Berlin Mathematics Research Center

On the tropical and zonotopal geometry of periodic timetabling

Enrico Bortoletto, <u>Niels Lindner</u>, Berenike Masing Zuse Institute Berlin

Research Seminar on Discrete and Convex Geometry @ TU Berlin

May 18, 2022

Part 1

Periodic Timetabling in Public Transport

A Line Network

berlintransitmap.de

From Line Networks to Event-Activity Networks

Line Network, 3 bidirectional lines

ZIB

From Line Networks to Event-Activity Networks

Event-Activity Network

From Line Networks to Event-Activity Networks

Event-Activity Network

Events:

- arrival
- departure

Activities:

- \rightarrow drive, dwell, turn
- ightarrow transfer

• • •

ZIB

Periodic Timetabling in Public Transport

Periodic Event Scheduling Instance

Bounds:

- driving times
- minimum transfer times
- maximum dwell times
- minimum headway times

Weights:

. . .

- passenger load
- turnaround penalties

Period time:

. . .

• e.g., T = 60 for 1 hour, resolution of 1 minute

Given

- G = (V, A) event-activity network,
- $T \in \mathbb{N}$ period time,
- $\ell \in \mathbb{R}^{A}$ lower bounds,
- $u \in \mathbb{R}^{A}$ upper bounds,
- $w \in \mathbb{R}^{A}_{\geq 0}$ weights,

find

 $\pi \in [0, T)^{V}$ periodic timetable, $x \in \mathbb{R}^{A}$ periodic tension

such that

- (1) $\pi_j \pi_i \equiv x_{ij} \mod T$ for all $ij \in A$,
- (2) $\ell \leq x \leq u$,
- (3) $w^{\top}x$ is minimum,
- or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Mi s.t.

Given	
G = (V, A)	event-activity network,
$T \in \mathbb{N}$	period time,
$\ell \in \mathbb{R}^{A}$	lower bounds,
$u \in \mathbb{R}^{A}$	upper bounds,
$w \in \mathbb{R}^{A}_{\geq 0}$	weights,
find	

шu

 $\pi \in [0, T)^V$ periodic timetable, $x \in \mathbb{R}^{A}$ periodic tension

such that

(1) $\pi_i - \pi_i \equiv x_{ii} \mod T$ for all $ij \in A$, (2) $\ell < x < u$,

(3) $w^{\top}x$ is minimum,

or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Niels Lindner: On the tropical and zonotopal geometry of periodic timetabling

Incidence-based MIP formulation:

nimize	$w^{ op}x$	
	$\pi_j - \pi_i = \mathbf{x}_{ij} - \mathbf{T}\mathbf{p}_{ij},$	$ij \in A$,
	$\ell_{ij} \leq x_{ij} \leq u_{ij},$	$ij \in A$,
	$\pi_i \in \mathbb{R},$	$i \in V$,
	$p_{ij}\in\mathbb{Z},$	$ij \in A$.

 $p \in \mathbb{Z}^A$ periodic offsets

GivenG = (V, A)event-activity network, $T \in \mathbb{N}$ period time, $\ell \in \mathbb{R}^A$ lower bounds, $u \in \mathbb{R}^A$ upper bounds, $w \in \mathbb{R}^{A}_{\geq 0}$ weights,

find

 $\pi \in [0, T)^{V}$ periodic timetable, $x \in \mathbb{R}^{A}$ periodic tension

such that

- (1) $\pi_j \pi_i \equiv x_{ij} \mod T$ for all $ij \in A$,
- (2) $\ell \leq x \leq u$,
- (3) $w^{\top}x$ is minimum,

or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Incidence-based MIP formulation:

Minimize	$w^{ op}x$	
s.t.	$\pi_j - \pi_i = \mathbf{x}_{ij} - \mathbf{T}\mathbf{p}_{ij},$	$ij \in A$,
	$\ell_{ij} \leq x_{ij} \leq u_{ij},$	$ij \in A$,
	$\pi_i \in \mathbb{R},$	$i \in V$,
	$p_{ij}\in\mathbb{Z},$	$ij \in A$.

 $p \in \mathbb{Z}^A$ periodic offsets

Assumptions after preprocessing:

- G is weakly (2-)connected
- G has no arc $a \in A$ with $\ell_a = u_a$
- $0 \le \ell < T$ and $0 \le u \ell < T$

GivenG = (V, A)event-activity network, $T \in \mathbb{N}$ period time, $\ell \in \mathbb{R}^A$ lower bounds, $u \in \mathbb{R}^A$ upper bounds, $w \in \mathbb{R}^{A}_{>0}$ weights,

find

 $\pi \in [0, T)^{V}$ periodic timetable, $x \in \mathbb{R}^{A}$ periodic tension

such that

- (1) $\pi_j \pi_i \equiv x_{ij} \mod T$ for all $ij \in A$,
- (2) $\ell \leq x \leq u$,
- (3) $w^{\top}x$ is minimum,

or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Incidence-based MIP formulation:

Minimize	$w^{\top}x$	
s.t.	$\pi_j - \pi_i = \mathbf{x}_{ij} - \mathbf{T}\mathbf{p}_{ij},$	$ij \in A$,
	$\ell_{ij} \leq x_{ij} \leq u_{ij},$	$ij \in A$,
	$\pi_i \in \mathbb{R},$	$i \in V$,
	$p_{ij}\in\mathbb{Z},$	$ij \in A$.

