CONSTRAINED-SHORTEST-PATHS
Ralf Borndorfer and Markus Reuther

CO@Q@WORK 2009

Excercise: Constrained-Shortest-Paths

For several exercises we use data for the Dutch intercity network (taken from a GAMS model

by Michael Bussieck). The network looks as follows:

Leeuwarden

HQerenveen

Lelystad

Q Den Haag

—

Q Eindhoven

Rosendaal

The data is contained in several files:

Arnhem

O Groningen

{ Assen

Oldenzaal

Hengelo

Apeldoorn

Zevenaar

B sittard

O Maastricht

> edges.dat edges of the graph. They are directed and the data contains forward and back-

ward directions (useful for Z1MPL).

> times.dat travel times for each edge (useful for ZIMPL).

> costs.dat costs each edge (useful for ZiMPL).

> dutch.dat all informations in one file (useful for C++ implementation).

We use the following abbreviations for station names:

Ah Arnhem Ll
Apd Apeldoorn L >
Asd Amsterdam CS MV:
Asdz Amsterdam Zuid WTC
Odzg
Asn Assen Rsd
Bd Breda R‘: dg
Ehv Eindhoven
. Shl
Gn Groningen Std
Gv Den Haag HS Ut
Gvc Den Haag CS
Hgl H 1 Zl
g engelo Zve

Hr Heerenveen

Lelystad Centrum
Leeuwarden
Maastricht
Oldenzaal Grens
Rosendaal Grens
Rotterdam CS
Schiphol

Sittard

Utrecht CS
Zwolle

Zevenaar Grens

Exercise 1:
(a) Formulate the shortest path problem as an integer program.

(b) Use ZimpL and SCIP to compute a shortest path from Groningen to Rotterdam in the
dutch network (use times.dat as objective).

(¢) Upgrade your model to solve constrained shortest path problems (important: values in
times.dat are the objective coefficients and in cost.dat the weight coefficients).

(d) Compute the fastest path from Groningen to Rotterdam with a maximal weight of 20.000.

(e) Solve the LP-relaxation of your model.

Exercise 2: Implement a dynamic program to solve the constrained shortest path problem.
Use rcsp.cpp as a framework for your implementation. You only have to implement the function
”void ¢spDP()” in resp.cpp. Hints for compiling and executing resp.cpp are in the file.

