

Timetable Merging for the Periodic Event Scheduling Problem

Niels Lindner

Zuse Institute Berlin

Christian Liebchen Technical University of Applied Sciences Wildau

RailBeijing 2021 November 5, 2021

IM158, CC-BY-SA 4.0, commons.wikimedia.org

Line Network, 3 bidirectional lines

Event-Activity Network

Event-Activity Network

Events:

- arrival
- departure

Activities:

- \rightarrow drive, dwell, turn
- ightarrow transfer

• • •

Periodic Event Scheduling Instance

Bounds:

- driving times
- minimum transfer times
- maximum dwell times
- minimum headway times

Weights:

. . .

- passenger load
- turnaround penalties

Period time:

. . .

• e.g., T = 60 for 1 hour, resolution of 1 minute

Periodic Event Scheduling Problem (PESP)

Given

- G = (V, A) event-activity network,
- $T \in \mathbb{N}$ period time,
- $\ell \in \mathbb{R}^{A}$ lower bounds,
- $u \in \mathbb{R}^{A}$ upper bounds,
- $w \in \mathbb{R}^{A}_{\geq 0}$ weights,

find

 $\pi \in [0, T)^{V}$ periodic timetable, $x \in \mathbb{R}^{A}$ periodic tension

such that

- (1) $\pi_j \pi_i \equiv x_{ij} \mod T$ for all $ij \in A$,
- (2) $\ell \leq x \leq u$,
- (3) $w^{\top}x$ is minimum,
- or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Periodic Event Scheduling Problem (PESP)

Given	

G = (V, A)event-activity network,

 $T \in \mathbb{N}$ period time,

 $\ell \in \mathbb{R}^A$ lower bounds,

 $u \in \mathbb{R}^{A}$ upper bounds,

 $w \in \mathbb{R}^{A}_{>0}$ weights,

find

 $\pi \in [0,T)^V$ periodic timetable, $x \in \mathbb{R}^A$ periodic tension

such that

- (1) $\pi_i \pi_i \equiv x_{ii} \mod T$ for all $ij \in A$, (2) $\ell < x < u$,
- (3) $w^{\top}x$ is minimum,

or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Incidence-based MIP formulation:

Minimize	$w^{ op}x$	
s.t.	$\pi_j - \pi_i = \mathbf{x}_{ij} - T\mathbf{p}_{ij},$	$ij \in A$,
	$\ell_{ij} \leq x_{ij} \leq u_{ij},$	$ij \in A$,
	$0\leq \pi_i < T,$	$i \in V$,
	$\textit{p}_{ij} \in \{0,1,2\},$	$ij \in A$.

Cycle-based MIP formulation:

(Nachtigall, 1994, Liebchen and Peeters, 2009)

MITITIZE	$w^{ op}x$		
s.t.	$\Gamma x = Tz$,		
	$\ell \leq x \leq u,$		
	$z \in \mathbb{Z}^{B}$.		
$ \mathbb{Z}^{A} \qquad \text{integral cycle} \\ \mathbb{Z}^{B \times A} \qquad \text{cycle matrix o} $	basis of G If B		

B Г $z \in \mathbb{Z}$

RailBeijing 2021

Periodic Event Scheduling Problem (PESP)

Given	

G = (V, A)event-activity network,

 $T \in \mathbb{N}$ period time,

 $\ell \in \mathbb{R}^A$ lower bounds,

 $u \in \mathbb{R}^{A}$ upper bounds,

 $w \in \mathbb{R}^{A}_{>0}$ weights,

find

 $\pi \in [0,T)^V$ periodic timetable, $x \in \mathbb{R}^A$ periodic tension

such that

- (1) $\pi_i \pi_i \equiv x_{ii} \mod T$ for all $ij \in A$, (2) $\ell < x < u$,
- (3) $w^{\top}x$ is minimum,

or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Incidence-based MIP formulation:

Minimize	$w^{ op}x$	
s.t.	$\pi_j - \pi_i = \mathbf{x}_{ij} - T\mathbf{p}_{ij},$	$ij \in A$,
	$\ell_{ij} \leq x_{ij} \leq u_{ij},$	$ij \in A$,
	$0\leq \pi_i < T,$	$i \in V$,
	$\textit{p}_{ij} \in \{0,1,2\},$	$ij \in A$.

