
Combinatorial Optimization

at Work

Berlin 2009

Ralf Borndörfer

Zuse Institute Berlin

borndoerfer@zib.de

Contents

1 Constraint Shortest Paths 1

1.1 The Constraint Shortest Path Problem 1
1.2 Complexity . 2
1.3 Dynamic Programs . 3
1.4 Lagrange Relaxation for the CSP in Acyclic Digraphs 4
1.5 Fully Polynomial Time Approximation* 8

i

Chapter 1

Constraint Shortest Paths

A problem that everybody knows is the choice of a shortest travel route in a
public or rail transport system, by car, or by airplane. In its basic form, this
is a shortest path problem in a graph whose arcs are possible travel choices,
weighted weighted by travel times. Sometimes such a shortest path is fine,
but not always. In fact, it happens that a shortest path has undesirable
properties such as including a lot of transfers, or being more expensive than
we can afford. This leads to the consideration of one or more additonal con-
straints that limit the consumption of “resources” such as budget or number
of transfers that we are willing to do. The most important case are linear,
or, equivalently, knapsack type constraints, which add up resource consump-
tion on a path and put a limit on it. A shortest path problem with such
additional constraints is called a (resource) constraint shortest path problem.
This lecture gives an introduction to this area by example of the constraint
shortest path problem with linear resource constraints.

1.1 The Constraint Shortest Path Problem

Definition 1.1 (Chain and Path). Let D = (V, A) be a digraph. A chain in
D is a sequence of arcs v1v2, v2v3, . . . , vk−1vk for some k ∈ N. A chain is a
path if the nodes v1, . . . , vk are pairwise different. An st-path is a path with
v1 = s and vk = t.

Definition 1.2 ((Resource) Constrained Shortest Path Problem (CSP)).
Let the following data be given:

◦ a digraph D = (V, A)
◦ a start node s ∈ V and an end node t ∈ V , s 6= t,
◦ a number of resources {1, . . . , k}, k ∈ N,
◦ resource consumptions wi

a ∈ N0, i = 1, . . . , k, a ∈ A, on the arcs,
◦ resource limits di ∈ N0, i = 1, . . . , k, for each resource,
◦ costs ca ∈ N0 for each arc.

The consumption of resource i, i = 1, . . . , k on an st-path p is wi(p) =
∑

a∈p wi
a. A an st-path p is resource constrained w.r.t. the resources 1, . . . , k

if it consumes not more than the limit of each resource, i.e., if wi(p) ≤ di(p),
i = 1, . . . , k. The cost of an st-path p is c(p) =

∑

a∈p ca. The (Resource)
Constraint Shortest Path Problem (CSP) is to find a resource constrained
path of minimum cost.

1

1.2 Complexity 2

Notes.

◦ Statements on resource constraint shortest path problems are sensitive
w.r.t. the groundsets from which resources and costs are drawn. Note
that our definition deals with nonnegative and integer data; we will
point out at the respective places when results can be generalized to a
broader setting.

◦ Rational data can be made integer via the transformation

x 7→ x · N,

where N is the l.c.m. of the denomiators of all rational numbers.
◦ Nonnegative data can be made positive via the transformation

x 7→ x · M + 1,

where M := |V | (resource limits must be scaled as x 7→ x · M + M − 1).
◦ Note that our definition does not assume that the underlying digraph is

acyclic, i.e., does not contain directed cycles.
◦ We denote a CSP with k resources by k − CSP . For 1-CSPs, we some-

times omit the resource index, i.e., we write w1 = w and d1 = d.

1.2 Complexity

We show that the CSP is NP-hard by reducing it to a well-known NP-hard
problem, the knapsack problem.

Definition 1.3 (Knapsack Problem). Let the following data be given:

◦ a set of items N = {1, . . . , n},
◦ weights wi ∈ N0, i = 1, . . . , n, for these items,
◦ a weight limit d ∈ N0,
◦ values vi ∈ N0, i = 1, . . . , n, for the items.

The weight of a set of items I ⊆ N is w(I) =
∑

i∈I wi, its value is v(I) =
∑

i∈I vi. The Knapsack Problem (KP) is to find a set of items of maximum
value, with weight at most d.