 $p \in \mathbb{Z}^A$ periodic offsets

Redundancy among periodic offsets *p*:

- could impose $0 \le \pi_i < T$ and $p_{ij} \in \{0, 1, 2\}$
- could set p_{ij} = 0 along spanning forest

(Nachtigall, 1994, Liebchen, 2006)

Theory:

 NP-hard for fixed *T* ≥ 3 (Odijk, 1994, Nachtigall, 1996)

Hardness of PESP

- ► NP-hard if G has treewidth ≥ 2 (L. and Reisch, 2020)
- NP-hard cutting plane separation (cycle, change-cycle, flip) (Borndörfer et al., 2020, L. and Liebchen, 2020)

Hardness of PESP

Theory:

- ► NP-hard for fixed T ≥ 3 (Odijk, 1994, Nachtigall, 1996)
- ► NP-hard if G has treewidth ≥ 2 (L. and Reisch, 2020)
- NP-hard cutting plane separation (cycle, change-cycle, flip) (Borndörfer et al., 2020, L. and Liebchen, 2020)

Practice:

- rich literature on algorithms:
 - MIP
 - CP
 - SAT (also MaxSAT and SAT+ML)
 - Modulo Network Simplex
 - Matching, Merging, Maximum Cuts, Graph Partitioning, . . .
- several success stories (Berlin, Copenhagen, Netherlands, Switzerland, ...)
- none of the 22 instances of PESPlib (est. 2012 by Goerigk) solved to proven optimality yet

Hardness of PESP

Theory:

- NP-hard for fixed T ≥ 3 (Odijk, 1994, Nachtigall, 1996)
- ► NP-hard if G has treewidth ≥ 2 (L. and Reisch, 2020)
- NP-hard cutting plane separation (cycle, change-cycle, flip) (Borndörfer et al., 2020, L. and Liebchen, 2020)

Practice:

- rich literature on algorithms:
 - MIP
 - CP
 - SAT (also MaxSAT and SAT+ML)
 - Modulo Network Simplex
 - Matching, Merging, Maximum Cuts, Graph Partitioning, . . .
- several success stories (Berlin, Copenhagen, Netherlands, Switzerland, ...)
- none of the 22 instances of PESPlib (est. 2012 by Goerigk) solved to proven optimality yet

Summary: There are many ways to heuristically optimize periodic timetables, but it is hard to assess the actual quality.

Question: Can we get more insight by studying the geometry of periodic timetables?

oriented cycle: $\gamma \in \{-1, 0, 1\}^A$ s.t. $\{a \in A \mid \gamma_a \neq 0\}$ is a cycle when ignoring orientations

$$egin{aligned} &\gamma = (\gamma_{v_0 v_1}, \gamma_{v_0 v_2}, \gamma_{v_1 v_2}) \ &= (1, -1, 1) \end{aligned}$$

oriented cycle: $\gamma \in \{-1, 0, 1\}^A$ s.t. $\{a \in A \mid \gamma_a \neq 0\}$ is a cycle when ignoring orientations forward/backward arcs: $\gamma_a = 1$: forward arc, $\gamma_a = -1$: backward arc can decompose $\gamma = \gamma_+ - \gamma_-$ into forward/backward part, $\gamma_+, \gamma_- \in \{0, 1\}^A$

$$egin{aligned} &\gamma = (\gamma_{m{v}_0m{v}_1}, \gamma_{m{v}_0m{v}_2}, \gamma_{m{v}_1m{v}_2}) \ &= (1, -1, 1) \end{aligned}$$

 $egin{aligned} &\gamma_+ = (1,0,1) \ &\gamma_- = (0,1,0) \end{aligned}$

$$egin{aligned} &\gamma = (\gamma_{v_0 v_1}, \gamma_{v_0 v_2}, \gamma_{v_1 v_2}) \ &= (1, -1, 1) \end{aligned}$$

 $egin{array}{ll} \gamma_+ = (1,0,1) \ \gamma_- = (0,1,0) \end{array}$

$$\mathcal{C} = \mathbb{Z} \cdot \gamma$$

oriented cycle: $\gamma \in \{-1, 0, 1\}^A$ s.t. $\{a \in A \mid \gamma_a \neq 0\}$ is a cycle when ignoring orientations

forward/backward arcs:

 $\gamma_a =$ 1: forward arc, $\gamma_a = -1$: backward arc

can decompose $\gamma=\gamma_+-\gamma_-$ into forward/backward part, $\gamma_+,\gamma_-\in\{0,1\}^{\!A}$

cycle space:

abelian group $\mathcal{C} \subseteq \mathbb{Z}^A$ generated by all oriented cycles

$$egin{aligned} &\gamma = (\gamma_{v_0v_1}, \gamma_{v_0v_2}, \gamma_{v_1v_2}) \ &= (1, -1, 1) \end{aligned}$$

 $\gamma_+ = (1,0,1)$

 $\gamma_-=(0,1,0)$

$$\mathcal{C} = \mathbb{Z} \cdot \gamma$$

 $\mu = 3 - 3 + 1 = 1$

oriented cycle: $\gamma \in \{-1, 0, 1\}^A$ s.t. $\{a \in A \mid \gamma_a \neq 0\}$ is a cycle when ignoring orientations forward/backward arcs: $\gamma_a = 1$: forward arc, $\gamma_a = -1$: backward arc can decompose $\gamma = \gamma_+ - \gamma_-$ into forward/backward part, $\gamma_+, \gamma_- \in \{0, 1\}^A$

cycle space:

abelian group $\mathcal{C} \subseteq \mathbb{Z}^{A}$ generated by all oriented cycles

cyclomatic number: $\mu := \operatorname{rk}(\mathcal{C}) = m - n + c$ (if *G* has *n* vertices, *m* arcs, *c* components)

$$egin{aligned} &\gamma = (\gamma_{v_0v_1}, \gamma_{v_0v_2}, \gamma_{v_1v_2}) \ &= (1, -1, 1) \end{aligned}$$

 $\gamma_+ = (1,0,1)$

 $\gamma_-=(0,1,0)$

 $\mathcal{C} = \mathbb{Z} \cdot \gamma$

 $\mathcal{B} = \{\gamma\}$

 $\mu = 3 - 3 + 1 = 1$

oriented cycle: $\gamma \in \{-1, 0, 1\}^A$ s.t. $\{a \in A \mid \gamma_a \neq 0\}$ is a cycle when ignoring orientations forward/backward arcs: $\gamma_a = 1$: forward arc, $\gamma_a = -1$: backward arc can decompose $\gamma = \gamma_+ - \gamma_-$ into forward/backward part, $\gamma_+, \gamma_- \in \{0, 1\}^A$

cycle space:

abelian group $\mathcal{C}\subseteq\mathbb{Z}^{A}$ generated by all oriented cycles

cyclomatic number:

