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Part 1

Periodic Timetabling in Public Transport
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A Line Network

berlintransitmap.de
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From Line Networks to Event-Activity Networks

Line Network, 3 bidirectional lines
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From Line Networks to Event-Activity Networks

Event-Activity Network
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From Line Networks to Event-Activity Networks

Event-Activity Network

Events:

• arrival

◦ departure

Activities:

→ drive, dwell, turn

→ transfer

. . .
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Periodic Timetabling in Public Transport

[23, 28], 753[23, 28], 753[23, 28], 753[23, 28], 753[23, 28], 753[23, 28], 753

Periodic Event Scheduling Instance

Bounds:

I driving times

I minimum transfer times

I maximum dwell times

I minimum headway times

I . . .

Weights:

I passenger load

I turnaround penalties

I . . .

Period time:

I e.g., T = 60 for 1 hour,

resolution of 1 minute
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Periodic Event Scheduling Problem (PESP)

Given
G = (V , A) event-activity network,

T ∈ N period time,

` ∈ RA lower bounds,

u ∈ RA upper bounds,

w ∈ RA
≥0 weights,

find
π ∈ [0, T)V periodic timetable,

x ∈ RA periodic tension

such that

(1) πj − πi ≡ xij mod T for all ij ∈ A,

(2) ` ≤ x ≤ u,

(3) w>x is minimum,

or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Incidence-based MIP formulation:

Minimize w>x

s.t. πj − πi = xij − Tpij, ij ∈ A,

`ij ≤ xij ≤ uij, ij ∈ A,

p ∈ ZA periodic offsets

(Nachtigall, 1994, Liebchen, 2006)
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`ij ≤ xij ≤ uij, ij ∈ A,

πi ∈ R, i ∈ V ,

pij ∈ Z, ij ∈ A.

p ∈ ZA periodic offsets

Assumptions after preprocessing:

I G is weakly (2-)connected

I G has no arc a ∈ Awith `a = ua

I 0 ≤ ` < T and 0 ≤ u− ` < T

(Nachtigall, 1994, Liebchen, 2006)
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s.t. πj − πi = xij − Tpij, ij ∈ A,

`ij ≤ xij ≤ uij, ij ∈ A,

πi ∈ R, i ∈ V ,

pij ∈ Z, ij ∈ A.

p ∈ ZA periodic offsets

Redundancy among periodic offsets p:

I could impose 0 ≤ πi < T and

pij ∈ {0, 1, 2}
I could set pij = 0 along spanning

forest

(Nachtigall, 1994, Liebchen, 2006)
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Hardness of PESP

Theory:

I NP-hard for fixed T ≥ 3

(Odijk, 1994, Nachtigall, 1996)

I NP-hard if G has treewidth≥ 2

(L. and Reisch, 2020)

I NP-hard cutting plane separation

(cycle, change-cycle, flip)

(Borndörfer et al., 2020, L. and Liebchen,

2020)

Practice:

I rich literature on algorithms:
I MIP
I CP
I SAT (also MaxSAT and SAT+ML)
I Modulo Network Simplex
I Matching, Merging, Maximum

Cuts, Graph Partitioning, . . .

I several success stories (Berlin,

Copenhagen, Netherlands,

Switzerland, . . . )

I none of the 22 instances of

PESPlib (est. 2012 by Goerigk)

solved to proven optimality yet

Summary: There are many ways to heuristically optimize periodic timetables, but it

is hard to assess the actual quality.

Question: Can we get more insight by studying the geometry of periodic timetables?
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Cycles

v0

v1

v2

�[3
, 1
2]

[4, 13]

[2, 10]

γ = (γv0v1 , γv0v2 , γv1v2)

= (1,−1, 1)

γ+ = (1, 0, 1)

γ− = (0, 1, 0)

C = Z · γ

µ = 3− 3+ 1 = 1

B = {γ}

Γ =
(
1 −1 1

)

oriented cycle:

γ ∈ {−1, 0, 1}A s.t.
{a ∈ A | γa 6= 0} is a cycle when ignoring orientations

forward/backward arcs:

γa = 1: forward arc, γa = −1: backward arc

can decompose γ = γ+ − γ− into forward/backward

part, γ+, γ− ∈ {0, 1}A

cycle space:

abelian group C ⊆ ZA generated by all oriented cycles

cyclomatic number:

µ := rk(C) = m− n+ c

(if G has n vertices,m arcs, c components)

integral cycle basis:

setB ofµ oriented cycles generating C as abelian group

cycle matrix of an integral cycle basis B:
matrix Γ ∈ {−1, 0, 1}B×A with the vectors in B as rows
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Cycle Periodicity

Theorem (Cycle periodicity property)

Let G = (V , A) be a digraph with incidence matrix B ∈ {−1, 0, 1}V×A. Let Γ be the cycle

matrix of an integral cycle basisB of G. Then, asZ-modules,

imB> = ker Γ.

