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ABSTRACT
We study the classical problem of inferring the traffic on
each Origin-Destination (OD) pair of a large IP network.
The most recent methods take advantage of network-monito-
ring tools such as Netflow (Cisco Systems), which supple-
ment the link measurements by direct information on the
OD flows. The aim is now to reduce the costs of deploy-
ment of Netflow, and to optimize its use. We formulate a
combinatorial optimization problem, whose objective is to
find the "best" set of interfaces on which Netflow should be
activated. Our approach relies on an experimental design
model, in which a robust measure of the quality of the Net-
flow deployment is provided by a family of Schatten norm
like functions of the correlation matrix of the estimation er-
ror. Then, the deployment is found by rounding the opti-
mal solution of a relaxed convex programming problem, that
we solve by a sequential quadratic programming (SQP) al-
gorithm, or by a projected gradient algorithm which takes
advantage of the sparsity of the observation matrices in or-
der to scale well. We also show that the present combinato-
rial optimization problem is equivalent to the maximization
of a nondecreasing submodular function over a matroid, for
which approximation algorithms are known. We report ex-
perimental results on the international backbone of France
Telecom (Opentransit), which is made of 100 routers, 267
links and 5646 OD pairs. We compared several algorithms,
among which the convex relaxation with rounding scheme
gives the best results.

Keywords:.
Traffic measurement, Netflow deployment, Experi-

mental design, Combinatorial optimization.

1. INTRODUCTION

1.1 Background
The problem of estimating Origin-Destination (OD)

traffic matrices for backbone networks has recently at-
tracted much interest from both Internet providers and
the network research community [6, 15, 13, 22], because
these traffic matrices serve as important inputs of a va-

riety of network traffic engineering tasks. This esti-
mation problem is generally stated as follows. We are
given the graph of the network, with its set of l edges (or
links). Direct measurements are provided by the Simple
Network Management Protocol (SNMP), which allows
us to know some statistics on the links (for instance,
the number of bytes seen on each link in a 5 minutes
window). We will denote these SNMP link counts by
Y SNMP = (y1, ..., yl)T . We are also given the set of
routes among the network, that is to say the set of m
OD pairs, and for each pair, we are given the set of
links that a byte needs to traverse to go from origin O
to destination D. The information about the routing
is classically gathered in the l ×m incidence matrix A:
this is a 0/1−matrix whose (e, r)−entry takes the value
1 if and only if the OD pair r traverses edge e. More
general routing policies of the provider may be modeled
by considering matrices in which Ae,r is a real number
representing the fraction of the traffic from OD pair r
that traverses link e.

The unknown in our problem is the vector of OD
flows X = (x1, ..., xm), where xr is the number of bytes
which have been traveling through OD pair r during
the observation period. One might easily verify that
the following must hold:

Y SNMP = AX. (1)

In typical networks, we have l << m, so that the equa-
tion above is underdetermined. Thus, the estimation of
the flow distribution X is an ill-posed problem in the
sense that the system equations (1) has an infinite num-
ber of solutions, and hence we have to introduce some
constraints to ensure the identifiability of the model.

1.2 Optimization of the measurement
A way to introduce some new constraints is the use of

a network-monitoring tool such as Netflow (Cisco sys-
tems). Liang, Yu and Taft [14] proposed a scheme for
selecting the flows that must be measured by Netflow
at a certain iteration, in order to improve the accuracy
of the dynamic traffic estimation. Of course, activating
Netflow everywhere on the network yields an extensive
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knowledge of the OD flows. However, the use of Net-
flow induces significant costs. According to [1] indeed,
activating Netflow on an interface of a router causes
the CPU load of the router to increase by 10 to 50%.
Moreover, the installation and maintenance costs can-
not be neglected. It is thus of great interest to optimize
the use of this tool. We shall distinguish two problems.
The first one concerns an Internet provider wishing to
have an extensive knowledge of the traffic on the net-
work. Rather than activating Netflow everywhere, this
provider may look for a minimal set of interfaces on
which Netflow should be activated to measure the traf-
fic on all the routes. The second problem concerns the
situation where the provider does not have enough re-
sources to get a full information on the traffic. Then, a
challenging issue is to specify the ”best” set of interfaces
where Netflow should be deployed, taking into account
the budget constraint.

The rest of this paper is organized as follows. The
statement of the problem and the experimental design
background is derived in section 2. We establish NP-
hardness and polynomial time approximability results
in section 3, and we present different techniques to solve
it, such as semidefinite and convex programing relax-
ations in section 4. We give some experimental results
and analysis in section 5.

1.3 Related Work
Before presenting our approach, let us review the

work that has been done recently on the Netflow place-
ment problem.

Zang and Nucci [20] posed the Netflow placement
problem as an Integer program whose objective is to
minimize the cost of deployment of the monitoring tool
on the network, taking into account the costs required
to upgrade the routers so that they support Netflow.
The constraint of the program is that Netflow should
monitor at least a fraction α of all the traffic that is
traveling on the network. They proposed two heuristics
in order to give a near-optimal solution to this NP-Hard
integer program.

Bouhtou and Klopfenstein [3] pursued this approach
by taking into account the variations of the traffic in
time. In most networks, the routing table is not static
indeed, and the placement of Netflow must be robust
to possible routing modifications. To tackle this issue,
the authors formulated an optimization problem with
probability constraints, which they approximated by a
sequence of integer linear programs.

Cantieni, Iannaccone, Barakat, Diot and Thiran [5]
interested themselves in the optimal rates at which Net-
flow should be sampled on each router. They formu-
lated this problem as a convex minimization problem,
which they solved using a projected gradient algorithm.

Bermolen, Vaton and Juva [2] were the first to inves-

tigate the optimal placement of Netflow in light of the
experimental design background. Based on the model
proposed by Cao et al. [6], they suggested that the ob-
servation vector Y has a normal distribution, whose ex-
pected value and covariance matrix depends on the ex-
pected value λ of the OD flows, and derived the Fisher
information matrix for any placement of the measures.
The authors of [2] give a scheme for selecting a few inter-
faces on which Netflow should be activated in priority.

By comparison with this previous work, the original-
ity of the present approach is to formulate a combinato-
rial optimization problem, taking both into account the
SNMP data and the Netflow measurements, which can
be solved by making use of continuous relaxations. We
applied the method to the international transit back-
bone of France-Telecom (Opentransit). We also give a
polynomial time approximability ratio for this problem.

2. EXPERIMENTAL DESIGN BACK-
GROUND AND PROBLEM STATEMENT

The experimental design approach deals with the min-
imization of covariance matrices. We next present a
model of the deployment of Netflow which will lead us
to a problem of this nature.