 $\mu := \mathsf{rk}(\mathcal{C}) = m - n + c$

(if G has n vertices, m arcs, c components)

integral cycle basis:

set ${\mathcal B}$ of μ oriented cycles generating ${\mathcal C}$ as abelian group

$$egin{aligned} &\gamma = (\gamma_{v_0 v_1}, \gamma_{v_0 v_2}, \gamma_{v_1 v_2}) \ &= (1, -1, 1) \end{aligned}$$

 $\gamma_{+} = (1, 0, 1)$

 $\gamma_-=(0,1,0)$

 $\mathcal{C} = \mathbb{Z} \cdot \gamma$

 $\mu = 3 - 3 + 1 = 1$

 $\mathcal{B} = \{\gamma\}$

 $\Gamma = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$

oriented cycle: $\gamma \in \{-1, 0, 1\}^A$ s.t. $\{a \in A \mid \gamma_a \neq 0\}$ is a cycle when ignoring orientations forward/backward arcs: $\gamma_a = 1$: forward arc, $\gamma_a = -1$: backward arc

can decompose $\gamma=\gamma_+-\gamma_-$ into forward/backward part, $\gamma_+,\gamma_-\in\{0,1\}^A$

cycle space:

abelian group $\mathcal{C}\subseteq \mathbb{Z}^{\text{A}}$ generated by all oriented cycles

cyclomatic number:

 $\mu := \mathsf{rk}(\mathcal{C}) = m - n + c$

(if G has n vertices, m arcs, c components)

integral cycle basis: set \mathcal{B} of μ oriented cycles generating \mathcal{C} as abelian group

cycle matrix of an integral cycle basis \mathcal{B} : matrix $\Gamma \in \{-1, 0, 1\}^{\mathcal{B} \times A}$ with the vectors in \mathcal{B} as rows

Theorem (Cycle periodicity property)

Let G = (V, A) be a digraph with incidence matrix $B \in \{-1, 0, 1\}^{V \times A}$. Let Γ be the cycle matrix of an integral cycle basis \mathcal{B} of G. Then, as \mathbb{Z} -modules,

im
$$B^{\top} = \ker \Gamma$$
.

For friends of graph cohomology: The following sequence is exact:

$$0 \to \mathbb{Z}^{\mathsf{C}} \to \mathbb{Z}^{\mathsf{V}} \xrightarrow{B^{\mathsf{T}}} \mathbb{Z}^{\mathsf{A}} \xrightarrow{\mathsf{\Gamma}} \mathbb{Z}^{\mathcal{B}} \to 0$$

This is a standard linear algebra result over fields, the proof over \mathbb{Z} uses the total unimodularity of the incidence matrix.

Theorem (Cycle periodicity property)

Let G = (V, A) be a digraph with incidence matrix $B \in \{-1, 0, 1\}^{V \times A}$. Let Γ be the cycle matrix of an integral cycle basis \mathcal{B} of G. Then, as \mathbb{Z} -modules,

im
$$B^{\top} = \ker \Gamma$$
.

For friends of graph cohomology: The following sequence is exact:

$$0 \to \mathbb{Z}^{\mathsf{C}} \to \mathbb{Z}^{\mathsf{V}} \xrightarrow{B^{\mathsf{T}}} \mathbb{Z}^{\mathsf{A}} \xrightarrow{\mathsf{\Gamma}} \mathbb{Z}^{\mathcal{B}} \to 0$$

This is a standard linear algebra result over fields, the proof over \mathbb{Z} uses the total unimodularity of the incidence matrix.

Corollary (Liebchen, Peeters, 2009)

Let $x \in \mathbb{R}^A$ and $T \in \mathbb{N}$. Then the following are equivalent:

- (1) There is a vector $\pi \in \mathbb{R}^{V}$ such that $x_{ij} \equiv \pi_j \pi_i \mod T$ for all $ij \in A$.
- (2) $\Gamma x \equiv 0 \mod T$.

MIP Formulations and Spaces of Interest

MIP Formulations

Incidence-based MIP formulation:

Minimize $w^{\top}x$ s.t. $-B^{\top}\pi = x - Tp$ $\ell \leq x \leq u$ $\pi \in \mathbb{R}^{V}$ $p \in \mathbb{Z}^{A}$

 $w^{\top}x$

MIP Formulations

Minimize

Minimize $-B^{\top}\pi = x - Tp$ s.t. s.t. $\ell < x < u$ $\ell < x < u$ $\pi \in \mathbb{R}^{V}$ $p \in \mathbb{Z}^{A}$ $z \in \mathbb{Z}^{\mathcal{B}}$ cycle offsets

May 18, 2022

 $w^{\top}x$

 $z \in \mathbb{Z}^{\mathcal{B}}$

 $\Gamma x = Tz$

 $w^{\top}x$ Minimize $w^{\top}x$ Minimize $-B^{\top}\pi = x - Tp$ s.t. s.t. $\Gamma x = Tz$ $\ell < x < u$ $\ell < x < u$ $\pi \in \mathbb{R}^{V}$ $z \in \mathbb{Z}^{\mathcal{B}}$ $p \in \mathbb{Z}^A$ $z \in \mathbb{Z}^{\mathcal{B}}$ cycle offsets

Timetabling Spaces

MIP Formulations

 $X := \operatorname{conv} \left\{ x \in \mathbb{R}^{A} \mid \exists z \in \mathbb{Z}^{\mathcal{B}} : \Gamma x = Tz, \ell \leq x \leq u \right\}$ convex hull of feas. periodic tensions $\Pi := \{ \pi \in \mathbb{R}^{V} \mid \exists p \in \mathbb{Z}^{A} : \ell < -B^{\top}\pi + Tp < u \}$ space of feasible periodic timetables $Z := \{ z \in \mathbb{R}^{\mathcal{B}} \mid \exists x \in \mathbb{R}^{\mathcal{A}} : \Gamma x = Tz, \ell < x < u \}$ space of feasible cycle offsets

MIP Formulations and Spaces of Interest

PESP instance with $n = 3, m = 3, \mu = 1$

PESP instance with $n = 3, m = 3, \mu = 1$

X is a polytope \rightsquigarrow standard toolbox of mixed-integer linear programming

