1    	// Map implementation -*- C++ -*-
2    	
3    	// Copyright (C) 2001-2017 Free Software Foundation, Inc.
4    	//
5    	// This file is part of the GNU ISO C++ Library.  This library is free
6    	// software; you can redistribute it and/or modify it under the
7    	// terms of the GNU General Public License as published by the
8    	// Free Software Foundation; either version 3, or (at your option)
9    	// any later version.
10   	
11   	// This library is distributed in the hope that it will be useful,
12   	// but WITHOUT ANY WARRANTY; without even the implied warranty of
13   	// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   	// GNU General Public License for more details.
15   	
16   	// Under Section 7 of GPL version 3, you are granted additional
17   	// permissions described in the GCC Runtime Library Exception, version
18   	// 3.1, as published by the Free Software Foundation.
19   	
20   	// You should have received a copy of the GNU General Public License and
21   	// a copy of the GCC Runtime Library Exception along with this program;
22   	// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23   	// <http://www.gnu.org/licenses/>.
24   	
25   	/*
26   	 *
27   	 * Copyright (c) 1994
28   	 * Hewlett-Packard Company
29   	 *
30   	 * Permission to use, copy, modify, distribute and sell this software
31   	 * and its documentation for any purpose is hereby granted without fee,
32   	 * provided that the above copyright notice appear in all copies and
33   	 * that both that copyright notice and this permission notice appear
34   	 * in supporting documentation.  Hewlett-Packard Company makes no
35   	 * representations about the suitability of this software for any
36   	 * purpose.  It is provided "as is" without express or implied warranty.
37   	 *
38   	 *
39   	 * Copyright (c) 1996,1997
40   	 * Silicon Graphics Computer Systems, Inc.
41   	 *
42   	 * Permission to use, copy, modify, distribute and sell this software
43   	 * and its documentation for any purpose is hereby granted without fee,
44   	 * provided that the above copyright notice appear in all copies and
45   	 * that both that copyright notice and this permission notice appear
46   	 * in supporting documentation.  Silicon Graphics makes no
47   	 * representations about the suitability of this software for any
48   	 * purpose.  It is provided "as is" without express or implied warranty.
49   	 */
50   	
51   	/** @file bits/stl_map.h
52   	 *  This is an internal header file, included by other library headers.
53   	 *  Do not attempt to use it directly. @headername{map}
54   	 */
55   	
56   	#ifndef _STL_MAP_H
57   	#define _STL_MAP_H 1
58   	
59   	#include <bits/functexcept.h>
60   	#include <bits/concept_check.h>
61   	#if __cplusplus >= 201103L
62   	#include <initializer_list>
63   	#include <tuple>
64   	#endif
65   	
66   	namespace std _GLIBCXX_VISIBILITY(default)
67   	{
68   	_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69   	
70   	  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
71   	    class multimap;
72   	
73   	  /**
74   	   *  @brief A standard container made up of (key,value) pairs, which can be
75   	   *  retrieved based on a key, in logarithmic time.
76   	   *
77   	   *  @ingroup associative_containers
78   	   *
79   	   *  @tparam _Key  Type of key objects.
80   	   *  @tparam  _Tp  Type of mapped objects.
81   	   *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
82   	   *  @tparam _Alloc  Allocator type, defaults to
83   	   *                  allocator<pair<const _Key, _Tp>.
84   	   *
85   	   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
86   	   *  <a href="tables.html#66">reversible container</a>, and an
87   	   *  <a href="tables.html#69">associative container</a> (using unique keys).
88   	   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
89   	   *  value_type is std::pair<const Key,T>.
90   	   *
91   	   *  Maps support bidirectional iterators.
92   	   *
93   	   *  The private tree data is declared exactly the same way for map and
94   	   *  multimap; the distinction is made entirely in how the tree functions are
95   	   *  called (*_unique versus *_equal, same as the standard).
96   	  */
97   	  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
98   		    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
(1) Event copy_without_assign: Class "std::map<int, std::vector<int, std::allocator<int> >, std::less<int>, std::allocator<std::pair<int const, std::vector<int, std::allocator<int> > > > >" has a user-written copy constructor "std::map<int, std::vector<int, std::allocator<int> >, std::less<int>, std::allocator<std::pair<int const, std::vector<int, std::allocator<int> > > > >::map(std::map<int, std::vector<int, std::allocator<int> >, std::less<int>, std::allocator<std::pair<int const, std::vector<int, std::allocator<int> > > > > const &, std::map<int, std::vector<int, std::allocator<int> >, std::less<int>, std::allocator<std::pair<int const, std::vector<int, std::allocator<int> > > > >::allocator_type const &)" but no corresponding user-written assignment operator.
Also see events: [copy_ctor]
99   	    class map
100  	    {
101  	    public:
102  	      typedef _Key					key_type;
103  	      typedef _Tp					mapped_type;
104  	      typedef std::pair<const _Key, _Tp>		value_type;
105  	      typedef _Compare					key_compare;
106  	      typedef _Alloc					allocator_type;
107  	
108  	    private:
109  	#ifdef _GLIBCXX_CONCEPT_CHECKS
110  	      // concept requirements
111  	      typedef typename _Alloc::value_type		_Alloc_value_type;
112  	# if __cplusplus < 201103L
113  	      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
114  	# endif
115  	      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
116  					_BinaryFunctionConcept)
117  	      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
118  	#endif
119  	
120  	    public:
121  	      class value_compare
122  	      : public std::binary_function<value_type, value_type, bool>
123  	      {
124  		friend class map<_Key, _Tp, _Compare, _Alloc>;
125  	      protected:
126  		_Compare comp;
127  	
128  		value_compare(_Compare __c)
129  		: comp(__c) { }
130  	
131  	      public:
132  		bool operator()(const value_type& __x, const value_type& __y) const
133  		{ return comp(__x.first, __y.first); }
134  	      };
135  	
136  	    private:
137  	      /// This turns a red-black tree into a [multi]map.
138  	      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
139  		rebind<value_type>::other _Pair_alloc_type;
140  	
141  	      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
142  			       key_compare, _Pair_alloc_type> _Rep_type;
143  	
144  	      /// The actual tree structure.
145  	      _Rep_type _M_t;
146  	
147  	      typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
148  	
149  	    public:
150  	      // many of these are specified differently in ISO, but the following are
151  	      // "functionally equivalent"
152  	      typedef typename _Alloc_traits::pointer		 pointer;
153  	      typedef typename _Alloc_traits::const_pointer	 const_pointer;
154  	      typedef typename _Alloc_traits::reference		 reference;
155  	      typedef typename _Alloc_traits::const_reference	 const_reference;
156  	      typedef typename _Rep_type::iterator		 iterator;
157  	      typedef typename _Rep_type::const_iterator	 const_iterator;
158  	      typedef typename _Rep_type::size_type		 size_type;
159  	      typedef typename _Rep_type::difference_type	 difference_type;
160  	      typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
161  	      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
162  	
163  	#if __cplusplus > 201402L
164  	      using node_type = typename _Rep_type::node_type;
165  	      using insert_return_type = typename _Rep_type::insert_return_type;
166  	#endif
167  	
168  	      // [23.3.1.1] construct/copy/destroy
169  	      // (get_allocator() is also listed in this section)
170  	
171  	      /**
172  	       *  @brief  Default constructor creates no elements.
