
10

Introduction to

Linear and Combinatorial Optimization

Maximum Flows

10.1 Network Flows

Basic Definitions 10 | 2

Given: Digraph D = (V ,A), arc capacities u ∶ A→ℝ≥0, nodes s, t ∈ V .

capacities

flow values

excess

s t

−5 5

0

0

3 |4

2 |2

1 |1

2 |2

3 |5

5 |∞

Definition 10.1 A flow in D is a function x ∶ A→ℝ≥0. Flow x in D

i obeys arc capacities and is called feasible, if x(a) ≤ u(a) for all a ∈ A;

ii has excess exx(v)∶= x(�−(v)) − x(�+(v)) at node v ∈ V ;

iii satisfies flow conservation at node v ∈ V if exx(v) = 0;

iv is a circulation if it satisfies flow conservation at all nodes v ∈ V ;

v is an s-t-flow of value exx(t) if it satisfies flow conservation at each node
v ∈ V ⧵ {s, t} and if exx(t) ≥ 0.

Basic Definitions 10 | 2

Given: Digraph D = (V ,A), arc capacities u ∶ A→ℝ≥0, nodes s, t ∈ V .

capacities

flow values
excess

s t−5 5

0

0

3 |4

2 |2

1 |1

2 |2

3 |5

5 |∞

Definition 10.1 A flow in D is a function x ∶ A→ℝ≥0. Flow x in D

i obeys arc capacities and is called feasible, if x(a) ≤ u(a) for all a ∈ A;

ii has excess exx(v)∶= x(�−(v)) − x(�+(v)) at node v ∈ V ;

iii satisfies flow conservation at node v ∈ V if exx(v) = 0;

iv is a circulation if it satisfies flow conservation at all nodes v ∈ V ;

v is an s-t-flow of value exx(t) if it satisfies flow conservation at each node
v ∈ V ⧵ {s, t} and if exx(t) ≥ 0.

Basic Definitions 10 | 2

Given: Digraph D = (V ,A), arc capacities u ∶ A→ℝ≥0, nodes s, t ∈ V .

capacities

flow values
excess

s t0 0

0

0

3 |4

2 |2

1 |1

2 |2

3 |5
5 |∞

Definition 10.1 A flow in D is a function x ∶ A→ℝ≥0. Flow x in D

i obeys arc capacities and is called feasible, if x(a) ≤ u(a) for all a ∈ A;

ii has excess exx(v)∶= x(�−(v)) − x(�+(v)) at node v ∈ V ;

iii satisfies flow conservation at node v ∈ V if exx(v) = 0;

iv is a circulation if it satisfies flow conservation at all nodes v ∈ V ;

v is an s-t-flow of value exx(t) if it satisfies flow conservation at each node
v ∈ V ⧵ {s, t} and if exx(t) ≥ 0.

Maximum s-t-Flows 10 | 3

The maximum s-t-flow problem asks for a feasible s-t-flow in D of maximum value.

U exx(U) = 6 − 1 = 5
capacities

flow valuess t

3 |4

2 |2

1 |1

2 |2

3 |5
excess

−5 5

0

0

the excess of U ⊆ V is defined as exx(U) ∶= x(�−(U)) − x(�+(U))
Lemma 10.2 For a flow x and U ⊆V it holds that exx(U)=∑v∈Uexx(v). In
particular, the value of an s-t-flow x is equal to

exx(t) = −exx(s) = exx(U) for each U ⊆ V ⧵ {s} with t ∈ U .

Proof: exx(U) = ∑a∈�−(U)) x(a) − ∑a∈�+(U) x(a)= ∑v∈U(∑a∈�−(v) x(a) − ∑a∈�+(v) x(a))= ∑v∈Uexx(v)

s-t-Flows and s-t-Cuts 10 | 4

For U ⊆ V ⧵ {s} with t ∈ U , the subset of arcs �−(U) is called an s-t-cut.

U
capacities

flow valuess t

3 |4

2 |2

1 |1

2 |2

3 |5

Lemma 10.3 Let U ⊆ V ⧵ {s} with t ∈ U . The value of a feasible s-t-flow x is at
most the capacity u(�−(U)) of the s-t-cut �−(U). Equality holds if and only if
x(a) = u(a) for all a ∈ �−(U) and x(a) = 0 for all a ∈ �+(U).

Proof: exx(t) = exx(U) by Lemma 10.2= x(�−(U)) − x(�+(U))≤ x(�−(U)) with equality iff x(�+(U)) = 0≤ u(�−(U)) with equality iff x(�−(U)) = u(�−(U))

Residual Graph and Residual Arcs 10 | 5

For a = (v,w) ∈ A, let a−1 ∶= (w, v) be the corresponding backward arc and
A−1 ∶= {a−1 ∣ a ∈ A}.

v w
a

a−1
Definition 10.4 For a feasible flow x, the set of residual arcs is given by

Ax ∶= {a ∈ A ∣ x(a) < u(a)} ∪ {a−1 ∈ A−1 ∣ x(a) > 0} .
The digraph Dx ∶= (V ,Ax) is called the residual graph of x.