Theorem 1.4 (Complexity of the CSP). The CSP is NP-hard.

Proof. The proof is by reduction from the knapsack problem. Let an instance
of KP be given as in Definition 1.3. We construct an instance of CSP as
follows:

◦ V := N ∪ {0}
◦ A := {(i − 1, i), (i − 1, i)′ : i = 1, . . . , n}
◦ s := 0, t := n,
◦ k := 1,
◦ d1 := d,

1.3 Dynamic Programs 3

◦ w1
a :=

{

wi, if a = (i − 1, i)

0, else
for all a ∈ A,

◦ ca :=

{

M − vi, if a = (i − 1, i)

M, else
for all a ∈ A.

It has the property that each st-paths in (V, A) contains either the arc (i−1, i)
or (i − 1, i)′, i = 1, . . . , n. Therefore, st-paths and item sets I ⊆ N and
st-paths p are in one-to-correspondence via the equivalence i ∈ I ⇐⇒
(i − 1, i) ∈ p. For such I and p holds w1(p) = w(I) and c(p) = n · M − v(I)
and thus

w1(p) ≤ d1 ⇐⇒ w(I) ≤ d and c(p) = min ⇐⇒ v(I) = max .

1.3 Dynamic Programs

The CSP with positive weights can be solved by dynamic programming.

Algorithm 1 Dynamic Program (Joksch [1966])

Input: 1-CSP given as D = (V, A), s, t ∈ V , c ∈ NA
0 , w ∈ NA, d ∈ N

Storage: Table cv(r), v ∈ V , r = 0, . . . , d
Output: ct(d) = min cost of an st-path with weight at most d
1: for all r = 0, . . . , d do

2: cs(r)← 0
3: end for

4: for all v ∈ V , v 6= s do

5: cv(0)←∞
6: end for

7: for r = 1, . . . , d do

8: for all v ∈ V , v 6= s do

9: cv(r)←min{cv(r − 1), min
uv∈A,wuv≤r

cu(r − wuv) + cuv}
10: end for

11: end for

Theorem 1.5. Algorithm 1 terminates correctly.

Proof. Let cv(r) be the cost of a minimum cost sv-chain with resource con-
sumption at most r. Then the following recursion holds:

cs(r) = 0, r = 0, . . . , d
cv(0) = ∞, v 6= s
cv(r) = min{cv(r − 1), min

uv∈A,wuv≤r
cv(r − wuv) + cuv}, v 6= s, r = 1, . . . , d.

1.4 Lagrange Relaxation for the CSP in Acyclic Digraphs 4

This is what Algorithm 1 computes. As all costs and resource consumptions
are positive, a shortest chain must be a shortest path. If no st-path exists,
the recursion sets ct(d) = ∞.

Theorem 1.6. Algorithm 1 has space complexity O(nd) and time complexity
O(n + md), where n = |V | and m = |A|.

Proof. The space complexity is the size of the table cv(r), which is of size
n · (d + 1).

For the time complexity consider the time spent in the individual lines
of Algorithm 1:

1. − 3. O(d)
4. − 6. O(n)
7. + 11. O(d)
8. − 10. ×O(m)

1. − 11. O(n + md)

Corollary 1.7. The 1-CSP can be solved in pseudo-polynomial time.

Remark 1.8.

◦ Algorithm 1 and Theorem 1.6 can be generalized to nonnegative data by
making the cost positive with the cost scaling trick mentioned in Note 1.1.
This increases time complexity to O(nmd)

◦ In acyclic digraphs, Algorithm 1 and Theorem 1.6 work with general
integer costs.

◦ Setting w = 1 proves that the problem to find a minimum cost st-path
with length (=number of arcs) at most d can be solved in polynomial
time, namely, in O(dm) ≤ O(nm).

◦ Setting d = n − 1 and requiring a length of exactly d arcs results in a
shortest Hamiltonian path problem, which is NP-hard.

1.4 Lagrange Relaxation for the CSP in Acyclic Digraphs

Many problems in traffic applications can be modelled in terms of space-time
scheduling digraphs. In such digraphs, there is a natural orientation of the
arcs with respect to increasing time. Such digraphs don’t have cycles.

