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Abstract

We review recent results obtained by the authors on the approximability of a family
of combinatorial problems arising in optimal experimental design. We first recall a
result based on submodularity, which states that the greedy approach always gives
a design within 1 − 1/e of the optimal solution. Then, we present a new result on
the design found by rounding the solution of the continuous relaxed problem, an
approach which has been applied by several authors: When the goal is to select n
out of s experiments, the D−optimal design may be rounded to a design for which
the dimension of the observable subspace is within n

s of the optimum.
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1 Introduction and Statement of the problem
The theory of optimal design of experiments plays a central role in statistics.
It explains how to best select experiments in order to estimate a set of param-
eters. In this paper, we assume that each experiment allows one to measure
the value of one or several linear combinations of the parameters. This setting
is known in the literature as the optimal design of multiresponse experiments.
For more details on the subject, the reader is referred to the monographs of



Fedorov[6] and Pukelsheim[11].
In a number of real-world applications, the design variables are discrete, since
the experimenter can only choose the experiments to conduce from a finite
set, and eventually how many times to perform them. The resulting problem
is NP hard [13], and several authors proposed to use heuristics, such as the
greedy algorithm [13,14] or roundings of the continuous solution [3,15].
The purpose of this article is to investigate the legitimacy of these heuristic
techniques. We will briefly recall in Section 2 the results announced by the
authors on the greedy algorithm in [13]. Then, we give in Section 3 a new
result concerning the rounding algorithm for D−optimal designs. The proofs
of all results can be found in the companion paper of the third author [12].

We denote vectors by bold-face lowercase letters and use capital letters to
denote matrices. We set [s] := {1, ..., s}. We denote by θ ∈ Rm the vector
of the parameters that we want to estimate. In accordance with the classical
linear regression model, we assume that the experimenter disposes of a col-
lection of s experiments, each one providing a (multidimensional) observation
which is a linear function of the parameters, up to a noise on the measurement
(the variance of which is set to 1 for simplicity sake). In other words, for each
experiment i ∈ [s], we have

yi = Aiθ + εi, E(εi) = 0, Var(εi) = I, (1)

where yi is the vector of measurement of length li, Ai is a (li×m)−observation
matrix, and I denotes the identity matrix. The errors on the measurements
are assumed to be mutually independent, i.e. E(εT

i εj) = 0 for all i 6= j ∈ [s].

The aim is to choose a well suited subset I ⊆ [s] of experiments that one
will conduct in order to estimate the parameters. We therefore define the
design variable w as the 0/1 vector of length s, where wk takes the value 1 if
and only if k ∈ I. Given the collection of observations (yi)i∈I , it is known (see
e.g. Pukelsheim [11]) that the best linear unbiased estimator of θ is given by
least square theory (Gauss-Markov theorem), and the inverse of its variance
is given by

MF (w) := A(w)T A(w) =
s∑

k=1

wkA
T
k Ak. (2)

The classical experimental design approach consists in choosing the set of ex-
periments I (or the design w) in order to maximize the matrix MF (w) with
respect to the Löwner ordering [11]. This can be interpreted as the problem
of finding the design for which the confidence ellipsoids of the best estima-
tor are the smallest (for the inclusion relation). Since the Löwner ordering
on symmetric matrices is only a partial ordering, the problem consisting in



maximizing MF (w) is ill-posed. Kiefer [7] proposed to use the class of matrix
means Φp, which map the cone of semidefinite positive matrices S+

m onto the
real line and satisfy natural properties, such as monotonicity with respect to
Löwner ordering and concavity. For a real number p ∈] −∞, 1] \ {0}, and a
positive definite matrix M with eigenvalues 0 < λ1 ≤ . . . ≤ λm,

Φp(M) := (
1

m
trace Mp)1/p = (

1

m

m∑
j=1

λp
j)

1/p (3)

Interestingly, Φp can also be defined for p = −∞ and p = 0 as limiting

cases, i.e. Φ−∞(M) = λ1 and Φ0(M) = (det(M))
1
m , which are the classical

optimality criteria referred in the literature as E− and D−optimality respec-
tively. The definition of Φp is also extended to singular positive semidefinite
matrices M (i.e. λ1 = 0) by continuity, so that Φp(M) = 0 for all p ≤ 0, and
Φp(M) is defined by Equation (3) for all p ∈ [0, 1].