When Netflow is activated on an interface of the net-
work, it will analyze the headers of the packets travers-
ing this interface, and as a result we will have access to
some statistics, such as the source and destination IP
addresses, and the source and destination AS numbers
of these packets. However, we are not directly inter-
ested in this information, because we are not trying to
estimate the global run of the packets, but only the part
of their run which is inside the network of interest, like
the backbone of an autonomous system (AS).

Practically, the data that we are able to measure
with Netflow depends on the knowledge that we have
of the routing policy of an Internet provider. In some
cases, when Netflow is activated on an interface, we will
be able to simulate the routing protocol and thus to
compute each OD flow that is traversing this interface,
whereas in other cases, Netflow measurements will pro-
vide us some linear combinations of the flows only, such
as for example the sum of all OD flows traversing this
interface and which will leave the network from a par-
ticular router (the final destination inside the network
of interest is known, but not the source). In this second
case, Netflow will give full information on the OD flows
when activated on an ingress interface of the network
(we know that the packets have entered the network at
this interface). This remark shows how important the
location of the measure is: depending on the location of
the interface inside the network, the measure can bear
some valuable or some poor information.

Without any loss of generality, we can thus assume
that, when Netflow is performing a measure on the kth
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interface ik, we get a multidimensional measure Y (k)

which is a linear combination of the OD flows which
traverse ik:

Y (k) = A(k)X. (2)

Now, let I = {i1, i2, ..., is} be the set of all interfaces
where one could activate Netflow. Furthermore, let
I0 = {k1, ..., kn} be the subset of {1, ..., s} that denotes
the interfaces on which Netflow is activated. Similarly,
define the design w as the 0/1 vector of size s, where
wk equals 1 if and only if Netflow is activated on the
interface ik:

(Netflow activated on ik)⇐⇒ k ∈ I0 ⇐⇒ wk = 1.

The measurement vector Y is now the concatenation
of the SNMP data Y SNMP with all the Netflow measure-
ments (Y (k))k∈I0 . The measurements are never exact
in practice, and we have to deal with a noise ε, which is
a result, among other things, of Netflow sampling and
lost packets. This can be modeled as follows:

Y = A(w) X + ε, (3)

where Y =


Y SNMP

Y (k1)

...
Y (kn)

 and A(w) =


A
A(k1)

...
A(kn)

 .
Now, assume that we have enough measurements, so
that A(w) is of full rank, and assume that the noises on
the observations are independent one from another, that
is to say that the covariance matrix Σ = E(εεT ) only
has diagonal entries. These assumptions are sufficient
to use a common result in the field of statistics, which
states that the best linear unbiased estimator of X is
given by a pseudo inverse formula (Aitken estimator).
Its variance is given below:

X̂ =
(
A(w)TΣ−1A(w)

)−1

A(w)TΣ−1Y. (4)

Var(X̂) = (A(w)TΣ−1A(w))−1. (5)

If we further assume that the noise follows a normal
distribution N (0,Σ), then the estimator X̂ described in
Eq.(4) is also the maximum likelihood estimator of X,
and the bound given by the Cramer-Rao inequality [2]
is attained, i.e. its covariance matrix equals the inverse
of the Fisher information matrix:

MF (X) = A(w)TΣ−1A(w). (6)

For simplicity of notation, we will assume that the noises
have unit variance: E(εεT ) = I. We may always reduce
to this case by a left diagonal scaling of the matrixA(w).
Now, the Fisher information matrix depends only on the
interfaces where Netflow has been activated, and we will

denote it by MF (w):

MF (w) = A(w)TA(w)

= ATA+
s∑

k=1

wkA
(k)T

A(k) (7)

Our approach will consist in choosing the set of inter-
faces I0 (or the design w) in order to make the variance
of the estimator (4) as small as possible. The inter-
pretation is straightforward: with the assumption that
the noise ε is normally distributed, for every probability
level α, the estimator X̂ lies in the confidence ellipsoid
centered at X and defined by the following inequality:

(X − X̂)TQ(X − X̂) ≤ κα, (8)

where κα depends on the specified probability level,
and Q = MF (w) is the inverse of the covariance ma-
trix Var(X̂). We would like to make these confidence
ellipsoids as small as possible, in order to reduce the un-
certainty on the estimation of X. To this end, we can
express the inclusion of ellipsoids in terms of matrix in-
equalities. Here and in the sequel, we denote by Sm the
space of symmetric m×m matrices. We also denote by
S+
m ⊂ Sm the cone of positive semidefinite matrices, and

by S++
m its interior, which consists of positive definite

matrices. The space of symmetric matrices is equipped
with the Loewner ordering, which is defined by

∀B,C ∈ Sm, B � C ⇐⇒ B − C ∈ S+
m.

Let w and w′ denote two designs such that the matri-
ces MF (w) and MF (w′) are invertible. One can readily
check that for any value of the probability level α, the
confidence ellipsoid (8) corresponding to Q = MF (w)
is included in the confidence ellipsoid corresponding to
Q = MF (w′) if and only if MF (w) � MF (w′). Hence,
we will prefer design w to design w′ if the latter inequal-
ity is satisfied.
We note that the problem of maximizing MF (w) with
respect to the Loewner ordering remains meaningful
even when MF (w) is not of full rank. This case does
arise in under-instrumented situations, in which some
constraints may not allow us to deploy Netflow on a
number of interfaces which is sufficient to observe the
traffic on all the routes.

Since the Loewner ordering on symmetric matrices is
only a partial ordering, the problem consisting in max-
imizing MF (w) is ill-posed. So we will rather maxi-
mize a scalar information function of the Fisher ma-
trix, i.e. a function mapping S+

m onto the real line,
and which satisfies natural properties, as positive ho-
mogeneity, monotonicity with respect to Loewner or-
dering, and concavity. For a more detailed description
of the information functions, the reader is referred to
the book of Pukelsheim [18], who proposes the use of
a class of functions: the matrix means Φp, which are
defined like the Lp-norm of the vector of eigenvalues of

3



the Fisher information matrix, but for p ∈ [−∞, 1]. For
positive definite matrices, M ∈ S++

m with eigenvalues
{λ1, ..., λm}, the matrix mean Φp is represented by

Φp(M) =


λmin(M) for p = −∞ ;
( 1
m trace Mp)

1
p for p ∈ ]−∞, 1], p 6= 0;

(det(M))
1
m for p = 0,

(9)
where we have used the extended definition of powers of
matricesMp for arbitrary real parameters p: traceMp =∑m
j=1 λ

p
j . The case p = 0 (D-optimal design) admits

a simple geometric interpretation: the volume of the
confidence ellipsoid (8) is given by Cmκ

m/2
α det(Q)−1/2

where Cm > 0 is a constant depending only of the di-
mension. Hence, maximizing Φ0(MF (w)) is the same
as minimizing the volume of every confidence ellipsoid.
For singular positive semi-definite matrices, we have

Φp(M) =
{

0 for p ∈ [−∞, 0], ;
( 1
m trace Mp)

1
p for p ∈ ]0, 1].