Definition 1.9 (Acyclic Digraph). A digraph D = (V, A) is called acyclic if
it does not contain a directed cycle.

Definition 1.10 (Acyclic Constrained Shortest Path Problem (ACSP)). A
CSP with digraph D is an acyclic constrained shortest path problem (ACSP)
if D is acyclic.

1.4 Lagrange Relaxation for the CSP in Acyclic Digraphs 5

Lemma 1.11 (IP-Formulation of the ACSP). ACSP can be formulated as
an integer program in the following way:

(ACSP) min cTx
(i) x (δ+(v)) − x (δ−(v)) = δst(v) ∀v ∈ V
(ii) W ≤ d
(iii) x ≥ 0
(iv) x ∈ ZA,

where

δ1n :=











1, v = s

−1, v = t

0, else

and W ∈ NA×k
0 is a matrix whose i-th row is wi, i.e., Wi· = wi, i = 1, . . . , k.

Proof. (ACSP) (i), (ii), and (iv) imply that x is (the incidence vector of) an
integer flow of value 1. By the flow decomposition theorem, this flow can be
decomposed into paths and cycles. As D is acyclic, there cannot be a cycle,
i.e., x is an st-path. By (ii), it is resource constrained.

Definition 1.12 (LP-Relaxation of the ACSP). Denote by

(ACSPLP) min cTx
(i) x (δ+(v)) − x (δ−(v)) = δst(v) ∀v ∈ V
(ii) Wx ≤ d
(iii) x ≥ 0

the LP relaxation of ACSP.

Definition 1.13 (Lagrange Relaxation of the ACSP). Consider a feasible
ACSP. For λ ∈ Rk

+ denote by

cT := cT(λ) := cT+ λTW
f(λ) := min(ACSP) (i), (iii), (iv) cTx + λTd

x∗(λ) := argmin f(λ),

where ties are broken arbitrarily. The problem

(ACSPLR) max
λ≥0

f(λ)

is called the Lagrange relaxation of ACSP ; let

L := maxλ≥0 f(λ)

denote its optimal objective value.

Lemma 1.14 (Properties of ACSPLR). (i) f(λ) and x∗(λ) are well-defined.

1.4 Lagrange Relaxation for the CSP in Acyclic Digraphs 6

(ii) L < ∞.

(iii) L < cTx for every solution x of ACSP.

(iv) L is equal to the optimal value of ACSPLP .

Proof. (i) f(λ) = minPst-path cTχ(P)λTd, i.e., f(λ) is a minimum over a
finite number of affine functions.

(ii), (iii) ACSP is feasible, i.e., there exists a solution x such that Wx−d ≤ 0.
For every such solution holds

f(λ) = min(ACSP) (i), (iii), (iv) cTx − λTd

≤ cTx − λTd
= cTx + λT(Wx − d)
≤ cTx
< ∞.

(iv) Denote by A the constraint matrix of the inequality system (ACSP) (i).
Then

min cTx
Ax = δst

−Wx ≥ −d
x ≥ 0

= maxµTδst − λTd
µTA − λTW ≤ cT

λ ≥ 0

= max
λ≥0

−λTd + max µTδst

µTA ≤ cT+ λTW

= max
λ≥0

min(cT+ λTW)x − λTd

Ax = δst

x ≥ 0.
= max

λ≥0
min(cT+ λTW)x − λTd

Ax = δst

x ≥ 0
x ∈ ZA.

The last equality follows from total unimodularity of the constraint matrix.

Remark 1.15. ACSPLR can be solved, e.g., by subgradient algorithms.

1.4 Lagrange Relaxation for the CSP in Acyclic Digraphs 7

Lemma 1.16 (Lagrangean Lower Bound for the ACSP). Consider a feasible
ACSP and λ ≥ 0. Denote by

Pij := {p : p is ij-path in D}
c∗ij := min c(p), p ∈ Pij

w∗
ij := minw(p), p ∈ Pij

c∗ij := min c(p), p ∈ Pij .

