Introduction to

Linear and Combinatorial Optimization

Maximum Flows

10.1 Network Flows

I Basic Definitions

Given: Digraph D = (V, A), arc capacities u : A — R.g, nodes s, t € V.

A\ /2
/ \ capacities
1)1 t flow values

% 5%

Definition 10.1 A flow in D is a function x : A — R.. Flow x in D

N

H obeys arc capacities and is called feasible, if x(a) < u(a) for all a € A;
H has excess ex,(v):= x(57(v)) — x(6*(v)) at node v € V;

H satisfies flow conservation at node v € V if ex,(v) = 0;

is a circulation if it satisfies flow conservation at all nodes v € V;

is an s-t-flow of value ex(t) if it satisfies flow conservation at each node
v € V\{s, t} and if ex,(t) = 0.

I Basic Definitions

Given: Digraph D = (V, A), arc capacities u : A — R.g, nodes s, t € V.
0

capacities
111) flow values
excess
% 5%

0

5@

Definition 10.1 A flow in D is a function x : A — R.. Flow x in D
H obeys arc capacities and is called feasible, if x(a) < u(a) for all a € A;
H has excess ex,(v):= x(57(v)) — x(6*(v)) at node v € V;

H satisfies flow conservation at node v € V if ex,(v) = 0;

is a circulation if it satisfies flow conservation at all nodes v € V;

M

is an s-t-flow of value ex(t) if it satisfies flow conservation at each node
v € V\{s, t} and if ex,(t) = 0.

I Basic Definitions

Given: Digraph D = (V, A), arc capacities u : A — R.g, nodes s, t € V.
0

capacities
1)1 Do flow values
excess
% 5%

0 Sle

0 (s

Definition 10.1 A flow in D is a function x : A — R.. Flow x in D
H obeys arc capacities and is called feasible, if x(a) < u(a) for all a € A;
H has excess ex,(v):= x(57(v)) — x(6*(v)) at node v € V;

H satisfies flow conservation at node v € V if ex,(v) = 0;

is a circulation if it satisfies flow conservation at all nodes v € V;

M

is an s-t-flow of value ex(t) if it satisfies flow conservation at each node
v € V\{s, t} and if ex,(t) = 0.

I Maximum s-t-Flows

The maximum s-t-flow problem asks for a feasible s-t-flow in D of maximum value.

exy(U)=6-1=5

U
capacities
1

b5 flow values

% ,5\5 excess

- the excess of U c V is defined as ex,(U) := x(67(U)) - x(6* (1))
Lemma 10.2 For a flow x and U< V it holds that ex,(U) =, cpyexx(V). In

particular, the value of an s-t-flow x is equal to
exx(f) = —exx(s) = ex,(U) foreach U c V'\ {s} with t € U.

Proof: exy(U) = Y5 (1)) ¥(@) = Lues (1) (@)
= Yo (Zaes) X(@ = X es+(v) x(a))
= Zx/eUeXx(V)

I s-t-Flows and s-t-Cuts 10]4

For U c¢ V'\ {s} with t € U, the subset of arcs §~(U) is called an s-t-cut.

U
capacities

S 11 t flow values

% 3\?

Lemma 10.3 Let U c V' \ {s} with t € U. The value of a feasible s-t-flow x is at
most the capacity u(d~(U)) of the s-t-cut §~(U). Equality holds if and only if
x(a) = u(a) for all a € 6 (U) and x(a) = 0 for all a € §*(U).

Proof: ex,(t) = exyx(U) by Lemma 10.2
= x(67(U)) - x(67(V))
< x(67(U)) with equality iff x(6*(U)) = 0
< u(67(U)) with equality iff x(67(U)) = w(6~(U))

O

— Residual Graph and Residual Arcs ——— s

Fora=(v,w) € A leta! := (w, v) be the corresponding backward arc and
Al:={al|ac A} a

Definition 10.4 For a feasible flow x, the set of residual arcs is given by
ci={acA|x(a)<u@}u{ate A | x(a) >0} .
The digraph Dy := (V, Ay) is called the residual graph of x.

o
b~

Example:

/N
\/

— Optimality Criterion for Maximum s-f-Flows —— s

« adipath in Dy is called x-augmenting path

Lemma 10.5 If x is a feasible s-t-flow such that D, does not contain an s-t-dipath,
then x is a maximum s-t-flow.

