1    	/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2    	/*                                                                           */
3    	/*                  This file is part of the program and library             */
4    	/*         SCIP --- Solving Constraint Integer Programs                      */
5    	/*                                                                           */
6    	/*  Copyright (c) 2002-2023 Zuse Institute Berlin (ZIB)                      */
7    	/*                                                                           */
8    	/*  Licensed under the Apache License, Version 2.0 (the "License");          */
9    	/*  you may not use this file except in compliance with the License.         */
10   	/*  You may obtain a copy of the License at                                  */
11   	/*                                                                           */
12   	/*      http://www.apache.org/licenses/LICENSE-2.0                           */
13   	/*                                                                           */
14   	/*  Unless required by applicable law or agreed to in writing, software      */
15   	/*  distributed under the License is distributed on an "AS IS" BASIS,        */
16   	/*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17   	/*  See the License for the specific language governing permissions and      */
18   	/*  limitations under the License.                                           */
19   	/*                                                                           */
20   	/*  You should have received a copy of the Apache-2.0 license                */
21   	/*  along with SCIP; see the file LICENSE. If not visit scipopt.org.         */
22   	/*                                                                           */
23   	/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24   	
25   	/**@file   type_symmetry.h
26   	 * @brief  type definitions for symmetry computations
27   	 * @author Marc Pfetsch
28   	 * @author Christopher Hojny
29   	 */
30   	
31   	/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
32   	
33   	#ifndef __SCIP_TYPE_SYMMETRY_H_
34   	#define __SCIP_TYPE_SYMMETRY_H_
35   	
36   	#include "scip/scip.h"
37   	
38   	#ifdef __cplusplus
39   	extern "C" {
40   	#endif
41   	
42   	/** symmetry type specification */
43   	#define SYM_SPEC_INTEGER                UINT32_C(0x00000001)  /**< need symmetries for integer variables only */
44   	#define SYM_SPEC_BINARY                 UINT32_C(0x00000002)  /**< need symmetries for binary variables only */
45   	#define SYM_SPEC_REAL                   UINT32_C(0x00000004)  /**< need symmetries also for continuous variables */
46   	
47   	typedef uint32_t SYM_SPEC;              /**< types of variables handled by symmetry */
48   	
49   	/** symmetry timings */
50   	#define SYM_COMPUTETIMING_BEFOREPRESOL    0  /**< compute symmetries before presolving */
51   	#define SYM_COMPUTETIMING_DURINGPRESOL    1  /**< compute symmetries during presolving */
52   	#define SYM_COMPUTETIMING_AFTERPRESOL     2  /**< compute symmetries after presolving */
53   	
54   	/** define symmetry types detectable by SCIP */
55   	enum SYM_Symtype
56   	{
57   	   SYM_SYMTYPE_PERM      = 0,                /**< permutation symmetries */
58   	   SYM_SYMTYPE_SIGNPERM  = 1                 /**< signed permutation symmetries */
59   	};
60   	typedef enum SYM_Symtype SYM_SYMTYPE;
61   	
62   	/** define type of nodes in symmetry detection expression trees */
63   	enum SYM_Nodetype
64   	{
65   	   SYM_NODETYPE_OPERATOR = 0,                /**< operator node */
66   	   SYM_NODETYPE_VAL      = 1,                /**< numerical value node */
67   	   SYM_NODETYPE_CONS     = 2,                /**< constraint node */
68   	   SYM_NODETYPE_VAR      = 3                 /**< variable node */
69   	};