(10)
We can finally give a mathematical formulation to

the problem of optimizing the use of Netflow. Assume
that the cost of deployment/activation of Netflow on
interface ik is ck. If an Internet provider has a limited
budget B, the Netflow Optimal Deployment problem is:

max
w ∈{0,1}s

Φp
(
MF (w)

)
(11)

s.t.
∑
k

wkck ≤ B

In the case where the cost of deployment ck is the same
everywhere, the constraint is equivalent to deploy Net-
flow on no more than n interfaces. We call this special
case the unit-cost case.
Another interesting idea to find an optimal deployment
of Netflow is to choose the design which maximizes the
rank of the observation matrix A(w), or equivalently
of MF (w) = A(w)TA(w). The rank optimization is a
nice combinatorial problem, where we are looking for a
subset of matrices whose sum is of maximal rank:

max
w∈{0;1}s

rank
(
ATA+

∑
k

wkA
(k)T

A(k)
)

(12)

s.t.
∑
k

wkck ≤ B

However, this problem could provide a solution for which
the matrix A(w) (as consequently MF (w)) has certainly
a high rank, but might be very ill-conditioned. This will
occur when the smallest non-zero eigenvalue of MF (w)
is very small. Consequently, this model does not take
the noise sensibility of the observation into account.
The use of information functions Φp (9) is a way to
get rid of this problem, and the next proposition shows

that (11) may be thought as a regularization of the rank
optimization problem. First notice that when p > 0, the
maximization of Φp(MF (w)) is equivalent to the maxi-
mization of ϕp(w) = trace(MF (w))p.

Proposition 2.1. For all positive semidefinite ma-
trix M ∈ S+

m,

lim
p→0+

trace Mp = rank M. (13)

Proof. Let λ1, ..., λr denote the positive eigenvalues
of M , counted with multiplicities, so that r is the rank
of M . We have the first order expansion as p→ 0+:

trace Mp =
r∑

k=1

λpk = r + p log(
r∏

k=1

λk) +O(p2)

(14)

Consequently, trace M0 will stand for rank(M) and
ϕ0(w) will stand for the objective function of (12) in
the sequel.

Corollary 2.2. If p > 0 is small enough, then ev-
ery design w∗ which is a solution of Problem (11) maxi-
mizes the rank of MF (w). Moreover, among the designs
which maximize this rank, w∗ maximizes the product of
nonzero eigenvalues of MF (w).

Proof. Since there is only a finite number of designs,
it follows from Eq. (14) that for p > 0 small enough, ev-
ery design which maximizes ϕp must maximize in the
lexicographical order the rank of MF (w), and then the
sub-determinant

∏
λk>0 λk.

As indicated in the introduction, another interesting
problem arises when the provider wishes to minimize
the budget of deployement of Netflow, under the con-
straint that the design gives a measurement of a pre-
scribed quality. This leads us to formulate the problem
of the minimal exhaustive deployment of Netflow :

min
w ∈{0,1}s

s∑
k=1

wkck (15)

s.t. Φp
(
MF (w)

)
≥ γ

where γ > 0 is a threshold quantifying the quality of the
measure. Note that when p ≤ 0, the latter constraint
forces MF (w) to have full rank.

3. HARDNESS AND APPROXIMABILITY
RESULTS

After having shown with an example that the greedy
algorithm is suboptimal for Problem (11), we will prove
that the rank optimization problem is NP-hard by re-
duction of MAX-k-Coverage. Next, we show that prob-
lem (11) is equivalent to the maximization of a non-
decreasing submodular function [10, 19, 16], which will
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allow us to use known approximability results.

3.1 Non-optimality of greedy schemes
A natural idea to solve problem (11) (in the unit-cost

case) is to choose n interfaces using a iterative scheme:
at the kth stage of the algorithm, we are given the pre-
viously (k−1) selected interfaces, and we choose the kth

interface as the one which maximizes the given criteria.
However, this algorithm is suboptimal, as shown by this
simple counter-example :

Example Consider the network depicted below,

D

A
1 // B

2 // C

3

>>~~~~~~~

4

  @
@@

@@
@@

E

whose routing matrix is given by :
OD Pairs→

↓links AD BD CD AE BE CE
1(a→ b) 1 0 0 1 0 0
2(b→ c) 1 1 0 1 1 0
3(c→ d) 1 1 1 0 0 0
4(c→ e) 0 0 0 1 1 1

In this example, we assume that when Netflow analyzes
a packet, we are able to find its origin and its desti-
nation. For ease of presentation, we have chosen an
example where not all the OD pairs are listed (for ex-
ample, there is no road from A to B). Denoting the ith

vector of the canonical basis of R6 by ei, we have the
following observation matrices :

A(1) = [e1, e4]T (16)

A(2) = [e1, e2, e4, e5]T (17)

A(3) = [e1, e2, e3]T (18)

A(4) = [e4, e5, e6]T (19)

In this example, we are taking p = 1
10 . We are looking

for the set of interfaces which maximizes Φ0.1(MF (w)),
or equivalently, trace(MF (w)0.1). In the array below,
we have listed the values of this criterion for each set of
interfaces of cardinality less than 2 :

w trace(MF (w)0.1) w trace(MF (w)0.1)

0 4.333633 e1 + e2 6.381055
e1 + e3 6.332209

e1 5.311219 e1 + e4 6.332209
e2 6.284268 e2 + e3 6.489883
e3 6.189830 e2 + e4 6.489883
e4 6.189830 e3 + e4 6.502424

These values indicate that if we want to place 1 mea-
sure, we should select the interface i2(b→ c), and if we
want to place 2 measures, we should rather activate the
interfaces i3(c → d) and i4(c → e). If we had used a
greedy algorithm to select 2 interfaces, we would have
first activated the interface i2(b → c), and then either
i3(c→ d) or i4(c→ e), which are equivalent by symme-
try of the network. This shows that the greedy selection
scheme is suboptimal, yet achieving a very good approx-
imation ratio of 6.4899−4.3336

6.5024−4.3336 ' 0.993.
An intuitive way to understand this result is to look
at the observation matrices : A(2) is the best observa-
tion matrix, because it gives some information on 4 OD
flows, namely AD,BD,AE and BE, while the others
give information on no more than 3 interfaces. Selecting
this interface (i2) plus another one will be redundant,
because in the best case, we will have information on
one more OD flow (for example if we activate Netflow
on i2 and i4, we will have some information on the 4
OD flows mentioned above, plus CE). On the other
hand, activating Netflow on interfaces i3 and i4 will do
a better job, because the information given by i3 is to-
tally disjoint from that of i4, and activating Netflow on
these 2 interfaces gives full information on each of the
6 OD pairs of this network.