173  	       */
174  	#if __cplusplus < 201103L
175  	      map() : _M_t() { }
176  	#else
177  	      map() = default;
178  	#endif
179  	
180  	      /**
181  	       *  @brief  Creates a %map with no elements.
182  	       *  @param  __comp  A comparison object.
183  	       *  @param  __a  An allocator object.
184  	       */
185  	      explicit
186  	      map(const _Compare& __comp,
187  		  const allocator_type& __a = allocator_type())
188  	      : _M_t(__comp, _Pair_alloc_type(__a)) { }
189  	
190  	      /**
191  	       *  @brief  %Map copy constructor.
192  	       *
193  	       *  Whether the allocator is copied depends on the allocator traits.
194  	       */
195  	#if __cplusplus < 201103L
196  	      map(const map& __x)
197  	      : _M_t(__x._M_t) { }
198  	#else
199  	      map(const map&) = default;
200  	
201  	      /**
202  	       *  @brief  %Map move constructor.
203  	       *
204  	       *  The newly-created %map contains the exact contents of the moved
205  	       *  instance. The moved instance is a valid, but unspecified, %map.
206  	       */
207  	      map(map&&) = default;
208  	
209  	      /**
210  	       *  @brief  Builds a %map from an initializer_list.
211  	       *  @param  __l  An initializer_list.
212  	       *  @param  __comp  A comparison object.
213  	       *  @param  __a  An allocator object.
214  	       *
215  	       *  Create a %map consisting of copies of the elements in the
216  	       *  initializer_list @a __l.
217  	       *  This is linear in N if the range is already sorted, and NlogN
218  	       *  otherwise (where N is @a __l.size()).
219  	       */
220  	      map(initializer_list<value_type> __l,
221  		  const _Compare& __comp = _Compare(),
222  		  const allocator_type& __a = allocator_type())
223  	      : _M_t(__comp, _Pair_alloc_type(__a))
224  	      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
225  	
226  	      /// Allocator-extended default constructor.
227  	      explicit
228  	      map(const allocator_type& __a)
229  	      : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
230  	
231  	      /// Allocator-extended copy constructor.
(2) Event copy_ctor: User-written copy constructor.
Also see events: [copy_without_assign]
232  	      map(const map& __m, const allocator_type& __a)
233  	      : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
234  	
235  	      /// Allocator-extended move constructor.
236  	      map(map&& __m, const allocator_type& __a)
237  	      noexcept(is_nothrow_copy_constructible<_Compare>::value
238  		       && _Alloc_traits::_S_always_equal())
239  	      : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
240  	
241  	      /// Allocator-extended initialier-list constructor.
242  	      map(initializer_list<value_type> __l, const allocator_type& __a)
243  	      : _M_t(_Compare(), _Pair_alloc_type(__a))
244  	      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
245  	
246  	      /// Allocator-extended range constructor.
247  	      template<typename _InputIterator>
248  		map(_InputIterator __first, _InputIterator __last,
249  		    const allocator_type& __a)
250  		: _M_t(_Compare(), _Pair_alloc_type(__a))
251  		{ _M_t._M_insert_unique(__first, __last); }
252  	#endif
253  	
254  	      /**
255  	       *  @brief  Builds a %map from a range.
256  	       *  @param  __first  An input iterator.
257  	       *  @param  __last  An input iterator.
258  	       *
259  	       *  Create a %map consisting of copies of the elements from
260  	       *  [__first,__last).  This is linear in N if the range is
261  	       *  already sorted, and NlogN otherwise (where N is
262  	       *  distance(__first,__last)).
263  	       */
264  	      template<typename _InputIterator>
265  		map(_InputIterator __first, _InputIterator __last)
266  		: _M_t()
267  		{ _M_t._M_insert_unique(__first, __last); }
268  	
269  	      /**
270  	       *  @brief  Builds a %map from a range.
271  	       *  @param  __first  An input iterator.
272  	       *  @param  __last  An input iterator.
273  	       *  @param  __comp  A comparison functor.
274  	       *  @param  __a  An allocator object.
275  	       *
276  	       *  Create a %map consisting of copies of the elements from
277  	       *  [__first,__last).  This is linear in N if the range is
278  	       *  already sorted, and NlogN otherwise (where N is
279  	       *  distance(__first,__last)).
280  	       */
281  	      template<typename _InputIterator>
282  		map(_InputIterator __first, _InputIterator __last,
283  		    const _Compare& __comp,
284  		    const allocator_type& __a = allocator_type())
285  		: _M_t(__comp, _Pair_alloc_type(__a))
286  		{ _M_t._M_insert_unique(__first, __last); }
287  	
288  	#if __cplusplus >= 201103L
289  	      /**
290  	       *  The dtor only erases the elements, and note that if the elements
291  	       *  themselves are pointers, the pointed-to memory is not touched in any
292  	       *  way.  Managing the pointer is the user's responsibility.
293  	       */
294  	      ~map() = default;
295  	#endif
296  	
297  	      /**
298  	       *  @brief  %Map assignment operator.
299  	       *
300  	       *  Whether the allocator is copied depends on the allocator traits.
301  	       */
302  	#if __cplusplus < 201103L
303  	      map&
304  	      operator=(const map& __x)
305  	      {
306  		_M_t = __x._M_t;
307  		return *this;
308  	      }
309  	#else
310  	      map&
311  	      operator=(const map&) = default;
312  	
313  	      /// Move assignment operator.
314  	      map&
315  	      operator=(map&&) = default;
316  	
317  	      /**
318  	       *  @brief  %Map list assignment operator.
319  	       *  @param  __l  An initializer_list.
320  	       *
321  	       *  This function fills a %map with copies of the elements in the
322  	       *  initializer list @a __l.
323  	       *
324  	       *  Note that the assignment completely changes the %map and
325  	       *  that the resulting %map's size is the same as the number
326  	       *  of elements assigned.
327  	       */
328  	      map&
329  	      operator=(initializer_list<value_type> __l)
330  	      {
331  		_M_t._M_assign_unique(__l.begin(), __l.end());
332  		return *this;
333  	      }
334  	#endif
335  	
336  	      /// Get a copy of the memory allocation object.
337  	      allocator_type
338  	      get_allocator() const _GLIBCXX_NOEXCEPT
339  	      { return allocator_type(_M_t.get_allocator()); }
340  	
341  	      // iterators
342  	      /**
343  	       *  Returns a read/write iterator that points to the first pair in the
344  	       *  %map.
345  	       *  Iteration is done in ascending order according to the keys.
346  	       */
347  	      iterator
348  	      begin() _GLIBCXX_NOEXCEPT
349  	      { return _M_t.begin(); }
350  	
351  	      /**
352  	       *  Returns a read-only (constant) iterator that points to the first pair
353  	       *  in the %map.  Iteration is done in ascending order according to the
354  	       *  keys.