PESP instance with $n = 3, m = 3, \mu = 1$

 $\Pi/\mathbb{R} \boldsymbol{1}$ is periodically tiled by polyt(r)opes

X is a polytope → standard toolbox of mixed-integer linear programming

PESP instance with $n = 3, m = 3, \mu = 1$

 $\Pi/\mathbb{R} \boldsymbol{1}$ is periodically tiled by polyt(r)opes

Part 2

The Tropical Tiling of the Space of Periodic Timetables

Decomposition

Recall that the space of feasible periodic timetables is

$$\Pi := \{ \pi \in \mathbb{R}^{V} \mid \exists p \in \mathbb{Z}^{A} : \ell \leq -B^{\top}\pi + Tp \leq u \}.$$

The space Π decomposes into polyhedral regions:

$$\Box = \bigcup_{p \in \mathbb{Z}^A} R(p), \quad \text{where } R(p) := \{ \pi \in \mathbb{R}^V \mid \ell - Tp \leq -B^\top \pi \leq u - Tp \}.$$

Due to the assumption $0 \le u - \ell < T$, the union is disjoint.

Decomposition

Recall that the space of feasible periodic timetables is

$$\Pi := \{ \pi \in \mathbb{R}^{V} \mid \exists p \in \mathbb{Z}^{A} : \ell \leq -B^{\top}\pi + Tp \leq u \}.$$

The space Π decomposes into polyhedral regions:

$$\Pi = \bigcup_{p \in \mathbb{Z}^A} R(p), \quad \text{where } R(p) := \{ \pi \in \mathbb{R}^V \mid \ell - Tp \le -B^\top \pi \le u - Tp \}.$$

Due to the assumption $0 \le u - \ell < T$, the union is disjoint.

Weighted Digraph Polyhedra

Add a reverse copy \overline{a} of each arc a. This produces a new graph $\overline{G} = (\overline{V}, \overline{A})$ with $\overline{V} = V$. If we set $\kappa(p)_a := u_a - Tp_a$ and $\kappa(p)_{\overline{a}} := -\ell_a + Tp_a$, then

$$R(p) = \{ \pi \in \mathbb{R}^{\overline{V}} \mid \pi_j - \pi_i \leq \kappa(p)_{ij} \text{ for all } ij \in \overline{A} \}.$$

This means that R(p) is the *weighted digraph polyhedron* (Joswig, Loho, 2016) associated to $(\overline{G}, \kappa(p))$. In combinatorial optimization terms, R(p) is the polyhedron of feasible potentials in \overline{G} w.r.t. the arc costs $\kappa(p)$.

A First Symmetry

Since G was assumed to be weakly connected, \overline{G} is strongly connected. This means by (Joswig, Loho, 2016):

- ▶ The recession cone of R(p) is $\mathbb{R}\mathbf{1}$ (i.e., the kernel of B^{\top}).
- The quotient $R(p)/\mathbb{R}\mathbf{1}$ is a polytope.

Choosing coordinates on $R(p)/\mathbb{R}\mathbf{1}$ amounts to the periodic timetabler's wisdom that a timetable π can be fixed at one event $v_0 \in V$ to $\pi_{v_0} := 0$ without affecting feasiblity or optimality.

A First Symmetry

Since G was assumed to be weakly connected, \overline{G} is strongly connected. This means by (Joswig, Loho, 2016):

- ▶ The recession cone of R(p) is $\mathbb{R}\mathbf{1}$ (i.e., the kernel of B^{\top}).
- The quotient $R(p)/\mathbb{R}\mathbf{1}$ is a polytope.

Choosing coordinates on $R(p)/\mathbb{R}\mathbf{1}$ amounts to the periodic timetabler's wisdom that a timetable π can be fixed at one event $v_0 \in V$ to $\pi_{v_0} := 0$ without affecting feasiblity or optimality.

Polytropes

A *polytrope* is the convex hull of finitely many points, both in the ordinary and the tropical sense. Polytropes are exactly the quotients of weighted digraph polyhedra of strongly connected digraphs by $\mathbb{R}\mathbf{1}$ (Joswig, Kulas, 2010).

Since G was assumed to be weakly connected, \overline{G} is strongly connected. This means by (Joswig, Loho, 2016):

- ▶ The recession cone of R(p) is $\mathbb{R}\mathbf{1}$ (i.e., the kernel of B^{\top}).
- The quotient $R(p)/\mathbb{R}\mathbf{1}$ is a polytope.

Choosing coordinates on $R(p)/\mathbb{R}\mathbf{1}$ amounts to the periodic timetabler's wisdom that a timetable π can be fixed at one event $v_0 \in V$ to $\pi_{v_0} := 0$ without affecting feasiblity or optimality.

Polytropes

A *polytrope* is the convex hull of finitely many points, both in the ordinary and the tropical sense. Polytropes are exactly the quotients of weighted digraph polyhedra of strongly connected digraphs by $\mathbb{R}1$ (Joswig, Kulas, 2010).

Corollary

The space $\Pi/\mathbb{R}\mathbf{1}$ decomposes into the disjoint union of the polytropes $R(p)/\mathbb{R}\mathbf{1}$.

The Periodic Timetabling Torus

Periodicity: If $\pi \in \Pi$, then $\pi + Tq \in \Pi$ for all $q \in \mathbb{Z}^{V}$. Consequently, we could consider the space of timetables inside the (n - 1)-dimensional torus

$$\mathcal{T} := (\mathbb{R}^V/(T\mathbb{Z})^V)/\mathbb{R}\mathbf{1}.$$

The Periodic Timetabling Torus

Periodicity: If $\pi \in \Pi$, then $\pi + Tq \in \Pi$ for all $q \in \mathbb{Z}^{V}$. Consequently, we could consider the space of timetables inside the (n - 1)-dimensional torus

 $\mathcal{T} := (\mathbb{R}^{V}/(T\mathbb{Z})^{V})/\mathbb{R}\mathbf{1}.$

Redundancy of periodic offsets: $R(p) \equiv R(p')$ on \mathcal{T} iff $\Gamma p = \Gamma p'$. We can hence denote R(p)modulo \mathcal{T} by $\mathbf{R}(z)$, where $z := \Gamma p \in \mathbb{Z}^{\mathcal{B}}$.