Example:

D

s

v

w

t

3 |4

2 |2

1 |1

2 |2

3 |5 Dx

s

v

w

t

Optimality Criterion for Maximum s-t-Flows 10 | 6

a dipath in Dx is called x-augmenting path

Lemma 10.5 If x is a feasible s-t-flow such that Dx does not contain an s-t-dipath,
then x is a maximum s-t-flow.

Proof:

let S ∶= {v ∈ V ∶ there is an s-v-dipath in Dx}, let U ∶= V ⧵ S
by construction s ∈ S, t ∈ U

Claim 1: xa = u(a) for all a ∈ �−(U) = �+(S)
for all (v,w) ∈ �+(S), there is an s-v-dipath in Dx
if x(a) < ua, then a ∈ Ax and there is an s-w-dipath in Dx

Claim 2: x(a) = 0 for all a ∈ �+(U) = �−(S)
for all (v,w) ∈ �−(S), there is an s-w-dipath in Dx
if x(a) > 0, then a−1 = (w, v) ∈ Ax and there is an s-v-dipath in Dx

Lemma 10.3 implies the result

Residual Capacities 10 | 7

Definition 10.6 Let x be a feasible flow. For a ∈ A, define

ux(a) ∶= u(a) − x(a) if a ∈ Ax , and ux(a−1) ∶= x(a) if a−1 ∈ Ax .

The value ux(a) is called residual capacity of arc a ∈ Ax .

Example:

s

v

w

t

3 |4

2 |2

1 |1

2 |2

3 |5

D, u, x

s

v

w

t

1

3

2

1

2

2

3
Dx , ux

Adding and Subtracting Flows 10 | 8

let x be feasible flow in (D,u) and y be feasible
flow in (Dx ,ux), then z ∶= x + y defined as

z(a) ∶= x(a) + y(a) − y(a−1) for a ∈ A

yields a feasible flow z in D

exz(v) = exx(v) + exy(v) for each v ∈ V

if x, z are feasible flows in (D,u), then y ∶= z − x
defined as

y(a)∶=max{0, z(a)−x(a)} for a∈A∩Ax

y(a−1)∶=max{0, x(a)−z(a)} for a−1∈A−1∩Ax

is a feasible flow y in Dx

exy(v) = exz(v) − exx(v) for each v ∈ V

s

v

w

t

0 |3

0 |2

1 |1 1 |1
0 |2

1 |1

0 |3
Dx , ux , y+

s

v

w

t

3 |3

2 |3

1 |1

2 |3

3 |3
D, u, x=

s

v

w

t

3 |3

3 |3

0 |1

3 |3

3 |3
D, u, z

Adding and Subtracting Flows 10 | 8

let x be feasible flow in (D,u) and y be feasible
flow in (Dx ,ux), then z ∶= x + y defined as

z(a) ∶= x(a) + y(a) − y(a−1) for a ∈ A

yields a feasible flow z in D

exz(v) = exx(v) + exy(v) for each v ∈ V

if x, z are feasible flows in (D,u), then y ∶= z − x
defined as

y(a)∶=max{0, z(a)−x(a)} for a∈A∩Ax

y(a−1)∶=max{0, x(a)−z(a)} for a−1∈A−1∩Ax

is a feasible flow y in Dx

exy(v) = exz(v) − exx(v) for each v ∈ V

s

v

w

t

0 |3

0 |2

1 |1 1 |1
0 |2

1 |1

0 |3
Dx , ux , y=

s

v

w

t

3 |3

2 |3

1 |1

2 |3

3 |3
D, u, x−

s

v

w

t

3 |3

3 |3

0 |1

3 |3

3 |3
D, u, z

10

Introduction to

Linear and Combinatorial Optimization

Maximum Flows

10.2 Max-Flow-Min-Cut-Theorem

Max-FlowMin-Cut Theorem 10 | 10

Theorem 10.7 The maximum s-t-flow value equals the minimum capacity of an
s-t-cut.