We can finally give a mathematical formulation to the problem of selecting
the best subset of experiments. If the maximal number of experiments is n,
the Φp-Optimal Design problem is:

max
w ∈{0,1}s,

P
k wk≤n

Φp

(
MF (w)

)
. (4)

We note that the problem of maximizing MF (w) with respect to the
Löwner ordering remains meaningful even when MF (w) is not of full rank.
This case does arise in under-instrumented situations, in which some con-
straints may not allow one to conduct a number of experiments which is suf-
ficient to infer all the parameters. In this case, positive values of p must be
used, and Problem (4) is equivalent to:

max
w ∈{0,1}s,

P
k wk≤n

ϕp(w) := trace
(∑

k

wkA
T
k Ak

)p

(Pp)

In the under-instrumented situation, an interesting and natural idea is to
choose the design which maximizes the rank of the information matrix MF (w).
The first order expansion of ϕp as p → 0+ shows that (Pp) may be thought
as a regularization of this rank optimization problem, and ϕp can be seen as
a deformation of the rank criterion for p ∈]0, 1]:

trace Mp =
r∑

k=1

λp
k = r + p log(

r∏
k=1

λk) +O(p2) (5)

Consequently, trace M0 will stand for rank(M) in the sequel, so that
ϕ0(w) = rank(MF (w)), and the rank maximization problem is (P0).



2 Submodularity and the greedy algorithm
In this section, we recall some results announced in [13], which state that
Problem (Pp) is equivalent to the maximization of a nondecreasing submodular
function [8,9,4,16]. Note that there is no point to consider multiplicative
approximation factors for the Φp−optimal problem when p ≤ 0, since the
criterion takes the value 0 as long as the the information matrix is singular.
For p ≤ 0 indeed, the instances of the Φp-optimal problem where no feasible
design lets MF (w) be of full rank have an optimal value of 0. For all other
instances, any polynomial-time algorithm with a positive approximation factor
would necessarily return a design of full rank. Provided that P 6= NP , this
would contradict the NP-hardness of the rank optimization problem (P0) [13].
So, we investigate approximation algorithms only in the case p ≥ 0, and
approximation factors are given with respect to the objective function ϕp.
Whenever it is necessary, we will identify the function ϕp : {0, 1}s −→ R with
the set function ϕp : 2[s] −→ R.

Definition 2.1 A real-valued set function f : 2E −→ R such that f(∅) = 0
is called nondecreasing submodular if it satisfies the following conditions :

• f(I) ≤ f(J) whenever I ⊆ J ⊆ E;

• f(I) + f(J) ≥ f(I ∪ J) + f(I ∩ J) for all I, J ⊆ E.

The next results show that for all p ∈ [0, 1], Problem (Pp) is 1 − e−1−
approximable in polynomial time. This can be attained with the help of the
greedy algorithm, whose principle is to start from G0 = ∅ and to construct
sequentially the sets Gk := Gk−1 ∪ argmaxi∈[s] ϕp(G ∪ ik), for k = 1, ..., n.

Theorem 2.2 (Submodularity of ϕp [12]) For all p ∈ [0, 1], ϕp is a non-
decreasing submodular set function.

The proof of this result relies on a matrix inequality of independent interest:

∀X, Y, Z ∈ S+
m, ∀p ∈ [0, 1],

trace(X + Y + Z)p + trace Zp ≤ trace(X + Z)p + trace(Y + Z)p.