3.2 Hardness of Rank optimization

Theorem 3.1. Problem (12) is NP-Hard. For all
positive ε, there is no polynomial-time algorithm which
approximates (12) in a factor of 1 − 1

e + ε unless P =
NP .

Proof. We will show that the problem MAX-k-cove-
rage, for which the statement of the theorem is true [8],
reduces to Problem (11) in polynomial time.

The problem MAX-k-Coverage is defined as follows :
We are given a collection of subsets S = {S1, S2, ..., Sm}
of {1, ..., N}, as well as an integer k, and the goal is to
pick at most k sets of S such that the size of their union
is maximized. Let ei be the ith vector of the canoni-
cal basis of RN . If the set Si contains the k elements
{i1, i2, ..., ik}, we define the ith observation matrix as :
A(i) = [ei1 , ..., eik ]T , so that A(i)T

A(i) is a diagonal ma-
trix whose indices of nonzero entries are the elements
of Si. Finally, let A be the all-zero row vector of size
N . Since all the matrices A(i)T

A(i) have only diago-
nal entries, it is straightforward to see that the rank
of ATA +

∑
k wkA

(k)T

A(k) is equal to the number of
nonzero elements on its diagonal, i.e. the cardinal of
∪{i|wi=1}Si, which is exactly the objective function of
the MAX-k-Coverage problem.
This is a negative result on the approximability of the
best Netflow deployment. Nevertheless, we show in
the next subsection that the bound provided by Theo-
rem 3.1 is the worst possible ever, and that the greedy
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algorithm always attains it in the unit-cost case.

3.3 Submodularity of ϕp and polynomial time
approximability of Netflow Optimal De-
ployment

Definition A real valued set function f : 2E −→ R
is nondecreasing submodular if it satisfies the following
conditions :

• f(I) ≤ f(J) whenever I ⊆ J ⊆ E;

• f(I) + f(J) ≥ f(I ∪ J) + f(I ∩ J) for all I, J ⊆ E.

In the following, we will identify the function ϕp :
{0, 1}s −→ R with the set function ϕp : 2{1,...,s} −→
R. The next lemma will be useful to show that ϕp is
submodular. Its proof is provided in appendix.

Lemma 3.2. For all X,Y, Z ∈ S+
m, ∀p ∈ [0, 1],

trace(X + Y+Z)p + trace Zp ≤
trace(X + Z)p + trace(Y + Z)p (20)

The next results show that the problems (11) and (12)
are 1 − 1

e−approximable in polynomial time. This can
be attained with the help of the greedy algorithm, whose
principle is to add sequentially in G = ∅ the interfaces
which provide the best ratio

ϕp(G ∪ ik)− ϕp(G)
ck

until the budget constraint is violated.

Theorem 3.3. (Submodularity of ϕp) For all p ∈
[0, 1], ϕp is a nondecreasing submodular set function.

Proof. The function ϕp is nondecreasing, because
X −→ Xp is a matrix monotone function [21] for p ∈
[0, 1]. Let I, J ⊆ 2{1,...,s}. We define

M (k) = A(k)T

A(k), X =
∑
k∈I\J

M (k),

Y =
∑
k∈J\I

M (k), Z = ATA+
∑
k∈I∩J

M (k).

Now it is easy to check that ϕp(I) = trace(X + Z)p,
ϕp(J) = trace(Y + Z)p, ϕp(I ∩ J) = trace Zp and
ϕp(I ∪ J) = trace(X + Y + Z)p. Hence, Lemma 3.2
proves the submodularity of ϕp.

Corollary 3.4. (Approximability of Optimal
Netflow Deployment: Unit-cost case) The gree-
dy algorithm for problem (11) yields a 1 − 1

e approxi-
mation factor in the unit-cost case.

Proof. Nemhauser proved it for any nondecreasing
submodular function over a uniform matroid. Moreover
when the maximal number of interfaces which can be
selected is k, this approximability ratio can be improved
to 1−

(
1− 1/k

)k
.

Corollary 3.5. (Approximability of Optimal
Netflow Deployment) Problem (11) is still 1 − 1

e -
approximable in polynomial time in the budgeted case,
but the greedy algorithm for problem (11) yields a con-
stant approximation factor of only 1

2

(
1− 1

e

)
.

Proof. This was proven for an arbitrary nondecreas-
ing submodular function in the recent paper [12]. In
order to attain the 1 − 1/e−approximation guarantee,
one can associate the greedy algorithm with the partial
enumeration of all triples of interfaces.

Remark The previous corollaries hold in particular for
p = 0, and hence for the rank maximization problem.

4. RESOLUTION OF THE PROBLEM
In this section, we investigate the methods to solve

Netflow optimal deployment and Minimal exhaustive
deployment of Netflow, namely (11) and (15). After a
brief discussion on the choice of p, we will present some
continuous relaxations to solve (11) and (15), and we
propose rounding schemes to approximate the integer
solution. In order to make some comparisons, we also
investigated the use of some classical metaheuristics.

4.1 Discussion on the choice of p
The use of nonpositive values of p (p ≤ 0) forces the

matrix MF (w) to be of full rank. We are indeed maxi-
mizing a nonnegative function whose value is 0 as long
as MF (w) is singular (10). In particular, the problems
with the values p = −∞, p = −1, p = 0 have been ex-
tensively studied in the experimental design literature,
and are known respectively as E-, A-, and D-optimal de-
sign. However, when we have limited resources, it is not
always possible to find a design w for which MF (w) is of
full rank. For such cases, positive values of p (0 < p ≤ 1)
are well adapted.

A solution for the case p = 1 is known as T-optimal
design, because it maximizes the Trace of the Fisher
information matrix. Notice that in this case, the rout-
ing matrix A appears only in the additive constant
1
m trace ATA of the objective value of (11): the T-
optimal design does not take into account the SNMP
data. Moreover, when the routing matrix only has
0/1 entries, the criterion which can also be seen as
the Frobenius norm of the observation matrix ‖A(w)‖F ,
counts exactly the number of 1 is the matrix A(w). In
other words, the objective function of the T-optimal
problem is the number of flows that Netflow monitors,
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counted with their order of multiplicity. Therefore, T-
optimal design does not take into account the redun-
dancy of the measure, which is probably the main diffi-
culty of this optimal deployment problem. This remark
should warn us not to take a value of p close to 1.
On the other hand, we have shown (proposition 2.1)
that the rank optimization problem can be recovered
by letting p −→ 0+. Moreover, as explained in Corol-
lary 2.2, when p > 0 is small enough, we are looking
for a design which maximizes, in the lexical order, the
rank and then the product of the nonzero eigenvalues
of MF (w). This can be seen as a generalization of the
D-optimal design, which maximizes the determinant of
MF (w), i.e. minimizes the volume of the confidence el-
lipsoid of the estimator. Thus, small values of p might
be a good choice in the underinstrumented case. The
experimental results presented in the next section show
the robustness of the optimal design for p taking several
values in the range [0.05; 0.2].