355  	       */
356  	      const_iterator
357  	      begin() const _GLIBCXX_NOEXCEPT
358  	      { return _M_t.begin(); }
359  	
360  	      /**
361  	       *  Returns a read/write iterator that points one past the last
362  	       *  pair in the %map.  Iteration is done in ascending order
363  	       *  according to the keys.
364  	       */
365  	      iterator
366  	      end() _GLIBCXX_NOEXCEPT
367  	      { return _M_t.end(); }
368  	
369  	      /**
370  	       *  Returns a read-only (constant) iterator that points one past the last
371  	       *  pair in the %map.  Iteration is done in ascending order according to
372  	       *  the keys.
373  	       */
374  	      const_iterator
375  	      end() const _GLIBCXX_NOEXCEPT
376  	      { return _M_t.end(); }
377  	
378  	      /**
379  	       *  Returns a read/write reverse iterator that points to the last pair in
380  	       *  the %map.  Iteration is done in descending order according to the
381  	       *  keys.
382  	       */
383  	      reverse_iterator
384  	      rbegin() _GLIBCXX_NOEXCEPT
385  	      { return _M_t.rbegin(); }
386  	
387  	      /**
388  	       *  Returns a read-only (constant) reverse iterator that points to the
389  	       *  last pair in the %map.  Iteration is done in descending order
390  	       *  according to the keys.
391  	       */
392  	      const_reverse_iterator
393  	      rbegin() const _GLIBCXX_NOEXCEPT
394  	      { return _M_t.rbegin(); }
395  	
396  	      /**
397  	       *  Returns a read/write reverse iterator that points to one before the
398  	       *  first pair in the %map.  Iteration is done in descending order
399  	       *  according to the keys.
400  	       */
401  	      reverse_iterator
402  	      rend() _GLIBCXX_NOEXCEPT
403  	      { return _M_t.rend(); }
404  	
405  	      /**
406  	       *  Returns a read-only (constant) reverse iterator that points to one
407  	       *  before the first pair in the %map.  Iteration is done in descending
408  	       *  order according to the keys.
409  	       */
410  	      const_reverse_iterator
411  	      rend() const _GLIBCXX_NOEXCEPT
412  	      { return _M_t.rend(); }
413  	
414  	#if __cplusplus >= 201103L
415  	      /**
416  	       *  Returns a read-only (constant) iterator that points to the first pair
417  	       *  in the %map.  Iteration is done in ascending order according to the
418  	       *  keys.
419  	       */
420  	      const_iterator
421  	      cbegin() const noexcept
422  	      { return _M_t.begin(); }
423  	
424  	      /**
425  	       *  Returns a read-only (constant) iterator that points one past the last
426  	       *  pair in the %map.  Iteration is done in ascending order according to
427  	       *  the keys.
428  	       */
429  	      const_iterator
430  	      cend() const noexcept
431  	      { return _M_t.end(); }
432  	
433  	      /**
434  	       *  Returns a read-only (constant) reverse iterator that points to the
435  	       *  last pair in the %map.  Iteration is done in descending order
436  	       *  according to the keys.
437  	       */
438  	      const_reverse_iterator
439  	      crbegin() const noexcept
440  	      { return _M_t.rbegin(); }
441  	
442  	      /**
443  	       *  Returns a read-only (constant) reverse iterator that points to one
444  	       *  before the first pair in the %map.  Iteration is done in descending
445  	       *  order according to the keys.
446  	       */
447  	      const_reverse_iterator
448  	      crend() const noexcept
449  	      { return _M_t.rend(); }
450  	#endif
451  	
452  	      // capacity
453  	      /** Returns true if the %map is empty.  (Thus begin() would equal
454  	       *  end().)
455  	      */
456  	      bool
457  	      empty() const _GLIBCXX_NOEXCEPT
458  	      { return _M_t.empty(); }
459  	
460  	      /** Returns the size of the %map.  */
461  	      size_type
462  	      size() const _GLIBCXX_NOEXCEPT
463  	      { return _M_t.size(); }
464  	
465  	      /** Returns the maximum size of the %map.  */
466  	      size_type
467  	      max_size() const _GLIBCXX_NOEXCEPT
468  	      { return _M_t.max_size(); }
469  	
470  	      // [23.3.1.2] element access
471  	      /**
472  	       *  @brief  Subscript ( @c [] ) access to %map data.
473  	       *  @param  __k  The key for which data should be retrieved.
474  	       *  @return  A reference to the data of the (key,data) %pair.
475  	       *
476  	       *  Allows for easy lookup with the subscript ( @c [] )
477  	       *  operator.  Returns data associated with the key specified in
478  	       *  subscript.  If the key does not exist, a pair with that key
479  	       *  is created using default values, which is then returned.
480  	       *
481  	       *  Lookup requires logarithmic time.
482  	       */
483  	      mapped_type&
484  	      operator[](const key_type& __k)
485  	      {
486  		// concept requirements
487  		__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
488  	
489  		iterator __i = lower_bound(__k);
490  		// __i->first is greater than or equivalent to __k.
491  		if (__i == end() || key_comp()(__k, (*__i).first))
492  	#if __cplusplus >= 201103L
493  		  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
494  						    std::tuple<const key_type&>(__k),
495  						    std::tuple<>());
496  	#else
497  		  __i = insert(__i, value_type(__k, mapped_type()));
498  	#endif
499  		return (*__i).second;
500  	      }
501  	
502  	#if __cplusplus >= 201103L
503  	      mapped_type&
504  	      operator[](key_type&& __k)
505  	      {
506  		// concept requirements
507  		__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
508  	
509  		iterator __i = lower_bound(__k);
510  		// __i->first is greater than or equivalent to __k.
511  		if (__i == end() || key_comp()(__k, (*__i).first))
512  		  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
513  						std::forward_as_tuple(std::move(__k)),
514  						std::tuple<>());
515  		return (*__i).second;
516  	      }
517  	#endif
518  	
519  	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
520  	      // DR 464. Suggestion for new member functions in standard containers.
521  	      /**
522  	       *  @brief  Access to %map data.
523  	       *  @param  __k  The key for which data should be retrieved.
524  	       *  @return  A reference to the data whose key is equivalent to @a __k, if
525  	       *           such a data is present in the %map.
526  	       *  @throw  std::out_of_range  If no such data is present.
527  	       */
528  	      mapped_type&
529  	      at(const key_type& __k)
530  	      {
531  		iterator __i = lower_bound(__k);
532  		if (__i == end() || key_comp()(__k, (*__i).first))
533  		  __throw_out_of_range(__N("map::at"));
534  		return (*__i).second;
535  	      }
536  	
537  	      const mapped_type&
538  	      at(const key_type& __k) const
539  	      {
540  		const_iterator __i = lower_bound(__k);
541  		if (__i == end() || key_comp()(__k, (*__i).first))
542  		  __throw_out_of_range(__N("map::at"));
543  		return (*__i).second;
544  	      }
545  	
546  	      // modifiers
547  	#if __cplusplus >= 201103L
548  	      /**
549  	       *  @brief Attempts to build and insert a std::pair into the %map.