Then the following inequalities hold for every j ∈ V , p ∈ Psj, and q ∈ Pjt

such that p, q is a resource constrained st-path:

c(p) + c∗jn ≤ c(p) + c(q)

c(p) + c∗jn − λTd ≤ c(p) + c(q) − λTd ≤ c(p) + c(q)

w(p) + w∗
jn ≤ w(p) + w(q).

Algorithm 2 Branch-and-Bound for the 1-ACSP

Input: Feasible 1-ACSP with data D = (V, A), s, t ∈ V , w ∈ NA
0 , c ∈ NA,

d ∈ N
Output: Length U of a shortest resource constrained st-path
1: if w∗

st > d then

2: output ∞ and stop
3: end if

4: λ∗← argmaxλ≥0 f(λ)
5: cT← cT− λw
6: for all v ∈ V do

7: compute c∗jn, c∗jn, w∗
jn

8: end for

9: U ← c(argminwp, p ∈ Pst)
10: L←{1}
11: while L 6= ∅ do

12: choose p ∈ L, L←L \ {p}
13: i← last node in p
14: if c(p) + c∗in > U or w(p) + w∗

in > d or c(p) + c∗in − λd > U then

15: next
16: end if

17: if i = n then

18: U ←min U, c(p) and next
19: end if

20: for all ij ∈ A do

21: L←L ∪ {pj}
22: end for

23: end while

1.5 Fully Polynomial Time Approximation* 8

1.5 Fully Polynomial Time Approximation*

The essential idea to improve Algorithm 1 in terms of running time is to work
with rounded costs. There are, however, some additional technicalities. The
first point is “interchanging resource consumptions and costs”.

Algorithm 3 Dynamic Program (Hassin [1992])

Input: 1-CSP with data D = (V, A), s, t ∈ V , w ∈ NA
0 , c ∈ NA, d ∈ N

Storage: Variable OPT ∈ N0

Storage: Table wv(k), v ∈ V , k = 0, . . . ,OPT (OPT increases dynamically)
Output: OPT = min cost of an st-path with weight at most d
1: OPT← 0
2: ws(0)← 0
3: for all v ∈ V , v 6= s do

4: wv(0)←∞
5: end for

6: repeat

7: OPT←OPT + 1
8: ws(OPT)← 0
9: for all v ∈ V , v 6= s do

10: wv(OPT)←min{wv(OPT−1), min
uv∈A,cuv≤OPT

wv(OPT− cuv)+wuv}
11: end for

12: until wt(OPT) ≤ d or OPT >
∑

a∈A ca

13: if OPT >
∑

a∈A ca then

14: OPT←∞
15: end if

Theorem 1.17. Algorithm 3 terminates correctly.

Proof. Suppose there is an st-chain with weight at most d and OPT < ∞ is
the minimum cost of all such chains. Let further wv(k) be the weight of a
minimum weight sv-chain with cost at most k, k = 0, . . . ,OPT. Then the
following recursion holds:

ws(k) = 0 k = 0, . . . ,OPT
wv(0) = ∞ v 6= s
wv(k) = min{wv(k − 1), min

uv∈A,
cuv≤k

wv(k − cuv) + wuv} v 6= s, k = 1, . . . ,OPT.

This is what Algorithm 3 computes. As all costs and resource consumptions
are positive, a shortest chain must be a shortest path. If no st-path of weight
at most d exists, the algorithm bails out with OPT = ∞.

Theorem 1.18. Algorithm 3 has space complexity O(nOPT) and time com-
plexity O(n + mOPT), where n = |V |, m = |A|, and OPT is the optimal
cost.

1.5 Fully Polynomial Time Approximation* 9

Proof. The space complexity is the size of the table wv(·), which is of size
n · (OPT + 1).

For the time complexity consider the time spent in the individual lines
of Algorithm 3:

1. − 2. O(1)
3. − 5. O(n)
6. − 8. + 12. O(OPT)
9. − 11. ×O(m)
13. − 15. O(1)

1. − 15. O(n + mOPT)

We later want to apply Algorithm 3 to problems with rounded costs,
which may turn out being 0. We therefore need a version that can deal with
0 costs as well.

