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Abstract—We address the problem of optimizing the use of
Network monitoring tools, such as Netflow, on a large IP network.
We formulate a convex optimization problem which allows one
to handle, in a unified framework, the combinatorial problem of
selecting the “best” set of interfaces on which Netflow should be
activated, and the problem of finding the optimal sampling rates
of the network-monitoring tool on these interfaces, when the
aim is to infer the traffic on each internal Origin-Destination
(OD) pair. We develop a new method, called “Successive c-
optimal Design”, which is much faster than the classical ones. It
reduces to solving a stochastic sequence of Second Order Cone
Programs. We give experimental results relying on real data from
a commercial network, which show that our approach can be
used to solve instances that were previously intractable, and we
compare our method with previously proposed ones.

I. INTRODUCTION

A. Background

The estimation of Origin-Destination (OD) traffic matrices
for backbone networks is a crucial problem for Internet
providers which has attracted much interest from the network
research community [1], [2], because these traffic matrices
serve as important inputs of a variety of network traffic
engineering tasks. This estimation problem is generally stated
as follows. We are given the graph of the network with n nodes
(routers) and l edges (links). Link measurements are provided
by the Simple Network Management Protocol (SNMP), which
counts the number of bytes seen on each link in a given time
window. We use boldface letters to denote (column) vectors.
The vector of SNMP link counts is denoted by ySNMP. We are
also given the routing matrix A of the network, which is the
incidence matrix between the m = n2 OD pairs and the links.
The matrix A is of size l ×m, and its (e, r)-entry represents
the fraction of the traffic of the OD pair r that traverses link
e. The unknown in our problem is the vector of OD flows
x = (x1, . . . , xm)T , where xr is the traffic of the OD pair r
during the observation period. The following relation is easily
seen to hold:

ySNMP = Ax.

In typical networks, we have l � m, and so the estimation of
x based on the link counts ySNMP is an ill-posed problem.

B. Optimization of the measurement

A way to introduce new constraints is to use a network-
monitoring tool such as Netflow (Cisco systems). This was
considered by Liang, Taft and Yu [1], who proposed a scheme

for selecting dynamically the flows to be measured by Netflow,
in order to improve the accuracy of the traffic estimation. Of
course, activating Netflow everywhere on the network yields
an extensive knowledge of the OD flows. According to [3]
however, activating Netflow on an interface of a router causes
its CPU load to increase by 10 to 50%. It is thus of great in-
terest to optimize the use of this tool. It is now possible to use
a sampled version of Netflow, which substantially decreases
the CPU utilization needed to handle Netflow packets. On the
other hand, the lower the sampling rates are, the less accurate
are the Netflow measurements. The problem is thus both to
decide where to activate Netflow, and at which sampling rate.

Most operators collect Netflow information for multiple
purposes, such as security or billing, not only for estimating
the traffic. However, we believe that the present approach,
which addresses the latter goal, might also be of some interest
for other purposes, since it indicates which routers or interfaces
meet a maximal proportion of the traffic. Moreover, we will
see that this approach leads to a nice mathematical formulation
and to scalable algorithms.

When Netflow is activated on an interface of the network,
it analyzes the headers of the packets traversing this interface.
As a result we obtain some statistics, such as the source and
destination IP addresses of these packets. However, we are not
trying to infer the global path of the packets from IP source to
IP destination, but only the part of their path which is inside
the network of interest, like the backbone of an autonomous
system (AS). In the sequel, we will use the terms internal
source and internal destination to refer to the ingress and
egress routers of a packet within the backbone of interest.

Practically, we will assume throughout this paper that when
Netflow performs a measurement on the kth interface, we are
able to break out the flows traversing this interface according
to their internal destination. This results in a multidimensional
observation yk, whose entry d is the sum of flows traversing
k and having the destination d. The model is linear:

yk = Akx . (1)

Note that this assumption is more general and more realistic
than the one made in [4], where the authors assume that when
the monitoring tool analyzes a packet, it is able to find both
its internal source and destination. In practice, one can find
the internal destination of a packet by simulating the path
toward its ultimate destination with the forwarding tables of



the routers, but finding the internal source of a packet is a
challenging issue. The main difference with the simplified
model considered in [4] is that the information matrices AT

k Ak

are not diagonal anymore, which makes the problem much
harder computationally.