4.2 Continuous relaxations for the Netflow
optimal deployment

To solve Problem (11), we first replace the integer
constraint w ∈ {0, 1}s by

0 ≤ wk ≤ 1,∀k ∈ {1, ..., s}.

This relaxation lets problem (11) become a convex pro-
gram. We can therefore apply different techniques to
solve it, such as projected gradient algorithms. More-
over, the solution of this relaxed program might be in-
terpreted as a sampling of Netflow. Indeed, a simplified
way to model a sampled Netflow, which analyzes only a
fraction wi of the packets on the ith interval, would be
to change the variance of the noise on the ith interface
from 1 to the new value 1

wi
. The variance of the Aitken

estimator (5) becomes :

(A(w)TΣ−1A(w))−1 =
(
ATA+

∑
k

wkA
(k)T

A(k)
)−1

.

With this model, we find a continuous version of the
fisher information matrix MF (w), defined for all vector
w in[0, 1]s.
Denoting by F the feasible set

{w ∈ Rs|
∑
k

wkck ≤ B; ∀j ∈ {1, ..., s}, 0 ≤ wj ≤ 1},

the problem takes a simpler form (for 0 < p ≤ 1):

max
w∈F

ϕp(w) ≡ trace
(
ATA+

s∑
k=1

wkA
(k)T

A(k)
)p

(21)

As proposed in [17], we solved this program with a se-
quential quadratic programming (SQP) algorithm, whose
principle is to replace, at each step, the objective func-
tion ϕp with its quadratic approximation around the

current value wc, and to solve the quadratic optimiza-
tion problem

max
w∈F

∇ϕp(w − wc) + (w − wc)T∇2ϕp(w − wc). (22)

To this end, we need compute the gradient and the hes-
sian of ϕp, for which explicit forms are known thanks
to basic results concerning central functions of matri-
ces (functions of a matrix whose value depends only
on the unordered m − uple of eigenvalues [4]). If we
have the spectral decompositionMF (w) = QTDQ, with
D = diag([λ1, ..., λm]),

∂ϕp(w)
∂wk

= p trace
(
M (k) MF (w)

p−1
)

∂2ϕp(w)
∂wi∂wj

= trace
(
M (i) Q

(
∆[2] � (QTM (j)Q)

)
QT
)
,

where � denotes the elementwise (Hadamard) product
of matrices, M (k) = A(k)T

A(k) and ∆[2] is the matrix of
second divided differences, defined by

∆[2]
i,j =

{
p(p− 1)λp−2

i if λi = λj

p
λp−1

i −λp−1
j

λi−λj
otherwise.

This method, which can be seen as a generalization
of Newton’s algorithm, has the advantage of converg-
ing rapidly. On networks of a reasonable size, this al-
gorithm converge within 5 iterations. However, it is
known that Newton’s iterations exhibit a local conver-
gence behavior only, and there is no theoretical guaran-
tee for this algorithm to converge. Moreover, the com-
putation of the Hessian becomes impracticable when
the network is large.
For this reason, we propose a projected gradient algo-
rithm which takes advantage of the sparsity of the ob-
servation matrices. Once the spectral decomposition of
MF (w) is achieved, we need the matrix MF (w)

p−1
=

QTDp−1Q to compute the gradient. Each entry of this
matrix requires O(m) multiplications. Denote by J the
set of indices for which a there is an observation matrix
with a nonzero entry :

J = {(i, j) | ∃k : M (k)
i,j 6= 0}.

As each of the M (k) is very sparse (not more than a few
nonzero entries on each row), |J | is in the order of m
(rather than m2). Therefore, computing the gradient
with

∂ϕp(w)
∂wk

= p
∑

(i,j)∈J

MF (w)
p−1

i,j M
(k)
i,j

requires O(m2) multiplications instead of O(m3).
At each iteration, we perform a step of length δ from
the current position w(i) in the direction of the gradi-
ent: wg = w(i) + δ∇ϕ(w(i)), and the new value of w is

7



obtained by projecting wg on F :

w(i+1) =arg min
w∈F
‖wg − w‖2. (23)

The bottleneck of this algorithm is currently the spec-
tral decomposition. For future work, we hope to over-
come it by using sparse SVD routines.

A natural idea to approximate the integer solution of
Problem (11) is to round the continuous solution w∗ ∈
[0, 1]s provided by (21) to an integer vector w̃ ∈ {0, 1}s.
We propose a special rounding scheme : First, order the
interfaces according to the (real) values of wk. Then, se-
lect a subset of good interfaces whose total cost is larger
than the budget B. Finally, try each combination of in-
terfaces among this subset which satisfies the budget
constraint. In the unit-cost case, where one looks for
a design with no more than n selected interfaces, this
rounding scheme is equivalent to choosing the subset
with the n+ 3 or n+ 4 best interfaces (ordered accord-
ing to the solution of the continuous relaxation), and to
try each n− uple of interfaces among this subset.
Other rounding schemes exist, as the randomized round-
ing, where w̃i is set to 1 with probability w∗i and to 0
with probability 1− w∗i . The efficiency of these round-
ing schemes is still an open question, but the results
presented in next section are very encouraging.

4.3 A semidefinite relaxation for the Mini-
mal exhaustive deployment of Net-
flow

The constraint of problem (15) that the design w
should bring at least a certain amount of information
γ > 0 takes a lot of sense when p ≤ 0, because it al-
lows one to look for full-rank designs (i.e. designs for
which the observation matrix A(w) is of full rank). The
case p = −∞ is an interesting one, because setting the
constraint Φ−∞ > ε means that all the eigenvalues of
MF (w) are greater than ε. This can be formulated with
the help of a linear matrix inequality (LMI) :

MF (w) � εI.

We can use techniques of semidefinite programming,
along the lines of Goemmans and Williamson [9], in
order to formulate the integer constraint in the form
of a linear matrix equality : the constraint w ∈ {0, 1}
is equivalent to w = w2. Introducing the new semi-
definite variable

W = [wT , 1]T · [wT , 1] =
(
wwT w
wT 1

)
,

this means that the diagonal of W equals its last col-
umn: diag(W ) = W · [0, ..., 0, 1]T . In order to be able
to associate an SDP variable W with a design w, we
must also make sure that W is of rank 1, and that

Ws+1,s+1 = 1. Problem (15) is equivalent to the pro-
gram :

min
W

trace(W · diag(c))

s.t. diag(W ) = W · [0, ..., 0, 1]T ;
Ws+1,s+1 = 1; (24)
rank(W) = 1;
W � 0;

ATA+
s∑

k=1

Wk,1A
(k)T

A(k) � εI.

