

On the tropical and zonotopal geometry of periodic timetabling

Enrico Bortoletto, Niels Lindner, Berenike Masing Zuse Institute Berlin

Research Seminar on Discrete and Convex Geometry @ TU Berlin

May 18, 2022

Part 1

Periodic Timetabling in Public Transport

A Line Network

berlintransitmap.de

From Line Networks to Event-Activity Networks

Line Network, 3 bidirectional lines

From Line Networks to Event-Activity Networks

Event-Activity Network

From Line Networks to Event-Activity Networks

Events:

- arrival
- departure

Activities:
\rightarrow drive, dwell, turn
\rightarrow transfer

Event-Activity Network

Periodic Timetabling in Public Transport

Bounds:

- driving times
- minimum transfer times
- maximum dwell times
- minimum headway times

Weights:

- passenger load
- turnaround penalties
- ...

Period time:

- e.g., $T=60$ for 1 hour, resolution of 1 minute

Periodic Event Scheduling Problem (PESP)

Given

$G=(V, A)$	event-activity network,
$T \in \mathbb{N}$	period time,
$\ell \in \mathbb{R}^{A}$	lower bounds,
$u \in \mathbb{R}^{A}$	upper bounds,
$w \in \mathbb{R}_{\geq 0}^{A}$	weights,
find	
$\pi \in[0, T)^{V}$	periodic timetable,
$x \in \mathbb{R}^{A}$	periodic tension
such that	

(1) $\pi_{j}-\pi_{i} \equiv x_{i j} \bmod T$ for all $i j \in A$,
(2) $\ell \leq x \leq u$,
(3) $w^{\top} x$ is minimum,
or decide that no such (π, x) exists.

Periodic Event Scheduling Problem (PESP)

Given
$G=(V, A)$ event-activity network,
$T \in \mathbb{N} \quad$ period time,
$\ell \in \mathbb{R}^{A} \quad$ lower bounds,
$u \in \mathbb{R}^{A} \quad$ upper bounds,
$w \in \mathbb{R}_{\geq 0}^{A}$ weights,
find
$\pi \in[0, T)^{V} \quad$ periodic timetable,
$x \in \mathbb{R}^{A} \quad$ periodic tension
such that
(1) $\pi_{j}-\pi_{i} \equiv x_{i j} \bmod T$ for all $i j \in A$,
(2) $\ell \leq x \leq u$,
(3) $w^{\top} x$ is minimum,
or decide that no such (π, x) exists.

Incidence-based MIP formulation:
Minimize

$$
\begin{array}{rlrl}
w^{\top} x & & \\
\pi_{j}-\pi_{i} & =x_{i j}-T p_{i j}, & & i j \in A, \\
\ell_{i j} \leq x_{i j} \leq u_{i j}, & & i j \in A, \\
\pi_{i} \in \mathbb{R}, & & i \in V, \\
p_{i j} \in \mathbb{Z}, & & i j \in A .
\end{array}
$$

$p \in \mathbb{Z}^{A} \quad$ periodic offsets

Periodic Event Scheduling Problem (PESP)

Given
$G=(V, A)$ event-activity network,
$T \in \mathbb{N} \quad$ period time,
$\ell \in \mathbb{R}^{A} \quad$ lower bounds,
$u \in \mathbb{R}^{A} \quad$ upper bounds,
$w \in \mathbb{R}_{\geq 0}^{A} \quad$ weights,
find
$\pi \in[0, T)^{V} \quad$ periodic timetable,
$x \in \mathbb{R}^{A} \quad$ periodic tension
such that
(1) $\pi_{j}-\pi_{i} \equiv x_{i j} \bmod T$ for all $i j \in A$,
(2) $\ell \leq x \leq u$,
(3) $w^{\top} x$ is minimum,
or decide that no such (π, x) exists.

Incidence-based MIP formulation:
Minimize

$$
\begin{array}{rlrl}
w^{\top} x & & \\
\pi_{j}-\pi_{i} & =x_{i j}-T p_{i j}, & & i j \in A, \\
\ell_{i j} \leq x_{i j} \leq u_{i j}, & & i j \in A, \\
\pi_{i} \in \mathbb{R}, & & i \in V, \\
p_{i j} \in \mathbb{Z}, & & i j \in A .
\end{array}
$$

s.t.
$p \in \mathbb{Z}^{A} \quad$ periodic offsets
Assumptions after preprocessing:

- G is weakly (2-)connected
- G has no arc $a \in A$ with $\ell_{a}=u_{a}$
- $0 \leq \ell<T$ and $0 \leq u-\ell<T$

Periodic Event Scheduling Problem (PESP)

Given
$G=(V, A)$ event-activity network,
$T \in \mathbb{N} \quad$ period time,
$\ell \in \mathbb{R}^{A} \quad$ lower bounds,
$u \in \mathbb{R}^{A} \quad$ upper bounds,
$w \in \mathbb{R}_{\geq 0}^{A} \quad$ weights,
find
$\pi \in[0, T)^{V} \quad$ periodic timetable,
$x \in \mathbb{R}^{A} \quad$ periodic tension
such that
(1) $\pi_{j}-\pi_{i} \equiv x_{i j} \bmod T$ for all $i j \in A$,
(2) $\ell \leq x \leq u$,
(3) $w^{\top} x$ is minimum,
or decide that no such (π, x) exists.

Incidence-based MIP formulation:
Minimize

$$
\begin{array}{rlrl}
w^{\top} x & & \\
\pi_{j}-\pi_{i} & =x_{i j}-T p_{i j}, & & i j \in A, \\
\ell_{i j} \leq x_{i j} \leq u_{i j}, & & i j \in A, \\
\pi_{i} \in \mathbb{R}, & & i \in V, \\
p_{i j} \in \mathbb{Z}, & & i j \in A .
\end{array}
$$

s.t.
$p \in \mathbb{Z}^{A} \quad$ periodic offsets
Redundancy among periodic offsets p :

- could impose $0 \leq \pi_{i}<T$ and $p_{i j} \in\{0,1,2\}$
- could set $p_{i j}=0$ along spanning forest

Hardness of PESP

Theory:

- NP-hard for fixed $T \geq 3$
(Odijk, 1994, Nachtigall, 1996)
- NP-hard if G has treewidth ≥ 2
(L. and Reisch, 2020)
- NP-hard cutting plane separation (cycle, change-cycle, flip)
(Borndörfer et al., 2020, L. and Liebchen, 2020)

Hardness of PESP

Theory:

- NP-hard for fixed $T \geq 3$
(Odijk, 1994, Nachtigall, 1996)
- NP-hard if G has treewidth ≥ 2
(L. and Reisch, 2020)
- NP-hard cutting plane separation (cycle, change-cycle, flip)
(Borndörfer et al., 2020, L. and Liebchen, 2020)