A precise description of the classical methodology used to
infer the origin-destination traffic from Netflow measurements
is made in [5]. It is common to activate Netflow only on
ingress links of a backbone in order to cope with the un-
certainty on the internal source of the packets. In this paper,
we show that other deployment strategies can be useful.

C. Related Work

Many authors from the network research community [6],
[7], [8], [9], [4] investigated the placement of Netflow. Re-
cently, Song, Qiu and Zhang [6] used classical criteria from
the theory of experimental design to choose a subset of
interfaces where Netflow should be activated, and developed
an efficient greedy algorithm to find a near optimal solution
to this combinatorial problem. In a recent work, we show
indeed [8] that the greedy algorithm always finds a solution
within 1− 1/e ' 62% of the optimum.

Singhal and Michailidis [4] considered a state-space model
representing the evolution of the traffic matrix over time, in
which the estimation of the traffic can be done by a Kalman
filter. They successfully applied the experimental design theory
to formulate the problem of finding the sampling rates that
minimize the covariance matrix of the Kalman filter as a
Semidefinite Program (SDP). Since the covariance matrix
is computed recursively in the filtering process, it contains
information on the past measurements, and computing new
sampling rates at each time step makes the estimation more
and more accurate.

The main contribution of this paper is an alternative to
the greedy algorithm of [6]. The approach that we develop
here (Section III-C), which we call “Successive c−Optimal
Designs” (SCOD), can efficiently be applied to very large
networks, and we show that it allows one to infer the traffic
more precisely. The idea is to replace the classical “A−optimal
design” problem, in which one minimizes the sum of the
inverses of the eigenvalues of the information matrix, by a
sequence of optimal design problems with a scalar functional.
Each of these scalar problems is solved to optimality by means
of a reduction to a moderate size second order programming
problem, which can be solved rapidly (and with a limited
memory requirement) by interior point methods. Whereas SDP
approaches, like the one of [4], implemented with state of the
art solvers, are typically limited to a few hundreds of OD pairs,
the present approach allowed us to solve instances from a
commercial network with 436 interfaces and 13456 OD pairs.

The rest of this paper is organized as follows: the problem
and the experimental design background are presented in Sec-
tion II. Next, we discuss previous methods to solve this prob-
lem, in particular the “Netquest” greedy approach of Song,
Qiu and Zhang [6], as well as the optimal design problem in
a state-space model studied by Singhal and Michailidis [4].

The Successive c−Optimal Designs approach (SCOD), which
is the main contribution of this manuscript, is presented in
Section III-C. Finally, we give some experimental results in
Section IV, showing the usefulness of our approach for both
the discrete problem (Netflow deployment) and the continuous
one (Netflow optimal sampling).

II. EXPERIMENTAL DESIGN
BACKGROUND

A. Netflow optimal deployment

Let I = {1, . . . , s} be the set of all interfaces on which
Netflow can be activated. We start with the discrete problem, in
which the operator wants to choose a subset of these interfaces
for the Netflow measurements. Note that this problem is also
meaningful when a network is not yet or is only partially
instrumented with routers supporting Netflow, and when the
Internet provider wants to equip a number of additional routers
with a network-monitoring tool.

We denote by Ia the set of interfaces on which Netflow is
activated. The measurement vector y is now the concatenation
of the SNMP data ySNMP with all the Netflow measurements
(yk)k∈Ia . We define the design variable w as the 0/1 vector
of size s, where wk equals 1 if and only if k ∈ Ia. The
measurements are never exact in practice, and so we have to
deal with a noise ε, which is a result, among other things,
of lost packets, misalignment of SNMP polling intervals, and
Netflow sampling. This can be modeled as follows:

y = Aw x + ε, (2)

where y =


ySNMP

yk1
...

ykn

 and Aw :=


A
Ak1

...
Akn

 .