Proof:
let x be a maximal s-t-flow
if Dx does not contain an s-t-dipath, we construct an s-t-cut whose capacity equals
the flow value of x as in the proof of Lemma 10.5
if Dx contains an s-t-dipath P, let � ∶= mina∈P ux(a) > 0
define s-t-flow in Dx by

y(a) = {� if a ∈ P
0 otherwise.

y is a feasible s-t flow in D of value � in Dx
z = x + y is a feasible s-t flow of value exx(t) + exy(t) = exx(t) + � > exx(t)
contradicts maximality of x

Ford and Fulkerson’s Alleged Motivation 10 | 11

In their seminal book ‘Flows in Networks’ (1962), Ford & Fulkerson write:

"The mathematical problem . . . of determining a maximal flow . . .
comes up naturally in the study of transportation or communica-
tion networks. It was posed to the authors in the spring of 1955 by
T. E. Harris, who, in conjunction with General F. S. Ross (Ret.), had
formulated a simplified model of railway traffic flow, and pinpointed
this particular problem as the central one suggested by the model
[11]."

Let us look into this paper of Harris and Ross.

I. f no!'

Asp !; -, ~ -

Ammi

QRmed SBfvIGOS echnicag fml f orwatIon, fgency
Rep'roduced by

DOCUMENT SERVICE CENTER
KNOTT SUILP~ 1AYTOW, 2, 0OH10

This document Le the property of tr ii~anment. It is furnished for the du-

ration of the contract and sba.11 be returt j i aeW, rsqulred or upon recall by ASTIA

to the following address: Armed Services Technical Information Agency,

Document Service Center,, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHiER DRAWINGS, SPECIFICATIONS OR OTHER DATA

TRIET USE FOR ANY PURPOSE (YTHER THAN IN CONNECTION WITHi A DEFINITELY RELATED

GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS
NO RESPONSMIILITY, NOR ANY OBLIGATION WHATSOEVER AND THE FACT THAT THE

GOVERNMENT MdAY HAVE FORMULATED, FURM4SHED, OR IN ANY WAY SUPPLIED THE

IMPLICATION OR OTHERWISE AS IN ANlY MANN"IM LCENSING THE HOLDER OR ANY OTHER

PERSON OR CORPORATION, OR CONVEYING ANY RIGHTrS OR PERMISSION TO MANUFACTURE,
A USE OR. SELL ANY PATENTED, INVENTION MHAT MAY IN ANY WAY BE RELATED THERETO.

INOTICE: THIS DOCUMENT CONTAINS INFORMATION. AFFECTING THE .

SNATIONAL DEFENSE OF THE UNITED STATES WITHIIN THE MEANING

OF THE ESPIONAGE LAWS. TITLE 18, U.S.C., SECTIONS 793 and 794.

THE, TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN i

ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED, BY LAW.

UNCLASSIFIED

AD NUMBER

AD 093458

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution

unlimited

FROM:

AUTHORITY

USAF 11th Wing ltr., 13 May 1999; Same

THIS PAGE IS UNCLASSIFIED

SECRET

U, S AIR i ,

PRO J ECT RAND

RESEARCH MEMORANDUM

FUNDAMENTALS OF A METHOD FOR EVALUATING

RAIL NET CAPACITIES (U)

T. E. Harris
F. S. Ross

RM-1 573

October 24, 1955 CopyNo. ,"

Thi tl5 con tiiI rfr•n ,, rora ti, e (h, tii nre iit(h o,ri diel e of I-,' U.. lid, d Slot., will:ij

the menting o.t1h -opoerige toh, Idle 8 U S. Sec- 793 .- 1 794 fo. t -iirn u o'rc ni thW,

revelation of which ai 0ny marn"-i .' 1. a in u clih ied p son Ii riohjblit'c d y lIle

Assigned to

This .5 u w%.rkijq p(uf,-r, ,ecoue(. il T11,y be e !orirndid, modified, Of withdrcWIN

-" lny fince, purinicsion to quote or rtoprodiie mrust be obitined from RAND

(re views (on, lusicrns. on ,, romurr -rdotions exp!i.sed herein ,iro not fleces-

scrily iefhkct the nffrloal ve,-s or policies of the United Stotes Air F, rcs

DIS IRIB3UTI(.N RFSTRICTION54

No restrictions on further distribution, other tha.n those
imposed by security regulations.

j I

I, I.

S..... I'• "• ° 5..ma a :;

I 1 ' MAIN ST. SANTA MONIV , CA•NI. I..

56

RIAi5t

SECRET 5r

L E If4z, A

Moscow

POLAND

I L A CK S E A :

IFilg. I-h rala yseno western RussiaI

Drown schemnotico Ily in convential blo ck and white,

!. onide to __ete s..ighin or 7 1t~ipt n .I -!;,o;lJO~ig. !h etw~n i~nk pf'P.0 y, i qe iiTj0I
riR~ tI

Historical Remark: True Motivation 10 | 13

Unlike what Ford and Fulkerson say, the interest of Harris and Ross was not to find a
maximum flow. They write:

"Air power is an effective means of interdicting an enemy’s rail system,
and such usage is a logical and important mission for this arm. . . .The
present paper describes the fundamentals of a method intended to
help the specialist who is engaged in estimating railway capabilities,
so that he might more readily accomplish this purpose and thus assist
the commander and his staff with greater efficiency than is possible
at present."

