$

holds.
Proof. (1) Pick a positive integer k and choose sections $h_{i} \in H^{0}(\mathbb{P}, k E), i=0, \ldots, m$, such that $\operatorname{dim} V\left(h_{0}, \ldots, h_{r}\right) \cap \bar{X}=m-r-1$ for $r=0, \ldots, m-1$ and $V\left(h_{0}, \ldots, h_{m}\right) \cap \bar{X}=\emptyset$. This is possible since $k E$ has no base points for $k \gg 0$. The sections h_{0}, \ldots, h_{m} give rise to a map

$$
\pi: \bar{X} \rightarrow \mathbb{P}_{\mathbb{F}}^{m}, \quad P \mapsto\left(h_{0}(P): \cdots: h_{m}(P)\right)
$$

The fiber over $(0: \cdots: 0: 1)$ is zero-dimensional, therefore π is a generically finite dominant morphism. Define

$$
\begin{aligned}
Z:= & \left\{P \in \mathbb{P}_{\mathbb{F}_{q}}^{m} \mid \operatorname{codim}_{\bar{X}} \pi^{-1}(P)=1\right\} \\
& \cup\left\{\pi(C) \subseteq \mathbb{P}_{\mathbb{F}_{q}}^{m} \mid C \in \operatorname{Irr}(\bar{X} \backslash X) \cup \operatorname{Irr}\left(\bar{X} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\operatorname{sing}}\right), \operatorname{dim} \pi(C)=0\right\} .
\end{aligned}
$$

Then Z is finite. By [4, Theorem 1.2, Proposition 2.7], Lemma 2.1] and [1, Lemma 5.2], there is a positive density of homogeneous polynomials $g \in k\left[x_{1}, \ldots, x_{m}\right]$ such that

- $\{g=0\}$ is geometrically integral,
- $\{g=0\} \cap Z=\emptyset$,
- $\pi(C) \nsubseteq\{g=0\}$ for any $C \in \operatorname{Irr}(\bar{X} \backslash X) \cup \operatorname{Irr}\left(\bar{X} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }}\right)$ with $\operatorname{dim} \pi(C) \geq 1$,
- $X \cap \pi^{-1}(\{g=0\})$ is irreducible of dimension $m-1$.

Pick such a g and set $J:=g\left(h_{0}, \ldots, h_{m}\right) \in H^{0}(\mathbb{P}, k \operatorname{deg} g \cdot E)$. Then:

- $J \cap X=X \cap \pi^{-1}(\{g=0\})$,
- J contains no irreducible component of $\bar{X} \backslash X$ or $\bar{X} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }}$, whence

$$
\operatorname{dim} J \cap(\bar{X} \backslash X) \leq m-2 \quad \text { and } \quad \operatorname{dim} J \cap X \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }} \leq m-3
$$

(2) Similar to [1] Lemma 5.3], if $(J \cap X)_{f}$ is irreducible and X_{f} is reducible, then $X_{f}=V_{1} \cup V_{2}$ for subschemes V_{1}, V_{2} such that $V_{1} \nsubseteq V_{2}, V_{2} \nsubseteq V_{1}$ and $\operatorname{dim} V_{1}$, $\operatorname{dim} V_{2} \geq m-1$. Moreover, for $i=1,2, J \cap \overline{V_{i}}$ is nonempty of dimension $\geq m-2$. For f in a set of density 1 , Lemma 2.1 implies that

$$
\operatorname{dim} J \cap\left(\bar{V}_{i} \backslash V_{i}\right) \leq \operatorname{dim} J \cap(\bar{X} \backslash X) \cap X_{f} \leq m-3 .
$$

This implies that $J \cap V_{i}$ is of dimension $\geq m-2$. Using that $(J \cap X)_{f}$ is irreducible, we can assume w. l. o. g. that $J \cap V_{1} \subseteq J \cap V_{2}$. As a consequence,

$$
m-2 \leq \operatorname{dim} J \cap V_{1} \leq \operatorname{dim} J \cap V_{1} \cap V_{2} \leq \operatorname{dim} J \cap\left(X_{f}\right)^{\operatorname{sing}}
$$