Now, assume that we have enough measurements, so that Aw

is of full rank, and assume that the noises on the observations
are mutually independent, that is to say that the covariance
matrix Σ = E[εεT ] is known and only has diagonal entries
(E[·] denotes the expectation of a random variable). The best
linear unbiased estimator of x is given by a pseudo inverse
formula (Gauss Markov Theorem). Its variance is given below:

x̂ =
(
AT

wΣ−1Aw

)−1

AT
wΣ−1y. (3)

Var(x̂) = (AT
wΣ−1Aw)−1. (4)

To simplify the notation, we will assume that Σ = I (one
may always reduce to this case with a left diagonal scaling
by Σ−1/2 of y, Aw and ε). The inverse of the variance of the
estimator x̂ is called information matrix, and we denote it by
MF (w). Note that it can be decomposed as the sum of the
information matrices AT

k Ak over the interfaces k on which
Netflow is activated:

MF (w) = (Var x̂)−1 = AT
wAw

= AT A +
s∑

k=1

wkAT
k Ak . (5)



The experimental design approach consists in choosing the
design w in order to minimize the variance of the estimator x̂,
or equivalently to maximize the information matrix MF (w).
This maximization should be done with respect to the natural
ordering of the space Sm, which is induced by the cone S+

m of
positive semidefinite matrices, namely the Löwner ordering:

∀B,C ∈ Sm, B � C ⇐⇒ B − C ∈ S+
m.

Since this is only a partial ordering, the problem consisting
in maximizing MF (w) is ill-posed. So we rather maximize a
scalar information function of MF (w), i.e. a function mapping
S+

m onto the real line, and which satisfies natural properties
such as positive homogeneity, monotonicity with respect to
Löwner ordering, and concavity. For a more detailed descrip-
tion of these information functions, the reader is referred to the
book of Pukelsheim [10]. A standard choice is to use the class
of matrix means Φp, which are essentially the “Lp-norms” of
the vector of eigenvalues of the information matrix, but for
p ∈ [−∞, 1]. For a positive definite matrix M with positive
eigenvalues {λ1, . . . , λm}, the function Φp is given by

Φp(M) := (
1
m

trace Mp)1/p = (
1
m

m∑
j=1

λp
j )

1/p (6)

Interestingly, Φp can also be defined for p = −∞ and
p = 0 as limiting cases, i.e. Φ−∞(M) = λmin(M) and
Φ0(M) = (det(M))

1
m , which are the classical optimality

criteria referred to in the literature as E− and D−optimality
respectively. The A−optimality criterion, which aims at max-
imizing the harmonic average of the eigenvalues of MF (w) is
obtained for p = −1. The definition of Φp is also extended to
the case where M is a singular positive semidefinite matrix,
by continuity, so that Φp(M) = 0 for all p ≤ 0, and Φp(M)
is defined by Equation (6) for all p ∈]0, 1].

We now give a mathematical formulation to the problem of
optimally deploying Netflow on no more than n interfaces:

max
w ∈{0,1}s

Φp

(
MF (w)

)
s.t.

∑
i

wi ≤ n (7)

B. Optimal sampling rates

We now show that the optimal sampling problem can be
formulated in a similar form as Problem (7). Following [4], we
assume that Netflow performs a random sampling with rate wk

on the interface k. As explained in section I-B, Netflow data
can be used to count the packets depending on their internal
destination. Let Nkd be a counter that records the number
of sampled packets from interface k which have the internal
destination d. This number follows a binomial distribution with
ykd = Akdx trials and probability of success wk, where Akd

is the row corresponding to the destination d in the matrix Ak.
The best unbiased linear estimator of yk is given by (ŷk)d =
w−1

k Nkd, and we have:

Var(ŷk)d,d = w−2
k var(Nkd) = w−2

k wk(1− wk) ykd

≈ w−1
k (Akx)d, (8)

where the latter approximation is valid in the (expected) case
where the sampling rates are small. The aggregate observation
matrix is now Ã := [AT , AT

1 , . . . , AT
s ]T , since measurements

are performed on all interfaces: y = Ãx+ ε. The design vari-
able w (the sampling rates) is now involved in the covariance
matrix of the noise ε. The noise on the SNMP data is usually
small compared to the noise resulting from Netflow sampling,
and we model its variance as σ2I for a small parameter σ.
From (8), we find the form of the covariance matrix:

E[εεT ] = Σ(w) =


σ2I

diag(A1x)
w1

. . .
diag(Asx)

ws

 .