Dropping the rank-1 constraint, we obtain a semidef-
inite program. The vector w that we find with the best
rank-1 approximation of the solution W ∗ of the relaxed
problem has no reason to be a 0/1 vector. We used a
rounding scheme in order to construct a binary solution
w∗, for which MF (w∗) is of full rank : we can order the
interfaces according to the value of wk, and add sequen-
tially the interfaces in this order, until a design of full
rank is found. In order to find the optimal integer de-
sign, we also used the above semidefinite program to
trim a Branch and Bound tree.

4.4 Integer programming metaheuristics
For comparison’s sake, we also investigated the use of

metaheuristics, such as neighborhood descents or tabu
search. These techniques are briefly described here.
Fedorov proposed in 1972 a descent heuristic to com-
pute optimal designs [7] in the unit-cost case, which we
will call EXCHANGE: Starting with an arbitrary set
of n interfaces I0, we make at each stage of the algo-
rithm the best possible substitution of an interface of
I0 versus an inactive interface. The algorithm stops
when no exchange can increase the value of ϕp(w). We
can slightly change this algorithm to a Variable Neigh-
borhood Search (VNS) by first selecting greedily k new
interfaces, and then deselecting k interfaces at each step
of the algorithm.

Another variant is the tabu search, where we keep
in memory the interfaces which do not increase signif-
icantly the value of ϕp(w). At the next iteration, we
will not investigate these interfaces. This tabu search
can be useful when the network (and hence m) is large,
because the evaluation of ϕp(w) requires a costly m×m
matrix diagonalization.

5. EXPERIMENTAL RESULTS
We ran computations on the Abilene backbone, which

is made of 11 nodes (routers), 28 links (each link on
the figure is bidirectional), and 110 OD-pairs, and on
the much larger France Telecom Opentransit backbone
(100 nodes, 267 links and 5646 OD-pairs). For both net-
works, we considered several instances of problem (11),
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Criterion Algorithm Interfaces found value of the criterion rank CPU

ϕ0.05

SQP [non integer] 106.454635 110 2.303
Rounding [7 11 13 15 19 ] 71.249755 60 2.819
Greedy [7 11 13 15 19 ] 71.249755 60 1.381
Exchange [7 11 13 15 19 ] 71.249755 60 1.107
VNS [7 11 13 15 19 ] 71.249755 60 3.108

ϕ0.20

SQP [non integer] 102.320021 110 2.290
Rounding [7 11 13 15 19 ] 73.050126 60 2.794
Greedy [7 11 13 15 19 ] 73.050126 60 1.342
Exchange [7 11 13 15 19 ] 73.050126 60 1.209
VNS [7 11 13 15 19 ] 73.050126 60 2.871

ϕ0.50

SQP [non integer] 125.332464 110 2.275
Rounding [11 13 15 17 19 ] 115.073658 59 2.761
Greedy [11 13 15 17 19 ] 115.073658 59 1.346
Exchange [11 13 15 17 19 ] 115.073658 59 1.186
VNS [11 13 15 17 19 ] 115.073658 59 3.128

ϕ1.00

Linear Programming [non integer] 369.000000 52 0.006
Rounding [4 11 13 14 17 ] 369.000000 52 0.602
Greedy [4 11 13 14 17 ] 369.000000 52 1.430
Exchange [4 11 13 14 17 ] 369.000000 52 1.351
VNS [4 11 13 14 17 ] 369.000000 52 3.246

CRAMER RAO [2]
Greedy [7 11 13 15 19 ] 81.263014 60 1.628
Exchange [7 11 13 15 19 ] 81.263014 60 7.419
VNS [7 11 13 15 19 ] 81.263014 60 6.150

RANK
Greedy [7 11 13 15 19 ] 60.000000 60 2.022
Exchange [7 11 13 15 19 ] 60.000000 60 6.492
VNS [7 11 13 15 19 ] 60.000000 60 3.912

Table 1: Computation results for the placement of 5 Netflow measurements on the Abilene backbone

depending on the value of p, the assumption made on
the information that one can retrieve from Netflow mea-
surements, and the type of localization allowed for Net-
flow. We also show by an example the robustness of
our approach when a modification of the routing oc-
curs, and we give experimental results for the minimal
exhaustive deployment of Netflow (15).

5.1 Abilene backbone

Activation of 5 interfaces.
We solved the problem of optimal deployment in the

unit-cost case, looking for a design with no more than
5 selected interfaces. This was done under the assump-
tion that Netflow reports allow one to find the outgress
node of each packet (the router where the packet leaves
the Abilene backbone), but not the ingress node. The
algorithms used for the comparison are the sequential
quadratic programming (SQP) associated with a search
among the best interfaces (ROUNDING), and the meta-
heuristics described in previous section (EXCHANGE
AND VNS). For a complete comparison of the results,
we also ran the GREEDY algorithm.
On the other hand, several criteria are considered : the
Schatten-p like functions ϕp for different values of p,
as well as the rank criterion (Problem (12)) and the
trace of the Cramer-Rao bound considered in the work
of Bermolen, Vaton and Juva [2]. The computation re-
sults are displayed in Table 1.

The subset of 5 interfaces [7,11,13,15,19] (namely Seat-

Figure 1: Best placement for 5 interfaces

tle → Denver, Sunnyvale → Los Angeles, Los Angeles
→ Houston, Denver → Kansas City, Chicago → Indi-
anapolis) maximizes the criteria ϕ0.05 and ϕ0.2, but also
the Cramer-Rao criterion and the rank of the observa-
tion matrix. This robust placement of 5 interfaces on
Abilene Network is, to our sense, the best possible so-
lution, and it is represented on Figure 1. For larger
values of p, another optimal design is found. But as
mentioned earlier, these designs might lead to redun-
dant measures.
We have enumerated all the combinations of 5 inter-
faces, and we found that our rounding scheme of the
continuous solution returned the optimal solution for
every criterion. These results show that our approach
of rounding the solution of the continuous relaxation
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provides the same designs as the other studied algo-
rithms. This, however, will not be the case in the next
example, where we want to activate Netflow simultane-
ously on all the incoming interfaces of a router.
We can also show with this instance that the optimal
design actually depends on the presence of SNMP data,
which is one of the reason which has motivated our
experimental-design-based approach. For several val-
ues of p in the range [0.05, 0.2], Table 2 shows indeed
that, whether one considers the SNMP data or not, the
best placement of Netflow is different.