70   	typedef enum SYM_Nodetype SYM_NODETYPE;
71   	
72   	/** define type of simple constraints/operators in symmetry detection */
73   	enum SYM_Consoptype
74   	{
75   	   SYM_CONSOPTYPE_UNKNOWN     = 0,           /**< unknown constraint type */
76   	   SYM_CONSOPTYPE_BDDISJ      = 1,           /**< constraint of type bounddisjunction */
77   	   SYM_CONSOPTYPE_EQ          = 2,           /**< encodes == in indicator constraints for activation variable */
78   	   SYM_CONSOPTYPE_SOS2_TUPLE  = 3,           /**< encodes pairs in SOS2 constraints */
79   	   SYM_CONSOPTYPE_SUM         = 4,           /**< indicates sums if sum-expr undefined */
80   	   SYM_CONSOPTYPE_SLACK       = 5,           /**< indicates slack vars in indicator constraints */
81   	   SYM_CONSOPTYPE_COEF        = 6,           /**< indicates coefficients from parent expressions */
82   	   SYM_CONSOPTYPE_SQDIFF      = 7,           /**< indicates a squared difference */
83   	   SYM_CONSOPTYPE_CARD_TUPLE  = 8,           /**< encodes pairs in cardinality constraints */
84   	   SYM_CONSOPTYPE_LAST        = 9            /**< number of predefined enum types, needs to always
85   	                                              *   hold the biggest value */
86   	};
87   	typedef enum SYM_Consoptype SYM_CONSOPTYPE;
88   	
89   	/* type of symmetry handling codes */
90   	#define SYM_HANDLETYPE_NONE             UINT32_C(0x00000000)  /**< no symmetry handling */
91   	#define SYM_HANDLETYPE_SYMBREAK         UINT32_C(0x00000001)  /**< symmetry breaking inequalities */
92   	#define SYM_HANDLETYPE_ORBITALREDUCTION UINT32_C(0x00000002)  /**< orbital reduction */
93   	#define SYM_HANDLETYPE_SST              UINT32_C(0x00000004)  /**< Schreier Sims cuts */
94   	#define SYM_HANDLETYPE_SYMCONS (SYM_HANDLETYPE_SYMBREAK | SYM_HANDLETYPE_SST)
95   	
96   	typedef uint32_t SYM_HANDLETYPE;        /**< type of symmetry handling */
97   	
98   	/** selection rules for leaders in SST cuts */
99   	enum SCIP_LeaderRule
100  	{
101  	   SCIP_LEADERRULE_FIRSTINORBIT        = 0,       /**< first var in orbit */
102  	   SCIP_LEADERRULE_LASTINORBIT         = 1,       /**< last var in orbit */
103  	   SCIP_LEADERRULE_MAXCONFLICTSINORBIT = 2        /**< var with most conflicting vars in its orbit */
104  	};
105  	typedef enum SCIP_LeaderRule SCIP_LEADERRULE;
106  	
107  	/** tie breaks for leader rule based on the leader's orbit */
108  	enum SCIP_LeaderTiebreakRule
109  	{
110  	   SCIP_LEADERTIEBREAKRULE_MINORBIT            = 0,    /**< orbit of minimum size */
111  	   SCIP_LEADERTIEBREAKRULE_MAXORBIT            = 1,    /**< orbit of maximum size */
112  	   SCIP_LEADERTIEBREAKRULE_MAXCONFLICTSINORBIT = 2     /**< orbit with maximum number of vars in conflict with leader */
113  	};
114  	
115  	/** variable types for leader in Schreier Sims cuts */
116  	enum SCIP_SSTType
117  	{
118  	   SCIP_SSTTYPE_BINARY                 = 1,    /**< binary variables */
119  	   SCIP_SSTTYPE_INTEGER                = 2,    /**< integer variables */
120  	   SCIP_SSTTYPE_IMPLINT                = 4,    /**< implicitly integer variables */
121  	   SCIP_SSTTYPE_CONTINUOUS             = 8     /**< continuous variables */
122  	};
123  	
124  	typedef enum SCIP_SSTType SCIP_SSTTYPE;
125  	
126  	/** type of orbitope constraint: full, packing, or partitioning orbitope */
127  	enum SCIP_OrbitopeType
128  	{
129  	   SCIP_ORBITOPETYPE_FULL         = 0,       /**< constraint is a full orbitope constraint:         rowsum(x) unrestricted */
130  	   SCIP_ORBITOPETYPE_PARTITIONING = 1,       /**< constraint is a partitioning orbitope constraint: rowsum(x) == 1 */
131  	   SCIP_ORBITOPETYPE_PACKING      = 2        /**< constraint is a packing orbitope constraint:      rowsum(x) <= 1 */
132  	};
133  	typedef enum SCIP_OrbitopeType SCIP_ORBITOPETYPE;
134  	
135  	#ifdef __cplusplus
136  	}
137  	#endif
138  	
139  	#endif
140