As done previously in the discrete case, we can make explicit
the best linear estimate of the flows, as well as the information
matrix of the sampling design w:

x̂ =
(
ÃΣ(w)−1Ã

)−1

ÃT Σ(w)−1y. (9)

MF (w) =ÃT Σ(w)−1Ã.

Finally, we define the normalized observation matrices A =
σ−1A and Ai = diag(Aix)−1/2Ai, so that the information
matrix can be written as

MF (w) = A
T

A +
s∑

k=1

wkAk
T

Ak . (10)

Hence, the Φp−maximization of MF (w) takes a similar form
as Problem (7), with a continuous variable w that is subject
to linear constraints: the Internet provider typically sets a
threshold on the volume of packets to be analyzed with
Netflow at each router location, so as to limit the overhead.
For a specific router R, the number of sampled packets can
be approximated by ∑

k∈IR

wkfk,

where the sum is carried out over the interfaces of router R,
and fk is the total number of packets traversing interface k.
In practice, fk can be estimated from previous values of the
SNMP data. The constraints can thus be summarized as the
set of inequalities Rw ≤ b, where R depends on ySNMP and
b is a target set by the Internet provider. This is an alternative
approach to that of Singhal and Michailidis [4], who use a
matrix R depending only on the topology of the network.

It remains to cope with the fact that the normalized ob-
servation matrices Ai explicitly depend on the unknown x.
Similarly to what is done in [4], we use a prior estimate of x
to compute an approximate version of the Ai. In the numerical
studies presented in Section IV, we track the OD flows over
time in a network, and we use the previous estimate x̂t−1 in
place of xt. At t = 1, we can use a tomogravity estimate [11]
of x, which is a classical prior in the traffic matrix estimation
literature.



III. RESOLUTION OF THE PROBLEM

In this section, we review previous methods to solve the
discrete Netflow optimal deployment problem as well as its
continuous relaxation (Netflow optimal sampling), and we
develop a new one. For simplicity of notation, we assume
that the observation matrices have already been normalized
by the left diagonal scaling mentioned in Section II-A, so that
MF (w) takes the form (5).

Note that any method which solves the continuous problem
can be applied to obtain an approximate solution to the discrete
problem, by applying simple rounding heuristics.

A. Greedy Algorithm
In the discrete case, and when there is a single constraint of

the form
∑

i wi ≤ n, we can make use of a greedy algorithm,
which is suggested by the results of [8]. The principle is to
add sequentially in G = ∅ the interfaces which provide the best
increment Φp(G ∪ ik)− Φp(G) until G contains n interfaces.

On a network with m = 104 OD pairs, the computation of
the objective function Φp(w) requires about 5 minutes on a
PC at 4GHz, since it involves the diagonalization of a m×m
matrix. Consequently, selecting only one out of one hundred
interfaces already requires more than 3 hours. The authors
of [6] proposed to use the special values p = 0 or p = −1,
for which we can implement the Fedorov sequential design
algorithm [12], which computes efficiently the increment of
the criterion thanks to Sherman-Morrison like formulae.

At the beginning of the algorithm, the initial observation
matrix M0 = AT A is not invertible. The authors of [6] remedy
this problem by regularizing the initial observation matrix:
they set M0 = AT A+εI , with ε = 0.001. If we leave aside the
information from the SNMP measurements (M0 = εI), this
algorithm performs astonishingly well, and the set of interfaces
of a very large network can be ordered very quickly. However,
if we want to take into account the SNMP measurement (so as
to avoid redundancy), M0 is not sparse anymore, and small-
rank updates of the information matrices are intractable. The
authors of [6] work on a similar experimental design problem,
and store a sparse LU decomposition of M in place of the full
M−1 matrix, which still allows one to compute M−1AT

k . In
our case though, the LU decomposition is full and the greedy
updates are intractable.

B. Semidefinite Programming
It is known that the continuous relaxation of Problem (7)

can be formulated as a Semi-definite program (SDP) for the
special cases of E−optimality (p = −∞) and A−optimality
(p = −1) [13]. With the per-router constraints discussed
in Section II-B, the A−optimal sampling design w∗ is the
solution of the following problem:

min
q

m∑
j=1

qj (11)

s.t.