Criterion SNMP data optimal design

ϕ0.05
yes [7 11 13 15 19]
no [11 13 15 17 19]

ϕ0.1
yes [7 11 13 15 19]
no [11 13 15 17 19]

ϕ0.2
yes [7 11 13 15 19]
no [11 13 15 17 19]

Table 2: Netflow Optimal Deployment, with and
without the presence of SNMP data

Another interesting experiment is to study the ro-
bustness of the optimal placement when a modification
of the routing matrix occurs, which is often the case in
practice. To this end, we computed the optimal deploy-
ment of Netflow on 5 interfaces of Abilene Backbone for
several routing matrices. For each origin-destination
pair OD, the route was set at random either to the
shortest path from O to D, or to the second shortest
path, or could be split between these two paths (half
of the traffic from O to D takes the shortest path, half
of the traffic takes the second shortest). We computed
the optimal deployment with the value p = 0.2, for
100 routing matrices generated randomly. The results
are represented in Table 2: over the 100 optimal de-
signs computed, we indicate the links which have been
selected at least once, as well as the number of times
where they have been selected. This experiment shows
that the interfaces that we suggest to select (7,11,13,15
and 19), are robust to modifications of routing. If we
are aware of the variations of routing which are likely to
occur, this kind of simulation can suggest to select some
more robust interfaces, even if they are not optimal for
the current routing matrix (here, we could select the 5
most robust interfaces 7,13,15,16 and 19).

Activation of the incoming interfaces of 4 routers.
Under the assumption that the costs of deployment

of Netflow are paid only once per router where it is in-
stalled (activating Netflow on 5 interfaces of a router is
not more expensive than activating Netflow on a single
interface of this router), we tried to find the optimal
set of 4 routers where Netflow should be activated si-
multaneously on all incoming interfaces. This time, we

Figure 2: Most selected interfaces of Abilene (la-
beled on the X-axis) over 100 random routings

Figure 3: Best placement on 4 routers

assumed that Netflow would be able to find both the
ingress and the outgress router for each packet. For
this problem, the deployment which maximizes the cri-
teria ϕ0.05, ϕ0.01, RANK and CRAMER-RAO is the ac-
tivation of Netflow on the routers 1, 2, 6 and 7, namely
Atlanta, Chicago, Los Angeles and Kansas City. This
deployment shows a large robustness with respect to the
different criteria again, and is depicted on Figure 3. We
summarized the computation results on Table 4. This
time, we incorporated the enumeration of all combina-
tions in the table of results, because it could be done
in the same order of time as other descent techniques :
The value of the criterion in the rows ENUM are always
the true optimal.
Interestingly, for p = 0.05, our rounding procedure was
the only one which found the optimal solution. This is
another example where the greedy scheme is subopti-
mal. However, we can notice that it approximates the
optimal solution within an excellent factor (much better
than the theoretical 1− 1

e ).

Minimal exhaustive Deployment of Netflow.
We also solved the problem (15) for the Abilene back-

bone. We ran the computations with different proce-
dures : A rounding of the solution provided by the SDP
relaxation (24), a Branch&Bound procedure applied to
the same SDP, and a greedy procedure which selects
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Value of p Continuous solution Number of Iterations
0.5 w6 = 0.644 ; w11 = 1 ; w49 = 0.305 ; w63 = 0.475 ; w73 = 1 ; w74 = 0.576 27

0.2
w6 = 0.530 ; w7 = 0.084 ; w11 = 1 ; w32 = 0.059 ; w48 = 0.053 ; w49 = 0.375

65
w63 = 0.477 ; w73 = 1 ; w74 = 0.422

0.05
w5 = 0.099 ; w6 = 0.433 ; w7 = 0.131 ; w11 = 0.920 ; w32 = 0.097 ; w48 = 0.103

87
w49 = 0.379 ; w54 = 0.062 ; w63 = 0.422 ; w72 = 0.084 ; w73 = 0.872 ; w74 = 0.398

Table 3: computation results for the Netflow Optimal Deployment on Openteransit
.

Criterion Algorithm Routers found value of the criterion rank CPU

ϕ0.05

SQP [non integer] 112.616005 110 1.111
Enum [1 2 6 7 ] 108.477557 105 2.020
Rounding [1 2 6 7 ] 108.477557 105 1.316
Greedy [2 4 6 10 ] 106.263333 102 0.302
Exchange [5 6 7 11 ] 107.297467 103 0.376
VNS [3 4 5 8 ] 106.926601 103 0.598

ϕ0.20

SQP [non integer] 124.464483 110 1.079
Enum [1 2 6 7 ] 118.634057 105 2.242
Rounding [1 2 6 7 ] 118.634057 105 1.280
Greedy [4 5 6 8 ] 118.210746 101 0.240
Exchange [5 6 7 11 ] 118.600239 103 0.320
VNS [1 2 6 7 ] 118.634057 105 0.478

ϕ0.50

SQP [non integer] 170.944263 110 1.137
Enum [4 5 6 7 ] 168.041160 99 1.897
Rounding [4 5 6 7 ] 168.041160 99 1.340
Greedy [4 5 6 7 ] 168.041160 99 0.236
Exchange [4 5 6 7 ] 168.041160 99 0.163
VNS [4 5 6 7 ] 168.041160 99 0.626

ϕ1.00

Linear Programming [non integer] 426.000000 98 0.048
Enum [4 5 6 7 ] 426.000000 99 1.923
Rounding [4 5 6 7 ] 426.000000 99 0.259
Greedy [4 5 6 7 ] 426.000000 99 0.234
Exchange [4 5 6 7 ] 426.000000 99 0.319
VNS [4 5 6 7 ] 426.000000 99 0.692

RANK

Enum [1 2 6 7 ] 105.000000 105 3.173
Greedy [2 4 6 10 ] 102.000000 102 0.484
Exchange [1 2 6 7 ] 105.000000 105 1.206
VNS [3 4 5 11 ] 103.000000 103 0.910

CRAMER RAO [2]

Enum [1 2 6 7 ] 155.906250 105 20.941
Greedy [2 4 6 10 ] 150.729167 102 2.269
Exchange [1 2 6 7 ] 155.906250 105 8.850
VNS [4 5 10 11 ] 152.516250 103 8.752

Table 4: computation results for the deployment of Netflow on 4 routers of Abilene backbone

Figure 5: minimal Deployment with exhaustiv-
ity constraint

the interface which maximizes the rank of the observa-
tion matrix at each iteration, until a full rank matrix is

obtained. All these techniques provided a subset of 14
interfaces where Netflow has to be activated if we want
to observe each flow. We compared the running time of
each technique in Table 5 : The Branch&Bound tech-
nique takes naturally much more time than the other
procedures, but gives a certificate on the optimality of
the solution. The solution found with the greedy proce-
dure is of same cardinality as the optimal solution (14
interfaces), but its smallest eigenvalue is smaller than
the one provided with the rounding procedure of the
SDP, which indicates a greater noise sensibility. This
minimal deployment is depicted on Figure 5. It is im-
portant to notice that with only 14 interfaces over 28,
the rank of the observation matrix is full, which means
that we are able to infer each OD flow up to the sensi-
bility of the Netflow measurements.
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Algorithm CPU λmin(MF (w))
Branch&Bound 1504.208 0.176676
SDP - Rounding 3.934 0.176676
Greedy 5.118 0.170402

Table 5: computation results for minimal ex-
haustive deployment of Netflow on Abilene
backbone

.