10

Introduction to

Linear and Combinatorial Optimization

Maximum Flows

10.3 Ford-Fulkerson-Algorithm

Ford-Fulkerson Algorithm 10 | 16

Corollary 10.8 A feasible s-t-flow x is maximum if and only if Dx does not contain
an s-t-dipath.

Ford-Fulkerson Algorithm
i set x ∶= 0;

ii while there is an s-t-dipath P in Dx

iii set x ∶= x + � ⋅ �P with � ∶= min{ux(a) ∣ a ∈ P};

�P ∈ {0, 1, −1}A is the characteristic vector of dipath P defined by

�P(a) ∶= ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if a ∈ P,−1 if a−1 ∈ P,
0 otherwise,

for all a ∈ A.

Termination of the Ford-Fulkerson Algorithm 10 | 17

Theorem 10.9
a If all capacities are rational, then the algorithm terminates with a maximum
s-t-flow.

b If all capacities are integral, it finds an integral maximum s-t-flow.

Proof: b we prove by induction that x is integral throughout the run of the algorithm

x ≡ 0 at the beginning

if x is integral, then all residual capacities ux(a) are integral

thus � is integral and x + ��P is integral

flow value increases in each iteration by at least 1
the value of any feasible flow is bounded by the finite capacity of an s-t-cut

the algorithm terminates after a finite number of iterations

a reduce to integral capacities by scaling

Running Time of Ford-Fulkerson Algorithm 10 | 18

Observation: If an arbitrary x-augmenting path is chosen in every iteration, the
Ford-Fulkerson Algorithm might behave rather badly.

Example:

s t

k

k

1

k

k

capacities

Remark: There exist instances with finite irrational capacities where the Ford-Fulkerson
Algorithm never terminates and the flow value converges to a value that is strictly
smaller than the maximum flow value (see exercise).

Theorem 10.10 If all capacities are integral and the maximum flow value is K < ∞,
then the Ford-Fulkerson Algorithm terminates after at most K iterations. Its running
time is O(m ⋅ K) in this case (i.e., pseudo-polynomial).

Proof: In each iteration the integral flow value increases by at least 1.

Edmonds-Karp Algorithm 10 | 19

A variant of the Ford-Fulkerson Algo. is the Edmonds-Karp Algorithm:

In each iteration, choose shortest s-t-dipath in Dx (using BFS).

(Here, the length of a dipath P is the number of arcs in P.)

Example. For the following digraph, the algorithm needs two iterations.

s t

k

k

1

k

k

capacities

Theorem 10.11 The Edmonds-Karp Algorithm terminates after at most n ⋅m
iterations; its running time is O(n ⋅m2).

Prerequisites for the Proof of Thm. 10.11 10 | 20

dx(v,w) ∶= length of a shortest v-w-dipath in Dx

Lemma 10.12 Throughout the iterations of the algorithm, for each v ∈ V the
distances dx(s, v) and dx(v, t) never decrease.

Proof:
for a contradiction, assume that there are consecutive iterations with flows x and x ′
such that dx(s, v) > dx ′(s, v)
choose v with this property and dx ′(s, v) > 0 minimal

let P be a shortest s-v-path in Dx ′ and w be the predecessor of v on P

dx(s, v) > dx ′(s, v) = dx ′(s,w) + 1 ≥ dx(s,w) + 1

implies that a = (w, v) ∈ Ax ′ ⧵ Ax

in Dx flow was augmented along a shortest s-t-dipath containing a−1 = (v,w), thus
dx(s,w) = dx(s, v) + 1
we obtain dx(s, v) > dx(s,w) + 1 = dx(s, v) + 2, a contradiction

analogous argument for dx(v, t)

Prerequisites for the Proof of Thm. 10.11 (Cont.) 10 | 21

Ãx ∶= {a ∈ Ax ∣ a is on some shortest s-t-path in Dx}.

Lemma 10.13 If dx(s, t) = dx ′(s, t) for two consecutive flows x and x ′, then
Ãx ′ ⊊ Ãx .