Proof:
< letS :={veV : thereisan s-v-dipathin Dy },let U := V'\'S
« by construction s € S,t € U
+ Claim 1: x, = u(a) for all a € 6~ (U) = §*(S)
. for all (v, w) € 6*(S), there is an s-v-dipath in Dy
- if x(a) < ug, then a € Ay and there is an s-w-dipath in D
« Claim 2: x(a) = O foralla € §*(U) = §7(S)
« for all (v, w) € 67(S), there is an s-w-dipath in Dy
. if x(a) > 0, then @' = (w, v) € Ay and there is an s-v-dipath in Dy

« Lemma 10.3 implies the result O

I Residual Capacities 0]

Definition 10.6 Let x be a feasible flow. For a € A, define
ua) := u(a) - x(a) ifa€A,, and uda?):=x(a) ifa'ecA,.

The value uy(a) is called residual capacity of arc a € Ay.

I, LT,
S \ﬂ

Example

Adding and Subtracting Flows ——— s

. let x be feasible flow in (D, u) and 7V be feasible 2 v 2
. . N\ {
flow in (Dy, Uy), then z := x + y defined as / 0‘/2\
S ? t
(@) = x(@) + /(@) - (@) fora€A \/1A 1)1
. . . 075~ { g4 0\
yields a feasible flow z in D D 7
X X
- ex.(v) = ex,(v) + ex,(v) foreachve V +
s 1] 11 t

Adding and Subtracting Flows

. let x be feasible flow in (D, u) and 7V be feasible \r)_’
flow in (Dy, Uy), then z := x + y defined as y
v

(@) := x(a) + (@) - Y(a') fora€ A N

yields a feasible flow z in D

- ex.(v) = ex,(v) + ex,(v) foreachve V =

v

if x, z are feasible flows in (D, u), then y := z — x y %
defined as s 1| 11

(a) : =max{0, (a)—x(a)} for a€ AnA, %Wﬁv
w(a!) :=max{0, x(a)-z(a)} for a €A nA, D, u, x
is a feasible flow y in D

X e L
ex(v) = ex.(v) - ex,(v) foreachve V /l\
S [1

Introduction to

Linear and Combinatorial Optimization

1

10.2 Max-Flow-Min-Cut-Theorem

Max-Flow Min-Cut Theorem =10

Theorem 10.7 The maximum s-t-flow value equals the minimum capacity of an

s-t-cut.

Proof:

let x be a maximal s-t-flow

if Dy does not contain an s-f-dipath, we construct an s-t-cut whose capacity equals
the flow value of x as in the proof of Lemma 10.5

if Dy contains an s-t-dipath P, let § := mingep u,(a) > 0

define s-t-flow in Dy by

6 ifaeP

a) =
@) 0 otherwise.
y is a feasible s-t flow in D of value § in Dy
z = x + yis afeasible s-t flow of value exx(t) + ex,(t) = ex,(t) + & > exx(t)
contradicts maximality of x

10|17

— Ford and Fulkerson’s Alleged Motivation

In their seminal book ‘Flows in Networks’(1962), Ford & Fulkerson write:

"The mathematical problem ... of determining a maximal flow ...
comes up naturally in the study of transportation or communica-
tion networks. It was posed to the authors in the spring of 1955 by
T. E. Harris, who, in conjunction with General F. S. Ross (Ret.), had
formulated a simplified model of railway traffic flow, and pinpointed
this particular problem as the central one suggested by the model

[

Let us look into this paper of Harris and Ross.

T T

r-' e R Bt SR

<D

e Sefvices T echmcalformaton Rgen

Reproduced by

DOCUMENT SERVICE CENTER
KNOTT BUILR™ * IAYTON, 2, ORI0

This document is the property of tr svermment. It s furnished for the du-
ration of the contract and shall be returs... .. . ioages required, or upon recall by ASTIA
to the following address: Armed Services Techaical Information Agency,
Document Service Center, Knott Building, Dayton 2, Ohio.