Proposition 1.19. Algorithm 3 can be modified to work with non-negative
costs using the cost scaling trick of Note 1.1. This increases the time com-
plexity to O(nmOPT).

We will henceforth refer to this version of Algorithm 3 as the “scaled
version”. It can be used to set up an approximation scheme.

Algorithm 4 Approximation Algorithm (Hassin [1992])

Input: 1-CSP with data D = (V, A), s, t ∈ V , w ∈ NA, c ∈ NA
0 , d ∈ N such

that 1 ≤ OPT < ∞
Input: Numbers L, U ∈ N such that L ≤ OPT ≤ U ≤ 2L
Input: Number 0 < ǫ < 1
Storage: Vector ca, a ∈ A, Path P , Variable V
Output: V = cost of an st-path with weight at most d and with the property

OPT ≤ V ≤ (1 + ǫ)OPT
1: for all a ∈ A do

2: ca ←⌊ cij

Lǫ/(n−1)⌋
3: end for

4: OPT← result OPT of Algorithm 3 (scaled) called for D, w, c, d, s, t
5: P ← path such that c(P) = OPT
6: V ← c(P)

Lemma 1.20. Algorithm 4 terminates correctly.

Proof. Let P be the minimum cost st-path with weight at most d w.r.t. the

1.5 Fully Polynomial Time Approximation* 10

orignal cost c. Let c̃a := ca · Lǫ/(n − 1) for all a ∈ A. Then:

ca ≥ c̃a ≥ ca − Lǫ/(n − 1) ∀a ∈ A

=⇒ c(P) ≥ c̃(P) ≥ c̃(P) ≥ c(P) − Lǫ ≥ c(P) − Lǫ

=⇒ c(P) + Lǫ ≥ c(P) ≥ c(P)
=⇒ OPT(1 + ǫ) ≥ V ≥ OPT.

Lemma 1.21. The time complexity of Algorithm 4 is O(mn3

ǫ), where n = |V |
and m = |A|.

Proof. Consider the time spent in the individual lines of Algorithm 4:

1. − 3. O(m log n
ǫ)

4. O(n · m · n max ca) = O(mn3

ǫ)
5. O(n)
6. O(1)

1. − 6. O(mn3

ǫ)

For 1.–3. consider

ca(n − 1)

Lǫ
≤ U

L

n − 1

ǫ
≤ 2(n − 1)

1

ǫ
.

Hence ca, the integer part of a number ≤ 2(n − 1)ǫ, can be computed in
O(log n

ǫ). For 4., also note max ca ≤ 2(n − 1)/ǫ.

In order to turn the scaled version of Algorithm 4 into an FPAS, we need
to compute the bounds L and U . This can be done via some type of binary
search.

Lemma 1.22. Algorithm 5 terminates correctly.

Proof. Case NO: If wt(⌈n−1
ǫ ⌉ − 1) ≤ d, there is an st-path P of weight at

most d such that c(P) ≤ ⌈n−1
ǫ ⌉ − 1 < n−1

ǫ . Let c̃a := ca
V ǫ

n−1 for all a ∈ A
such that ca ≤ V . Then

ca ≥ c̃a ≥ ca − V ǫ
n−1

=⇒ c(P) − V ǫ ≤ c̃(P) = c(P) V ǫ
n−1 < n−1

ǫ
V ǫ

n−1 = V

=⇒ c(P) < V (1 + ǫ).

Case YES: If wt(⌈n−1
ǫ ⌉−1) > d, all st-paths P of weight at most d have cost

c(P) > ⌈n−1
ǫ ⌉ − 1 ≥ n−1

ǫ . This implies

c(P) ≥ c̃(P) = c(P)
V ǫ

n − 1
≥ n − 1

ǫ

V ǫ

n − 1
= V.