550  	       *
551  	       *  @param __args  Arguments used to generate a new pair instance (see
552  	       *	        std::piecewise_contruct for passing arguments to each
553  	       *	        part of the pair constructor).
554  	       *
555  	       *  @return  A pair, of which the first element is an iterator that points
556  	       *           to the possibly inserted pair, and the second is a bool that
557  	       *           is true if the pair was actually inserted.
558  	       *
559  	       *  This function attempts to build and insert a (key, value) %pair into
560  	       *  the %map.
561  	       *  A %map relies on unique keys and thus a %pair is only inserted if its
562  	       *  first element (the key) is not already present in the %map.
563  	       *
564  	       *  Insertion requires logarithmic time.
565  	       */
566  	      template<typename... _Args>
567  		std::pair<iterator, bool>
568  		emplace(_Args&&... __args)
569  		{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
570  	
571  	      /**
572  	       *  @brief Attempts to build and insert a std::pair into the %map.
573  	       *
574  	       *  @param  __pos  An iterator that serves as a hint as to where the pair
575  	       *                should be inserted.
576  	       *  @param  __args  Arguments used to generate a new pair instance (see
577  	       *	         std::piecewise_contruct for passing arguments to each
578  	       *	         part of the pair constructor).
579  	       *  @return An iterator that points to the element with key of the
580  	       *          std::pair built from @a __args (may or may not be that
581  	       *          std::pair).
582  	       *
583  	       *  This function is not concerned about whether the insertion took place,
584  	       *  and thus does not return a boolean like the single-argument emplace()
585  	       *  does.
586  	       *  Note that the first parameter is only a hint and can potentially
587  	       *  improve the performance of the insertion process. A bad hint would
588  	       *  cause no gains in efficiency.
589  	       *
590  	       *  See
591  	       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
592  	       *  for more on @a hinting.
593  	       *
594  	       *  Insertion requires logarithmic time (if the hint is not taken).
595  	       */
596  	      template<typename... _Args>
597  		iterator
598  		emplace_hint(const_iterator __pos, _Args&&... __args)
599  		{
600  		  return _M_t._M_emplace_hint_unique(__pos,
601  						     std::forward<_Args>(__args)...);
602  		}
603  	#endif
604  	
605  	#if __cplusplus > 201402L
606  	      /// Extract a node.
607  	      node_type
608  	      extract(const_iterator __pos)
609  	      {
610  		__glibcxx_assert(__pos != end());
611  		return _M_t.extract(__pos);
612  	      }
613  	
614  	      /// Extract a node.
615  	      node_type
616  	      extract(const key_type& __x)
617  	      { return _M_t.extract(__x); }
618  	
619  	      /// Re-insert an extracted node.
620  	      insert_return_type
621  	      insert(node_type&& __nh)
622  	      { return _M_t._M_reinsert_node_unique(std::move(__nh)); }
623  	
624  	      /// Re-insert an extracted node.
625  	      iterator
626  	      insert(const_iterator __hint, node_type&& __nh)
627  	      { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }
628  	
629  	      template<typename, typename>
630  		friend class _Rb_tree_merge_helper;
631  	
632  	      template<typename _C2>
633  		void
634  		merge(map<_Key, _Tp, _C2, _Alloc>& __source)
635  		{
636  		  using _Merge_helper = _Rb_tree_merge_helper<map, _C2>;
637  		  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
638  		}
639  	
640  	      template<typename _C2>
641  		void
642  		merge(map<_Key, _Tp, _C2, _Alloc>&& __source)
643  		{ merge(__source); }
644  	
645  	      template<typename _C2>
646  		void
647  		merge(multimap<_Key, _Tp, _C2, _Alloc>& __source)
648  		{
649  		  using _Merge_helper = _Rb_tree_merge_helper<map, _C2>;
650  		  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
651  		}
652  	
653  	      template<typename _C2>
654  		void
655  		merge(multimap<_Key, _Tp, _C2, _Alloc>&& __source)
656  		{ merge(__source); }
657  	#endif // C++17
658  	
659  	#if __cplusplus > 201402L
660  	#define __cpp_lib_map_try_emplace 201411
661  	      /**
662  	       *  @brief Attempts to build and insert a std::pair into the %map.
663  	       *
664  	       *  @param __k    Key to use for finding a possibly existing pair in
665  	       *                the map.
666  	       *  @param __args  Arguments used to generate the .second for a new pair
667  	       *                instance.
668  	       *
669  	       *  @return  A pair, of which the first element is an iterator that points
670  	       *           to the possibly inserted pair, and the second is a bool that
671  	       *           is true if the pair was actually inserted.
672  	       *
673  	       *  This function attempts to build and insert a (key, value) %pair into
674  	       *  the %map.
675  	       *  A %map relies on unique keys and thus a %pair is only inserted if its
676  	       *  first element (the key) is not already present in the %map.
677  	       *  If a %pair is not inserted, this function has no effect.
678  	       *
679  	       *  Insertion requires logarithmic time.
680  	       */
681  	      template <typename... _Args>
682  		pair<iterator, bool>
683  		try_emplace(const key_type& __k, _Args&&... __args)
684  		{
685  		  iterator __i = lower_bound(__k);
686  		  if (__i == end() || key_comp()(__k, (*__i).first))
687  		    {
688  		      __i = emplace_hint(__i, std::piecewise_construct,
689  					 std::forward_as_tuple(__k),
690  					 std::forward_as_tuple(
691  					   std::forward<_Args>(__args)...));
692  		      return {__i, true};
693  		    }
694  		  return {__i, false};
695  		}
696  	
697  	      // move-capable overload
698  	      template <typename... _Args>
699  		pair<iterator, bool>
700  		try_emplace(key_type&& __k, _Args&&... __args)
701  		{
702  		  iterator __i = lower_bound(__k);
703  		  if (__i == end() || key_comp()(__k, (*__i).first))
704  		    {
705  		      __i = emplace_hint(__i, std::piecewise_construct,
706  					 std::forward_as_tuple(std::move(__k)),
707  					 std::forward_as_tuple(
708  					   std::forward<_Args>(__args)...));
709  		      return {__i, true};
710  		    }
711  		  return {__i, false};
712  		}
713  	
714  	      /**
715  	       *  @brief Attempts to build and insert a std::pair into the %map.
716  	       *
717  	       *  @param  __hint  An iterator that serves as a hint as to where the
718  	       *                  pair should be inserted.
719  	       *  @param __k    Key to use for finding a possibly existing pair in
720  	       *                the map.
721  	       *  @param __args  Arguments used to generate the .second for a new pair
722  	       *                instance.
723  	       *  @return An iterator that points to the element with key of the
724  	       *          std::pair built from @a __args (may or may not be that
725  	       *          std::pair).
726  	       *
727  	       *  This function is not concerned about whether the insertion took place,
728  	       *  and thus does not return a boolean like the single-argument
729  	       *  try_emplace() does. However, if insertion did not take place,
730  	       *  this function has no effect.