Y

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATICNS OR OTHER DATA

ARE USED FOR ANY PURPGSE OTHER THAN IN CON'NE(.'HON 'WITH A DEFINITELY RELATED
OPERATION, THE U, 8. GOVER.NIIENT THEREBY INCURS

NO RESPONSIBILITY, NOR ANY OBLIGA'HDH ER; AND THE FACT THAT THE

GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE

SAID DRAWINGS, SPECIFICATIONS, OR OTHEE DATA I8 NOT TO BE REGARDED BY

IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER

PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE,

USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

NOTICE THIS DOCUMENT CONTAINS IN FORMA’I‘IQN AF FECTING THE

NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING

1 OF THE ESPIONAGE LAWS TITLE 18, U. S C., SECTIONS 783 and 794

THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN

| ANY MANNER TQ AN UNAUTHORIZED PERSON s PROHIB"TF‘D BY LAW

UNCLASSIFIED

AD NUMBER

AD093458

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential
LIMITATION CHANGES

TO:

Approved for public release, distribution
unlimited

FROM:

AUTHORITY

USAF 11th Wing ltr., 13 May 1999; Same

THIS PAGE IS UNCLASSIFIED

SECRET

U S ALK TR

PROJECT RAND

RESEARCH MEMORANDUM

TN

\

FUNDAMENTAL5 OF A METHOD FOR EVALUATING
RAIL NET CAPACITIES (U)

T. E. Harris
F. S. Ross

RM-1573

Qctcber- 24, 1955 Copy No. V7

This matenal contains information utfeding the notienal defense of thi Umled Siotes witkin
the meaning of the vspronage laws, Title 18 USC, Secs 793 and 794, the haasmissicn or the
revelation of which 1 any mannoi 1o an wnauthorized person 1s miohibiied by faw

\

SECRET meleTs

— Historical Remark: True Motivation

Unlike what Ford and Fulkerson say, the interest of Harris and Ross was not to find a

maximum flow. They write:

"Air power is an effective means of interdicting an enemy’s rail system,
and such usage is a logical and important mission for this arm. ... The
present paper describes the fundamentals of a method intended to
help the specialist who is engaged in estimating railway capabilities,
so that he might more readily accomplish this purpose and thus assist
the commander and his staff with greater efficiency than is possible

at present.”

Fig. 2. From Harris and Ross [11]: Schematic diagram of the railway network of the Western Soviet Union
and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe,
and a cut of capacity 163,000 tons indicated as “The bottleneck™

Introduction to

Linear and Combinatorial Optimization

10

10.3 Ford-Fulkerson-Algorithm

| Ford-Fulkerson Algorithm

Corollary 10.8 A feasible s-t-flow x is maximum if and only if D, does not contain
an s-t-dipath.

Ford-Fulkerson Algorithm

H setx :=0;

H while there is an s-t-dipath P in Dy

Bl setx :=x+0- " with§ := min{u.(a) | a € P};

xF €{0,1,-1}4 is the characteristic vector of dipath P defined by

1 ifa€P,
X :=1{-1 ifaleP for all a € A.
0 otherwise,

— Termination of the Ford-Fulkerson Algorithm ——vi»

Theorem 10.9
B If all capacities are rational, then the algorithm terminates with a maximum
s-t-flow.

If all capacities are integral, it finds an integral maximum s-t-flow.

Proof: [we prove by induction that x is integral throughout the run of the algorithm
- x = 0 at the beginning

. if x is integral, then all residual capacities u,(a) are integral

. thus & is integral and x + 5y* is integral

« flow value increases in each iteration by at least 1

« the value of any feasible flow is bounded by the finite capacity of an s-t-cut

- the algorithm terminates after a finite number of iterations

B reduce to integral capacities by scaling

— Running Time of Ford-Fulkerson Algorithm —— v

Observation: If an arbitrary x-augmenting path is chosen in every iteration, the
Ford-Fulkerson Algorithm might behave rather badly.

Example: /kv \ capacities

S 1 t

S~

Remark: There exist instances with finite irrational capacities where the Ford-Fulkerson
Algorithm never terminates and the flow value converges to a value that is strictly

smaller than the maximum flow value (see exercise).

Theorem 10.10 If all capacities are integral and the maximum flow value is K < oo,
then the Ford-Fulkerson Algorithm terminates after at most K iterations. Its running
time is O(m - K) in this case (i.e., pseudo-polynomial).

Proof: In each iteration the integral flow value increases by at least 1. O

| Edmonds-Karp Algorithm

A variant of the Ford-Fulkerson Algo. is the Edmonds-Karp Algorithm:

- In each iteration, choose shortest s-t-dipath in D, (using BFS).