The Periodic Timetabling Torus

Periodicity: If $\pi \in \Pi$, then $\pi + Tq \in \Pi$ for all $q \in \mathbb{Z}^{V}$. Consequently, we could consider the space of timetables inside the (n - 1)-dimensional torus

 $\mathcal{T} := (\mathbb{R}^{V}/(T\mathbb{Z})^{V})/\mathbb{R}\mathbf{1}.$

Redundancy of periodic offsets: $R(p) \equiv R(p')$ on \mathcal{T} iff $\Gamma p = \Gamma p'$. We can hence denote R(p)modulo \mathcal{T} by $\mathbf{R}(z)$, where $z := \Gamma p \in \mathbb{Z}^{\mathcal{B}}$.

In our example,

$$z = \frac{\Gamma x}{T} \le \left\lfloor \frac{12 - 2 + 13}{10} \right\rfloor = 2,$$
$$z = \frac{\Gamma x}{T} \ge \left\lceil \frac{3 - 10 + 4}{10} \right\rceil = 0,$$

so there are at most 3 non-empty polytropes on the torus (for $z \in \{0, 1, 2\}$).

The Periodic Timetabling Torus

Periodicity: If $\pi \in \Pi$, then $\pi + Tq \in \Pi$ for all $q \in \mathbb{Z}^{V}$. Consequently, we could consider the space of timetables inside the (n - 1)-dimensional torus

 $\mathcal{T} := (\mathbb{R}^{V}/(T\mathbb{Z})^{V})/\mathbb{R}\mathbf{1}.$

Redundancy of periodic offsets: $R(p) \equiv R(p')$ on \mathcal{T} iff $\Gamma p = \Gamma p'$. We can hence denote R(p)modulo \mathcal{T} by $\mathbf{R}(z)$, where $z := \Gamma p \in \mathbb{Z}^{\mathcal{B}}$.

In our example,

$$z = \frac{\Gamma x}{T} \le \left\lfloor \frac{12 - 2 + 13}{10} \right\rfloor = 2,$$
$$z = \frac{\Gamma x}{T} \ge \left\lceil \frac{3 - 10 + 4}{10} \right\rceil = 0,$$

so there are at most 3 non-empty polytropes on the torus (for $z \in \{0, 1, 2\}$).

Dimension

- ▶ $R(p) = \emptyset$ if and only if \overline{G} contains a negative weight (directed) cycle w.r.t. $\kappa(p)$.
- ► The dimension of $R(p)/\mathbb{R}\mathbf{1}$ is the number of connected components of the equality graph of $(\overline{G}, \kappa(p))$ minus 1 (Joswig, Loho, 2016).

Dimension

- ▶ $R(p) = \emptyset$ if and only if \overline{G} contains a negative weight (directed) cycle w.r.t. $\kappa(p)$.
- ► The dimension of $R(p)/\mathbb{R}\mathbf{1}$ is the number of connected components of the equality graph of $(\overline{G}, \kappa(p))$ minus 1 (Joswig, Loho, 2016).

Vertices

- Every vertex of $R(p)/\mathbb{R}\mathbf{1}$ corresponds to a unique spanning subgraph of \overline{G} .
- For each $i \in V$, the *i*-th tropical vertex of $R(p)/\mathbb{R}\mathbf{1}$ corresponds to a shortest path tree of $(\overline{G}, \kappa(p))$ rooted at *i*. (Joswig, Kulas, 2010).

Dimension

- ▶ $R(p) = \emptyset$ if and only if \overline{G} contains a negative weight (directed) cycle w.r.t. $\kappa(p)$.
- ► The dimension of $R(p)/\mathbb{R}\mathbf{1}$ is the number of connected components of the equality graph of $(\overline{G}, \kappa(p))$ minus 1 (Joswig, Loho, 2016).

Vertices

- Every vertex of $R(p)/\mathbb{R}\mathbf{1}$ corresponds to a unique spanning subgraph of \overline{G} .
- For each $i \in V$, the *i*-th tropical vertex of $R(p)/\mathbb{R}\mathbf{1}$ corresponds to a shortest path tree of $(\overline{G}, \kappa(p))$ rooted at *i*. (Joswig, Kulas, 2010).

Relation to the Periodic Tension Polytope

- The map $m_p : \pi \mapsto -B^{\top}\pi + Tp$ embeds $R(p)/\mathbb{R}\mathbf{1}$ into X.
- ► *X* is the convex hull of $\{im(m_p) \mid p \in \mathbb{Z}^A\}$.
- ▶ im (m_p) is the intersection of the affine space im $(B^{\top}) + Tp$ with the LP relaxation polytope $X_{LP} = \prod_{a \in A} [\ell_a, u_a]$ of X.

Tropical Neighborhood Search

ZIB

Polytropes in the Limit Instance

Let $R(p)/\mathbb{R}\mathbf{1}$ be a polytrope. The offset p also defines a polytrope $R'(p)/\mathbb{R}\mathbf{1}$ a of the "limit" instance where $u := \ell + T$. The union of the polytropes is then no longer disjoint and covers all of $\mathbb{R}^V/\mathbb{R}\mathbf{1}$.

Polytropes in the Limit Instance

Let $R(p)/\mathbb{R}\mathbf{1}$ be a polytrope. The offset p also defines a polytrope $R'(p)/\mathbb{R}\mathbf{1}$ a of the "limit" instance where $u := \ell + T$. The union of the polytropes is then no longer disjoint and covers all of $\mathbb{R}^V/\mathbb{R}\mathbf{1}$.

Lemma

Let $p, p' \in \mathbb{Z}^A$. Then $R'(p)/\mathbb{R} \mathbf{1} \cap R'(p')/\mathbb{R} \mathbf{1} \neq \emptyset$ if and only if there is an arc $a \in A$ with $p = p' \pm e_a$. In this case, the polytropes intersect in a common face.

In particular, the R'(p) give rise to a polyt(r)opal subdivision of $\mathbb{R}^{V}/\mathbb{R}\mathbf{1}$.