731  	       *  Note that the first parameter is only a hint and can potentially
732  	       *  improve the performance of the insertion process. A bad hint would
733  	       *  cause no gains in efficiency.
734  	       *
735  	       *  See
736  	       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
737  	       *  for more on @a hinting.
738  	       *
739  	       *  Insertion requires logarithmic time (if the hint is not taken).
740  	       */
741  	      template <typename... _Args>
742  		iterator
743  		try_emplace(const_iterator __hint, const key_type& __k,
744  			    _Args&&... __args)
745  		{
746  		  iterator __i;
747  		  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
748  		  if (__true_hint.second)
749  		    __i = emplace_hint(iterator(__true_hint.second),
750  				       std::piecewise_construct,
751  				       std::forward_as_tuple(__k),
752  				       std::forward_as_tuple(
753  					 std::forward<_Args>(__args)...));
754  		  else
755  		    __i = iterator(__true_hint.first);
756  		  return __i;
757  		}
758  	
759  	      // move-capable overload
760  	      template <typename... _Args>
761  		iterator
762  		try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
763  		{
764  		  iterator __i;
765  		  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
766  		  if (__true_hint.second)
767  		    __i = emplace_hint(iterator(__true_hint.second),
768  				       std::piecewise_construct,
769  				       std::forward_as_tuple(std::move(__k)),
770  				       std::forward_as_tuple(
771  					 std::forward<_Args>(__args)...));
772  		  else
773  		    __i = iterator(__true_hint.first);
774  		  return __i;
775  		}
776  	#endif
777  	
778  	      /**
779  	       *  @brief Attempts to insert a std::pair into the %map.
780  	       *  @param __x Pair to be inserted (see std::make_pair for easy
781  	       *	     creation of pairs).
782  	       *
783  	       *  @return  A pair, of which the first element is an iterator that
784  	       *           points to the possibly inserted pair, and the second is
785  	       *           a bool that is true if the pair was actually inserted.
786  	       *
787  	       *  This function attempts to insert a (key, value) %pair into the %map.
788  	       *  A %map relies on unique keys and thus a %pair is only inserted if its
789  	       *  first element (the key) is not already present in the %map.
790  	       *
791  	       *  Insertion requires logarithmic time.
792  	       *  @{
793  	       */
794  	      std::pair<iterator, bool>
795  	      insert(const value_type& __x)
796  	      { return _M_t._M_insert_unique(__x); }
797  	
798  	#if __cplusplus >= 201103L
799  	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
800  	      // 2354. Unnecessary copying when inserting into maps with braced-init
801  	      std::pair<iterator, bool>
802  	      insert(value_type&& __x)
803  	      { return _M_t._M_insert_unique(std::move(__x)); }
804  	
805  	      template<typename _Pair>
806  		__enable_if_t<is_constructible<value_type, _Pair>::value,
807  			      pair<iterator, bool>>
808  		insert(_Pair&& __x)
809  		{ return _M_t._M_emplace_unique(std::forward<_Pair>(__x)); }
810  	#endif
811  	      // @}
812  	
813  	#if __cplusplus >= 201103L
814  	      /**
815  	       *  @brief Attempts to insert a list of std::pairs into the %map.
816  	       *  @param  __list  A std::initializer_list<value_type> of pairs to be
817  	       *                  inserted.
818  	       *
819  	       *  Complexity similar to that of the range constructor.
820  	       */
821  	      void
822  	      insert(std::initializer_list<value_type> __list)
823  	      { insert(__list.begin(), __list.end()); }
824  	#endif
825  	
826  	      /**
827  	       *  @brief Attempts to insert a std::pair into the %map.
828  	       *  @param  __position  An iterator that serves as a hint as to where the
829  	       *                    pair should be inserted.
830  	       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
831  	       *               of pairs).
832  	       *  @return An iterator that points to the element with key of
833  	       *           @a __x (may or may not be the %pair passed in).
834  	       *
835  	
836  	       *  This function is not concerned about whether the insertion
837  	       *  took place, and thus does not return a boolean like the
838  	       *  single-argument insert() does.  Note that the first
839  	       *  parameter is only a hint and can potentially improve the
840  	       *  performance of the insertion process.  A bad hint would
841  	       *  cause no gains in efficiency.
842  	       *
843  	       *  See
844  	       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
845  	       *  for more on @a hinting.
846  	       *
847  	       *  Insertion requires logarithmic time (if the hint is not taken).
848  	       *  @{
849  	       */
850  	      iterator
851  	#if __cplusplus >= 201103L
852  	      insert(const_iterator __position, const value_type& __x)
853  	#else
854  	      insert(iterator __position, const value_type& __x)
855  	#endif
856  	      { return _M_t._M_insert_unique_(__position, __x); }
857  	
858  	#if __cplusplus >= 201103L
859  	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
860  	      // 2354. Unnecessary copying when inserting into maps with braced-init
861  	      iterator
862  	      insert(const_iterator __position, value_type&& __x)
863  	      { return _M_t._M_insert_unique_(__position, std::move(__x)); }
864  	
865  	      template<typename _Pair>
866  		__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
867  		insert(const_iterator __position, _Pair&& __x)
868  		{
869  		  return _M_t._M_emplace_hint_unique(__position,
870  						     std::forward<_Pair>(__x));
871  		}
872  	#endif
873  	      // @}
874  	
875  	      /**
876  	       *  @brief Template function that attempts to insert a range of elements.
877  	       *  @param  __first  Iterator pointing to the start of the range to be
878  	       *                   inserted.
879  	       *  @param  __last  Iterator pointing to the end of the range.
880  	       *
881  	       *  Complexity similar to that of the range constructor.
882  	       */
883  	      template<typename _InputIterator>
884  		void
885  		insert(_InputIterator __first, _InputIterator __last)
886  		{ _M_t._M_insert_unique(__first, __last); }
887  	
888  	#if __cplusplus > 201402L
889  	#define __cpp_lib_map_insertion 201411
890  	      /**
891  	       *  @brief Attempts to insert or assign a std::pair into the %map.
892  	       *  @param __k    Key to use for finding a possibly existing pair in
893  	       *                the map.
894  	       *  @param __obj  Argument used to generate the .second for a pair
895  	       *                instance.
896  	       *
897  	       *  @return  A pair, of which the first element is an iterator that
898  	       *           points to the possibly inserted pair, and the second is
899  	       *           a bool that is true if the pair was actually inserted.
900  	       *
901  	       *  This function attempts to insert a (key, value) %pair into the %map.
902  	       *  A %map relies on unique keys and thus a %pair is only inserted if its
903  	       *  first element (the key) is not already present in the %map.
904  	       *  If the %pair was already in the %map, the .second of the %pair
905  	       *  is assigned from __obj.
906  	       *
907  	       *  Insertion requires logarithmic time.