Proof:

for a contradiction, suppose that dx(s, t) = dx ′(s, t), but there is
a = (v,w) ∈ Ãx ′ ⧵ Ãx , then, by Lemma 10.12,

dx(s, t)=dx ′(s, t)=dx ′(s, v)+1+dx ′(w, t)≥dx(s, v)+1+dx(w, t)
since a ∉ Ãx , in Dx flow was augmented along shortest s-t-dipath containing
a−1 = (w, v), thus, we obtain the contradiction

dx(s, t) = dx(s,w) + 1 + dx(v, t)= (dx(s, v) − 1) + 1 + (dx(w, t) − 1)= dx(s, v) + dx(w, t) − 1

thus Ãx ′ ⊆ Ãx , for the bo�leneck arc a ∈ Ãx on the shortest s-t-dipath in Dx chosen
by the algorithm, we have a ∉ Ãx ′ , thus, Ãx ′ ⊊ Ãx

Proof of Thm. 10.11 10 | 22

Proof:

by Lemma 10.12, dx(s, t) is non-decreasing and 1 ≤ dx(s, t) ≤ n − 1 throughout the
algorithm

by Lemma 10.13, there can be at most m consectuive iterations without increase of
dx(s, t)
the algorithm has at most nm iterations

10

Introduction to

Linear and Combinatorial Optimization

Maximum Flows

10.4 Flows and LPs

Arc-Based LP Formulation for Maximum Flows 10 | 24

Straightforward LP formulation of the maximum s-t-flow problem:max ∑
a∈�+(s) xa − ∑

a∈�−(s) xa
s.t. ∑

a∈�−(v) xa − ∑
a∈�+(v) xa = 0 for all v ∈ V ⧵ {s, t}

xa ≤ u(a) for all a ∈ A

xa ≥ 0 for all a ∈ A

Dual LP: min ∑
a∈A u(a) ⋅ za

s.t. yw − yv + z(v,w) ≥ 0 for all (v,w) ∈ A

ys = 1, yt = 0
za ≥ 0 for all a ∈ A

Dual Solutions and s-t-Cuts 10 | 25

min ∑
a∈A u(a) ⋅ za

s.t. yw − yv + z(v,w) ≥ 0 for all (v,w) ∈ A

ys = 1, yt = 0
za ≥ 0 for all a ∈ A

s-t-cut �+(U), U ⊆ V ⧵ {t}, s ∈ U yields feasible dual solution (y, z) of value
u(�+(U)) where y = �U and z = ��+(U)

Example:

primal:

s

v

w

t

3 |4

2 |2

1 |1

2 |2

3 |5

dual:

s

v

w

t

0 |4

1 |2

1 |1

1 |2

0 |5

1 0

1

0

Theorem 10.14 There exists an s-t-cut �+(U) (with U ⊆ V ⧵ {t}, s ∈ U) such that
the corresponding dual solution (y, z) is an optimal dual solution.

Proof: follows directly from the Max-Flow-Min-Cut-Theorem.

Dual Solutions and s-t-Cuts 10 | 25

min ∑
a∈A u(a) ⋅ za

s.t. yw − yv + z(v,w) ≥ 0 for all (v,w) ∈ A

ys = 1, yt = 0
za ≥ 0 for all a ∈ A

s-t-cut �+(U), U ⊆ V ⧵ {t}, s ∈ U yields feasible dual solution (y, z) of value
u(�+(U)) where y = �U and z = ��+(U)
Theorem 10.14 There exists an s-t-cut �+(U) (with U ⊆ V ⧵ {t}, s ∈ U) such that
the corresponding dual solution (y, z) is an optimal dual solution.

Proof: follows directly from the Max-Flow-Min-Cut-Theorem.

Flow Decomposition 10 | 26

Theorem 10.15 For an s-t-flow x in D, there exist s-t-dipaths P1, … ,Pk and
dicycles C1, … ,C� in D with k + � ≤ m and yP1 , … ,yPk ,yC1 , … ,yC� ≥ 0 with

xa = ∑
i∶a∈Pi yPi + ∑

j∶a∈Cj

yCj for all a ∈ A.

Moreover, the value of x is ∑k
i=1 yPi .

Example: arc flow flow decomposition

s t
2

2 1

3

1

2

2 2
2

1

11

1

1

s t

Proof: by induction on the support of x
choose a = (v,w) ∈ A with x(a) > 0 arbitrarily
if v ≠ s, by flow conservation, there a′ ∈ �−(v) with x(a′) > 0
if w ≠ t, by flow conservation, there is a′′ ∈ �+(w) with x(a′′) > 0
iterating this argument yields either an s-t-dipath or a dicycle Q
set yQ ∶= mina∈Q x(a), x ′ = x − yQ ⋅ �Q
for an s-t-flow x with flow decomposition as in Theorem 10.15, let x ′

a ∶= ∑i∶a∈Pi yPi
for all a ∈ A. Then x ′ is an s-t-flow of the same value as x and x ′

a ≤ xa for all a ∈ A.

Flow Decomposition 10 | 26

Theorem 10.15 For an s-t-flow x in D, there exist s-t-dipaths P1, … ,Pk and
dicycles C1, … ,C� in D with k + � ≤ m and yP1 , … ,yPk ,yC1 , … ,yC� ≥ 0 with

xa = ∑
i∶a∈Pi yPi + ∑

j∶a∈Cj

yCj for all a ∈ A.