For friends of graph cohomology: The following sequence is exact:

0 → ZC → ZV BT

−→ ZA Γ−→ ZB → 0

This is a standard linear algebra result over fields, the proof overZ uses the total

unimodularity of the incidence matrix.

Corollary (Liebchen, Peeters, 2009)

Let x ∈ RA and T ∈ N. Then the following are equivalent:

(1) There is a vector π ∈ RV such that xij ≡ πj − πi mod T for all ij ∈ A.

(2) Γx ≡ 0 mod T.
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MIP Formulations and Spaces of Interest

MIP Formulations

Incidence-based MIP formulation:

Minimize w>x

s.t. −B>π = x − Tp

` ≤ x ≤ u

π ∈ RV

p ∈ ZA

Cycle-based MIP formulation:

Minimize w>x

s.t. Γx = Tz

` ≤ x ≤ u

z ∈ ZB

z ∈ ZB cycle offsets

Timetabling Spaces

X := conv
{
x ∈ RA | ∃z ∈ ZB : Γx = Tz, ` ≤ x ≤ u

}
convex hull of feas. periodic tensions

Π := {π ∈ RV | ∃p ∈ ZA : ` ≤ −B>π + Tp ≤ u} space of feasible periodic timetables

Z := {z ∈ RB | ∃x ∈ RA : Γx = Tz, ` ≤ x ≤ u} space of feasible cycle offsets

Niels Lindner: On the tropical and zonotopal geometry of periodic timetabling May 18, 2022 11 / 32



MIP Formulations and Spaces of Interest

MIP Formulations

Incidence-based MIP formulation:

Minimize w>x

s.t. −B>π = x − Tp

` ≤ x ≤ u

π ∈ RV

p ∈ ZA

Cycle-based MIP formulation:

Minimize w>x

s.t. Γx = Tz

` ≤ x ≤ u

z ∈ ZB

z ∈ ZB cycle offsets

Timetabling Spaces

X := conv
{
x ∈ RA | ∃z ∈ ZB : Γx = Tz, ` ≤ x ≤ u

}
convex hull of feas. periodic tensions

Π := {π ∈ RV | ∃p ∈ ZA : ` ≤ −B>π + Tp ≤ u} space of feasible periodic timetables

Z := {z ∈ RB | ∃x ∈ RA : Γx = Tz, ` ≤ x ≤ u} space of feasible cycle offsets

Niels Lindner: On the tropical and zonotopal geometry of periodic timetabling May 18, 2022 11 / 32



MIP Formulations and Spaces of Interest

MIP Formulations

Incidence-based MIP formulation:

Minimize w>x

s.t. −B>π = x − Tp

` ≤ x ≤ u

π ∈ RV

p ∈ ZA

Cycle-based MIP formulation:

Minimize w>x

s.t. Γx = Tz

` ≤ x ≤ u

z ∈ ZB

z ∈ ZB cycle offsets

Timetabling Spaces

X := conv
{
x ∈ RA | ∃z ∈ ZB : Γx = Tz, ` ≤ x ≤ u

}
convex hull of feas. periodic tensions

Π := {π ∈ RV | ∃p ∈ ZA : ` ≤ −B>π + Tp ≤ u} space of feasible periodic timetables

Z := {z ∈ RB | ∃x ∈ RA : Γx = Tz, ` ≤ x ≤ u} space of feasible cycle offsets

Niels Lindner: On the tropical and zonotopal geometry of periodic timetabling May 18, 2022 11 / 32



Gallery of Timetabling Spaces

v0

v1

v2

[3
, 1
2]

[4, 13]

[2, 10]

PESP instance with n = 3,m = 3, µ = 1

(3, 7, 4)

(8, 2, 4)

(6, 10, 4)

(3, 2, 9)

(12, 6, 4)(3, 10, 7)

(3, 6, 13)

(9, 2, 13)

(12, 2, 10)

(12, 10, 8)

(7, 10, 13)

(12, 5, 13)