Practice:

- rich literature on algorithms:
- MIP
- CP
- SAT (also MaxSAT and SAT+ML)
- Modulo Network Simplex
- Matching, Merging, Maximum Cuts, Graph Partitioning, . . .
- several success stories (Berlin, Copenhagen, Netherlands, Switzerland, ...)
- none of the 22 instances of PESPlib (est. 2012 by Goerigk) solved to proven optimality yet

Hardness of PESP

Theory:

- NP-hard for fixed $T \geq 3$
(Odijk, 1994, Nachtigall, 1996)
- NP-hard if G has treewidth ≥ 2
(L. and Reisch, 2020)
- NP-hard cutting plane separation (cycle, change-cycle, flip)
(Borndörfer et al., 2020, L. and Liebchen, 2020)

Practice:

- rich literature on algorithms:
- MIP
- CP
- SAT (also MaxSAT and SAT+ML)
- Modulo Network Simplex
- Matching, Merging, Maximum Cuts, Graph Partitioning, . . .
- several success stories (Berlin, Copenhagen, Netherlands, Switzerland, ...)
- none of the 22 instances of PESPlib (est. 2012 by Goerigk) solved to proven optimality yet

Summary: There are many ways to heuristically optimize periodic timetables, but it is hard to assess the actual quality.

Question: Can we get more insight by studying the geometry of periodic timetables?

$$
\begin{aligned}
\gamma & =\left(\gamma_{v_{0} v_{1}}, \gamma_{v_{0} v_{2}}, \gamma_{v_{1} v_{2}}\right) \\
& =(1,-1,1)
\end{aligned}
$$

$$
\begin{aligned}
\gamma & =\left(\gamma_{v_{0} v_{1}}, \gamma_{v_{0} v_{2}}, \gamma_{v_{1} v_{2}}\right) \\
& =(1,-1,1) \\
\gamma_{+} & =(1,0,1) \\
\gamma_{-} & =(0,1,0)
\end{aligned}
$$

oriented cycle:
$\gamma \in\{-1,0,1\}^{A}$ s.t.
$\left\{a \in A \mid \gamma_{a} \neq 0\right\}$ is a cycle when ignoring orientations
forward/backward arcs:
$\gamma_{a}=1$: forward arc, $\gamma_{a}=-1$: backward arc
can decompose $\gamma=\gamma_{+}-\gamma_{-}$into forward/backward part, $\gamma_{+}, \gamma_{-} \in\{0,1\}^{A}$

$\gamma=\left(\gamma_{v_{0} v_{1}}, \gamma_{v_{0} v_{2}}, \gamma_{v_{1} v_{2}}\right)$
$=(1,-1,1)$
$\gamma_{+}=(1,0,1)$

$$
\gamma_{-}=(0,1,0)
$$

$$
\mathcal{C}=\mathbb{Z} \cdot \gamma
$$

oriented cycle:
$\gamma \in\{-1,0,1\}^{A}$ s.t.
$\left\{a \in A \mid \gamma_{a} \neq 0\right\}$ is a cycle when ignoring orientations
forward/backward arcs:
$\gamma_{a}=1$: forward arc, $\gamma_{a}=-1$: backward arc
can decompose $\gamma=\gamma_{+}-\gamma_{-}$into forward/backward part, $\gamma_{+}, \gamma_{-} \in\{0,1\}^{A}$
cycle space:
abelian group $\mathcal{C} \subseteq \mathbb{Z}^{A}$ generated by all oriented cycles

$$
\begin{aligned}
\gamma & =\left(\gamma_{v_{0} v_{1}}, \gamma_{v_{0} v_{2}}, \gamma_{v_{1} v_{2}}\right) \\
& =(1,-1,1)
\end{aligned}
$$

$$
\gamma_{+}=(1,0,1)
$$

$$
\gamma_{-}=(0,1,0)
$$

$$
\mathcal{C}=\mathbb{Z} \cdot \gamma
$$

$$
\mu=3-3+1=1
$$

oriented cycle:
$\gamma \in\{-1,0,1\}^{A}$ s.t.
$\left\{a \in A \mid \gamma_{a} \neq 0\right\}$ is a cycle when ignoring orientations
forward/backward arcs:
$\gamma_{a}=1$: forward arc, $\gamma_{a}=-1$: backward arc
can decompose $\gamma=\gamma_{+}-\gamma_{-}$into forward/backward part, $\gamma_{+}, \gamma_{-} \in\{0,1\}^{A}$
cycle space:
abelian group $\mathcal{C} \subseteq \mathbb{Z}^{A}$ generated by all oriented cycles
cyclomatic number:
$\mu:=\operatorname{rk}(\mathcal{C})=m-n+c$
(if G has n vertices, m arcs, c components)

oriented cycle:
$\gamma \in\{-1,0,1\}^{A}$ s.t.
$\left\{a \in A \mid \gamma_{a} \neq 0\right\}$ is a cycle when ignoring orientations
forward/backward arcs:
$\gamma_{a}=1$: forward arc, $\gamma_{a}=-1$: backward arc
can decompose $\gamma=\gamma_{+}-\gamma_{-}$into forward/backward part, $\gamma_{+}, \gamma_{-} \in\{0,1\}^{A}$
cycle space:
abelian group $\mathcal{C} \subseteq \mathbb{Z}^{A}$ generated by all oriented cycles
cyclomatic number:
$\mu:=\operatorname{rk}(\mathcal{C})=m-n+c$
(if G has n vertices, m arcs, c components)
integral cycle basis:
set \mathcal{B} of μ oriented cycles generating \mathcal{C} as abelian group

$\gamma=\left(\gamma_{v_{0} v_{1}}, \gamma_{v_{0} v_{2}}, \gamma_{v_{1} v_{2}}\right)$
$=(1,-1,1)$

$$
\gamma_{+}=(1,0,1)
$$

$$
\gamma_{-}=(0,1,0)
$$

$$
\mathcal{C}=\mathbb{Z} \cdot \gamma
$$

$$
\mu=3-3+1=1
$$

$$
\mathcal{B}=\{\gamma\}
$$

$$
\Gamma=\left(\begin{array}{lll}
1 & -1 & 1
\end{array}\right)
$$

oriented cycle:
$\gamma \in\{-1,0,1\}^{A}$ s.t.
$\left\{a \in A \mid \gamma_{a} \neq 0\right\}$ is a cycle when ignoring orientations
forward/backward arcs:
$\gamma_{a}=1$: forward arc, $\gamma_{a}=-1$: backward arc
can decompose $\gamma=\gamma_{+}-\gamma_{-}$into forward/backward part, $\gamma_{+}, \gamma_{-} \in\{0,1\}^{A}$
cycle space:
abelian group $\mathcal{C} \subseteq \mathbb{Z}^{A}$ generated by all oriented cycles
cyclomatic number:
$\mu:=\operatorname{rk}(\mathcal{C})=m-n+c$
(if G has n vertices, m arcs, c components)
integral cycle basis:
set \mathcal{B} of μ oriented cycles generating \mathcal{C} as abelian group
cycle matrix of an integral cycle basis \mathcal{B} :
matrix $\Gamma \in\{-1,0,1\}^{\mathcal{B} \times A}$ with the vectors in \mathcal{B} as rows