(
MF (w) ej

ej
T qj

)
� 0, j = 1, ...,m

Rw ≤ b, w ≥ 0,

where ej denotes the jth vector of the canonical basis of Rm.
This SDP approach has been used in [4] in a Kalman filtering
context, where MF (w) contains an additional constant term
which accounts for the covariance matrix of the errors of the
past measurements. However, this SDP is intractable by state-
of-the-art solvers for networks with more than m ' 300 OD
pairs.

C. Successive c−Optimal Designs

The hardness of the optimal experimental design is linked to
the large dimension of the parameter that we want to estimate,
which leads to large size covariance matrices. Rather than
estimating the full parameter x, a natural idea is to estimate a
linear combination z = cT x of the flows, for which the best
linear unbiased estimator ẑ and its variance are known [14] :

var(ẑ) = cT MF (w)†c,

where M† denotes the Moore-Penrose inverse of M . The
variance of this estimator is a scalar, but it still depends (non-
linearly) on a m×m matrix.

The c−optimal design problem has a SDP formulation
which is similar to (11), (see e.g [15]). While this SDP can still
be intractable on some large instances, it actually reduces to a
second order cone Program. A related result appeared in [16]
for an application to trust topology design (see also [17]).
A proof of our theorem relies on the fact that the dual of
SDP (11) admits a solution that is a matrix of rank 1 (see [18],
[19] for more information). Second-order cone programs are
optimization problems that are somehow harder than linear
programs (LP), but which can be solved by interior point codes
in a much shorter time than SDP of the same size.

Theorem III.1. If c ∈ range(ÃT ), then the c−optimal de-
sign problem (minimizing cT MF (w)†c under the constraints
Rw ≤ b) is equivalent to the following SOCP:

min
w, µ, (yi)i=0,...,s

s∑
i=0

µi (12)

AT y0 +
s∑

i=1

AT
i yi = c

Rw ≤ b, w ≥ 0∥∥∥∥[
2y0

1− µ0

]∥∥∥∥ ≤ 1 + µ0∥∥∥∥[
2yi

wi − µi

]∥∥∥∥ ≤ wi + µi, (i = 1, . . . , s).

This theorem shows how to compute the optimal weights
w∗ on the measurements for the c−combination of the flows
by SOCP. This can be done very efficiently with interior
points codes such as SeDuMi [20]. Moreover, this method
takes advantage of the sparsity of the matrices Ai, while the
equivalent SDP formulation involves the information matrices
AT

i Ai, which are not very sparse in general).

Remark III.2. When there is a single constraint imposed
on the design (i.e. when R is a row vector, so that the



constraint reduces to
∑

i piwi ≤ b), the SOCP admits a
simpler equivalent form without hyperbolic constraints, see
our previous work [21].

SCOD We recall that the c−optimal design should be chosen
if we want to estimate the quantity z = cT x. An advantage of
this method is that the operator can choose c so that it gives
more weight to the most important flows. This feature will be
studied numerically in Section IV. There are many possible
choices for this vector c, and so an interesting possibility
is to choose several vectors (either for their significance or
tossed randomly), and finally to combine (for instance by
taking the mean) the resulting optimal designs: we call this
method SCOD (Successive c−Optimal Designs).

A stochastic SCOD Let us study the latter randomized scheme
more precisely in the case where the vectors c are normally
distributed random vectors (c ∼ N (0, I)): the mean of the
resulting c−optimal designs are a Monte-Carlo approximation
approximation of the design defined by

E[argminw cT MF (w)†c], (13)

where the minimum is taken over the samplings w that respect
the constraint Rw ≤ b. Remarkably, the A-optimality criterion
for w can be expressed as follows:

trace MF (w)−1 = trace(E[ccT ]MF (w)−1)

= E[cT MF (w)†c],

where we have used the fact that E[ccT ] = Var(c) = I .
We do not claim that the presented stochastic SCOD converges
to an A−optimal design, since E[·] and argmin(·) do not com-
mute in general. However, we observed numerically on a large
number of examples that the design obtained by averaging
several c−optimal designs (for random vectors c ∼ N (0, I))
was very close to the A−optimal design. This nice property
of the stochastic SCOD will be illustrated in Section IV-A.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the performance of our SCOD
approach. To this end, we investigate several issues: in a first
part, we compare our SCOD to the (exact) A−optimal design
for a special instance of the problem. Then, we examine the
quality of the estimation of the traffic matrix in different situa-
tions, in order to compare the performance of our method with
previously proposed ones. We study separately the discrete
problem of finding a subset of interfaces for Netflow, and the
optimal sampling problem.