Moreover, the value of x is ∑k
i=1 yPi .

Example: arc flow alternative flow decomposition

s t
2

2 1

3

1

2

2

2

2

1

11

1
1

s t

Proof: by induction on the support of x
choose a = (v,w) ∈ A with x(a) > 0 arbitrarily
if v ≠ s, by flow conservation, there a′ ∈ �−(v) with x(a′) > 0
if w ≠ t, by flow conservation, there is a′′ ∈ �+(w) with x(a′′) > 0
iterating this argument yields either an s-t-dipath or a dicycle Q
set yQ ∶= mina∈Q x(a), x ′ = x − yQ ⋅ �Q
for an s-t-flow x with flow decomposition as in Theorem 10.15, let x ′

a ∶= ∑i∶a∈Pi yPi
for all a ∈ A. Then x ′ is an s-t-flow of the same value as x and x ′

a ≤ xa for all a ∈ A.

Flow Decomposition 10 | 26

Theorem 10.15 For an s-t-flow x in D, there exist s-t-dipaths P1, … ,Pk and
dicycles C1, … ,C� in D with k + � ≤ m and yP1 , … ,yPk ,yC1 , … ,yC� ≥ 0 with

xa = ∑
i∶a∈Pi yPi + ∑

j∶a∈Cj

yCj for all a ∈ A.

Moreover, the value of x is ∑k
i=1 yPi .

Proof: by induction on the support of x
choose a = (v,w) ∈ A with x(a) > 0 arbitrarily
if v ≠ s, by flow conservation, there a′ ∈ �−(v) with x(a′) > 0
if w ≠ t, by flow conservation, there is a′′ ∈ �+(w) with x(a′′) > 0
iterating this argument yields either an s-t-dipath or a dicycle Q
set yQ ∶= mina∈Q x(a), x ′ = x − yQ ⋅ �Q
for an s-t-flow x with flow decomposition as in Theorem 10.15, let x ′

a ∶= ∑i∶a∈Pi yPi
for all a ∈ A. Then x ′ is an s-t-flow of the same value as x and x ′

a ≤ xa for all a ∈ A.

Path-Based LP Formulation 10 | 27

Let  be the set of all s-t-dipaths in D.max ∑
P∈ yP

s.t. ∑
P∈∶a∈P yP ≤ u(a) for all a ∈ A

yP ≥ 0 for all P ∈ 

Dual LP: min ∑
a∈A u(a) ⋅ za

s.t. ∑
a∈P za ≥ 1 for all P ∈ 

za ≥ 0 for all a ∈ A
Remarks.
Notice that | | and thus the number of variables of the primal LP and the number of
constraints of the dual LP can be exponential in n and m.

Dual Solutions and s-t-Cuts 10 | 28

min ∑
a∈A u(a) ⋅ za

s.t. ∑
a∈P za ≥ 1 for all P ∈ 

za ≥ 0 for all a ∈ A

s-t-cut �+(U), U ⊆ V ⧵ {t}, s ∈ U yields feasible dual solution z of value u(�+(U))
where z = ��+(U)

Example:

primal: 4 2

2

2

2 1 1 5s

v

w

t

dual:

s

v

w

t

4
0
2
1

11

2
1
5
0

Theorem 10.16 There exists an s-t-cut �+(U) (with U ⊆ V ⧵ {t}, s ∈ U) such that
the corresponding dual solution z is an optimal dual solution.

Dual Solutions and s-t-Cuts 10 | 28

min ∑
a∈A u(a) ⋅ za

s.t. ∑
a∈P za ≥ 1 for all P ∈ 

za ≥ 0 for all a ∈ A

s-t-cut �+(U), U ⊆ V ⧵ {t}, s ∈ U yields feasible dual solution z of value u(�+(U))
where z = ��+(U)
Theorem 10.16 There exists an s-t-cut �+(U) (with U ⊆ V ⧵ {t}, s ∈ U) such that
the corresponding dual solution z is an optimal dual solution.

10

Introduction to

Linear and Combinatorial Optimization

Maximum Flows

10.5 Preflow-Push-Algorithm

Another Algorithmic Approach 10 | 30

a feasible flow x is a maximum s-t-flow if it fulfills two conditions:

i exx(v) = 0 for all v ∈ V ⧵ {s, t}; (flow conservation)

ii there is no s-t-dipath in Dx .

Ford-Fulkerson and Edmonds-Karp always fulfill the first condition and terminate as
soon as the second condition is fulfilled.

the Goldberg-Tarjan Algorithm (or Push-Relabel Algorithm, or Preflow-Push
Algorithm) always fulfills the second condition and terminates as soon as the first
condition is fulfilled.