Polytropes in the Limit Instance

Let $R(p)/\mathbb{R}\mathbf{1}$ be a polytrope. The offset p also defines a polytrope $R'(p)/\mathbb{R}\mathbf{1}$ a of the "limit" instance where $u := \ell + T$. The union of the polytropes is then no longer disjoint and covers all of $\mathbb{R}^V/\mathbb{R}\mathbf{1}$.

Lemma

Let $p, p' \in \mathbb{Z}^A$. Then $R'(p)/\mathbb{R}\mathbf{1} \cap R'(p')/\mathbb{R}\mathbf{1} \neq \emptyset$ if and only if there is an arc $a \in A$ with $p = p' \pm e_a$. In this case, the polytropes intersect in a common face. In particular, the R'(p) give rise to a polyt(r)opal subdivision of $\mathbb{R}^V/\mathbb{R}\mathbf{1}$.

Neighbors

We call $R(p)/\mathbb{R}1$ and $R(p')/\mathbb{R}1$ neighbors if $R'(p)/\mathbb{R}1$ and $R'(p')/\mathbb{R}1$ intersect in a common facet.

Polytropes in the Limit Instance

Let $R(p)/\mathbb{R}\mathbf{1}$ be a polytrope. The offset p also defines a polytrope $R'(p)/\mathbb{R}\mathbf{1}$ a of the "limit" instance where $u := \ell + T$. The union of the polytropes is then no longer disjoint and covers all of $\mathbb{R}^V/\mathbb{R}\mathbf{1}$.

Lemma

Let $p, p' \in \mathbb{Z}^A$. Then $R'(p)/\mathbb{R} \mathbf{1} \cap R'(p')/\mathbb{R} \mathbf{1} \neq \emptyset$ if and only if there is an arc $a \in A$ with $p = p' \pm e_a$. In this case, the polytropes intersect in a common face.

In particular, the R'(p) give rise to a polyt(r)opal subdivision of $\mathbb{R}^V/\mathbb{R}\mathbf{1}$.

Neighbors

We call $R(p)/\mathbb{R}\mathbf{1}$ and $R(p')/\mathbb{R}\mathbf{1}$ neighbors if $R'(p)/\mathbb{R}\mathbf{1}$ and $R'(p')/\mathbb{R}\mathbf{1}$ intersect in a common facet.

Tropical Neighborhood Search for Periodic Timetabling

Given a non-empty polytrope $R(p)/\mathbb{R}\mathbf{1}$, solve PESP on $R(p)/\mathbb{R}\mathbf{1}$ (this is a linear program, and dual to uncapacitated min cost flow). While there is an improving neighbor of $R(p)/\mathbb{R}\mathbf{1}$: Go to the best neighboring polytrope, and repeat.

Tropical Neighborhood Search

modulo network simplex search space colored by objective value squares are local non-global optima

tropical neighborhood search space colored by objective value

Part 3

The Zonotope of Cycle Offsets

Zonotopes

A zonotope Z(M, b) is the image of a (hyper)cube w.r.t. an affine map $x \mapsto Mx + b$. In particular, the space of feasible cycle offsets of a PESP instance with a chosen cycle basis \mathcal{B} and a cycle matrix Γ ,

$$Z := \{z \in \mathbb{R}^{\mathcal{B}} \mid \exists x \in \mathbb{R}^{\mathcal{A}} : \Gamma x = Tz, \ell \leq x \leq u\} = \frac{1}{T} \Gamma(X_{\mathsf{LP}}) = \frac{1}{T} \Gamma\left(\prod_{a \in \mathcal{A}} [\ell_a, u_a]\right),$$

is a μ -dimensional zonotope: We can take $M := \Gamma'$, where Γ' is obtained from Γ by scaling each column a by $\frac{u_a - \ell_a}{T}$, and $b := \frac{\Gamma \ell}{T}$. We call Z a cycle offset zonotope.

Zonotopes

A zonotope Z(M, b) is the image of a (hyper)cube w.r.t. an affine map $x \mapsto Mx + b$. In particular, the space of feasible cycle offsets of a PESP instance with a chosen cycle basis \mathcal{B} and a cycle matrix Γ ,

$$Z := \{z \in \mathbb{R}^{\mathcal{B}} \mid \exists x \in \mathbb{R}^{\mathcal{A}} : \Gamma x = Tz, \ell \leq x \leq u\} = \frac{1}{T} \Gamma(X_{\mathsf{LP}}) = \frac{1}{T} \Gamma\left(\prod_{a \in \mathcal{A}} [\ell_a, u_a]\right),$$

is a μ -dimensional zonotope: We can take $M := \Gamma'$, where Γ' is obtained from Γ by scaling each column a by $\frac{u_a - \ell_a}{T}$, and $b := \frac{\Gamma \ell}{T}$. We call Z a cycle offset zonotope.

Zonotopal Tilings

A zonotopal tiling of a zonotope Z(M, b) is a polyhedral subdivision of Z(M, b) such that each cell is a zonotope $Z(M_S, b_S)$, where M_S is the submatrix of M with the colums indexed by S removed. We will call maximal cells *tiles*. A zonotopal tiling is *fine* if all tiles are parellelotopes, i.e., the columns of M_S are linearly independent.

Pictures of Cycle Offset Zonotopes

Pictures of Cycle Offset Zonotopes

Zonotopal Tilings of Cycle Offset Zonotopes

Let *Z* be a cycle offset zonotope of a PESP instance.

Lemma

The k-dimensional cells of any fine zonotopal tiling of Z are in bijection with spanning subgraphs of G consisting of m - k arcs. In particular, the tiles correspond one-to-one to spanning trees of G.

Proof sketch: Based on (Kavitha et al., 2009): A subset $S \subseteq A$ is spanning if and only if the submatrix of Γ on the columns not in S has rank m - |S|.

Let *Z* be a cycle offset zonotope of a PESP instance.

Lemma

The k-dimensional cells of any fine zonotopal tiling of Z are in bijection with spanning subgraphs of G consisting of m - k arcs. In particular, the tiles correspond one-to-one to spanning trees of G.

Proof sketch: Based on (Kavitha et al., 2009): A subset $S \subseteq A$ is spanning if and only if the submatrix of Γ on the columns not in S has rank m - |S|.