The data we used for those experiments comes from two
networks. On the one hand, from the Abilene Internet2
backbone, which is a major academic network in the USA,
and consists in n = 11 nodes m = n2 = 121 OD pairs
and l = 50 links. Real traffic matrices from this network
are available through the Internet2 Observatory project. We
used the measurements of the second week of April 2004,
as collected by Zhang [22]. The data has a resolution of 10
minutes, resulting in 1008 time steps over the week.

Design Stochastic Stochastic A-optimal
(×10−1) SCOD (N = 10) SCOD (N = 50)
CPU (sec.) 3.72 18.7 492.6
w1 (Atlanta) 0.559 0.779 0.749
w2 (Chicago) 0.883 0.854 0.898
w3 (Denver) 1.721 1.592 1.510
w4 (Houston) 0.692 0.772 0.720
w5 (Indiana) 1.458 1.291 1.361
w6 (Kansas) 1.252 1.262 1.171
w7 (LA) 0.556 0.572 0.657
w8 (NY) 1.329 1.134 1.121
w9 (Sunnyv.) 1.076 1.184 1.201
w10 (Seattle) 0.000 0.002 0.000
w11 (Wash.) 0.433 0.557 0.613

TABLE I
ABILENE: COMPARISON OF THE A-OPTIMAL DESIGN AND SCOD.

Fig. 1. Convergence of the SCOD method. Each curve represents the
evolution of a coordinate of w with the number of averaged designs.

On the other hand, we use measurements from a much larger
commercial network, the international backbone “Opentran-
sit”, which consists in n = 116 nodes, m = n2 = 13456
OD-pairs, and l = 436 links. Since this network is only
partially instrumented with Netflow (we dispose of Netflow
measurements on 34 out of 116 routers), we simulated the
missing data for the sake of experiments, by following the
instructions of [23]. Namely, we noticed that the fit of the
partially available data with a lognormal distribution was very
good, so we simulated the missing flows with respect to this
distribution, and we assigned them to the non-measured OD
pairs of the network thanks to a heuristic procedure based on
the topology of the network [23]. The data has a resolution of
2 hours and was collected during 40 hours, and so we track
the flow volumes over 20 time steps.

The SNMP and Netflow measurements were simulated from
the traffic matrices. The SNMP data was supposed to be almost
perfect (σ = 1), and the Netflow sampling was simulated with
a binomial distribution, as seen in Section II-B.

A. Analysis of Stochastic SCOD

We study an experimental design problem on Abilene,
where the objective is to find the optimal amount of exper-
imental effort to spend on each router (we handle the data
collected on all incoming interfaces of a given router as a
single experiment). In Table I, we compare the A−optimal
sampling rates found by solving the SDP (11), and the
design obtained by the stochastic successive c−optimal design



Fig. 2. Relative L2 error on Opentransit, for Netflow activated on 16 routers (left) and 30 routers (right), as selected by the stochastic SCOD[this paper]
(blue), weighted stochastic SCOD[this paper] (green), and greedy “Netquest” [6] (red).

approach described in Section III-C. The constraint considered
here was the unit cost case:

∑
i wi ≤ 1. The c−optimal

designs are computed by Program (12). The designs indicated
in the tables were obtained by averaging N = 10 and N = 50
c−optimal designs. To see the convergence of the SCOD, we
have plotted in Figure 1 the evolution of each coordinate of
the design with N .

It is striking that the designs found by these two approaches
are very close and that the computation is much shorter for
the SCOD. Namely, solving one instance of the c−optimal
problem requires only 345ms on average for this network,
which is 3 orders of magnitude faster than the 514s required
to solve the SDP (11). Furthermore, the SDP approach is
intractable on large networks with more than 300 OD pairs.