Corollary 2.3 (Approximability of ϕp−Optimal Design) Let p ∈ [0, 1].
The greedy algorithm yields a 1− e−1 approximation factor for Problem (Pp).

Proof. Nemhauser, Wolsey and Fisher [9] proved it for any nondecreasing
submodular function over a uniform matroid. Moreover, when the maximal
number of experiments which can be selected is n, this approximation factor
can be improved to 1−

(
1− 1/n

)n
. 2



3 Approximation Factor for the randomized rounding

The optimal design problem has a natural continuous convex relaxation which
has been extensively studied [2,5,17]. As mentioned in the introduction, se-
veral authors proposed to solve this convex relaxation and to round the so-
lution to obtain a near-optimal discrete design. In this paper, we investigate
the legitimacy of this technique. We show in Theorem 3.6 that the D-optimal
design may be rounded to a random discrete design which approximates the
optimum of the rank optimization problem (P0) by an average factor of n

s
.

While this result may look rather worse than the greedy approximation factor
presented in Section 2, it is (almost) optimal since there are some instances
for which the average ratio of approximation is n

s−1
(Remark 3.7).

Another motivation for this section is the recent results from Calinescu,
Chekuri, Pál and Vondrák [4,16] who showed that the problem of maxi-
mizing a nondecreasing submodular function over an arbitrary matroid is
(1 − e−1)-approximable, by first approaching the maximum of a continuous
extension of the submodular function, and then using the pipage rounding
of Ageev and Sviridenko [1] to return a discrete solution which achieves the
(1−e−1)−approximation factor. For our problem, the greedy algorithm of Sec-
tion 2 is preferable to obtain a (1−e−1)-approximation factor, but the ideas of
Calinescu and his coauthors are useful to establish the approximability factor
of the rank optimization problem (P0) by rounding algorithms.

The continuous relaxation of the D−optimal problem is obtained by re-
moving the integer constraint w ∈ {0, 1}s :

max
w ∈(R+)s,

P
k wk≤n

det
(∑

k

wkA
T
k Ak

)
. (6)

We assume without loss of generality that rank(
∑s

i=1 AT
i Ai) = m, so that (6)

is well posed. Otherwise, we must project each observation matrix onto an ap-
propriate observable subspace, as in Pukelsheim [11]. The function log(det(·))
is strictly concave on the interior of S+

m, and Problem (6) can be solved by a
projected gradient algorithm, interior point techniques, or multiplicative algo-
rithms [2,5,17]. In this paper, we focus on the rounding techniques only, and
we assume that an optimal solution w∗ of Problem (6) is readily known. We
also denote a discrete solution of Problem (P0) by S∗. Since MF (w∗) is of full
rank, we have: m = ϕ0(w

∗) = rank(MF (w∗)) ≥ ϕ0(S
∗).

Definition 3.1 We say that an algorithm approximates the optimal solution
of the rank optimization problem (P0) by a factor α if for all possible instances,



it returns a feasible random subset Ŝ such that:

E(ϕ0(Ŝ)) ≥ αϕ0(S
∗).

We study two kinds of randomized roundings: the pipage rounding algo-
rithm of Ageev and Sviridenko [1] and another rounding algorithm which we
call proportional rounding. We will make use of the extension by expecta-
tion [4] of the submodular set function ϕ0, which is defined by

F0(y) = E[ϕ0(Ŝ)] (7)

where Ŝ is a random set of [s] which contains {i} independently with proba-
bility yi. If y is the 0/1-vector associated to S, we have F0(y) = ϕ0(S), which
tells us that F0 is an extension of the rank function ϕ0 indeed. Note that F0

can be defined only if all coordinates of y are smaller than 1.
The idea of the randomized pipage rounding [4], as reduced to the simple
case of uniform matroids, is the following: Let y be a vector such that∑

i yi = n, and let i, j be two indices for which y is fractional. The func-
tion t → F0(y + tei − tej) is convex, so that F0 is increasing when me move
in in one of the directions (ei − ej) or (ej − ei). We choose between these
directions with probabilities that are proportional to the values of t for which
yi or yj becomes a 0 or a 1, and we set y ← y + tei − tej .