X is a polytope standard toolbox

of mixed-integer linear programming

0 0 0 -1 0 1

0 1 1 -1 1 2

0 0 1

-1 0 2

1 0 0

0 -1 0 -1 -1 1

0 1 21 1 1

0 0 21 0 1

0 -1 11 -1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

π1

π2

Π/R1 is periodically tiled by polyt(r)opes

−0.3 0.6 1.4 2.3

Z is a zonotope
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Part 2

The Tropical Tiling of the
Space of Periodic Timetables

Niels Lindner: On the tropical and zonotopal geometry of periodic timetabling May 18, 2022 13 / 32



Decomposing the Space of Periodic Timetables

Decomposition

Recall that the space of feasible periodic timetables is

Π := {π ∈ RV | ∃p ∈ ZA : ` ≤ −B>π + Tp ≤ u}.
The spaceΠ decomposes into polyhedral regions:

Π =
⋃
p∈ZA

R(p), where R(p) := {π ∈ RV | `− Tp ≤ −B>π ≤ u− Tp}.

Due to the assumption 0 ≤ u− ` < T , the union is disjoint.

Weighted Digraph Polyhedra

Add a reverse copy a of each arc a. This produces a new graph G = (V , A)with V = V .

If we set κ(p)a := ua − Tpa and κ(p)a := −`a + Tpa, then

R(p) = {π ∈ RV | πj − πi ≤ κ(p)ij for all ij ∈ A}.
This means that R(p) is theweighted digraph polyhedron (Joswig, Loho, 2016)

associated to (G, κ(p)). In combinatorial optimization terms, R(p) is the polyhedron
of feasible potentials in Gw.r.t. the arc costs κ(p).
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Decomposing the Space of Periodic Timetables

A First Symmetry

Since Gwas assumed to be weakly connected, G is strongly connected. This means

by (Joswig, Loho, 2016):

I The recession cone of R(p) isR1 (i.e., the kernel of B>).

I The quotient R(p)/R1 is a polytope.
Choosing coordinates on R(p)/R1 amounts to the periodic timetabler’s wisdom that

a timetable π can be fixed at one event v0 ∈ V to πv0 := 0 without affecting feasiblity

or optimality.

Polytropes

A polytrope is the convex hull of finitely many points, both in the ordinary and the

tropical sense. Polytropes are exactly the quotients of weighted digraph polyhedra

of strongly connected digraphs byR1 (Joswig, Kulas, 2010).

Corollary

The spaceΠ/R1 decomposes into the disjoint union of the polytropes R(p)/R1.
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The Periodic Timetabling Torus

Periodicity: If π ∈ Π, then π + Tq ∈ Π for

all q ∈ ZV . Consequently, we could consider

the space of timetables inside the (n − 1)-
dimensional torus

T := (RV/(TZ)V )/R1.

Redundancy of periodic offsets: R(p) ≡ R(p′)
on T iff Γp = Γp′. We can hence denote R(p)
modulo T by R(z), where z := Γp ∈ ZB.

In our example,

z =
Γx

T
≤
⌊
12− 2+ 13

10

⌋
= 2,

z =
Γx

T
≥
⌈
3− 10+ 4

10

⌉
= 0,

so there are at most 3 non-empty polytropes

on the torus (for z ∈ {0, 1, 2}).
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More on Timetabling Polytropes

Dimension

I R(p) = ∅ if and only if G contains a negative weight (directed) cycle w.r.t. κ(p).

I The dimension of R(p)/R1 is the number of connected components of the

equality graph of (G, κ(p))minus 1 (Joswig, Loho, 2016).

Vertices

I Every vertex of R(p)/R1 corresponds to a unique spanning subgraph of G.

I For each i ∈ V , the i-th tropical vertex of R(p)/R1 corresponds to a shortest
path tree of (G, κ(p)) rooted at i. (Joswig, Kulas, 2010).

Relation to the Periodic Tension Polytope

I Themapmp : π 7→ −B>π + Tp embeds R(p)/R1 into X.

I X is the convex hull of {im(mp) | p ∈ ZA}.
I im(mp) is the intersection of the affine space im(B>) + Tpwith the LP

relaxation polytope XLP =
∏

a∈A[`a, ua] of X.
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Tropical Neighborhood Search

Polytropes in the Limit Instance

Let R(p)/R1 be a polytrope. The offset p also defines a polytrope R′(p)/R1 a of the
“limit” instance where u := `+ T . The union of the polytropes is then no longer

disjoint and covers all ofRV/R1.
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Tropical Neighborhood Search

Polytropes in the Limit Instance

Let R(p)/R1 be a polytrope. The offset p also defines a polytrope R′(p)/R1 a of the
“limit” instance where u := `+ T . The union of the polytropes is then no longer

disjoint and covers all ofRV/R1.