(Here, the length of a dipath P is the number of arcs in P.)

Example. For the following digraph, the algorithm needs two iterations.

/ \ capacities

S 1 t

St

Theorem 10.11 The Edmonds-Karp Algorithm terminates after at most n- m
iterations; its running time is O(n - m?).

— Prerequisites for the Proof of Thm. 10.11 =———u»

« dy(v, w) := length of a shortest v-w-dipath in D
Lemma 10.12 Throughout the iterations of the algorithm, for each v € V the
distances dx(s, v) and dy(v, t) never decrease.

Proof:

. for a contradiction, assume that there are consecutive iterations with flows x and x’
such that dy(s, v) > dy/(s, v)
« choose v with this property and d,/(s, v) > 0 minimal

- let P be a shortest s-v-path in D,/ and w be the predecessor of v on P

di(s,v) > dyr(s,v) = dyr (s, w) + 1 2 dy(s, w) + 1

implies that a = (w, v) € A,r \ Ay

« in Dy flow was augmented along a shortest s-z-dipath containing a™! = (v, w), thus
di(s,w) = di(s,v) + 1

we obtain dy(s, v) > dy(s, w) + 1 = dy(s, v) + 2, a contradiction

« analogous argument for dy(v,) O

— Prerequisites for the Proof of Thm. 10.11 (Cont.) =«

« Ay :={a€ A, | ais on some shortest s-t-path in Dy }.
Lemma 10.13 If d,(s, t) = d,/(s, t) for two consecutive flows x and x’, then
Ax’ G Ax.
Proof:
. for a contradiction, suppose that dy(s, t) = d,/(s, t), but there is
a=(v,w) € Ay \ Ay, then, by Lemma 10.12,
di(s,) =dy/ (s, £) = der (s, V)+ 1+ dyr (w, 1) 2 di (s, V) + 1+ dy(w, £)

. since a € Ay, in Dy flow was augmented along shortest s-t-dipath containing
a! = (w, v), thus, we obtain the contradiction

di(s, 1) = di(s, w) + 1 + dy(v, 1)
= (du(s,v) - 1) + 1+ (de(w, 1) - 1)
= dy(s,v) + dy(w, 1) - 1

. thus A, € Ay, for the bottleneck arc a € A, on the shortest s-t- dipath in Dy chosen
by the algorithm, we have a ¢ Ax/, thus, A e A O

I Proof of Thm. 10.11 1022

Proof:

- by Lemma 10.12, d,(s, t) is non-decreasing and 1 < d,(s, t) < n — 1 throughout the
algorithm

« by Lemma 10.13, there can be at most m consectuive iterations without increase of

dy(s, 1)

- the algorithm has at most nm iterations

Introduction to

Linear and Combinatorial Optimization

1

10.4 Flows and LPs

— Arc-Based LP Formulation for Maximum Flows = />

Straightforward LP formulation of the maximum s-{-flow problem:

mx Y u- Y x

aed*(s) acd=(s)
s.t. Z Xq — Z X2 =0 forallve V\{s,t}

acd=(v) acd*(v)

X = u(a) foralla€ A

X, =0 foralla€e A

Dual LP:
min Z wa) - z,
acA
st Yw = v+ Zyw) 20 forall (v, w) € A
»s=1 y=0
forallae A

2,20

Dual Solutions and s-t-Cuts

min Z uwa) - z,
acA
st. Yw= W+ Zuw) 20 for all (v, w) € A
Ys=1 y=
2,20 foralla€e A

o s-t-cut 07(U), U € V\ {t}, s € U yields feasible dual solution (y, z) of value
w(5*(U)) where y = yU and z = (V)

Eﬂy N /\
SNL T z;

10|25

Dual Solutions and s-t-Cuts

min Z uwa) - z,
acA
st. Yw= W+ Zuw) 20 for all (v, w) € A
»s=1L =0
2,20 foralla€e A

o s-t-cut 07(U), U c¢ V\ {t}, s € U yields feasible dual solution (y, z) of value
w(5*(U)) where y = yU and z = ()
Theorem 10.14 There exists an s-t-cut " (U) (with U ¢ V' \ {t}, s € U) such that
the corresponding dual solution (3,) is an optimal dual solution.

