Introduction to

Linear and Combinatorial Optimization

Bipartite Matchings

11.1 Definition and Computation

Definition 11.1 A matching in an undirected graph $G=(V, E)$ is a subset of edges $M \subseteq E$ with $e \cap e^{\prime}=\varnothing$ for all $e, e^{\prime} \in M$ with $e \neq e^{\prime}$.

Matching M

Matching M in a bipartite graph

- recall that a graph $G=(V, E)$ is bipartite if V can be partitioned into L and R such that $E \subseteq\{\{l, r\}: l \in L, r \in R\}$
- a matching M is called a maximum matching if it has maximum cardinality, i.e., $|M| \geq\left|M^{\prime}\right|$ for all matchings M^{\prime}
- a matching is called perfect if $|M|=|V| / 2$
- computation of maximum matchings in general graphs \longrightarrow ADM II
- the computation of maximum matchings in bipartite graphs can be done via a reduction to the maximum flow problem in $O(n m)$

Introduction to

Linear and Combinatorial Optimization

Bipartite Matchings

11.2 Kőnig's Theorem

Definition 11.2 A node cover for an undirected graph $G=(V, E)$ is a subset of nodes $C \subseteq V$ with $e \cap C \neq \varnothing$ for all $e \in E$.

Node cover C

Node cover C in a bipartite graph

Observation: $|M| \leq|C|$ for any matching M and node cover C.

Theorem 11.3 In bipartite graphs, the maximum cardinality of a matching equals the minimum cardinality of a node cover.

Proof: (Idea) Use max-flow min-cut theorem. Consider min-cut $\delta^{-}(U)$:

Observation: Kőnig's Theorem does not hold for arbitrary graph:
That is, there can be a 'duality gap' up to a factor of 2:
 $|M| \leq|C| \leq 2|M|$ for max matching M and min node cover C. (Why?)

Introduction to

Linear and Combinatorial Optimization

Bipartite Matchings

11.3 Hall's Theorem

When does a bipartite graph have a perfect matching?

- $|L|=|R|$ is clearly necessary
- there is no perfect matching if there is a set $S \subseteq L$ with too few potential matches $N(S)$, i.e., $|S|>|N(S)|$ where

$$
N(S)=\{r \in R: \exists\{l, r\} \in E \text { with } l \in S\}
$$

Theorem 11.4 (Marriage Theorem) A bipartite graph with $|L|=|R|$ has a perfect matching if and only if $|N(S)| \geq|S|$ for all $S \subseteq L$.

Proof:

- if $|N(S)|<|S|$ for some $S \subseteq L$, there is no perfect matching
- suppose no perfect matching
- consider min-cut $\delta^{-}(U), u\left(\delta^{-}(U)\right)<|L|$
- $L^{-}=L \backslash U, L^{+}=L \cap U, R^{-}=R \backslash U$
- $u\left(\delta^{-}(U)\right)=\left|L^{+}\right|+\left|R^{-}\right|$
- $N\left(L^{-}\right) \subseteq R^{-}$since $\delta^{-}(U)$ cannot contain
 ∞-arcs, thus,

$$
\left|N\left(L^{-}\right)\right| \leq\left|R^{-}\right|=u\left(\delta^{-}(U)\right)-\left|L^{+}\right|<|L|-\left|L^{+}\right|=\left|L^{-}\right|
$$

- choose $S=L^{-}$

Introduction to

Linear and Combinatorial Optimization

Bipartite Matchings

11.4 Stable Matchings

Given: set M of men and set W of women with $|M|=|W|=n$
every $m \in M$ has a total preference order over W
every $w \in W$ has a total preference order over M
Task: find a stable matching
Stability: no incentive for a pair to undermine assignment by joint action.

- unmatched pair m, w is a blocking pair if man m and woman w prefer each other to their current partners
- Stable matching: perfect matching with no blocking pair.

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Yann	Xaver	Zoltan
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

Given: set M of men and set W of women with $|M|=|W|=n$
every $m \in M$ has a total preference order over W
every $w \in W$ has a total preference order over M
Task: find a stable matching
Stability: no incentive for a pair to undermine assignment by joint action.

- unmatched pair m, w is a blocking pair if man m and woman w prefer each other to their current partners
- Stable matching: perfect matching with no blocking pair.