Lemma

Let p, p′ ∈ ZA. Then R′(p)/R1 ∩ R′(p′)/R1 6= ∅ if and only if there is an arc a ∈ A with

p = p′ ± ea. In this case, the polytropes intersect in a common face.

In particular, the R′(p) give rise to a polyt(r)opal subdivision ofRV/R1.

Neighbors

We call R(p)/R1 and R(p′)/R1 neighbors if R′(p)/R1 and R′(p′)/R1 intersect in a

common facet.

Tropical Neighborhood Search for Periodic Timetabling

Given a non-empty polytrope R(p)/R1, solve PESP on R(p)/R1 (this is a linear
program, and dual to uncapacitated min cost flow). While there is an improving

neighbor of R(p)/R1: Go to the best neighboring polytrope, and repeat.
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Tropical Neighborhood Search

modulo network simplex search space

colored by objective value

squares are local non-global optima

tropical neighborhood search space

colored by objective value
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Part 3

The Zonotope of Cycle Offsets
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Zonotopes and Their Tilings

Zonotopes

A zonotope Z(M, b) is the image of a (hyper)cube w.r.t. an affine map x 7→ Mx + b.

In particular, the space of feasible cycle offsets of a PESP instance with a chosen

cycle basis B and a cycle matrix Γ,

Z := {z ∈ RB | ∃x ∈ RA : Γx = Tz, ` ≤ x ≤ u} =
1

T
Γ(XLP) =

1

T
Γ

(∏
a∈A

[`a, ua]

)
,

is a µ-dimensional zonotope: We can takeM := Γ′, where Γ′ is obtained from Γ by
scaling each column a by ua−`a

T
, and b := Γ`

T
. We call Z a cycle offset zonotope.

Zonotopal Tilings

A zonotopal tiling of a zonotope Z(M, b) is a polyhedral subdivision of Z(M, b) such
that each cell is a zonotope Z(MS, bS), whereMS is the submatrix ofMwith the

colums indexed by S removed. We will call maximal cells tiles. A zonotopal tiling is

fine if all tiles are parellelotopes, i.e., the columns ofMS are linearly independent.
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Pictures of Cycle Offset Zonotopes
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Zonotopal Tilings of Cycle Offset Zonotopes

Let Z be a cycle offset zonotope of a PESP instance.

Lemma

The k-dimensional cells of any fine zonotopal tiling of Z are in bijection with spanning

subgraphs of G consisting of m− k arcs. In particular, the tiles correspond one-to-one

to spanning trees of G.

Proof sketch: Based on (Kavitha et al., 2009): A subset S ⊆ A is spanning if and only if

the submatrix of Γ on the columns not in S has rankm− |S|.

Corollary

Let S denote the set of spanning trees of G. Then

vol(Z) =
∑
S∈S

∏
a∈A\S

ua − `a
T

.

Proof sketch: Every zonotope has a fine zonotopal tiling, each tile corresponds to a

spanning tree, the volume of a parallelotope is the absolute value of a determinant

of a µ× µ invertible submatrix of Γ′, any µ× µ-minor of Γ is in {−1, 0, 1}.
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Relation to Timetabling Torus Polytropes

By a volume argument, and since B is an integral cycle basis, we can show:

Theorem

Each tile of a fine zonotopal tiling of Z contains at most one lattice point. In particular,

the number of lattice points in Z is at most the number of spanning trees of G.

Lemma

Themap z 7→ R(z) is a bijection between the lattice points of Z and the non-empty

polytropes in the decomposition of the timetable space in the torus T .

We think of this as a kind of duality: Certain 0-dimensional objects (lattice points)

correspond to top-dimensional objects (polytropes).

Corollary

There are at most as many non-empty

polytropes in T as there are spanning

trees in G. −0.3 0.6 1.4 2.3
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trees in G. −0.3 0.6 1.4 2.3

Niels Lindner: On the tropical and zonotopal geometry of periodic timetabling May 18, 2022 24 / 32



Cube Faces and Zonotope Tiles

Question

Given a fine zonotopal tiling of Z, consider a tile labeled by a spanning tree S with a

lattice point z. Is there a relation between S and R(z)?