Definition 10.17
i A flow x is called preflow if exx(v) ≥ 0 for all v ∈ V ⧵ {s}.

ii A node v ∈ V ⧵ {s, t} is called active if exx(v) > 0.

a preflow is feasible if it satisfies the capacity constraints

Valid Labelings and Admissible Arcs 10 | 31

Definition 10.18 Let x be a preflow. A function d ∶ V →ℤ≥0 with d(s) = n and
d(t) = 0 is called valid labeling if d(v) ≤ d(w) + 1 for all (v,w) ∈ Ax .
An arc (v,w) ∈ Ax is called admissible if v is active and d(v) = d(w) + 1.

dx(v,w) ∶= length of a shortest v-w-dipath in Dx (in terms of # arcs)

Observation 10.19 Let x be a feasible preflow and d a valid labeling. Then
dx(v, t) ≥ d(v) for all v ∈ V .

Proof:

consider v ∈ V with dx(v, t) < ∞, i.e., there is a shortest v-t-dipath in Dx

v t 0

≤ 1

≤ 2≤ dx(v, t)−2
≤ dx(v, t)−1

≤ dx(v, t)

Valid Labelings and Admissible Arcs (Cont.) 10 | 32

Lemma 10.20 Let x be a feasible preflow and d a valid labeling.

a There is a v-s-dipath in Dx for every active node v.

b There is no s-t-dipath in Dx .

Proof: a

let v be an active node

R ∶= {w ∈ V ∣ there is a v-w-dipath in Dx}
we show that s ∈ R

by construction x(a) = 0 for all a ∈ �−(R)∑w∈R exx(w) = exx(R) =∑a∈�−(R) x(a) − ∑a∈�+(R) x(a) ≤ 0∑w∈R exx(w) ≤ 0 and exx(v) > 0 together imply that
s ∈ R

b follows from d(s) = n and Observation 10.19

v

R

a
a−1

Goldberg-Tarjan Algorithm 10 | 33

Goldberg-Tarjan Algorithm
1 for all a ∈ �+(s) set x(a) ∶= u(a);

for all a ∈ A ⧵ �+(s) set x(a) ∶= 0;
set d(s) ∶= n; for all v ∈ V ⧵ {s} set d(v) ∶= 0;

2 while there is an active node v do

3 if there is no admissible arc a ∈ �+Dx
(v) then Relabel(v);

4 choose an admissible arc a ∈ �+Dx
(v) and Push(a);

Relabel(v)
set d(v) ∶= min{d(w) + 1 ∣ (v,w) ∈ Ax};

Push(a)
augment x along arc a by
 ∶= min{exx(v),ux(a)}; (a ∈ �+Dx

(v))

Example 10 | 34

0

1

2

3

4

5

6

7

8

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s t
16

13
10
4

12
9

14
7

20
4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s

t

16 13

10
4

12
9

14
7

20
4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

16 13
t

16

13

10
4

12
9

14
7

20
4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

16

13
t

16

13

10
4

12

9

14

7
20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

16 13
t

16

13

10
4

12

9

1
13

7
20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

16

13
t

16

13

10
4

12

9

1
13

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

16 7

2
t

4

16

13

10
4

12

9

1
13

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

16 7

2

t
4

16

13

10
4

12

9

1
13

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

16

2

7
t

4

16

13

10
4

12

9

3
11

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

16 2

7
t

4

16

13

10
4

12
9

3
11

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

4 2

19
t

4

16

13

10
4

12
9

3
11

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

4

2

19
t

4

16
13

10
4

12 9

3
11

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

6

19
t

4

16
13

6
8

12 9

3
11

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

6

19
t

4

16

13

6
8

12

9

3
11

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

6

19
t

4

16

13

12
2

12

9

3
11

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

6

19
t

4

16

13

12
2

12

9

3
11

7

20

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

6

t
23

16

13

12
2

12

9

3
11

7

1
19 4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

6

t
23

16
13

12
2

12 9

3
11

7

1
19 4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

6

t
23

16
13

6
8

12 9

3
11

7

1
19 4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

3

3

t
23

16
13

6
8

12 9
14

7

1
19 4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

3

3

t
23

16

13

6
8

12

9
14

7

1
19 4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

3

3

t
23

16

13

9
5

12

9
14

7

1
19 4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29 3

3

t
23

16
13

9
5

12 9
14

7

1
19 4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

3

3

t
23

16
13

6
8

12 9
14

7

1
19 4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

3

3

t
23

16
13

6
8

12 9

14

7

1
19

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

6

t
23

16
13

6
8

12 9

3
11

7

1
19

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
29

6

t
23

16

13

6
8

12

9

3
11

7

1
19

4

s t
16

13
104

12

14

9 7
20

4

Example 10 | 34

0

1

2

3

4

5

6

7

8

s
23

t
23

16

6
7

6
8

12

9

3
11

7

1
19

4

s t
16

13
104

12

14

9 7
20

4

Analysis of the Goldberg-Tarjan Algorithm 10 | 35

Lemma 10.21 At any stage of the algorithm, x is a feasible preflow and d a valid
labeling.