Lemma 3.2 (Calinescu et al [4]) Given a vector y ∈ [0, 1]s such that
∑

i yi =
n, the randomized pipage rounding returns in O(s) iterations a random set S
of cardinality n, of expected value E[ϕ0(S)] ≥ F0(y).

This lemma shows that if we can prove that F0(w
∗) ≥ α m (≥ α ϕ0(S

∗)),
then the randomized pipage rounding algorithm approximates the solution
of (P0) by a factor α.
We now present another rounding, which can be used even if some coordinates
of w∗ are larger than 1. The principle of this rounding is to start with S0 = ∅,
and, for k = 1, ..., n, we construct Sk from Sk−1 by adding in it exactly one new

element, namely i ∈ [s] \ Sk−1 with probability
w∗iP

j /∈Sk−1
w∗j

. If at some point,

all the remaining coordinates (wj)j /∈Sk−1
are equal to 0, uniform probabilities

are used. We denote by Sn(w) the random set of cardinality n obtained by
this procedure, which we call proportional rounding of vector w.

We next give a proposition which shows how we can bound the coordinates
w∗

i of the D−optimal design. This is a generalization of a result of Atwood [2]
who obtained w∗

i ≤ 1
m

in the case where all the observations are scalar, i.e.
when the observation matrices are row vectors. The proof is omitted due to



lack of space, and is presented in [12]. It is inspired from a fix point equation
from Pukelsheim [10], which must be satisfied by the optimal designs in the
scalar observations case.

Proposition 3.3 Let w∗ be a D−optimal design and S be an arbitrary subset
of [s]. We have the following bound on the optimal coordinate w∗

i :∑
i∈S w∗

i

n
≤

rank(
∑

i∈S Mi)

rank(
∑n

i=1 Mi)
=

ϕ0(S)

m
. (8)

Before we give the approximability factor that one can guarantee by us-
ing our rounding procedures, we need these two technical lemmas, which are
proved in [12] by elementary induction.

Lemma 3.4 Let α∆s denote the simplex {x ∈ (R+)
s |
∑

i xi = α}. We define
the random variable Wn(w) =

∑
i∈Sn(w) wi, where Sn(w) is the random subset

of [s] obtained by proportional rounding. Then, we have

∀w ∈ α∆s, E[Wn(w)] ≥ E[Wn(
α

s
, ...,

α

s
)] = n

α

s
.

Lemma 3.5 For all vector w ∈ [0, 1]s, the following equality holds:∑
S⊂{1,..,s}

(∑
i∈S

wi

)∏
i∈S

wi

∏
i/∈S

(1− wi) =
s∑

i=1

w2
i .

The main result of this section follows from these two lemmas, by expand-
ing the expressions E[ϕ0(Sn(w∗))] and F0(w

∗) [12].

Theorem 3.6 (Rounding Approximability Factor) Let w∗ be a contin-
uous D−optimal design. The proportional rounding of w∗ approximates the
solution of the rank optimization problem (P0) by n

s
. If w∗ is bounded by 1,

then the pipage rounding yields the same n
s

approximation factor.

Remark 3.7 The inequalities E[ϕ0(Sn(w∗))] ≥ n
s
m and F0(w

∗) ≥ n
s
m are

optimal. To see this, consider the s × s− information matrices M1, . . . ,Ms,
where each Mi has a single nonzero entry on the ith term of its diagonal.
Moreover, if s > n+1, we exhibit in [12] some information matrices for which

the ratios E[ϕ0(Sn(w∗))]
ϕ0(S∗)

and F (w∗)
ϕ0(S∗)

take the value n
s−1

, and we show that this
approximation factor of n

s−1
is optimal for n = 1.
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