B. Estimation methodology and Error metrics

Before studying the quality of the estimation of the traffic
matrix, we describe the methodology used for the inference.
For the optimal deployment problem (Section IV-C), we use
the entropic projection approach [1] to track the flow volumes
over time. Namely, we choose at each time step the vector of
flows which is the closest to a prior (in terms of Kullback-
Leibler divergence), among all the flows satisfying the mea-
surement equation (2). At time t = 1, the prior is taken equal
to the tomogravity estimate [11] of the flows. Then, we choose
as prior the previous estimate x̂t−1. The entropic projection is
carried out by the Iterated Proportional Fitting (IPF) algorithm
(see e.g. [1]).

For the optimal sampling problem (Section IV-D), the
observation matrix Ã usually has full column rank, so that we
can use the inversion formula (9) to compute the best linear
unbiased estimate x̂ of the flows, where Σ(w) is estimated
thanks to a prior estimate of the flows. To avoid eventual
negative values, we next apply the IPF procedure, as in [24].

To measure the quality of an estimator of the flows x̂t at a
time step t, we use the classical Relative L2−norm, defined
as:

Rel2(x̂t) =
‖x̂t − xt‖2
‖xt‖2

. (14)

Similarly, the spatial distribution of the errors can be measured
by the spatial relative L2−error, which is defined for each OD

Fig. 3. Quantile function of the spatial errors on Opentransit, for Netflow
activated on 16 nodes. These nodes are selected by [SCOD (blue), weighted
SCOD (green), and greedy (red)].

flow time series xOD:

Rel2(x̂OD) =
‖x̂OD − xOD‖2

‖xOD‖2
.

C. Netflow Optimal Deployment

We now study the case of the discrete problem, where the
objective is to activate Netflow only on a subset of interfaces
of the network. We assume throughout this section that when
Netflow is activated on an interface, it samples packets at
a rate of 10−3. This problem may look very academic,
since routing changes occur quite often in practice, and the
deployment of Netflow should not be decided in a special
routing configuration. However, we show in this section that
our SCOD improves on the greedy design, and we want to
develop for future work a more robust version of our model.
For example, if we are given several potential forms M (i)(w)
for the information matrix, we could with little change write
a version of our SOCP which minimizes the worst variance
maxi cT M (i)(w)†c.

We can see in Figure 2 the relative L2 error plotted
over time in different situations, on Opentransit: Netflow was
activated on a subset of 16 or 30 nodes, either selected by the
greedy algorithm or by the SCOD procedure. Interestingly,
we also computed a design by a weighted stochastic SCOD
procedure, where the vectors of the linear combination follow
c ∼ N (0,diag(x̂)), where x̂ is the tomogravity estimate of
the flows at time t = 1. The number of averaged optimal
designs was set to 20, so as to keep the time of computa-
tion reasonable, and because we felt that the process almost



Fig. 4. Opentransit: Location of the routers found by weighted stochastic SCOD[this paper] (left), and greedy “Netquest" [6] (right). The routers in blue,
purple, and red correspond to the subsets of 5, 16, and 30 “best” routers found by each method.

converged. The vector c now gives more weight to important
flows, and so these flows are better estimated. While the SCOD
gives results of a similar quality as the greedy design, the
weighted SCOD substantially improves the relative L2 error.

In order to illustrate the spatial distribution of the errors,
we have plotted on Figure 3 the weighted quantile function of
the spatial L2 relative error: the graph indicates the fraction
of traffic (on the x-axis) which is estimated with a L2 relative
error below the value on the y-axis. We see that the weighted
SCOD outperforms the uniform SCOD and the greedy design
for the estimation. In fact, some small flows, which account
for less than 1% of the total traffic, are best estimated with a
uniform scheme.

We show in Figure 4 the location of the routers found
by weighted stochastic SCOD and the greedy algorithm. We
notice here that the weighted SCOD procedure yields a design
which is more concentrated at the “center” of the network,
where the flows are probably more important.