Proof: feasible preflow

algorithm starts with feasible preflow

x is only modified during Push operations

Push operations obviously maintain capacity constraints and exx(v) ≥ 0
valid labeling

algorithm starts with valid labeling

Relabel operation sets d(v) ∶= min{d(w) + 1 ∣ (v,w) ∈ Ax} so that after
relabeling d(v) ≤ d(w) + 1 for all (v,w) ∈ Ax

Push for arc a = (v,w) is applied only if d(v) = d(w) + 1, this may add the
backward arc (w, v) to Ax

in that case d(w) = d(v) − 1, thus, d(w) ≤ d(v) + 1

Analysis (Cont.) 10 | 36

Corollary 10.22 After termination of the algorithm, x is a maximum s-t-flow.

Proof:

at termination exx(v) = 0 for all v ∈ V ⧵ {s, t}, i.e., x is an s-t-flow

optimality follows since there is no s-t-dipath in Dx by Lemma 10.20 b

Lemma 10.23
a A label d(v) is never decreased by the algorithm.

b Calling Relabel(v) strictly increases d(v).
c d(v) ≤ 2n − 1 throughout the algorithm.

d The number of Relabel operations is at most 2n2.

Proof of Lemma 10.23 10 | 37

Proof: a d(v) is non-decreasing, b Relabel(v) strictly increases d(v)
only Relabel operations change d(v)
since d is valid labeling d(v) ≤ d(w) + 1 for all (v,w) ∈ Ax ,
when Relabel(v) is called d(v) < d(w) + 1 for all (v,w) ∈ Ax

se�ing d(v) ∶= min{d(w) + 1 ∣ (v,w) ∈ Ax} increases d(v) by at least 1
c d(v) ≤ 2n − 1
d(v) is only increased when v is active

if v is active, by Lemma 10.20, there is a v-s-dipath P in Dx

for P = v0, a0, v1, a1, … , ak, vk with v0 = v and vk = s, we have dvi ≤ d(vi+1) + 1 for
all i, hence,

d(v) ≤ d(s) + k ≤ n + (n − 1) = 2n − 1

d the number of Relabel operations ≤ 2n2

by b and c , for each of the n − 2 nodes v ∈ V ⧵ {s, t}, Relabel(v) is called at
most 2n − 1 times

Bounding the Number of Push Operations 10 | 38

Push operation on arc a is called saturating if, after the Push, arc a has
disappeared from the residual graph Dx

otherwise, the Push operation is called nonsaturating and node v with a ∈ �+(v)
is no longer active

Lemma 10.24 The number of saturating Push operations is in O(m ⋅ n).
Proof: we show that on any arc a ∈ A ∪A−1 there can be at most n saturating Push
operations

let a = (v,w) arbitrary

at a saturating Push on a we have d(v) = d(w) + 1, and a disappears from Dx

arc a can only reappear in Dx after flow has been pushed through a−1 which only
happens if d(w) = d(v) + 1
thus, between two consecutive Push operations, the labels of v and w have
increased by at least 2
by Lemma 10.23 c this can happen at most n times

Bounding the Number of Push Operations 10 | 39

Lemma 10.25 The number of nonsaturating Push operations is at most
O(m ⋅ n2).

Proof: see exercise

Lemma 10.26 If the algorithm always chooses an active node v with d(v)
maximum, then the number of nonsaturating Push operations is in O(n3).

Proof: we show that for any node v ∈ V there can be at most 2n2 nonsaturating
Push operations

after the nonsaturating Push, v becomes inactive and since flow is sent to nodes of
smaller label, no node with label larger than d(v) can become active before the next
Relabel operations

v can only become active again after a Relabel operation

by Lemma 10.23 this can happen at most 2n2 times

Running Time of the Goldberg-Tarjan Algorithm 10 | 40

Theorem 10.27 The Goldberg-Tarjan Algorithm finds a maximum s-t-flow in
O(mn2) time.

Theorem 10.28 If the algorithm always chooses an active node v with d(v)
maximum, its running time is O(n3).
Remarks

If the algorithm always chooses an active node v with d(v) maximum, one can
show that the number of nonsaturating Push operations and thus the total
running time is at most O(n2√m).
The currently best known running time of a maximum s-t-flow algorithm is
O(nm) (Orlin 2013).