1.5 Fully Polynomial Time Approximation* 11

Algorithm 5 Approximation TEST (Hassin [1992])

Input: 1-CSP with data D = (V, A), s, t ∈ V , w ∈ NA, c ∈ NA
0 , d ∈ N such

that 1 ≤ OPT
Input: Number V ∈ N such that 1 ≤ V ≤ n max ca

Input: Number 0 < ǫ < 1
Storage: Vector ca, a ∈ A
Output: Either YES: OPT ≥ V or NO: OPT < V (1 + ǫ)
1: for all a ∈ A such that ca > V do

2: A←A \ {a}
3: end for

4: for all a ∈ A do

5: ca ←⌊ cij

V ǫ/(n−1)⌋
6: end for

7: Call Algorithm 3 (scaled) for D, w, c, d, s, t
8: if wt(⌈n−1

ǫ ⌉ − 1) ≤ d then

9: return NO
10: else

11: return YES
12: end if

Lemma 1.23. The time complexity of Algorithm 5 is O(mn3

ǫ).

Proof.

ca = ⌊ cij

V ǫ/(n − 1)
⌋ ≤ n − 1

ǫ
=⇒ OPT ≤ (n − 1)2

ǫ
.

Algorithm 6 Binary Search (Hassin [1992])

Input: Numbers 1 ≤ L ≤ U
Input: Unknown number Y ∈ [L, U] given by a comparison oracle
Output: L ≤ Y ≤ U such that U/L ≤ 2
1: while U/L > 2 do

2: X ←
√

UL
3: if Y ≤ X then

4: U ←X
5: else

6: L←X
7: end if

8: end while

Lemma 1.24. Algorithm 6 terminates correctly and its time complexity is
O(log log U

L).

1.5 Fully Polynomial Time Approximation* 12

Proof.

X/L = U/X ⇐⇒ X2 = UL ⇐⇒ X =
√

UL

U/X = U/
√

UL =
√

U/L

⇐⇒ (U/L)(1/2)k
< 2 ⇐⇒ (1/2)k log U/L < log 2

⇐⇒ log(1/2)k + log log U/L < log log 2
⇐⇒ k log 1/2 < log log 2 − log log U/L
⇐⇒ k > (log log 2 − log log U/L)/ log 1/2
=⇒ k = O(log log U/L).

Algorithm 7 FPAS for 1-CSP (Hassin [1992])

Input: 1-CSP with data D = (V, A), s, t ∈ V , w ∈ NA, c ∈ NA
0

Input: Number 0 < ǫ < 1 such that (1 + ǫ)4 < 2
Storage: Numbers L, V, U ∈ N
Output: V = cost of an st-path of weight at most d such thata OPT ≤

V ≤ (1 + ǫ)OPT
1: L← 1, U ←(n − 1)max ca

2: while U/L > 2 do

3: V ←min{2(2i) : 2(2i) > U/L}/2(22)

4: if TEST(V L) = YES then

5: L←V L
6: else

7: U ←V L(1 + ǫ)
8: end if

9: end while

10: V ← result of Algorithm 4 (scaled) called with D, c, w, d, s, t, L, U , ǫ

Theorem 1.25 (FPAS for 1-CSP (Hassin [1992).)] Algorithm 7 terminates

correctly and has time complexity O(log log U
L (mn3

ǫ + (log U)2))).

Proof. In lines 1.–8. we have

22i
>

U

L
=⇒ 22(i−1)

>

√

U

L
=⇒ 22(i−2)

> (
U

L
)1/4 =⇒ (

U

L
)1/4 ≤ V <

√

U

L
.

It follows

◦ TEST(V L) = YES: U
V L ≤ U

L(U/L)1/4 = (U
L)

3
4

◦ TEST(V L) = NO: V L(1+ǫ)
L ≤

√

U
L (1 + ǫ) ≤ (U

L)
3
4 . This holds since

1 + ǫ ≤ (U
L)1/4 ⇐⇒ (1 + ǫ)4 ≤ U

L < 2.

1.5 Fully Polynomial Time Approximation* 13

In both cases, the ratio U
L is reduced to (U

L) in each iteration of the loop
2.–9. such that it takes O(log log U

L) iterations until the ratio falls below 2.

1. O(1)

2. − 8. O(log log U
L)

3. × O(log log U
L · log U)

4. × O(mn3

ǫ)
5. + 7. × (log U)2

9. O(mn3

ǫ)

1. − 9. O(log log U
L (mn3

ǫ + (log U)2)))

Corollary 1.26. Algorithm 7 is an FPAS for the 1-CSP.