908  	       */
909  	      template <typename _Obj>
910  		pair<iterator, bool>
911  		insert_or_assign(const key_type& __k, _Obj&& __obj)
912  		{
913  		  iterator __i = lower_bound(__k);
914  		  if (__i == end() || key_comp()(__k, (*__i).first))
915  		    {
916  		      __i = emplace_hint(__i, std::piecewise_construct,
917  					 std::forward_as_tuple(__k),
918  					 std::forward_as_tuple(
919  					   std::forward<_Obj>(__obj)));
920  		      return {__i, true};
921  		    }
922  		  (*__i).second = std::forward<_Obj>(__obj);
923  		  return {__i, false};
924  		}
925  	
926  	      // move-capable overload
927  	      template <typename _Obj>
928  		pair<iterator, bool>
929  		insert_or_assign(key_type&& __k, _Obj&& __obj)
930  		{
931  		  iterator __i = lower_bound(__k);
932  		  if (__i == end() || key_comp()(__k, (*__i).first))
933  		    {
934  		      __i = emplace_hint(__i, std::piecewise_construct,
935  					 std::forward_as_tuple(std::move(__k)),
936  					 std::forward_as_tuple(
937  					   std::forward<_Obj>(__obj)));
938  		      return {__i, true};
939  		    }
940  		  (*__i).second = std::forward<_Obj>(__obj);
941  		  return {__i, false};
942  		}
943  	
944  	      /**
945  	       *  @brief Attempts to insert or assign a std::pair into the %map.
946  	       *  @param  __hint  An iterator that serves as a hint as to where the
947  	       *                  pair should be inserted.
948  	       *  @param __k    Key to use for finding a possibly existing pair in
949  	       *                the map.
950  	       *  @param __obj  Argument used to generate the .second for a pair
951  	       *                instance.
952  	       *
953  	       *  @return An iterator that points to the element with key of
954  	       *           @a __x (may or may not be the %pair passed in).
955  	       *
956  	       *  This function attempts to insert a (key, value) %pair into the %map.
957  	       *  A %map relies on unique keys and thus a %pair is only inserted if its
958  	       *  first element (the key) is not already present in the %map.
959  	       *  If the %pair was already in the %map, the .second of the %pair
960  	       *  is assigned from __obj.
961  	       *
962  	       *  Insertion requires logarithmic time.
963  	       */
964  	      template <typename _Obj>
965  		iterator
966  		insert_or_assign(const_iterator __hint,
967  				 const key_type& __k, _Obj&& __obj)
968  		{
969  		  iterator __i;
970  		  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
971  		  if (__true_hint.second)
972  		    {
973  		      return emplace_hint(iterator(__true_hint.second),
974  					  std::piecewise_construct,
975  					  std::forward_as_tuple(__k),
976  					  std::forward_as_tuple(
977  					    std::forward<_Obj>(__obj)));
978  		    }
979  		  __i = iterator(__true_hint.first);
980  		  (*__i).second = std::forward<_Obj>(__obj);
981  		  return __i;
982  		}
983  	
984  	      // move-capable overload
985  	      template <typename _Obj>
986  		iterator
987  		insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
988  		{
989  		  iterator __i;
990  		  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
991  		  if (__true_hint.second)
992  		    {
993  		      return emplace_hint(iterator(__true_hint.second),
994  					  std::piecewise_construct,
995  					  std::forward_as_tuple(std::move(__k)),
996  					  std::forward_as_tuple(
997  					    std::forward<_Obj>(__obj)));
998  		    }
999  		  __i = iterator(__true_hint.first);
1000 		  (*__i).second = std::forward<_Obj>(__obj);
1001 		  return __i;
1002 		}
1003 	#endif
1004 	
1005 	#if __cplusplus >= 201103L
1006 	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1007 	      // DR 130. Associative erase should return an iterator.
1008 	      /**
1009 	       *  @brief Erases an element from a %map.
1010 	       *  @param  __position  An iterator pointing to the element to be erased.
1011 	       *  @return An iterator pointing to the element immediately following
1012 	       *          @a position prior to the element being erased. If no such
1013 	       *          element exists, end() is returned.
1014 	       *
1015 	       *  This function erases an element, pointed to by the given
1016 	       *  iterator, from a %map.  Note that this function only erases
1017 	       *  the element, and that if the element is itself a pointer,
1018 	       *  the pointed-to memory is not touched in any way.  Managing
1019 	       *  the pointer is the user's responsibility.
1020 	       *
1021 	       *  @{
1022 	       */
1023 	      iterator
1024 	      erase(const_iterator __position)
1025 	      { return _M_t.erase(__position); }
1026 	
1027 	      // LWG 2059
1028 	      _GLIBCXX_ABI_TAG_CXX11
1029 	      iterator
1030 	      erase(iterator __position)
1031 	      { return _M_t.erase(__position); }
1032 	      // @}
1033 	#else
1034 	      /**
1035 	       *  @brief Erases an element from a %map.
1036 	       *  @param  __position  An iterator pointing to the element to be erased.
1037 	       *
1038 	       *  This function erases an element, pointed to by the given
1039 	       *  iterator, from a %map.  Note that this function only erases
1040 	       *  the element, and that if the element is itself a pointer,
1041 	       *  the pointed-to memory is not touched in any way.  Managing
1042 	       *  the pointer is the user's responsibility.
1043 	       */
1044 	      void
1045 	      erase(iterator __position)
1046 	      { _M_t.erase(__position); }
1047 	#endif
1048 	
1049 	      /**
1050 	       *  @brief Erases elements according to the provided key.
1051 	       *  @param  __x  Key of element to be erased.
1052 	       *  @return  The number of elements erased.
1053 	       *
1054 	       *  This function erases all the elements located by the given key from
1055 	       *  a %map.
1056 	       *  Note that this function only erases the element, and that if
1057 	       *  the element is itself a pointer, the pointed-to memory is not touched
1058 	       *  in any way.  Managing the pointer is the user's responsibility.
1059 	       */
1060 	      size_type
1061 	      erase(const key_type& __x)
1062 	      { return _M_t.erase(__x); }
1063 	
1064 	#if __cplusplus >= 201103L
1065 	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1066 	      // DR 130. Associative erase should return an iterator.
1067 	      /**
1068 	       *  @brief Erases a [first,last) range of elements from a %map.
1069 	       *  @param  __first  Iterator pointing to the start of the range to be
1070 	       *                   erased.
1071 	       *  @param __last Iterator pointing to the end of the range to
1072 	       *                be erased.
1073 	       *  @return The iterator @a __last.
1074 	       *
1075 	       *  This function erases a sequence of elements from a %map.
1076 	       *  Note that this function only erases the element, and that if
1077 	       *  the element is itself a pointer, the pointed-to memory is not touched
1078 	       *  in any way.  Managing the pointer is the user's responsibility.
1079 	       */
1080 	      iterator
1081 	      erase(const_iterator __first, const_iterator __last)
1082 	      { return _M_t.erase(__first, __last); }
1083 	#else
1084 	      /**
1085 	       *  @brief Erases a [__first,__last) range of elements from a %map.
1086 	       *  @param  __first  Iterator pointing to the start of the range to be
1087 	       *                   erased.
1088 	       *  @param __last Iterator pointing to the end of the range to
1089 	       *                be erased.
1090 	       *
1091 	       *  This function erases a sequence of elements from a %map.