Cycle-based MIP formulation:

(Nachtigall, 1994, Liebchen and Peeters, 2009)

MITITIZE	$w^{ op}x$		
s.t.	$\Gamma x = Tz$,		
	$\ell \leq x \leq u,$		
	$z \in \mathbb{Z}^{B}$.		
$ \mathbb{Z}^{A} \qquad \text{integral cycle} \\ \mathbb{Z}^{B \times A} \qquad \text{cycle matrix o} $	basis of G If B		

B Г $z \in \mathbb{Z}$

RailBeijing 2021

7/16

Hardness of PESP

Theory:

- NP-hard for fixed T ≥ 3
 (Odijk, 1994, Nachtigall, 1996)
- ► NP-hard if G has treewidth ≥ 2 (L. and Reisch, 2020)
- NP-hard cutting plane separation (cycle, change-cycle, flip) (Borndörfer et al., 2020, L. and Liebchen, 2020)

Hardness of PESP

Theory:

- ► NP-hard for fixed T ≥ 3 (Odijk, 1994, Nachtigall, 1996)
- ► NP-hard if G has treewidth ≥ 2 (L. and Reisch, 2020)
- NP-hard cutting plane separation (cycle, change-cycle, flip) (Borndörfer et al., 2020, L. and Liebchen, 2020)

Practice:

- rich literature on algorithms:
 - MIP
 - ► CP
 - SAT (also MaxSAT and SAT+ML)
 - Modulo Network Simplex
 - Matching, Merging, Maximum Cuts, Graph Partitioning, . . .
- several success stories (Berlin, Copenhagen, Netherlands, Switzerland, ...)
- none of the 22 instances of PESPlib (est. 2012 by Goerigk) solved to proven optimality yet

Hardness of PESP

Theory:

- ► NP-hard for fixed T ≥ 3 (Odijk, 1994, Nachtigall, 1996)
- ► NP-hard if G has treewidth ≥ 2 (L. and Reisch, 2020)
- NP-hard cutting plane separation (cycle, change-cycle, flip) (Borndörfer et al., 2020, L. and Liebchen, 2020)

Practice:

- rich literature on algorithms:
 - MIP
 - ► CP
 - SAT (also MaxSAT and SAT+ML)
 - Modulo Network Simplex
 - Matching, Merging, Maximum Cuts, Graph Partitioning, . . .
- several success stories (Berlin, Copenhagen, Netherlands, Switzerland, ...)
- none of the 22 instances of PESPlib (est. 2012 by Goerigk) solved to proven optimality yet

Summary:

There are many ways to heuristically optimize periodic timetables, but it is hard to assess the actual quality.

Solving PESP in Practice

ConcurrentPESP

- parallel solver for PESP instances developed at Zuse Institute Berlin (Borndörfer et al., 2020, presented at RailNorrköping 2019)
- combines a plenty of PESP algorithms
- computed best primal and dual bounds for all PESPlib instances
- current PESP1ib incumbents are locally optimal for the implemented heuristics

Solving PESP in Practice

ConcurrentPESP

- parallel solver for PESP instances developed at Zuse Institute Berlin (Borndörfer et al., 2020, presented at RailNorrköping 2019)
- combines a plenty of PESP algorithms
- computed best primal and dual bounds for all PESPlib instances
- current PESPlib incumbents are locally optimal for the implemented heuristics

Our approach: Merging

Can we escape local optima by combining several good timetables to even better timetables?

Solving PESP in Practice

ConcurrentPESP

- parallel solver for PESP instances developed at Zuse Institute Berlin (Borndörfer et al., 2020, presented at RailNorrköping 2019)
- combines a plenty of PESP algorithms
- computed best primal and dual bounds for all PESPlib instances
- current PESPlib incumbents are locally optimal for the implemented heuristics

Our approach: Merging

Can we escape local optima by combining several good timetables to even better timetables?