Cycle Periodicity

Theorem (Cycle periodicity property)

Let $G=(V, A)$ be a digraph with incidence matrix $B \in\{-1,0,1\}^{V \times A}$. Let Γ be the cycle matrix of an integral cycle basis \mathcal{B} of G. Then, as \mathbb{Z}-modules,

$$
\operatorname{im} B^{\top}=\operatorname{ker} \Gamma .
$$

For friends of graph cohomology: The following sequence is exact:

$$
0 \rightarrow \mathbb{Z}^{C} \rightarrow \mathbb{Z}^{V} \xrightarrow{B^{T}} \mathbb{Z}^{A} \xrightarrow{\Gamma} \mathbb{Z}^{\mathcal{B}} \rightarrow 0
$$

This is a standard linear algebra result over fields, the proof over \mathbb{Z} uses the total unimodularity of the incidence matrix.

Cycle Periodicity

Theorem (Cycle periodicity property)

Let $G=(V, A)$ be a digraph with incidence matrix $B \in\{-1,0,1\}^{V \times A}$. Let Γ be the cycle matrix of an integral cycle basis \mathcal{B} of G. Then, as \mathbb{Z}-modules,

$$
\operatorname{im} B^{\top}=\operatorname{ker} \Gamma .
$$

For friends of graph cohomology: The following sequence is exact:

$$
0 \rightarrow \mathbb{Z}^{C} \rightarrow \mathbb{Z}^{V} \xrightarrow{B^{T}} \mathbb{Z}^{A} \xrightarrow{\Gamma} \mathbb{Z}^{\mathcal{B}} \rightarrow 0
$$

This is a standard linear algebra result over fields, the proof over \mathbb{Z} uses the total unimodularity of the incidence matrix.

Corollary (Liebchen, Peeters, 2009)

Let $x \in \mathbb{R}^{A}$ and $T \in \mathbb{N}$. Then the following are equivalent:
(1) There is a vector $\pi \in \mathbb{R}^{V}$ such that $x_{i j} \equiv \pi_{j}-\pi_{i} \bmod T$ for all $i j \in A$.
(2) $\Gamma x \equiv 0 \bmod T$.

MIP Formulations and Spaces of Interest

MIP Formulations

Incidence-based MIP formulation:

$$
\begin{array}{lr}
\text { Minimize } & w^{\top} x \\
\text { s.t. } & -B^{\top} \pi=x-T p \\
\ell \leq x \leq u \\
& \pi \in \mathbb{R}^{V} \\
& p \in \mathbb{Z}^{A}
\end{array}
$$

MIP Formulations and Spaces of Interest

MIP Formulations

Incidence-based MIP formulation:

$$
\begin{array}{lr}
\text { Minimize } & w^{\top} x \\
\text { s.t. } & -B^{\top} \pi=x-T p \\
\ell \leq x \leq u \\
& \pi \in \mathbb{R}^{V} \\
p & \in \mathbb{Z}^{A}
\end{array}
$$

Cycle-based MIP formulation:

Minimize	$w^{\top} x$
s.t.	$\Gamma x=T z$
	$\ell \leq x \leq u$
	$z \in \mathbb{Z}^{\mathcal{B}}$

$z \in \mathbb{Z}^{\mathcal{B}} \quad$ cycle offsets

MIP Formulations and Spaces of Interest

MIP Formulations

Incidence-based MIP formulation:

$$
\begin{array}{lrl}
\text { Minimize } & w^{\top} x \\
\text { s.t. } & -B^{\top} \pi & =x-T p \\
& \ell \leq x & \leq u \\
& \pi & \in \mathbb{R}^{V} \\
& p & \in \mathbb{Z}^{A}
\end{array}
$$

Cycle-based MIP formulation:

$$
\begin{array}{lr}
\text { Minimize } & w^{\top} x \\
\text { s.t. } & \Gamma x=T z \\
& \ell \leq x \leq u \\
& z \in \mathbb{Z}^{\mathcal{B}}
\end{array}
$$

$z \in \mathbb{Z}^{\mathcal{B}} \quad$ cycle offsets

Timetabling Spaces

$X:=\operatorname{conv}\left\{x \in \mathbb{R}^{A} \mid \exists z \in \mathbb{Z}^{\mathcal{B}}: \Gamma x=T z, \ell \leq x \leq u\right\} \quad$ convex hull of feas. periodic tensions $\Pi:=\left\{\pi \in \mathbb{R}^{V} \mid \exists p \in \mathbb{Z}^{A}: \ell \leq-B^{\top} \pi+T p \leq u\right\} \quad$ space of feasible periodic timetables
$Z:=\left\{z \in \mathbb{R}^{\mathcal{B}} \mid \exists x \in \mathbb{R}^{A}: \Gamma x=T z, \ell \leq x \leq u\right\} \quad$ space of feasible cycle offsets

Gallery of Timetabling Spaces

PESP instance with $n=3, m=3, \mu=1$

Gallery of Timetabling Spaces

PESP instance with $n=3, m=3, \mu=1$

X is a polytope \rightsquigarrow standard toolbox of mixed-integer linear programming

Gallery of Timetabling Spaces

PESP instance with $n=3, m=3, \mu=1$

$\Pi / \mathbb{R} \mathbf{1}$ is periodically tiled by polyt(r)opes
X is a polytope \rightsquigarrow standard toolbox of mixed-integer linear programming

Gallery of Timetabling Spaces

PESP instance with $n=3, m=3, \mu=1$

X is a polytope \rightsquigarrow standard toolbox of mixed-integer linear programming

$\Pi / \mathbb{R} \mathbf{1}$ is periodically tiled by polyt(r)opes

Z is a zonotope

Part 2

The Tropical Tiling of the Space of Periodic Timetables

Decomposing the Space of Periodic Timetables

Decomposition

Recall that the space of feasible periodic timetables is

$$
\Pi:=\left\{\pi \in \mathbb{R}^{V} \mid \exists p \in \mathbb{Z}^{A}: \ell \leq-B^{\top} \pi+T p \leq u\right\} .
$$

The space Π decomposes into polyhedral regions:

$$
\Pi=\bigcup_{p \in \mathbb{Z}^{A}} R(p), \quad \text { where } R(p):=\left\{\pi \in \mathbb{R}^{V} \mid \ell-T p \leq-B^{\top} \pi \leq u-T p\right\} .
$$

Due to the assumption $0 \leq u-\ell<T$, the union is disjoint.