1092 	       *  Note that this function only erases the element, and that if
1093 	       *  the element is itself a pointer, the pointed-to memory is not touched
1094 	       *  in any way.  Managing the pointer is the user's responsibility.
1095 	       */
1096 	      void
1097 	      erase(iterator __first, iterator __last)
1098 	      { _M_t.erase(__first, __last); }
1099 	#endif
1100 	
1101 	      /**
1102 	       *  @brief  Swaps data with another %map.
1103 	       *  @param  __x  A %map of the same element and allocator types.
1104 	       *
1105 	       *  This exchanges the elements between two maps in constant
1106 	       *  time.  (It is only swapping a pointer, an integer, and an
1107 	       *  instance of the @c Compare type (which itself is often
1108 	       *  stateless and empty), so it should be quite fast.)  Note
1109 	       *  that the global std::swap() function is specialized such
1110 	       *  that std::swap(m1,m2) will feed to this function.
1111 	       *
1112 	       *  Whether the allocators are swapped depends on the allocator traits.
1113 	       */
1114 	      void
1115 	      swap(map& __x)
1116 	      _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
1117 	      { _M_t.swap(__x._M_t); }
1118 	
1119 	      /**
1120 	       *  Erases all elements in a %map.  Note that this function only
1121 	       *  erases the elements, and that if the elements themselves are
1122 	       *  pointers, the pointed-to memory is not touched in any way.
1123 	       *  Managing the pointer is the user's responsibility.
1124 	       */
1125 	      void
1126 	      clear() _GLIBCXX_NOEXCEPT
1127 	      { _M_t.clear(); }
1128 	
1129 	      // observers
1130 	      /**
1131 	       *  Returns the key comparison object out of which the %map was
1132 	       *  constructed.
1133 	       */
1134 	      key_compare
1135 	      key_comp() const
1136 	      { return _M_t.key_comp(); }
1137 	
1138 	      /**
1139 	       *  Returns a value comparison object, built from the key comparison
1140 	       *  object out of which the %map was constructed.
1141 	       */
1142 	      value_compare
1143 	      value_comp() const
1144 	      { return value_compare(_M_t.key_comp()); }
1145 	
1146 	      // [23.3.1.3] map operations
1147 	
1148 	      //@{
1149 	      /**
1150 	       *  @brief Tries to locate an element in a %map.
1151 	       *  @param  __x  Key of (key, value) %pair to be located.
1152 	       *  @return  Iterator pointing to sought-after element, or end() if not
1153 	       *           found.
1154 	       *
1155 	       *  This function takes a key and tries to locate the element with which
1156 	       *  the key matches.  If successful the function returns an iterator
1157 	       *  pointing to the sought after %pair.  If unsuccessful it returns the
1158 	       *  past-the-end ( @c end() ) iterator.
1159 	       */
1160 	
1161 	      iterator
1162 	      find(const key_type& __x)
1163 	      { return _M_t.find(__x); }
1164 	
1165 	#if __cplusplus > 201103L
1166 	      template<typename _Kt>
1167 		auto
1168 		find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
1169 		{ return _M_t._M_find_tr(__x); }
1170 	#endif
1171 	      //@}
1172 	
1173 	      //@{
1174 	      /**
1175 	       *  @brief Tries to locate an element in a %map.
1176 	       *  @param  __x  Key of (key, value) %pair to be located.
1177 	       *  @return  Read-only (constant) iterator pointing to sought-after
1178 	       *           element, or end() if not found.
1179 	       *
1180 	       *  This function takes a key and tries to locate the element with which
1181 	       *  the key matches.  If successful the function returns a constant
1182 	       *  iterator pointing to the sought after %pair. If unsuccessful it
1183 	       *  returns the past-the-end ( @c end() ) iterator.
1184 	       */
1185 	
1186 	      const_iterator
1187 	      find(const key_type& __x) const
1188 	      { return _M_t.find(__x); }
1189 	
1190 	#if __cplusplus > 201103L
1191 	      template<typename _Kt>
1192 		auto
1193 		find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
1194 		{ return _M_t._M_find_tr(__x); }
1195 	#endif
1196 	      //@}
1197 	
1198 	      //@{
1199 	      /**
1200 	       *  @brief  Finds the number of elements with given key.
1201 	       *  @param  __x  Key of (key, value) pairs to be located.
1202 	       *  @return  Number of elements with specified key.
1203 	       *
1204 	       *  This function only makes sense for multimaps; for map the result will
1205 	       *  either be 0 (not present) or 1 (present).
1206 	       */
1207 	      size_type
1208 	      count(const key_type& __x) const
1209 	      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
1210 	
1211 	#if __cplusplus > 201103L
1212 	      template<typename _Kt>
1213 		auto
1214 		count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
1215 		{ return _M_t._M_count_tr(__x); }
1216 	#endif
1217 	      //@}
1218 	
1219 	      //@{
1220 	      /**
1221 	       *  @brief Finds the beginning of a subsequence matching given key.
1222 	       *  @param  __x  Key of (key, value) pair to be located.
1223 	       *  @return  Iterator pointing to first element equal to or greater
1224 	       *           than key, or end().
1225 	       *
1226 	       *  This function returns the first element of a subsequence of elements
1227 	       *  that matches the given key.  If unsuccessful it returns an iterator
1228 	       *  pointing to the first element that has a greater value than given key
1229 	       *  or end() if no such element exists.
1230 	       */
1231 	      iterator
1232 	      lower_bound(const key_type& __x)
1233 	      { return _M_t.lower_bound(__x); }
1234 	
1235 	#if __cplusplus > 201103L
1236 	      template<typename _Kt>
1237 		auto
1238 		lower_bound(const _Kt& __x)
1239 		-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
1240 		{ return iterator(_M_t._M_lower_bound_tr(__x)); }
1241 	#endif
1242 	      //@}
1243 	
1244 	      //@{
1245 	      /**
1246 	       *  @brief Finds the beginning of a subsequence matching given key.
1247 	       *  @param  __x  Key of (key, value) pair to be located.
1248 	       *  @return  Read-only (constant) iterator pointing to first element
1249 	       *           equal to or greater than key, or end().
1250 	       *
1251 	       *  This function returns the first element of a subsequence of elements
1252 	       *  that matches the given key.  If unsuccessful it returns an iterator
1253 	       *  pointing to the first element that has a greater value than given key
1254 	       *  or end() if no such element exists.
1255 	       */
1256 	      const_iterator
1257 	      lower_bound(const key_type& __x) const
1258 	      { return _M_t.lower_bound(__x); }
1259 	
1260 	#if __cplusplus > 201103L
1261 	      template<typename _Kt>
1262 		auto
1263 		lower_bound(const _Kt& __x) const
1264 		-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
1265 		{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
1266 	#endif
1267 	      //@}
1268 	
1269 	      //@{
1270 	      /**
1271 	       *  @brief Finds the end of a subsequence matching given key.
1272 	       *  @param  __x  Key of (key, value) pair to be located.
1273 	       *  @return Iterator pointing to the first element
1274 	       *          greater than key, or end().