Let $U:=X \cap \mathbb{P}^{\text {sm }}$. Clearly $\left(X_{f}\right)^{\text {sing }} \subseteq\left(U_{f}\right)^{\text {sing }} \cup\left(X \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }}\right)$. By Lemma 2.5, $\left(U_{f}\right)^{\text {sing }}$ is finite for f in a set of density 1 , as U is smooth and does not meet $\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }}$. In particular, for these f,

$$
\begin{aligned}
\operatorname{dim} J \cap\left(X_{f}\right)^{\text {sing }} & \leq \max \left\{\operatorname{dim} J \cap\left(U_{f}\right)^{\text {sing }}, \operatorname{dim} J \cap X \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }}\right\} \\
& \leq \max \left\{0, \operatorname{dim} J \cap \bar{X} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }}\right\} \\
& \leq m-3 .
\end{aligned}
$$

This leads to the contradiction

$$
m-2 \leq \operatorname{dim} J \cap\left(X_{f}\right)^{\operatorname{sing}} \leq m-3 .
$$

Thus for f in a set of density $1,(J \cap X)_{f}$ irreducible implies X_{f} irreducible.
Proposition 4.2. Let X be an irreducible subscheme of \mathbb{P} of dimension $m \geq 2$ such that $\operatorname{dim} \bar{X} \cap \mathbb{P}_{\text {sing }} \leq m-2$. For f in a set of density 1, there is a bijection $\operatorname{Irr} X_{\mathbb{F}} \rightarrow \operatorname{Irr}\left(X_{f}\right)_{\mathbb{F}}$ sending C to C_{f}.

Proof. We may assume that X is reduced. For surfaces note that $\bar{X} \cap \mathbb{P}^{\text {sing }}$ is finite, thus the assertion for \bar{X} follows from Proposition 3.1. Now Lemma 2.3 allows to proceed to X.

For $m \geq 3$, we can assume that X is smooth by Lemma 2.3. Pick an irreducible component $C \in \operatorname{Irr} X_{\mathbb{F}}$. Then C is a smooth irreducible subscheme of $\mathbb{P}_{\mathbb{F}}$ of dimension $m \geq 3$ and

$$
\operatorname{dim} \bar{C} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\operatorname{sing}} \leq \operatorname{dim} \bar{X} \cap \mathbb{P}^{\text {sing }} \leq m-2
$$

Lemma 4.1 applied to C produces a hypersurface $J \subseteq \mathbb{P}$ defined over k such that $J \cap C$ is irreducible of dimension $m-1$ and

$$
\operatorname{dim} J \cap \bar{C} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }} \leq m-3 .
$$

Using the map $C \hookrightarrow X_{\mathbb{F}} \rightarrow X$, this means that $J \cap X$ is irreducible of dimension $m-1$ as well and

$$
\operatorname{dim} J \cap \bar{X} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\text {sing }} \leq m-3
$$

Performing induction on $J \cap X$ shows that for f in a set of density $1,(J \cap C)_{f}$ is irreducible for any $C \in \operatorname{Irr} X_{\mathbb{F}}$. For a possibly smaller set of density 1 , this implies that C_{f} is irreducible by part 2 of Lemma 4.1. Moreover every C_{f} is horizontal, since $\operatorname{dim} C_{f} \geq m-1$, whereas

$$
\operatorname{dim} C_{f} \cap\left(\mathbb{P}_{\mathbb{F}}\right)_{\operatorname{sing}} \leq \operatorname{dim} \bar{X} \cap\left(\mathbb{P}_{\mathbb{F}}\right)_{\operatorname{sing}} \leq m-2
$$

Finally Lemma 2.4 yields a bijection

$$
\operatorname{Irr} X_{\mathbb{F}} \xrightarrow{\sim} \operatorname{Irr}_{\mathrm{horiz}}\left(X_{f}\right)_{\mathbb{F}} \underset{6}{\sim} \operatorname{Irr}\left(X_{f}\right)_{\mathbb{F}}, \quad C \mapsto C_{f} .
$$