Decomposing the Space of Periodic Timetables

Decomposition

Recall that the space of feasible periodic timetables is

$$
\Pi:=\left\{\pi \in \mathbb{R}^{V} \mid \exists p \in \mathbb{Z}^{A}: \ell \leq-B^{\top} \pi+T p \leq u\right\} .
$$

The space Π decomposes into polyhedral regions:

$$
\Pi=\bigcup_{p \in \mathbb{Z}^{A}} R(p), \quad \text { where } R(p):=\left\{\pi \in \mathbb{R}^{V} \mid \ell-T p \leq-B^{\top} \pi \leq u-T p\right\} .
$$

Due to the assumption $0 \leq u-\ell<T$, the union is disjoint.

Weighted Digraph Polyhedra

Add a reverse copy \bar{a} of each arc a. This produces a new graph $\bar{G}=(\bar{V}, \bar{A})$ with $\bar{V}=V$. If we set $\kappa(p)_{a}:=u_{a}-T p_{a}$ and $\kappa(p)_{\bar{a}}:=-\ell_{a}+T p_{a}$, then

$$
R(p)=\left\{\pi \in \mathbb{R}^{\bar{v}} \mid \pi_{j}-\pi_{i} \leq \kappa(p)_{i j} \text { for all } i j \in \bar{A}\right\} .
$$

This means that $R(p)$ is the weighted digraph polyhedron (Joswig, Loho, 2016) associated to ($\bar{G}, \kappa(p)$). In combinatorial optimization terms, $R(p)$ is the polyhedron of feasible potentials in \bar{G} w.r.t. the arc costs $\kappa(p)$.

Decomposing the Space of Periodic Timetables

A First Symmetry

Since G was assumed to be weakly connected, \bar{G} is strongly connected. This means by (Joswig, Loho, 2016):

- The recession cone of $R(p)$ is $\mathbb{R} \mathbf{1}$ (i.e., the kernel of B^{\top}).
- The quotient $R(p) / \mathbb{R} \mathbf{1}$ is a polytope.

Choosing coordinates on $R(p) / \mathbb{R} \mathbf{1}$ amounts to the periodic timetabler's wisdom that a timetable π can be fixed at one event $v_{0} \in V$ to $\pi_{v_{0}}:=0$ without affecting feasiblity or optimality.

Decomposing the Space of Periodic Timetables

A First Symmetry

Since G was assumed to be weakly connected, \bar{G} is strongly connected. This means by (Joswig, Loho, 2016):

- The recession cone of $R(p)$ is $\mathbb{R} \mathbf{1}$ (i.e., the kernel of B^{\top}).
- The quotient $R(p) / \mathbb{R} \mathbf{1}$ is a polytope.

Choosing coordinates on $R(p) / \mathbb{R} \mathbf{1}$ amounts to the periodic timetabler's wisdom that a timetable π can be fixed at one event $v_{0} \in V$ to $\pi_{V_{0}}:=0$ without affecting feasiblity or optimality.

Polytropes

A polytrope is the convex hull of finitely many points, both in the ordinary and the tropical sense. Polytropes are exactly the quotients of weighted digraph polyhedra of strongly connected digraphs by $\mathbb{R} \mathbf{1}$ (Joswig, Kulas, 2010).

Decomposing the Space of Periodic Timetables

A First Symmetry

Since G was assumed to be weakly connected, \bar{G} is strongly connected. This means by (Joswig, Loho, 2016):

- The recession cone of $R(p)$ is $\mathbb{R} \mathbf{1}$ (i.e., the kernel of B^{\top}).
- The quotient $R(p) / \mathbb{R} \mathbf{1}$ is a polytope.

Choosing coordinates on $R(p) / \mathbb{R} \mathbf{1}$ amounts to the periodic timetabler's wisdom that a timetable π can be fixed at one event $v_{0} \in V$ to $\pi_{\nu_{0}}:=0$ without affecting feasiblity or optimality.

Polytropes

A polytrope is the convex hull of finitely many points, both in the ordinary and the tropical sense. Polytropes are exactly the quotients of weighted digraph polyhedra of strongly connected digraphs by $\mathbb{R} \mathbf{1}$ (Joswig, Kulas, 2010).

Corollary

The space $\Pi / \mathbb{R} \mathbf{1}$ decomposes into the disjoint union of the polytropes $R(p) / \mathbb{R} \mathbf{1}$.

The Periodic Timetabling Torus

Periodicity: If $\pi \in \Pi$, then $\pi+T q \in \Pi$ for all $q \in \mathbb{Z}^{V}$. Consequently, we could consider the space of timetables inside the $(n-1)$ dimensional torus

$$
\mathcal{T}:=\left(\mathbb{R}^{V} /(T \mathbb{Z})^{V}\right) / \mathbb{R} \mathbf{1}
$$

The Periodic Timetabling Torus

Periodicity: If $\pi \in \Pi$, then $\pi+T q \in \Pi$ for all $q \in \mathbb{Z}^{V}$. Consequently, we could consider the space of timetables inside the $(n-1)$ dimensional torus

$$
\mathcal{T}:=\left(\mathbb{R}^{V} /(T \mathbb{Z})^{V}\right) / \mathbb{R} \mathbf{1}
$$

Redundancy of periodic offsets: $R(p) \equiv R\left(p^{\prime}\right)$ on \mathcal{T} iff $\Gamma p=\Gamma p^{\prime}$. We can hence denote $R(p)$ modulo \mathcal{T} by $\mathbf{R}(z)$, where $z:=\Gamma p \in \mathbb{Z}^{\mathcal{B}}$.