Corollary

Let \mathcal{S} denote the set of spanning trees of G. Then

$$\operatorname{vol}(Z) = \sum_{S \in S} \prod_{a \in A \setminus S} \frac{u_a - \ell_a}{T}.$$

Proof sketch: Every zonotope has a fine zonotopal tiling, each tile corresponds to a spanning tree, the volume of a parallelotope is the absolute value of a determinant of a $\mu \times \mu$ invertible submatrix of Γ' , any $\mu \times \mu$ -minor of Γ is in $\{-1, 0, 1\}$.

Relation to Timetabling Torus Polytropes

By a volume argument, and since \mathcal{B} is an integral cycle basis, we can show:

Theorem

Each tile of a fine zonotopal tiling of Z contains at most one lattice point. In particular, the number of lattice points in Z is at most the number of spanning trees of G.

Relation to Timetabling Torus Polytropes

By a volume argument, and since \mathcal{B} is an integral cycle basis, we can show:

Theorem

Each tile of a fine zonotopal tiling of Z contains at most one lattice point. In particular, the number of lattice points in Z is at most the number of spanning trees of G.

Lemma

The map $z \mapsto \mathbf{R}(z)$ is a bijection between the lattice points of Z and the non-empty polytropes in the decomposition of the timetable space in the torus \mathcal{T} .

We think of this as a kind of duality: Certain 0-dimensional objects (lattice points) correspond to top-dimensional objects (polytropes).

Relation to Timetabling Torus Polytropes

ZIB

By a volume argument, and since \mathcal{B} is an integral cycle basis, we can show:

Theorem

Each tile of a fine zonotopal tiling of Z contains at most one lattice point. In particular, the number of lattice points in Z is at most the number of spanning trees of G.

Lemma

The map $z \mapsto \mathbf{R}(z)$ is a bijection between the lattice points of Z and the non-empty polytropes in the decomposition of the timetable space in the torus \mathcal{T} .

We think of this as a kind of duality: Certain 0-dimensional objects (lattice points) correspond to top-dimensional objects (polytropes).

Corollary

There are at most as many non-empty polytropes in \mathcal{T} as there are spanning trees in G.

Question

Given a fine zonotopal tiling of Z, consider a tile labeled by a spanning tree S with a lattice point z. Is there a relation between S and $\mathbf{R}(z)$?

Question

Given a fine zonotopal tiling of Z, consider a tile labeled by a spanning tree S with a lattice point z. Is there a relation between S and $\mathbf{R}(z)$?

Structures and Faces of X_{LP}

A *structure* is a triple (S, L, U) of subsets of A such that $L \cup U = S$ and $L \cap U = \emptyset$. The structure (S, L, U) is a combinatorial encoding of the face

$$F_{L,U} := \{x \in X_{LP} \mid x_a = \ell_a \text{ for all } a \in L \text{ and } x_a = u_a \text{ for all } a \in U\}$$

of the "cube" X_{LP}.

Question

Given a fine zonotopal tiling of Z, consider a tile labeled by a spanning tree S with a lattice point z. Is there a relation between S and $\mathbf{R}(z)$?

Structures and Faces of X_{LP}

A *structure* is a triple (S, L, U) of subsets of A such that $L \cup U = S$ and $L \cap U = \emptyset$. The structure (S, L, U) is a combinatorial encoding of the face

$$F_{L,U} := \{ x \in X_{LP} \mid x_a = \ell_a \text{ for all } a \in L \text{ and } x_a = u_a \text{ for all } a \in U \}$$

of the "cube" X_{LP}.

Lemma

Fix a fine zonotopal tiling of Z. Then for any cell C defined by some spanning subgraph S, there is a structure (S, L, U) such that $C = \frac{1}{T}\Gamma(F_{L,U})$.

Proof sketch: It is non-trivial to check that the translation vectors match. This follows from a formula given by (Richter-Gebert, Ziegler, 1994).

Theorem

Given a fine zonotopal tiling of Z, let C be a tile defined by a spanning tree S and given by the image of $F_{L,U}$. If C contains a lattice point z, then $\mathbf{R}(z)$ contains a vertex defined by the spanning subgraph in \overline{G} defined by (S, L, U).

We see this as duality as well: A top-dimensional object (tile) gives rise to a 0-dimensional object (polytrope vertex).

Theorem

Given a fine zonotopal tiling of Z, let C be a tile defined by a spanning tree S and given by the image of $F_{L,U}$. If C contains a lattice point z, then $\mathbf{R}(z)$ contains a vertex defined by the spanning subgraph in \overline{G} defined by (S, L, U).

We see this as duality as well: A top-dimensional object (tile) gives rise to a 0-dimensional object (polytrope vertex).

Question

Can we construct a zonotopal tiling by picking vertices from each non-empty polytrope $\mathbf{R}(z)$ in some compatible way?

Construction: From Tropical Vertices to Tiles

For a vertex $i \in V$, define the polyhedron $P_i := X_{LP} + pos(\widehat{B_i^{\top}})$.

Theorem

- (1) Every bounded face of P_i is a face $F_{L,U}$ of X_{LP} .
- (2) Every bounded face $F_{L,U}$ of P_i corresponds to a structure (S, L, U) such that S is spanning. In particular, dim $F_{L,U} \leq \mu$.
- (3) The bounded faces of P_i correspond bijectively to arborescences in \overline{G} rooted at i.
- (4) $\frac{1}{T}\Gamma$ maps the bounded faces of P_i to the tiles of a fine zonotopal tiling of Z.

Remarks on the proof: (1) is straightforward, (2) and (3) use network flows, and (4) is a volume argument.

Construction: From Tropical Vertices to Tiles

For a vertex $i \in V$, define the polyhedron $P_i := X_{LP} + pos(\widehat{B_i^{\top}})$.

Theorem

- (1) Every bounded face of P_i is a face $F_{L,U}$ of X_{LP} .
- (2) Every bounded face $F_{L,U}$ of P_i corresponds to a structure (S, L, U) such that S is spanning. In particular, dim $F_{L,U} \leq \mu$.
- (3) The bounded faces of P_i correspond bijectively to arborescences in \overline{G} rooted at i.
- (4) $\frac{1}{7}\Gamma$ maps the bounded faces of P_i to the tiles of a fine zonotopal tiling of Z.