Proof: follows directly from the Max-Flow-Min-Cut-Theorem. O

I Flow Decomposition 0)26

Theorem 10.15 For an s-t-flow x in D, there exist s-t-dipaths Py, ..., Py and
dicycles Cy, ..., Cpin Dwith k+ £ < mand yp,, ..., Yp,, V¢, ---» Yc, = 0 with

Xg = Z yp, + Z VG forall a € A

i:a€P; Jj:aeC;

Moreover, the value of x is Zﬁl VP,

Example: arc flow flow decomposition

AVANY/

S

e
1
N
I
2

I Flow Decomposition)25

Theorem 10.15 For an s-t-flow x in D, there exist s-t-dipaths Py, ..., Py and
dicycles Cy, ..., Cpin Dwith k+ £ < mand yp,, ..., Yp,, V¢, ---» Yc, = 0 with

Xg = Z yp, + Z ye forall a € A

i:a€P; Jj:aeC;

Moreover, the value of x is X, yp.

Example: arc flow alternative flow decomposition

JAVANWAVAN

Flow Decomposition 10)26

Theorem 10.15 For an s-t-flow x in D, there exist s-t-dipaths Py, ..., Py and

dicycles Cy, ..., Cpin Dwith k+ £ < mand yp,, ..., Yp,, V¢, ---» Yc, = 0 with
Xg = Z yp, + Z ye forall a € A

i:a€P; Jj:aeC;

Moreover, the value of x is X, yp.

Proof: by induction on the support of x

choose a = (v, w) € A with x(a) > 0 arbitrarily

if v # s, by flow conservation, there a’ € 5 (v) with x(a”) > 0

if w # t, by flow conservation, there is a” € §*(w) with x(a”’) > 0

iterating this argument yields either an s-t-dipath or a dicycle Q

set Yo 1= mingeg x(a), x’ = x - yo - x° O

for an s-t-flow x with flow decomposition as in Theorem 10.15, let x/ : = Zi:aePi Vp,
forall a € A. Then x” is an s-t-flow of the same value as x and x, < x, for all a € A.

I Path-Based LP Formulation =

Let P be the set of all s-t-dipaths in D.

max Zyp

PepP

s.t. Z yp < u(a) forallae A
PeP:acP
yp =0 forall P € P

Dual LP:

min Z wa) - z,

acA

s.t. Zzazl forallP € P
aeP
2,20 foralla€e A
Remarks.
Notice that |P| and thus the number of variables of the primal LP and the number of
constraints of the dual LP can be exponential in n and m.

1028

I Dual Solutions and s-t-Cuts

min Z ua) - z,
acA
s.t. Zzazl forall P € P
acP
2,20 foralla€ A

. s-t-cut 67(U), U c¢ V\ {t}, s € U yields feasible dual solution z of value u(6*(U))

where z =)(5+(U)
Example:
Primay V\ dual: / V\
2 9 v

2 v Q

1028

I Dual Solutions and s-t-Cuts

min Z ua) - z,
acA
s.t. Zzazl forall P € P
acP
2,20 foralla€ A

. s-t-cut 67(U), U c¢ V\ {t}, s € U yields feasible dual solution z of value u(6*(U))

where z =)(5+(U)

Theorem 10.16 There exists an s-t-cut §*(U) (with U ¢ V' \ {t}, s € U) such that
the corresponding dual solution z is an optimal dual solution.

Introduction to

Linear and Combinatorial Optimization

10

10.5 Preflow-Push-Algorithm

10|30

I Another Algorithmic Approach

. afeasible flow x is a maximum s-t-flow if it fulfills two conditions:

H ex(v) = 0forall v e V\{s, t}; (flow conservation)
M there is no s-t-dipath in D,.

« Ford-Fulkerson and Edmonds-Karp always fulfill the first condition and terminate as
soon as the second condition is fulfilled.

« the Goldberg-Tarjan Algorithm (or Push-Relabel Algorithm, or Preflow-Push
Algorithm) always fulfills the second condition and terminates as soon as the first
condition is fulfilled.

Definition 10.17
H A flow x is called preflow if ex,(v) = 0 for all v € V'\ {s}.
H Anodev€ V\{s,t} is called active if ex,(v) > 0.