The Periodic Timetabling Torus

Periodicity: If $\pi \in \Pi$, then $\pi+T q \in \Pi$ for all $q \in \mathbb{Z}^{V}$. Consequently, we could consider the space of timetables inside the $(n-1)$ dimensional torus

$$
\mathcal{T}:=\left(\mathbb{R}^{V} /(T \mathbb{Z})^{V}\right) / \mathbb{R} \mathbf{1}
$$

Redundancy of periodic offsets: $R(p) \equiv R\left(p^{\prime}\right)$ on \mathcal{T} iff $\Gamma p=\Gamma p^{\prime}$. We can hence denote $R(p)$ modulo \mathcal{T} by $\mathbf{R}(z)$, where $z:=\Gamma p \in \mathbb{Z}^{\mathcal{B}}$. In our example,

$$
\begin{aligned}
& z=\frac{\Gamma x}{T} \leq\left\lfloor\frac{12-2+13}{10}\right\rfloor=2 \\
& z=\frac{\Gamma x}{T} \geq\left\lceil\frac{3-10+4}{10}\right\rceil=0
\end{aligned}
$$

so there are at most 3 non-empty polytropes on the torus (for $z \in\{0,1,2\}$).

The Periodic Timetabling Torus

Periodicity: If $\pi \in \Pi$, then $\pi+T q \in \Pi$ for all $q \in \mathbb{Z}^{V}$. Consequently, we could consider the space of timetables inside the $(n-1)$ dimensional torus

$$
\mathcal{T}:=\left(\mathbb{R}^{V} /(T \mathbb{Z})^{V}\right) / \mathbb{R} \mathbf{1} .
$$

Redundancy of periodic offsets: $R(p) \equiv R\left(p^{\prime}\right)$ on \mathcal{T} iff $\Gamma p=\Gamma p^{\prime}$. We can hence denote $R(p)$ modulo \mathcal{T} by $\mathbf{R}(z)$, where $z:=\Gamma p \in \mathbb{Z}^{\mathcal{B}}$. In our example,

$$
\begin{aligned}
& z=\frac{\Gamma x}{T} \leq\left\lfloor\frac{12-2+13}{10}\right\rfloor=2, \\
& z=\frac{\Gamma x}{T} \geq\left\lceil\frac{3-10+4}{10}\right\rceil=0
\end{aligned}
$$

so there are at most 3 non-empty polytropes on the torus (for $z \in\{0,1,2\}$).

More on Timetabling Polytropes

Dimension

- $R(p)=\emptyset$ if and only if \bar{G} contains a negative weight (directed) cycle w.r.t. $\kappa(p)$.
- The dimension of $R(p) / \mathbb{R} \mathbf{1}$ is the number of connected components of the equality graph of ($\bar{G}, \kappa(p)$) minus 1 (Joswig, Loho, 2016).

More on Timetabling Polytropes

Dimension

$-R(p)=\emptyset$ if and only if \bar{G} contains a negative weight (directed) cycle w.r.t. $\kappa(p)$.

- The dimension of $R(p) / \mathbb{R} \mathbf{1}$ is the number of connected components of the equality graph of $(\bar{G}, \kappa(p))$ minus 1 (Joswig, Loho, 2016).

Vertices

- Every vertex of $R(p) / \mathbb{R} \mathbf{1}$ corresponds to a unique spanning subgraph of \bar{G}.
- For each $i \in V$, the i-th tropical vertex of $R(p) / \mathbb{R} \mathbf{1}$ corresponds to a shortest path tree of $(\bar{G}, \kappa(p))$ rooted at i. (Joswig, Kulas, 2010).

More on Timetabling Polytropes

Dimension

$-R(p)=\emptyset$ if and only if \bar{G} contains a negative weight (directed) cycle w.r.t. $\kappa(p)$.

- The dimension of $R(p) / \mathbb{R} \mathbf{1}$ is the number of connected components of the equality graph of $(\bar{G}, \kappa(p))$ minus 1 (Joswig, Loho, 2016).

Vertices

- Every vertex of $R(p) / \mathbb{R} \mathbf{1}$ corresponds to a unique spanning subgraph of \bar{G}.
- For each $i \in V$, the i-th tropical vertex of $R(p) / \mathbb{R} \mathbf{1}$ corresponds to a shortest path tree of $(\bar{G}, \kappa(p))$ rooted at i. (Joswig, Kulas, 2010).

Relation to the Periodic Tension Polytope

- The map $m_{p}: \pi \mapsto-B^{\top} \pi+T p$ embeds $R(p) / \mathbb{R} \mathbf{1}$ into X.
- X is the convex hull of $\left\{\operatorname{im}\left(m_{p}\right) \mid p \in \mathbb{Z}^{A}\right\}$.
$-\operatorname{im}\left(m_{p}\right)$ is the intersection of the affine space $\operatorname{im}\left(B^{\top}\right)+T p$ with the LP relaxation polytope $X_{\mathrm{LP}}=\prod_{a \in A}\left[\ell_{a}, u_{a}\right]$ of X.

Tropical Neighborhood Search

Polytropes in the Limit Instance

Let $R(p) / \mathbb{R} \mathbf{1}$ be a polytrope. The offset p also defines a polytrope $R^{\prime}(p) / \mathbb{R} \mathbf{1}$ a of the "limit" instance where $u:=\ell+T$. The union of the polytropes is then no longer disjoint and covers all of $\mathbb{R}^{V} / \mathbb{R} \mathbf{1}$.

Tropical Neighborhood Search

Polytropes in the Limit Instance

Let $R(p) / \mathbb{R} \mathbf{1}$ be a polytrope. The offset p also defines a polytrope $R^{\prime}(p) / \mathbb{R} \mathbf{1}$ a of the "limit" instance where $u:=\ell+T$. The union of the polytropes is then no longer disjoint and covers all of $\mathbb{R}^{V} / \mathbb{R} \mathbf{1}$.

Lemma

Let $p, p^{\prime} \in \mathbb{Z}^{A}$. Then $R^{\prime}(p) / \mathbb{R} \mathbf{1} \cap R^{\prime}\left(p^{\prime}\right) / \mathbb{R} \mathbf{1} \neq \emptyset$ if and only if there is an arc $a \in A$ with $p=p^{\prime} \pm e_{a}$. In this case, the polytropes intersect in a common face. In particular, the $R^{\prime}(p)$ give rise to a polyt(r)opal subdivision of $\mathbb{R}^{V} / \mathbb{R} \mathbf{1}$.

Tropical Neighborhood Search

Polytropes in the Limit Instance

Let $R(p) / \mathbb{R} \mathbf{1}$ be a polytrope. The offset p also defines a polytrope $R^{\prime}(p) / \mathbb{R} \mathbf{1}$ a of the "limit" instance where $u:=\ell+T$. The union of the polytropes is then no longer disjoint and covers all of $\mathbb{R}^{V} / \mathbb{R} \mathbf{1}$.

Lemma

Let $p, p^{\prime} \in \mathbb{Z}^{A}$. Then $R^{\prime}(p) / \mathbb{R} \mathbf{1} \cap R^{\prime}\left(p^{\prime}\right) / \mathbb{R} \mathbf{1} \neq \emptyset$ if and only if there is an arc $a \in A$ with $p=p^{\prime} \pm e_{a}$. In this case, the polytropes intersect in a common face. In particular, the $R^{\prime}(p)$ give rise to a polyt(r)opal subdivision of $\mathbb{R}^{V} / \mathbb{R} \mathbf{1}$.