D. Optimal Sampling

We now turn to the study of the optimization of the
sampling rates for Netflow. As for the discrete problem, the
SCOD are computed by averaging 20 c−optimal designs, with
c ∼ N (0,diag(x̂)). New sampling rates are evaluated at each
time step, with the prior x̂ taken as the previous estimate
of the flows. In a more realistic setup, we could recompute
sampling rates each time a routing change occurs. In order to
avoid numerical issues, we imposed a minimal sampling rate
of 10−6 on each interface. We have assumed the unit-cost
case (

∑
wi ≤ 10−3), i.e. c−optimal designs are computed

by Program (12) with R = 1T (the row vector of all ones)
and b = 10−3. We found that our SCOD procedure could
handle per-router constraints very shortly before the time of
submission, and had not the time to make the experiments
with these more realistic constraints.

To illustrate the fact that one can recover the volume of
the flows without any Netflow measurements on the ingress
interfaces of the network (as the standard methodology sug-
gests [5]), we studied the case where we activate Netflow only

Fig. 5. Evolution of the sampling rates on 2 interfaces of Abilene.

on the 28 internal links of Abilene (resp. 320 links on Abilene),
and we computed the SCOD sampling on these interfaces.
Each c−optimal design problem was solved by Program (12)
within roughly 0.3s for Abilene and 120s for Opentransit with
SeDuMi on a PC at 4GHz.

We have compared our method with the A−optimal design
approach in a Kalman filtering context, as proposed in [4].
So we computed optimal rates on a period of 144 time steps
with this technique, using the same settings that the authors
described, for the case of a “noisy initialization". Figure 5
shows the evolution of the sampling rates on 2 interfaces
of Abilene, as well as the value of the naive sampling rate
(wnaive = 10−3

s on every interface). Interestingly, it seems that
the design computed in a Kalman filtering process converges
to our design. This could be explained by the fact that,
due to the high variability of the traffic, the prediction step
xt|t−1 = Cx̂t−1 (with C = I as in [4]) of the Kalman filter is
of poor quality compared to the correction step which uses the
Netflow measurements. Moreover, the flows computed by our
approach had a relative L2 error in the order of 10−3, while
it attained 20% with the Kalman filter: Simply inverting the
sampling measurements (as we do) yields better results than
processing them in a Kalman filter, since the state transition
equation from one time step to the next one may be inaccurate.

We still want to evaluate the benefits of considering the past
measurements for the computation of the sampling rates. So



Fig. 6. Relative L2 error for different sampling rates of Netflow, on Abilene.

Fig. 7. Distribution of the spatial relative L2 error in Opentransit.

we built a new estimate of the flows, where the Kalman filter
is used only to update the covariance matrix of the estimation
which we “minimize” to select the sampling rates. Then, the
estimation is carried out by the inversion Formula (9) and
the IPF. To speed up the computation, we used our heuristic
SCOD scheme in place of the A−optimal design SDP (11). We
compare in Figure 6 the relative L2 error of this new estimate
(called “Hybrid Kalman-SCOD”) with the estimations based
on the naive sampling rates and the SCOD. Our sampling
rates perform much better than the naive ones. Note that the
estimation of the flows is very accurate with our sampling
rates, although no Netflow measurement was performed on
the ingress links. It is also clear that taking into account the
past measurements does not yield any improvement.

We finally analyze the quality of the estimation with a
sampled Netflow on Opentransit, with the constraint

∑
i wi ≤

10−2. This constraint looks weaker that the one we imposed on
Abilene, but yields similar sampling rates because the number
of interfaces is larger (s = 320). Since we are not aware of
any other sampling selection scheme that can be used on a
network of this size, we only compare our estimate with the
case of naive sampling (w = 10−2

320 1). We have plotted in
Figure 7 the spatial distribution of the errors obtained with
our SCOD sampling scheme and the naive one. Once again,
the estimation of the traffic is much better with the SCOD.

V. CONCLUSION

In this paper, we have proposed a new method to opti-
mize the traffic measurement, based on the estimation of a
sequence of linear combinations of the flows, rather than on
the estimation of the full vector of flows. This method remains

tractable for very large instances, and it allows one to identify
the traffic accurately. Our numerical results moreover show
that our method can be tuned by the operator in order to best
estimate some flows of special importance.
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