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Yann	Xaver	Zoltan
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Yann	Xaver	Zoltan
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Yann	Xaver	Zoltan
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Yann	Xaver	Zoltan
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

Computing a Stable Matching

- for $m \in M$ and $w, w^{\prime} \in W$ we write $w<_{m} w^{\prime}$ if m prefers w to w^{\prime}
- For $w \in W$ and $m, m^{\prime} \in M$ we write $m<{ }_{w} m^{\prime}$ if w prefers m to m^{\prime}

Gale-Shapley Algorithm

1 initially, all men and women are free (i.e., not engaged)
2 while there exists a free man $m \in M$
3 let w be first woman (w.r.t. $<m$) to whom m has not yet proposed
4 if w is free or engaged to $m^{\prime} \in M$ with $m<_{w} m^{\prime}$
$5 \quad m$ and w become engaged (and m^{\prime} becomes free)

Theorem 11.5 The Gale-Shapley Algorithm finds a stable matching in time $O\left(n^{2}\right)$.
D. Gale, L. S. Shapley: College Admissions and the Stability of Marriage, American Mathematical Monthly 69,

Gale-Shapley Algorithm: Example

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Zoltan	Xaver	Yann
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

Gale-Shapley Algorithm: Example

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Zoltan	Xaver	Yann
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

Gale-Shapley Algorithm: Example

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Zoltan	Xaver	Yann
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

Gale-Shapley Algorithm: Example

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Zoltan	Xaver	Yann
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

Gale-Shapley Algorithm: Example

M	1st	2nd	3rd
Xaver	Anne	Birte	Clara
Yann	Birte	Anne	Clara
Zoltan	Anne	Birte	Clara

W	1st	2nd	3rd
Anne	Zoltan	Xaver	Yann
Birte	Xaver	Yann	Zoltan
Clara	Xaver	Yann	Zoltan

Proof of Theorem 11.5

The algorithm computes a perfect matching in time $O\left(n^{2}\right)$ because:
ii The edges joining currently engaged couples always form a matching.
Iil By construction, once a woman w is engaged, she always remains engaged while her fiancé may change (and only get better w.r.t. < w).
囲 The woman w in Step 3 always exists: Since $|M|=|W|$ and m is free, there exists a free woman w^{\prime} to whom m has not yet proposed by iif.
(iv In every iteration, a man proposes. Since every man proposes to every woman at most once, the number of iterations is bounded by $O\left(n^{2}\right)$.
We now argue that the computed matching is stable:

- Assume by contradiction that there is an instability m, w, i.e., m is matched with $w^{\prime}>_{m} w$ and w is matched with $m^{\prime}>_{w} m$.
- Before proposing to his wife w^{\prime}, m must have proposed to w.
- From then on, by 囵, w is always engaged to some man whom she likes at least as good as m. z

Example:

- All three matchings (yellow, blue, red) are stable.
- The yellow matching found by the Gale-Shapley Algorithm is best possible for all men and worst possible for all women.
- The red matching is best possible for all women and worst possible for all men (found by Gale-Shapley if women propose instead of men).
- The blue matching lies inbetween and might be a good compromise.

For $x \in M \cup W$, let best (x) and worst (x) be the best and worst partner (w.r.t. $<_{x}$), respectively, that x can have in any stable matching.

Theorem 11.6 The Gale-Shapley Algorithm matches every man m to best (m) and every woman w to worst (w). In particular, it finds a unique stable matching.

Remarks

- stable matchings can be generalized to arbitrary bipartite graphs (not necessarily complete, $|M| \neq|W|$ etc.)
- in non-bipartite graphs, the problem is known as the Stable Roommates Problem.
- in 2012, the Nobel Memorial Prize in Economics was awarded to Lloyd S. Shapley and Alvin E. Roth "for the theory of stable allocations and the practice of market design."

Claim: For each $m \in M$, $\operatorname{worst}(\operatorname{best}(m))=m$.
Proof: Otherwise, for $w:=\operatorname{best}(m)$ we get $m<_{w} \operatorname{worst}(w)$.
Consider stable matching where w is matched with worst (w).
Then, m is matched with some $w^{\prime} \neq w=\operatorname{best}(m)$ such that $w<_{m} w^{\prime}$.
As $m<{ }_{w}$ worst (w) and $w<_{m} w^{\prime}$, pair m, w is a blocking pair. z

Proof of Theorem 11.6:

By contradiction, consider first iteration in which some $m \in M$ is rejected by w := best (m) in favor of $m^{\prime}<_{w} m$.
Then, m^{\prime} has not previously been rejected by best $\left(m^{\prime}\right)$ and thus likes w better than any $w^{\prime} \neq w$ he can be matched with in a stable matching.
Consider a stable matching where m is matched with $w=\operatorname{best}(m)$.
Then m^{\prime} is matched with $w^{\prime}>_{m^{\prime}} w$ and m^{\prime}, w is a blocking pair. $\{$