Neighbors

We call $R(p) / \mathbb{R} \mathbf{1}$ and $R\left(p^{\prime}\right) / \mathbb{R} \mathbf{1}$ neighbors if $R^{\prime}(p) / \mathbb{R} \mathbf{1}$ and $R^{\prime}\left(p^{\prime}\right) / \mathbb{R} \mathbf{1}$ intersect in a common facet.

Tropical Neighborhood Search

Polytropes in the Limit Instance

Let $R(p) / \mathbb{R} \mathbf{1}$ be a polytrope. The offset p also defines a polytrope $R^{\prime}(p) / \mathbb{R} \mathbf{1}$ a of the "limit" instance where $u:=\ell+T$. The union of the polytropes is then no longer disjoint and covers all of $\mathbb{R}^{V} / \mathbb{R} \mathbf{1}$.

Lemma

Let $p, p^{\prime} \in \mathbb{Z}^{A}$. Then $R^{\prime}(p) / \mathbb{R} \mathbf{1} \cap R^{\prime}\left(p^{\prime}\right) / \mathbb{R} \mathbf{1} \neq \emptyset$ if and only if there is an arc $a \in A$ with $p=p^{\prime} \pm e_{a}$. In this case, the polytropes intersect in a common face. In particular, the $R^{\prime}(p)$ give rise to a polyt(r)opal subdivision of $\mathbb{R}^{V} / \mathbb{R} \mathbf{1}$.

Neighbors

We call $R(p) / \mathbb{R} \mathbf{1}$ and $R\left(p^{\prime}\right) / \mathbb{R} \mathbf{1}$ neighbors if $R^{\prime}(p) / \mathbb{R} \mathbf{1}$ and $R^{\prime}\left(p^{\prime}\right) / \mathbb{R} \mathbf{1}$ intersect in a common facet.

Tropical Neighborhood Search for Periodic Timetabling

Given a non-empty polytrope $R(p) / \mathbb{R} \mathbf{1}$, solve PESP on $R(p) / \mathbb{R} \mathbf{1}$ (this is a linear program, and dual to uncapacitated min cost flow). While there is an improving neighbor of $R(p) / \mathbb{R} \mathbf{1}$: Go to the best neighboring polytrope, and repeat.

Tropical Neighborhood Search

modulo network simplex search space colored by objective value squares are local non-global optima

tropical neighborhood search space colored by objective value

Part 3

The Zonotope of Cycle Offsets

Zonotopes and Their Tilings

Zonotopes

A zonotope $Z(M, b)$ is the image of a (hyper)cube w.r.t. an affine map $x \mapsto M x+b$. In particular, the space of feasible cycle offsets of a PESP instance with a chosen cycle basis \mathcal{B} and a cycle matrix Γ,

$$
Z:=\left\{z \in \mathbb{R}^{\mathcal{B}} \mid \exists x \in \mathbb{R}^{A}: \Gamma x=T z, \ell \leq x \leq u\right\}=\frac{1}{T} \Gamma\left(X_{\mathrm{LP}}\right)=\frac{1}{T} \Gamma\left(\prod_{a \in A}\left[\ell_{a}, u_{a}\right]\right),
$$

is a μ-dimensional zonotope: We can take $M:=\Gamma^{\prime}$, where Γ^{\prime} is obtained from Γ by scaling each column a by $\frac{u_{a}-\ell_{a}}{T}$, and $b:=\frac{\Gamma \ell}{T}$. We call Z a cycle offset zonotope.

Zonotopes and Their Tilings

Zonotopes

A zonotope $Z(M, b)$ is the image of a (hyper)cube w.r.t. an affine map $x \mapsto M x+b$. In particular, the space of feasible cycle offsets of a PESP instance with a chosen cycle basis \mathcal{B} and a cycle matrix Γ,

$$
Z:=\left\{z \in \mathbb{R}^{\mathcal{B}} \mid \exists x \in \mathbb{R}^{A}: \Gamma x=T z, \ell \leq x \leq u\right\}=\frac{1}{T} \Gamma\left(X_{\mathrm{LP}}\right)=\frac{1}{T} \Gamma\left(\prod_{a \in A}\left[\ell_{a}, u_{a}\right]\right),
$$

is a μ-dimensional zonotope: We can take $M:=\Gamma^{\prime}$, where Γ^{\prime} is obtained from Γ by scaling each column a by $\frac{u_{a}-\ell_{a}}{T}$, and $b:=\frac{\Gamma \ell}{T}$. We call Z a cycle offset zonotope.

Zonotopal Tilings

A zonotopal tiling of a zonotope $Z(M, b)$ is a polyhedral subdivision of $Z(M, b)$ such that each cell is a zonotope $Z\left(M_{S}, b_{S}\right)$, where M_{S} is the submatrix of M with the colums indexed by S removed. We will call maximal cells tiles. A zonotopal tiling is fine if all tiles are parellelotopes, i.e., the columns of M_{S} are linearly independent.

Pictures of Cycle Offset Zonotopes

Pictures of Cycle Offset Zonotopes

$Z \subseteq \mathbb{R}$ with 3 tiles and 3 lattice points

$Z \subseteq \mathbb{R}^{3}$ with 12 tiles and 11 lattice points

Zonotopal Tilings of Cycle Offset Zonotopes

Let Z be a cycle offset zonotope of a PESP instance. Lemma

The k-dimensional cells of any fine zonotopal tiling of Z are in bijection with spanning subgraphs of G consisting of $m-k$ arcs. In particular, the tiles correspond one-to-one to spanning trees of G.
Proof sketch: Based on (Kavitha et al., 2009): A subset $S \subseteq A$ is spanning if and only if the submatrix of Γ on the columns not in S has rank $m-|S|$.

Zonotopal Tilings of Cycle Offset Zonotopes

Let Z be a cycle offset zonotope of a PESP instance.

Lemma

The k-dimensional cells of any fine zonotopal tiling of Z are in bijection with spanning subgraphs of G consisting of $m-k$ arcs. In particular, the tiles correspond one-to-one to spanning trees of G.
Proof sketch: Based on (Kavitha et al., 2009): A subset $S \subseteq A$ is spanning if and only if the submatrix of Γ on the columns not in S has rank $m-|S|$.