6. FRANCE TELECOM OPENTRANSIT
BACKBONE

The Opentransit backbone is much more challenging
because of its size (m = 5646 OD pairs). As mentioned
earlier, the bottleneck of our approach is the computa-
tion of the spectral decomposition of the m×m matrix
MF (w), which takes approximatly 15 minutes on a PC
at 2.4 GHz. This diagonalization step is needed both for
the computation of the gradient and the value of the cri-
terion ϕp(w). We ran the projected gradient algorithm
for several values of p, looking for an optimal deploy-
ment of Netflow on 4 routers of the network (in the
unit-cost case), and stopped the computation when the
gradient was (almost) orthogonal to the feasible set at
interior points. Interestingly, the algorithm converged
to continuous solutions with a very small support, as
shown in Table 3.
In order to solve the combinatorial problem, we applied
our ROUNDING scheme, trying all 4−uple of interfaces
among the support of the continuous relaxation. For
comparison’s sake, we have also implemented a TABU
search, which converged each time to the same design as
the one provided by the rounding scheme. We also give
the Netflow optimal deployment for p = 1, which was
easily found by linear programming (Knapsack instance
with unit costs). These results are presented in Table 6.
We can make the same observation that was done for
Abilene : the same design maximizes ϕ0.2 and ϕ0.05.
Moreover, it also maximizes the rank of the Fisher In-
formation matrix, which shows once more the robust-
ness of our approach. This design (nodes 6, 11, 49 and
73) is depicted on Figure 4, where the nodes which sup-
port the continuous solution have been circled in red.
It is interesting to remark that, corresponding to intu-
ition, all these routers are located at strategic points of
the networks where many flows intersect.

7. CONCLUSIONS AND PERSPECTIVES
Based on experimental design, this paper proposes a

new approach to find an optimal deployment of Net-
flow on large IP networks in order to estimate traffic
matrices. We have formulated a combinatorial prob-
lem, which we have proven to be 1− 1/e-approximable

Criterion Algorithm Routers found Rank
ϕ1 LP [6 11 73 74] 4640

ϕ0.50
ROUNDING [6 11 63 73] 4856
TABU [6 11 63 73] 110

ϕ0.20
ROUNDING [6 11 49 73] 4923
TABU [6 11 49 73] 4923

ϕ0.005
ROUNDING [6 11 49 73] 4923
TABU [6 11 49 73] 4923

RANK
TABU [6 11 49 73] 4923
GREEDY [5 11 63 73] 4877

Table 6: Optimal integer designs for the place-
ment of Netflow on 4 routers of Opentransit

in polynomial time. Our experiment indicates that ac-
tivating Netflow only on a subset of nodes is enough
to obtain a complete information on the traffic. This
model, which only assumes that the observations are
linear combinations of the traffic on the different routes,
is flexible enough to allow one to deal with several vari-
ants of the optimization of measurement problem which
occur in practice. For example, this approach could be
used to design experiments which measure the Quality
of Service in a network.
Note that the rates of sampling of Netflow arise as an
input in our model, since they determine the covari-
ance matrix of the noise of observation. Hence, our
approach, which focuses on the purely combinatorial
problem consisting in choosing the set of interfaces on
which Netflow is deployed, may be seen as complemen-
tary to the computation of the optimal sampling rates
which is performed in [5], and it may be combined with
it, which is the object of a further work.
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[19] J. Vondrák, G. Calinescu, C. Chekuri, and
M. Pál. Maximizing a submodular set function
subject to a matroid constraint. In 12th ICIPCO,
volume 4513, pages 182–196, 2007.

[20] H. Zang and A. Nucci. Optimal netflow
deployment in IP networks. In 19th International
Teletraffic Congress (ITC), Beijing, China,
August 2005.

[21] X. Zhan. Matrix Inequalities (Lecture Notes in
Mathematics). Springer, 2002.

[22] Y. Zhang, M. Roughan, N. Duffield, and

A. Greenberg. Fast accurate computation of
large-scale IP traffic matrices from link loads. In
SIGMETRICS ’03, pages 206–217, New York,
NY, USA, 2003.

APPENDIX
Proof of Lemma 3.2
The inequality (20) becomes an equality when p = 1 by
linearity of the trace.
Since the eigenvalues of a matrix are continuous func-
tions of its entries, and since the set of positive definite
matrices S++

m is dense in the set of positive semi-definite
matrices S+

m, it suffices to establish the inequality when
X,Y ,Z are positive definite. Let us consider the map:

ψ : S+
m −→ R
T 7−→ trace (X + T )p − trace T p.

The inequality to be proved can be rewritten as

ψ(Y + Z) ≤ ψ(Z).

We will prove this by showing that ψ is nonincreasing
with respect to Loewner ordering in the direction gener-
ated by any positive semidefinite matrix. To this end,
we compute the Frechet derivative of ψ at T ∈ S++

m

in the direction of an arbitrary matrix H ∈ S+
m. By

definition,

Dψ(T )[H] = lim
ε→0

1
ε

(
ψ(T + εH)− ψ(T )

)
.

When f is an analytic function, X 7−→ trace f(X)
is Frechet-differentiable, and an explicit form for the
derivative is known [11]: D

(
trace f(A)

)
[B] = trace

(
f ′(A)B

)
.

As the map z −→ zp is analytic at all point of the pos-
itive real axis for p ∈]0, 1[, provided that the matrix T
is positive definite (and hence X + T ), we have

Dψ(T )[H] = p trace
( (

(X + T )p−1 − T p−1
)
H
)
.

Since 0 < 1 − p < 1, the Loewner-Heinz inequality
(Theorem 1.1 in [21]) yields (X + T )1−p � T 1−p. By
antitonicity of the matrix inversion we infer that the
matrix W = T p−1−(X+T )p−1 is positive semidefinite.

Dψ(T )[H] = −p trace (WH)

= −p trace (W 1/2HW 1/2) ≤ 0

Consider now f(s) = ψ(sY + Z). For all s ∈ [0, 1], we
have

f ′(s) = Dψ(sY + Z)[Y ] ≤ 0,

and so, f(1) = ψ(Y + Z) ≤ f(0) = ψ(Z), from which
the desired inequality follows.
Finally, the inequality in the case p = 0 is obtained by
letting p→ 0.
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Figure 4: Optimal Deployment (filled nodes) and support of the continuous selection (circled nodes)
for the deployment of Netflow on 4 routers of Opentransit
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