5. Finishing the proof

Lemma 5.1. Let X and Y be irreducible finite type \mathbb{F}-schemes. Suppose that $X \xrightarrow{\pi} Y \xrightarrow{\psi} \mathbb{P}_{\mathbb{F}}$ are morphisms such that π is finite and étale, ψ has relative dimension s at each point and $\operatorname{dim} \overline{\psi(Y)} \geq 2$. Then for f in a set of density 1 , the implication

$$
Y_{f} \text { irreducible } \Rightarrow X_{f} \text { irreducible }
$$

holds.
Proof. Following the proof of [1, Lemma 5.1], we only need to adjust the density estimate for f such that $V(f)$ misses at least $\left(c^{\prime}+o(1)\right) r^{m e} / e$ points of $\overline{\psi(Y)}$ with residue field of size at most r^{e}, for fixed $c^{\prime}>0, e, m, r \in \mathbb{N}, m \geq 2$. As in the proof of Lemma 2.2 , this density either equals zero or is bounded from above by

$$
\left(1-r^{-e}\right)^{\left(c^{\prime}+o(1)\right) r^{m e} / e}
$$

As $e \rightarrow \infty$, this quantity goes to zero due to $m \geq 2$.
Lemma 5.2. Let X and Y be irreducible finite type \mathbb{F}-schemes with morphisms $X \xrightarrow{\pi} Y \xrightarrow{\psi} \mathbb{P}_{\mathbb{F}}$ such that π is dominant, $\operatorname{dim} \overline{\psi(Y)} \geq 2$ and $\operatorname{dim} \overline{\psi(Y)} \cap\left(\mathbb{P}_{\mathbb{F}}\right)^{\operatorname{sing}} \leq \operatorname{dim} \overline{\psi(Y)}-2$. Then for f in a set of density 1, the implication

$$
\left(Y_{f}\right)_{\text {horiz }} \text { irreducible } \Rightarrow\left(X_{f}\right)_{\text {horiz }} \text { irreducible }
$$

holds.
Proof. As in 1, Lemma 5.2].
Proposition 5.3. Let X be a $\mathbb{F}_{q^{-}}$scheme of finite type. Let $\phi: X \rightarrow \mathbb{P}$ be a morphism such that $\operatorname{dim} \overline{\phi(C)} \geq 2$ and $\operatorname{dim} \overline{\phi(C)} \cap\left(\mathbb{P}_{\mathbb{F}}\right)_{\operatorname{sing}} \leq \operatorname{dim} \overline{\phi(C)}-2$ for each $C \in \operatorname{Irr} X$. Then for f in a set of density 1, there is a bijection $\operatorname{Irr} X_{\mathbb{F}} \rightarrow \operatorname{Irr}_{\text {horiz }}\left(X_{f}\right)_{\mathbb{F}}$ sending C to $\left(C_{f}\right)_{\text {horiz }}$.
Proof. By Lemma 2.3, we may again assume that X is reduced and smooth, so its irreducible components are disjoint. Without loss of generality, we can thus further suppose that X is irreducible. Let $C \in \operatorname{Irr} X_{\mathbb{F}}$, then $\overline{\phi(C)}$ is an irreducible component of $\overline{\phi(X)} \sqrt{\mathbb{F}}$. By Proposition 4.2, $\overline{\phi(C)}_{f}$ is irreducible for f in a set of density 1. Applying Lemma 5.2 to $C \rightarrow \overline{\phi(C)} \hookrightarrow \mathbb{P}_{\mathbb{F}}$ shows that $\left(C_{f}\right)_{\text {horiz }}$ is irreducible. Together with Lemma 2.4, this implies the existence of a bijection $\operatorname{Irr} X_{\mathbb{F}} \rightarrow \operatorname{Irr}_{\text {horiz }}\left(X_{f}\right)_{\mathbb{F}}$ sending C to $\left(C_{f}\right)_{\text {horiz }}$.
Proof of Theorem 1.1. The proof is as in [1. Theorem 1.6], adjusting the notion of horizontal components.

References

[1] F. Charles and B. Poonen, Bertini irreducibility theorems over finite fields, J. Am. Math. Soc. 29 (2016), no. 1, 81-94.
[2] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Providence, RI: American Mathematical Society (AMS), 2011.
[3] N. Lindner, Density of quasismooth hypersurfaces in simplicial toric varieties (2014), available at arXiv: 1409.6506. To appear in J. Théor. Nombres Bordeaux.
[4] B. Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099-1127.