Corollary

Let \mathcal{S} denote the set of spanning trees of G. Then

$$
\operatorname{vol}(Z)=\sum_{S \in \mathcal{S}} \prod_{a \in A \backslash S} \frac{u_{a}-\ell_{a}}{T}
$$

Proof sketch: Every zonotope has a fine zonotopal tiling, each tile corresponds to a spanning tree, the volume of a parallelotope is the absolute value of a determinant of a $\mu \times \mu$ invertible submatrix of Γ^{\prime}, any $\mu \times \mu$-minor of Γ is in $\{-1,0,1\}$.

Relation to Timetabling Torus Polytropes

By a volume argument, and since \mathcal{B} is an integral cycle basis, we can show:

Theorem

Each tile of a fine zonotopal tiling of Z contains at most one lattice point. In particular, the number of lattice points in Z is at most the number of spanning trees of G.

Relation to Timetabling Torus Polytropes

By a volume argument, and since \mathcal{B} is an integral cycle basis, we can show:

Theorem

Each tile of a fine zonotopal tiling of Z contains at most one lattice point. In particular, the number of lattice points in Z is at most the number of spanning trees of G.

Lemma

The map $z \mapsto \mathbf{R}(z)$ is a bijection between the lattice points of Z and the non-empty polytropes in the decomposition of the timetable space in the torus \mathcal{T}.
We think of this as a kind of duality: Certain 0-dimensional objects (lattice points) correspond to top-dimensional objects (polytropes).

Relation to Timetabling Torus Polytropes

By a volume argument, and since \mathcal{B} is an integral cycle basis, we can show:

Theorem

Each tile of a fine zonotopal tiling of Z contains at most one lattice point. In particular, the number of lattice points in Z is at most the number of spanning trees of G.

Lemma

The map $z \mapsto \mathbf{R}(z)$ is a bijection between the lattice points of Z and the non-empty polytropes in the decomposition of the timetable space in the torus \mathcal{T}.
We think of this as a kind of duality: Certain 0-dimensional objects (lattice points) correspond to top-dimensional objects (polytropes).

Corollary

There are at most as many non-empty polytropes in \mathcal{T} as there are spanning trees in G .

Cube Faces and Zonotope Tiles

Question

Given a fine zonotopal tiling of Z, consider a tile labeled by a spanning tree S with a lattice point z. Is there a relation between S and $\mathbf{R}(z)$?

Cube Faces and Zonotope Tiles

Question

Given a fine zonotopal tiling of Z, consider a tile labeled by a spanning tree S with a lattice point z. Is there a relation between S and $\mathbf{R}(z)$?

Structures and Faces of $X_{\text {LP }}$

A structure is a triple (S, L, U) of subsets of A such that $L \cup U=S$ and $L \cap U=\emptyset$. The structure (S, L, U) is a combinatorial encoding of the face

$$
F_{L, U}:=\left\{x \in X_{\mathrm{LP}} \mid x_{a}=\ell_{a} \text { for all } a \in L \text { and } x_{a}=u_{a} \text { for all } a \in U\right\}
$$

of the "cube" $X_{\text {Lp }}$.

Cube Faces and Zonotope Tiles

Question

Given a fine zonotopal tiling of Z, consider a tile labeled by a spanning tree S with a lattice point z. Is there a relation between S and $\mathbf{R}(z)$?

Structures and Faces of $X_{\text {LP }}$

A structure is a triple (S, L, U) of subsets of A such that $L \cup U=S$ and $L \cap U=\emptyset$. The structure (S, L, U) is a combinatorial encoding of the face

$$
F_{L, U}:=\left\{x \in X_{\mathrm{LP}} \mid x_{a}=\ell_{a} \text { for all } a \in L \text { and } x_{a}=u_{a} \text { for all } a \in U\right\}
$$

of the "cube" $X_{\text {Lp }}$.

Lemma

Fix a fine zonotopal tiling of Z. Then for any cell C defined by some spanning subgraph S, there is a structure (S, L, U) such that $C=\frac{1}{T} \Gamma\left(F_{L, U}\right)$.
Proof sketch: It is non-trivial to check that the translation vectors match. This follows from a formula given by (Richter-Gebert, Ziegler, 1994).

From Tiles to Polytrope Vertices

Theorem

Given a fine zonotopal tiling of Z, let C be a tile defined by a spanning tree S and given by the image of $F_{L, u}$. If C contains a lattice point z, then $\mathbf{R}(z)$ contains a vertex defined by the spanning subgraph in \bar{G} defined by (S, L, U).
We see this as duality as well: A top-dimensional object (tile) gives rise to a 0 -dimensional object (polytrope vertex).

From Tiles to Polytrope Vertices

Theorem

Given a fine zonotopal tiling of Z, let C be a tile defined by a spanning tree S and given by the image of $F_{L, U}$. If C contains a lattice point z, then $\mathbf{R}(z)$ contains a vertex defined by the spanning subgraph in \bar{G} defined by (S, L, U).
We see this as duality as well: A top-dimensional object (tile) gives rise to a 0-dimensional object (polytrope vertex).

Question

Can we construct a zonotopal tiling by picking vertices from each non-empty polytrope $\mathbf{R}(z)$ in some compatible way?

Construction: From Tropical Vertices to Tiles

For a vertex $i \in V$, define the polyhedron $P_{i}:=X_{\mathrm{LP}}+\operatorname{pos}\left(\widehat{B_{i}^{\top}}\right)$.
Theorem
(1) Every bounded face of P_{i} is a face $F_{L, U}$ of $X_{L P}$.
(2) Every bounded face $F_{L, U}$ of P_{i} corresponds to a structure (S, L, U) such that S is spanning. In particular, $\operatorname{dim} F_{L, u} \leq \mu$.
(3) The bounded faces of P_{i} correspond bijectively to arborescences in \bar{G} rooted at i.
(4) $\frac{1}{\bar{T}} \Gamma$ maps the bounded faces of P_{i} to the tiles of a fine zonotopal tiling of Z.

Remarks on the proof: (1) is straightforward, (2) and (3) use network flows, and (4) is a volume argument.

Construction: From Tropical Vertices to Tiles

For a vertex $i \in V$, define the polyhedron $P_{i}:=X_{\mathrm{LP}}+\operatorname{pos}\left(\widehat{B_{i}^{\top}}\right)$.

Theorem

(1) Every bounded face of P_{i} is a face $F_{L, U}$ of $X_{L P}$.
(2) Every bounded face $F_{L, U}$ of P_{i} corresponds to a structure (S, L, U) such that S is spanning. In particular, $\operatorname{dim} F_{L, U} \leq \mu$.
(3) The bounded faces of P_{i} correspond bijectively to arborescences in \bar{G} rooted at i.
(4) $\frac{1}{\bar{T}} \Gamma$ maps the bounded faces of P_{i} to the tiles of a fine zonotopal tiling of Z.