Inspiration

- ► Tour Merging for the Traveling Salesman Problem (Cook, Seymour, 2003)
- Crossover in Mixed-Integer Programming (Rothberg, 2007)
- Arc Selection heuristic for PESP via MaxSAT (Roth, 2019)

Restrict the x (periodic tension/activity durations) variables according to the values in S.

Restrict the *x* (periodic tension/activity durations) variables according to the values in *S*.

Restrict the *x* (periodic tension/activity durations) variables according to the values in *S*.

Restrict the x (periodic tension/activity durations) variables according to the values in S.

Tension-restricted scenarios

Consider arbitrary combinations of {ORIG, MED, FIX} for lower and upper bounds.

Restrict the x (periodic tension/activity durations) variables according to the values in S.

Tension-restricted scenarios

Consider arbitrary combinations of $\{{\sf ORIG}, {\sf MED}, {\sf FIX}\}$ for lower and upper bounds.

Cycle-offset restricted scenarios

Two restriction schemes {ALL, PARTIAL} for the cycle offsets z, tightening the bounds from Odijk's cycle inequalities (Odijk, 1994), and making use of minimum cycle bases.

Span Analysis

1	L	U	fixed activities	free activities	avg. span	avg. wt. span
	FIX	FIX	55.18 %	28.03 %	18.98	6 5 1 1
R1L1	MED	FIX	53.78 %	28.05 %	19.76	7 608
	ORIG	FIX	53.78 %	28.07 %	20.49	8 646
	FIX	MED	10.34 %	29.13 %	21.03	15 285
	MED	MED	10.12 %	29.24 %	21.81	16 382
	ORIG	MED	10.12 %	29.79 %	22.55	17 420
	FIX	ORIG	10.34 %	35.07 %	26.19	35 391
	MED	ORIG	10.12 %	35.61 %	26.96	36 488
	ORIG	ORIG	10.12 %	44.28 %	27.70	37 526
R4L4	FIX	FIX	42.78 %	32.38 %	24.99	3 802
	MED	FIX	42.66 %	32.40 %	25.76	4 073
	ORIG	FIX	42.66 %	32.54 %	26.46	4 320
	FIX	MED	8.93 %	34.36 %	27.02	7 643
	MED	MED	8.86 %	34.70 %	27.79	7 915
	ORIG	MED	8.86 %	36.53 %	28.50	8 162
	FIX	ORIG	8.93 %	40.91 %	31.84	16 22 1
	MED	ORIG	8.86 %	42.01 %	32.61	16 493
	ORIG	ORIG	8.86 %	54.27 %	33.32	16 740

Analysis of spans $u_a - \ell_a$ for the tension-restricted R1L1 and R4L4 PESPlib scenarios

Experimental Setup

Results for R1L1

Objective values of the solutions obtained from R1L1(ORIG, MED)

- after Round 1: #2, #3, #5 produced solutions better than the PESPlib incumbent (value 30 415 672, dotted blue line)
- after Round 2: in total 7 better timetables

Results for R4L4

Objective values of the solutions obtained from R4L4(MED, ORIG)

- after Round 1: 6 solutions better than the PESPlib incumbent (value 38 381 922, dotted blue line
- after Round 2: in total 9 better timetables

Some more details

- All scenarios with u^{FIX} could be solved to optimality: The best solution in S was already optimal.
- The best solutions found are not necessarily the ones with the best solution in S as initial solution for the solver.
- ► The cycle-offset restriction schemes produced comparable results.

Conclusion

- ► Timetable Merging can produce better periodic timetables.
- Timetable Merging escapes local minima for the modulo network simplex method and several other heuristics.
- While Timetable Merging is in concept similar to MIP crossover, it requires more computational power due to the difficulty of PESP.

Timetable Merging for the Periodic Event Scheduling Problem

<u>Niels Lindner</u>

Zuse Institute Berlin

Christian Liebchen Technical University of Applied Sciences Wildau

RailBeijing 2021 November 5, 2021