- a preflow is feasible if it satisfies the capacity constraints

10| 31

 — Valid Labelings and Admissible Arcs

Definition 10.18 Let x be a preflow. A function d : V — Z.¢ with d(s) = nand
d(t) = 0'is called valid labeling if d(v) < d(w) + 1 for all (v, w) € A,.
An arc (v, w) € Ay is called admissible if v is active and d(v) = d(w) + 1.

o« dy(v, w) :=length of a shortest v-w-dipath in Dy (in terms of # arcs)

Observation 10.19 Let x be a feasible preflow and d a valid labeling. Then
de(v,t) =2 d(v) forall ve V.

Proof:

- consider v € V with dy(v, t) < o0, i.e., there is a shortest v-t-dipath in D
< dy(v, 1)1

< di(v, 1)-2 =2

de(v, 1) @

—— Valid Labelings and Admissible Arcs (Cont.) =—— /=

Lemma 10.20 Let x be a feasible preflow and d a valid labeling.
B There is a v-s-dipath in Dy for every active node v.

[There is no s-t-dipath in D;.

Proof: B

- let v be an active node

« R :={we V| thereis a v-w-dipath in Dy} \ / R

« we show that s € R —) —

« by construction x(a) = 0 for all a € 57 (R) / \

© Dwer (W) = exx(R) = s g}
Daes- (R X(@) = X ges(ry (@) < 0 a\‘y

© Y wer &x(W) = 0 and exy(v) > 0 together imply that
SER

follows from d(s) = n and Observation 10.19

Goldberg-Tarjan Algorithm

Goldberg-Tarjan Algorithm
for all a € 6*(s) set x(a) := u(a);
forall a € A\ &*(s) set x(a) := 0;
set d(s) := n;forall ve V'\ {s} set d(v) :=0;
while there is an active node v do
if there is no admissible arc a € &p, (v) then Relabel(v);
choose an admissible arc a € 5Bx(v) and Push(a);

Relabel(v)
set d(v) 1= min{d(w) + 1 | (v, w) € A };

Push(a)

augment x along arc a by y := min{ex,(v), ux(a)}; (a € &p,_(v))

Example 10]34

(12—
AT,

4 1

WL

1034

Example

Example

s \ 3\13:\ 10_9 i/4/
A\
\16>13
N\
A\
\/10~\A <_9_14<_7_ @

Example

. s< 410 ,9 7 ;t
5 \‘\ 13\\— |/4
NN
\
3 16
: \\
0 14 ;
4‘12} —— —i—

Example

— 12— B
7 s ’16)47}0 9/1 ZO‘t
- WL
\ \ N /
5 \ \13\ 14—>
4
\ \
3 16
o\ \
1 - < lde
0 —* O~ —_ t_

Example

\

—_—12—

AN\

S 4 10 9

WL

Example

—_—12—

AT

S 4 10 9

B s

—_—14—

Example

\

—_—12—

J@\A\ N

AN\

S 4 10 9

v
—

Example

Example

7 S s 16 4 }O_ 9/T

6 _@i\t\ \\ —— |/

NN

, \

S W

2 \ \ P A—

1 \ ’%117 \4
e el

0 jo——" 20"

Example

— 12—
7 16’7\ /1\20\
5 W
. \\\ e’
NN
K \
S . —
1 10)%11 7/ \4
B N N

Example

s s{ 1210 9 7 t
6 -« \13 \V | 4f
\\ X — 4 /
15
4 \
16
, \

Example

—_—12—

7 A\

s S 4 10 9

BN N

N

Example

—_—12—

A\

s 4 10 9

BN N

N

| N s AN
NN

Example

—_—12—

A\

s 4 10 9

"

N

Example

—_—12—

A\

s 4 10 9

R\

N

\
\@/ 7 ‘T\“Q«

N

1 \

o'

20/

Example

Example

— 12—

AN
s<16)47 }O 9/1 20; t
13
V-

Example

Example

Example

—_—12—

7 /16)7\ /T\ZO\

6;9@4_\ 5, 410 9 7 ,t
N, W

5 16, N\ —_—14—

NN

3 A

w

NS}

Example

S

—_—12—

A\

4 10 9

"

N

\
N\ 4\;"\ o
\ 11S@L

Example

r13\
\

A\

—_—12—

A\

s 4 10 9

"

N

\,\/97 .

Example

s 13\ 16)47 }0_19271\20‘;«
TR WL
\ ™
N
\\12 \9\ 14\\9

Example

s /: B 410 9
RN WL
) \ N
S . \9 \14\

) \\\\ DN
: < N\
0 \11S@1

Example

Example

—\
A
/\
//
T~

888888888

— Analysis of the Goldberg-Tarjan Algorithm —— v

Lemma 10.21 At any stage of the algorithm, x is a feasible preflow and d a valid
labeling.