Remarks on the proof: (1) is straightforward, (2) and (3) use network flows, and (4) is a volume argument.

Corollary

Let $i \in V$. Then there is a fine zonotopal tiling of Z such that any tile containing an integer point z corresponds to a spanning tree structure defined by the i-th tropical vertex of $\mathbf{R}(z)$.

Pictures of the Construction

$$
\begin{aligned}
& z=0, \\
& p=(0,0,0) \\
& \pi=(0,3,10) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& z=1, \\
& p=(0,0,1), \\
& \pi=(0,3,6) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \hline z=2, \\
& p=(0,0,2), \\
& \pi=(0,9,2) \\
& \hline
\end{aligned}
$$

Minimum Width Integral Cycle Bases

The width of an integral cycle basis \mathcal{B} is (Liebchen, Peeters, 2009)

$$
W_{\mathcal{B}}:=\prod_{\gamma \in \mathcal{B}}\left(\left\lfloor\frac{\gamma_{+}^{\top} u-\gamma_{-}^{\top} \ell}{T}\right\rfloor-\left\lceil\frac{\gamma_{+}^{\top} \ell-\gamma_{-}^{\top} u}{T}\right\rceil+1\right) .
$$

- By construction, $W_{\mathcal{B}}$ is an upper bound on the number of lattice points in Z.
- $W_{\mathcal{B}}$ hence an upper bound on the number of leaves of a branch-and-bound tree.
- Finding an integral cycle basis of minimum width is hence desirable, but the complexity status is open.
- In practice, this is currently (heuristically) done by a minimum weight undirected cycle basis algorithm (Horton, 1987, de Pina, 1995).

Minimum Width Integral Cycle Bases

The width of an integral cycle basis \mathcal{B} is (Liebchen, Peeters, 2009)

$$
W_{\mathcal{B}}:=\prod_{\gamma \in \mathcal{B}}\left(\left\lfloor\frac{\gamma_{+}^{\top} u-\gamma_{-}^{\top} \ell}{T}\right\rfloor-\left\lceil\frac{\gamma_{+}^{\top} \ell-\gamma_{-}^{\top} u}{T}\right\rceil+1\right) .
$$

- By construction, $W_{\mathcal{B}}$ is an upper bound on the number of lattice points in Z.
- $W_{\mathcal{B}}$ hence an upper bound on the number of leaves of a branch-and-bound tree.
- Finding an integral cycle basis of minimum width is hence desirable, but the complexity status is open.
- In practice, this is currently (heuristically) done by a minimum weight undirected cycle basis algorithm (Horton, 1987, de Pina, 1995).

Lemma

$W_{\mathcal{B}}$ is the number of lattice points in the smallest hyperrectangle containing the cycle offset zonotope Z.
In our two examples, $W_{\mathcal{B}}=3$ resp. $W_{\mathcal{B}}=12$. In both cases, $W_{\mathcal{B}}$ equals the number of spanning trees. Coincidence?

Cycle Bases, Spanning Trees, Approximating Width

Lemma (Zonotope volume vs. volume of smallest containing hyperrectangle)
Let $d \in \mathbb{R}_{\geq 0}^{A}$. Then

$$
\sum_{s \in \mathcal{S}}\left(\prod_{a \in A \backslash S} d_{a}\right) \leq \prod_{\gamma \in \mathcal{B}}\left(\sum_{a \in A: \gamma_{a} \neq 0} d_{a}\right)
$$

Cycle Bases, Spanning Trees, Approximating Width

Lemma (Zonotope volume vs. volume of smallest containing hyperrectangle)
Let $d \in \mathbb{R}_{\geq 0}^{A}$. Then

$$
\sum_{s \in \mathcal{S}}\left(\prod_{a \in A \backslash S} d_{a}\right) \leq \prod_{\gamma \in \mathcal{B}}\left(\sum_{a \in A: \gamma_{a} \neq 0} d_{a}\right) .
$$

Corollary

For any graph G , the number $|\mathcal{S}|$ of spanning trees is at most the product of the lengths of the cycles in an integral cycle basis \mathcal{B} of \mathcal{G}.

Cycle Bases, Spanning Trees, Approximating Width

Lemma (Zonotope volume vs. volume of smallest containing hyperrectangle)
Let $d \in \mathbb{R}_{\geq 0}^{A}$. Then

$$
\sum_{s \in \mathcal{S}}\left(\prod_{a \in A \backslash S} d_{a}\right) \leq \prod_{\gamma \in \mathcal{B}}\left(\sum_{a \in A: \gamma_{a} \neq 0} d_{a}\right)
$$

Corollary

For any graph \mathcal{G}, the number $|\mathcal{S}|$ of spanning trees is at most the product of the lengths of the cycles in an integral cycle basis \mathcal{B} of \mathcal{G}.

Corollary

Suppose that $W_{\mathcal{B}} \geq 1$. Then

$$
|\mathcal{S}| \cdot\left(\frac{\varepsilon}{T}\right)^{\mu} \leq \operatorname{vol}(Z) \leq \prod_{\gamma \in \mathcal{B}} s_{\gamma} \leq W_{\mathcal{B}} \cdot \prod_{\gamma \in \mathcal{B}} \frac{s_{\gamma}}{\max \left\{\left\lfloor s_{\gamma}\right\rfloor, 1\right\}}<W_{\mathcal{B}} \cdot 2^{\mu},
$$

where $\varepsilon:=\min \left\{u_{a}-\ell_{a} \mid a \in A\right\}$ and $s_{\gamma}:=\sum_{a \in A: \gamma_{a} \neq 0} \frac{u_{a}-\ell_{a}}{T}$.

The Final Slide

Conclusion

- We connected the problem of periodic timetabling in public transport in a twofold way to discrete geometry: to polytropes and to zonotopes.
- There are close relationships between the polytropes and the zonotopes.
- Details: arXiv:2204.13501

Conclusion

- We connected the problem of periodic timetabling in public transport in a twofold way to discrete geometry: to polytropes and to zonotopes.
- There are close relationships between the polytropes and the zonotopes.
- Details: arXiv:2204.13501

Outlook

- We have implemented tropical neighborhood search (writing in progress).
- We are also working on a branch-and-bound heuristic for PESP using branching on tropical sectors.
- The cycle offset zonotope seems to be related to Benders decomposition.
- Big question: Can we turn the geometric insights into useful optimization techniques?

On the tropical and zonotopal geometry of periodic timetabling

Enrico Bortoletto, Niels Lindner, Berenike Masing Zuse Institute Berlin

Research Seminar on Discrete and Convex Geometry @ TU Berlin

May 18, 2022