1275 	       */
1276 	      iterator
1277 	      upper_bound(const key_type& __x)
1278 	      { return _M_t.upper_bound(__x); }
1279 	
1280 	#if __cplusplus > 201103L
1281 	      template<typename _Kt>
1282 		auto
1283 		upper_bound(const _Kt& __x)
1284 		-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
1285 		{ return iterator(_M_t._M_upper_bound_tr(__x)); }
1286 	#endif
1287 	      //@}
1288 	
1289 	      //@{
1290 	      /**
1291 	       *  @brief Finds the end of a subsequence matching given key.
1292 	       *  @param  __x  Key of (key, value) pair to be located.
1293 	       *  @return  Read-only (constant) iterator pointing to first iterator
1294 	       *           greater than key, or end().
1295 	       */
1296 	      const_iterator
1297 	      upper_bound(const key_type& __x) const
1298 	      { return _M_t.upper_bound(__x); }
1299 	
1300 	#if __cplusplus > 201103L
1301 	      template<typename _Kt>
1302 		auto
1303 		upper_bound(const _Kt& __x) const
1304 		-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1305 		{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1306 	#endif
1307 	      //@}
1308 	
1309 	      //@{
1310 	      /**
1311 	       *  @brief Finds a subsequence matching given key.
1312 	       *  @param  __x  Key of (key, value) pairs to be located.
1313 	       *  @return  Pair of iterators that possibly points to the subsequence
1314 	       *           matching given key.
1315 	       *
1316 	       *  This function is equivalent to
1317 	       *  @code
1318 	       *    std::make_pair(c.lower_bound(val),
1319 	       *                   c.upper_bound(val))
1320 	       *  @endcode
1321 	       *  (but is faster than making the calls separately).
1322 	       *
1323 	       *  This function probably only makes sense for multimaps.
1324 	       */
1325 	      std::pair<iterator, iterator>
1326 	      equal_range(const key_type& __x)
1327 	      { return _M_t.equal_range(__x); }
1328 	
1329 	#if __cplusplus > 201103L
1330 	      template<typename _Kt>
1331 		auto
1332 		equal_range(const _Kt& __x)
1333 		-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1334 		{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1335 	#endif
1336 	      //@}
1337 	
1338 	      //@{
1339 	      /**
1340 	       *  @brief Finds a subsequence matching given key.
1341 	       *  @param  __x  Key of (key, value) pairs to be located.
1342 	       *  @return  Pair of read-only (constant) iterators that possibly points
1343 	       *           to the subsequence matching given key.
1344 	       *
1345 	       *  This function is equivalent to
1346 	       *  @code
1347 	       *    std::make_pair(c.lower_bound(val),
1348 	       *                   c.upper_bound(val))
1349 	       *  @endcode
1350 	       *  (but is faster than making the calls separately).
1351 	       *
1352 	       *  This function probably only makes sense for multimaps.
1353 	       */
1354 	      std::pair<const_iterator, const_iterator>
1355 	      equal_range(const key_type& __x) const
1356 	      { return _M_t.equal_range(__x); }
1357 	
1358 	#if __cplusplus > 201103L
1359 	      template<typename _Kt>
1360 		auto
1361 		equal_range(const _Kt& __x) const
1362 		-> decltype(pair<const_iterator, const_iterator>(
1363 		      _M_t._M_equal_range_tr(__x)))
1364 		{
1365 		  return pair<const_iterator, const_iterator>(
1366 		      _M_t._M_equal_range_tr(__x));
1367 		}
1368 	#endif
1369 	      //@}
1370 	
1371 	      template<typename _K1, typename _T1, typename _C1, typename _A1>
1372 		friend bool
1373 		operator==(const map<_K1, _T1, _C1, _A1>&,
1374 			   const map<_K1, _T1, _C1, _A1>&);
1375 	
1376 	      template<typename _K1, typename _T1, typename _C1, typename _A1>
1377 		friend bool
1378 		operator<(const map<_K1, _T1, _C1, _A1>&,
1379 			  const map<_K1, _T1, _C1, _A1>&);
1380 	    };
1381 	
1382 	  /**
1383 	   *  @brief  Map equality comparison.
1384 	   *  @param  __x  A %map.
1385 	   *  @param  __y  A %map of the same type as @a x.
1386 	   *  @return  True iff the size and elements of the maps are equal.
1387 	   *
1388 	   *  This is an equivalence relation.  It is linear in the size of the
1389 	   *  maps.  Maps are considered equivalent if their sizes are equal,
1390 	   *  and if corresponding elements compare equal.
1391 	  */
1392 	  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1393 	    inline bool
1394 	    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1395 		       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1396 	    { return __x._M_t == __y._M_t; }
1397 	
1398 	  /**
1399 	   *  @brief  Map ordering relation.
1400 	   *  @param  __x  A %map.
1401 	   *  @param  __y  A %map of the same type as @a x.
1402 	   *  @return  True iff @a x is lexicographically less than @a y.
1403 	   *
1404 	   *  This is a total ordering relation.  It is linear in the size of the
1405 	   *  maps.  The elements must be comparable with @c <.
1406 	   *
1407 	   *  See std::lexicographical_compare() for how the determination is made.
1408 	  */
1409 	  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1410 	    inline bool
1411 	    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1412 		      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1413 	    { return __x._M_t < __y._M_t; }
1414 	
1415 	  /// Based on operator==
1416 	  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1417 	    inline bool
1418 	    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1419 		       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1420 	    { return !(__x == __y); }
1421 	
1422 	  /// Based on operator<
1423 	  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1424 	    inline bool
1425 	    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1426 		      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1427 	    { return __y < __x; }
1428 	
1429 	  /// Based on operator<
1430 	  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1431 	    inline bool
1432 	    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1433 		       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1434 	    { return !(__y < __x); }
1435 	
1436 	  /// Based on operator<
1437 	  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1438 	    inline bool
1439 	    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1440 		       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1441 	    { return !(__x < __y); }
1442 	
1443 	  /// See std::map::swap().
1444 	  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1445 	    inline void
1446 	    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1447 		 map<_Key, _Tp, _Compare, _Alloc>& __y)
1448 	    _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1449 	    { __x.swap(__y); }
1450 	
1451 	_GLIBCXX_END_NAMESPACE_CONTAINER
1452 	
1453 	#if __cplusplus > 201402L
1454 	_GLIBCXX_BEGIN_NAMESPACE_VERSION
1455 	  // Allow std::map access to internals of compatible maps.
1456 	  template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1457 		   typename _Cmp2>
1458 	    struct
1459 	    _Rb_tree_merge_helper<_GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>,
1460 				  _Cmp2>
1461 	    {
1462 	    private:
1463 	      friend class _GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>;
1464 	
1465 	      static auto&
1466 	      _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1467 	      { return __map._M_t; }
1468 	
1469 	      static auto&
1470 	      _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1471 	      { return __map._M_t; }
1472 	    };
1473 	_GLIBCXX_END_NAMESPACE_VERSION
1474 	#endif // C++17
1475 	
1476 	} // namespace std
1477 	
1478 	#endif /* _STL_MAP_H */
1479