Structures and Faces of XLP

A structure is a triple (S, L,U) of subsets of A such that L ∪ U = S and L ∩ U = ∅. The
structure (S, L,U) is a combinatorial encoding of the face

FL,U := {x ∈ XLP | xa = `a for all a ∈ L and xa = ua for all a ∈ U}

of the “cube” XLP.

Lemma

Fix a fine zonotopal tiling of Z. Then for any cell C defined by some spanning subgraph

S, there is a structure (S, L,U) such that C = 1
T
Γ(FL,U).

Proof sketch: It is non-trivial to check that the translation vectors match. This

follows from a formula given by (Richter-Gebert, Ziegler, 1994).
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From Tiles to Polytrope Vertices

Theorem

Given a fine zonotopal tiling of Z, let C be a tile defined by a spanning tree S and given

by the image of FL,U. If C contains a lattice point z, then R(z) contains a vertex defined

by the spanning subgraph in G defined by (S, L,U).

We see this as duality as well: A top-dimensional object (tile) gives rise to a

0-dimensional object (polytrope vertex).

Question

Can we construct a zonotopal tiling by picking vertices from each non-empty

polytrope R(z) in some compatible way?
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Construction: From Tropical Vertices to Tiles

For a vertex i ∈ V , define the polyhedron Pi := XLP + pos(B̂>
i ).

Theorem

(1) Every bounded face of Pi is a face FL,U of XLP.

(2) Every bounded face FL,U of Pi corresponds to a structure (S, L,U) such that S is

spanning. In particular, dim FL,U ≤ µ.

(3) The bounded faces of Pi correspond bijectively to arborescences in G rooted at i.

(4) 1
T
Γmaps the bounded faces of Pi to the tiles of a fine zonotopal tiling of Z.

Remarks on the proof: (1) is straightforward, (2) and (3) use network flows, and (4) is

a volume argument.

Corollary

Let i ∈ V. Then there is a fine zonotopal tiling of Z such that any tile containing an

integer point z corresponds to a spanning tree structure defined by the i-th tropical

vertex of R(z).
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Pictures of the Construction
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MinimumWidth Integral Cycle Bases

Thewidth of an integral cycle basis B is (Liebchen, Peeters, 2009)

WB :=
∏
γ∈B

(⌊
γ>
+u− γ>

−`

T

⌋
−
⌈
γ>
+ `− γ>

−u

T

⌉
+ 1

)
.

I By construction,WB is an upper bound on the number of lattice points in Z.

I WB hence an upper bound on the number of leaves of a branch-and-bound tree.

I Finding an integral cycle basis of minimumwidth is hence desirable, but the

complexity status is open.

I In practice, this is currently (heuristically) done by a minimumweight

undirected cycle basis algorithm (Horton, 1987, de Pina, 1995).

Lemma

WB is the number of lattice points in the smallest hyperrectangle containing the cycle

offset zonotope Z.

In our two examples,WB = 3 resp.WB = 12. In both cases,WB equals the number of

spanning trees. Coincidence?
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Cycle Bases, Spanning Trees, Approximating Width

Lemma (Zonotope volume vs. volume of smallest containing hyperrectangle)

Let d ∈ RA
≥0. Then ∑

S∈S

 ∏
a∈A\S

da

 ≤
∏
γ∈B

 ∑
a∈A:γa 6=0

da

 .

Corollary

For any graph G, the number |S| of spanning trees is at most the product of the lengths

of the cycles in an integral cycle basisB of G.

Corollary

Suppose that WB ≥ 1. Then

|S| ·
( ε
T

)µ
≤ vol(Z) ≤

∏
γ∈B

sγ ≤ WB ·
∏
γ∈B

sγ

max{bsγc, 1}
< WB · 2µ,

where ε := min{ua − `a | a ∈ A} and sγ :=
∑

a∈A:γa 6=0
ua−`a

T
.
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The Final Slide

Conclusion

I We connected the problem of periodic timetabling in public transport in a

twofold way to discrete geometry: to polytropes and to zonotopes.

I There are close relationships between the polytropes and the zonotopes.

I Details: arXiv:2204.13501

Outlook

I We have implemented tropical neighborhood search (writing in progress).

I We are also working on a branch-and-bound heuristic for PESP using branching

on tropical sectors.

I The cycle offset zonotope seems to be related to Benders decomposition.

I Big question: Can we turn the geometric insights into useful optimization

techniques?
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