Remarks on the proof: (1) is straightforward, (2) and (3) use network flows, and (4) is a volume argument.

Corollary

Let $i \in V$. Then there is a fine zonotopal tiling of Z such that any tile containing an integer point z corresponds to a spanning tree structure defined by the *i*-th tropical vertex of $\mathbf{R}(z)$.

Pictures of the Construction

Minimum Width Integral Cycle Bases

The *width* of an integral cycle basis \mathcal{B} is (Liebchen, Peeters, 2009)

$$W_{\mathcal{B}} := \prod_{\gamma \in \mathcal{B}} \left(\left\lfloor \frac{\gamma_{+}^{\top} u - \gamma_{-}^{\top} \ell}{T} \right\rfloor - \left\lceil \frac{\gamma_{+}^{\top} \ell - \gamma_{-}^{\top} u}{T} \right\rceil + 1 \right)$$

▶ By construction, *W*^B is an upper bound on the number of lattice points in *Z*.

- \blacktriangleright $W_{\mathcal{B}}$ hence an upper bound on the number of leaves of a branch-and-bound tree.
- Finding an integral cycle basis of minimum width is hence desirable, but the complexity status is open.
- In practice, this is currently (heuristically) done by a minimum weight undirected cycle basis algorithm (Horton, 1987, de Pina, 1995).

Minimum Width Integral Cycle Bases

The *width* of an integral cycle basis \mathcal{B} is (Liebchen, Peeters, 2009)

$$W_{\mathcal{B}} := \prod_{\gamma \in \mathcal{B}} \left(\left\lfloor \frac{\gamma_{+}^{\top} u - \gamma_{-}^{\top} \ell}{T} \right\rfloor - \left\lceil \frac{\gamma_{+}^{\top} \ell - \gamma_{-}^{\top} u}{T} \right\rceil + 1 \right)$$

▶ By construction, *W*^B is an upper bound on the number of lattice points in *Z*.

- $W_{\mathcal{B}}$ hence an upper bound on the number of leaves of a branch-and-bound tree.
- Finding an integral cycle basis of minimum width is hence desirable, but the complexity status is open.
- In practice, this is currently (heuristically) done by a minimum weight undirected cycle basis algorithm (Horton, 1987, de Pina, 1995).

Lemma

 W_B is the number of lattice points in the smallest hyperrectangle containing the cycle offset zonotope Z.

In our two examples, $W_B = 3$ resp. $W_B = 12$. In both cases, W_B equals the number of spanning trees. Coincidence?

Cycle Bases, Spanning Trees, Approximating Width

Lemma (Zonotope volume vs. volume of smallest containing hyperrectangle) Let $d \in \mathbb{R}^{A}_{\geq 0}$. Then

$$\sum_{S\in\mathcal{S}}\left(\prod_{a\in\mathcal{A}\setminus S}d_a\right)\leq\prod_{\gamma\in\mathcal{B}}\left(\sum_{a\in\mathcal{A}:\gamma_a\neq 0}d_a\right).$$

Cycle Bases, Spanning Trees, Approximating Width

$$\sum_{S\in\mathcal{S}}\left(\prod_{a\in A\setminus S}d_a\right)\leq\prod_{\gamma\in\mathcal{B}}\left(\sum_{a\in A:\,\gamma_a\neq 0}d_a\right).$$

Corollary

For any graph G, the number |S| of spanning trees is at most the product of the lengths of the cycles in an integral cycle basis B of G.

Cycle Bases, Spanning Trees, Approximating Width

Lemma (Zonotope volume vs. volume of smallest containing hyperrectangle) Let $d \in \mathbb{R}^{A}_{\geq 0}$. Then

$$\sum_{S\in\mathcal{S}}\left(\prod_{a\in\mathcal{A}\setminus S}d_a\right)\leq\prod_{\gamma\in\mathcal{B}}\left(\sum_{a\in\mathcal{A}:\gamma_a\neq 0}d_a\right).$$

Corollary

For any graph G, the number |S| of spanning trees is at most the product of the lengths of the cycles in an integral cycle basis B of G.

Corollary

Suppose that $W_{\mathcal{B}} \ge 1$. Then

$$|\mathcal{S}| \cdot \left(\frac{\varepsilon}{T}\right)^{\mu} \leq \operatorname{vol}(Z) \leq \prod_{\gamma \in \mathcal{B}} s_{\gamma} \leq W_{\mathcal{B}} \cdot \prod_{\gamma \in \mathcal{B}} \frac{s_{\gamma}}{\max\{\lfloor s_{\gamma} \rfloor, 1\}} < W_{\mathcal{B}} \cdot 2^{\mu},$$

where $\varepsilon := \min\{u_{a} - \ell_{a} \mid a \in A\}$ and $s_{\gamma} := \sum_{a \in A: \gamma_{a} \neq 0} \frac{u_{a} - \ell_{a}}{T}.$

Niels Lindner: On the tropical and zonotopal geometry of periodic timetabling

Conclusion

- We connected the problem of periodic timetabling in public transport in a twofold way to discrete geometry: to polytropes and to zonotopes.
- There are close relationships between the polytropes and the zonotopes.
- Details: arXiv:2204.13501

Conclusion

- We connected the problem of periodic timetabling in public transport in a twofold way to discrete geometry: to polytropes and to zonotopes.
- There are close relationships between the polytropes and the zonotopes.
- Details: arXiv:2204.13501

Outlook

- We have implemented tropical neighborhood search (writing in progress).
- We are also working on a branch-and-bound heuristic for PESP using branching on tropical sectors.
- ► The cycle offset zonotope seems to be related to Benders decomposition.
- Big question: Can we turn the geometric insights into useful optimization techniques?
Berlin Mathematics Research Center

On the tropical and zonotopal geometry of periodic timetabling

Enrico Bortoletto, <u>Niels Lindner</u>, Berenike Masing Zuse Institute Berlin

Research Seminar on Discrete and Convex Geometry @ TU Berlin

May 18, 2022