Proof: feasible preflow

« algorithm starts with feasible preflow

« x is only modified during Push operations

- Push operations obviously maintain capacity constraints and ex,(v) = 0
valid labeling

- algorithm starts with valid labeling

- Relabel operation sets d(v) := min{d(w) + 1 | (v, w) € A,} so that after
relabeling d(v) < d(w) + 1 for all (v, w) € Ay

. Push for arc a = (v, w) is applied only if d(v) = d(w) + 1, this may add the

backward arc (w, v) to Ay

in that case d(w) = d(v) — 1, thus, d(w) < d(v) + 1 O

I Analysis (Cont.) 10)3

| Corollary 10.22 After termination of the algorithm, x is a maximum s-t-flow.
Proof:
- at termination ex,(v) = 0 for all v € V'\ {s, t}, i.e,, x is an s-t-flow

- optimality follows since there is no s-f-dipath in D, by Lemma 10.20 & O

Lemma 10.23

A label d(v) is never decreased by the algorithm.
@ Calling Relabel(v) strictly increases d(v).
d(v) < 2n - 1 throughout the algorithm.

El The number of Relabel operations is at most 2n?.

I Proof of Lemma 10.23 10|37

Proof: B d(v) is non-decreasing, @ Re labe 1(v) strictly increases d(v)
. only Relabel operations change d(v)

- since d is valid labeling d(v) = d(w) + 1 for all (v, w) € A,,
when Relabel(v)is called d(v) < d(w) + 1 for all (v, w) € Ay

. setting d(v) := min{d(w) + 1 | (v, w) € A} increases d(v) by at least 1
div)<2n-1

« d(v) is only increased when v is active

- if vis active, by Lemma 10.20, there is a v-s-dipath P in D,

. for P = vy, ag, v1, i, ..., G, Vi with vy = vand v = s, we have d,, < d(vi.1) + 1 for
all i, hence,

dv)<d(s)+k<sn+(n-1)=2n-1

El the number of Relabel operations < 2n?

« by @ and B, for each of the n — 2 nodes v € V' \ {s,t}, Relabel(v)is called at
most 2n — 1 times

— Bounding the Number of Push Operations — v/

. Push operation on arc a is called saturating if, after the Push, arc a has
disappeared from the residual graph Dy

- otherwise, the Push operation is called nonsaturating and node v with a € §*(v)
is no longer active
| Lemma 10.24 The number of saturating Push operations is in O(m - n).

Proof: we show that on any arc a € A u A™! there can be at most n saturating Push
operations

. let a = (v, w) arbitrary

. at a saturating Push on a we have d(v) = d(w) + 1, and a disappears from Dy,

« arc a can only reappear in Dy after flow has been pushed through a ! which only
happens if d(w) = d(v) + 1

- thus, between two consecutive Push operations, the labels of v and w have
increased by at least 2

« by Lemma 10.23 @ this can happen at most n times O

— Bounding the Number of Push Operations — vi»

Lemma 10.25 The number of nonsaturating Push operations is at most
O(m - n?).

Proof: see exercise

Lemma 10.26 If the algorithm always chooses an active node v with d(v)

maximum, then the number of nonsaturating Push operations is in O(r®).

Proof: we show that for any node v € V there can be at most 2n? nonsaturating
Push operations

- after the nonsaturating Push, v becomes inactive and since flow is sent to nodes of
smaller label, no node with label larger than d(v) can become active before the next
Relabel operations

« v can only become active again aftera Relabel operation

- by Lemma 10.23 this can happen at most 2n? times O

— Running Time of the Goldberg-Tarjan Algorithm = v«

Theorem 10.27 The Goldberg-Tarjan Algorithm finds a maximum s-t-flow in
O(mn?) time.

Theorem 10.28 If the algorithm always chooses an active node v with d(v)
maximum, its running time is O(n®).

Remarks

. If the algorithm always chooses an active node v with d(v) maximum, one can
show that the number of nonsaturating Push operations and thus the total
running time is at most O(n? \/m).

« The currently best known running time of a maximum s-t-flow algorithm is
O(nm) (Orlin 2013).

