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Definition 11.1 A matching in an undirected graph G = (V ,E) is a subset of edges
M ⊆ E with e ∩ e ′ = ∅ for all e, e ′ ∈ M with e ≠ e ′.

Matching M Matching M in a bipartite graph

recall that a graph G = (V ,E) is bipartite if V can be partitioned into L and R such
that E ⊆ {{l, r} ∶ l ∈ L, r ∈ R}
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a matching M is called a maximum matching if it has maximum cardinality, i.e.,|M| ≥ |M ′| for all matchings M ′
a matching is called perfect if |M| = |V |/2
computation of maximum matchings in general graphs ⟶ ADM II

the computation of maximum matchings in bipartite graphs can be done via a
reduction to the maximum flow problem in O(nm)
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Definition 11.2 A node cover for an undirected graph G = (V ,E) is a subset of
nodes C ⊆ V with e ∩ C ≠ ∅ for all e ∈ E.

Node cover C Node cover C in a bipartite graph

Observation: |M| ≤ |C| for any matching M and node cover C.
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Theorem 11.3 In bipartite graphs, the maximum cardinality of a matching equals
the minimum cardinality of a node cover.

Proof: (Idea) Use max-flow min-cut theorem. Consider min-cut �−(U ):

U
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Observation: Kőnig’s Theorem does not hold for arbitrary graph:

That is, there can be a ‘duality gap’ up to a factor of 2:|M| ≤ |C| ≤ 2|M| for max matching M and min node cover C. (Why?)
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When does a bipartite graph have a perfect matching?|L| = |R| is clearly necessary

there is no perfect matching if there is a set S ⊆ L with too few potential matches
N (S), i.e., |S| > |N (S)| where

N (S) = {r ∈ R ∶ ∃{l, r} ∈ E with l ∈ S}
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Theorem 11.4 (Marriage Theorem) A bipartite graph with |L| = |R| has a
perfect matching if and only if |N (S)| ≥ |S| for all S ⊆ L.

Proof:

if |N (S)| < |S| for some S ⊆ L, there is no
perfect matching

suppose no perfect matching

consider min-cut �−(U ), u(�−(U ))< |L|
L−=L ⧵ U , L+=L ∩ U , R−=R ⧵ U
u(�−(U )) = |L+| + |R−|
N (L−) ⊆ R− since �−(U ) cannot contain∞-arcs, thus,

U
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|N (L−)| ≤ |R−| = u(�−(U )) − |L+| < |L| − |L+| = |L−|
choose S = L−
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Given: set M of men and set W of women with |M| = |W | = n
every m ∈ M has a total preference order over W
every w ∈ W has a total preference order over M

Task: find a stable matching

Stability: no incentive for a pair to undermine assignment by joint action.

unmatched pair m,w is a blocking pair if man m and woman w prefer each other to
their current partners

Stable matching: perfect matching with no blocking pair.

M 1st 2nd 3rd

Xaver Anne Birte Clara
Yann Birte Anne Clara

Zoltan Anne Birte Clara

W 1st 2nd 3rd

Anne Yann Xaver Zoltan
Birte Xaver Yann Zoltan
Clara Xaver Yann Zoltan
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M 1st 2nd 3rd

Xaver Anne Birte Clara
Yann Birte Anne Clara

Zoltan Anne Birte Clara

W 1st 2nd 3rd

Anne Yann Xaver Zoltan
Birte Xaver Yann Zoltan
Clara Xaver Yann Zoltan
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for m ∈ M and w,w ′ ∈ W we write w ≺m w ′ if m prefers w to w ′
For w ∈ W and m,m′ ∈ M we write m ≺w m′ if w prefers m to m′
Gale-Shapley Algorithm

1 initially, all men and women are free (i.e., not engaged)

2 while there exists a free man m ∈ M

3 let w be first woman (w.r.t. ≺m) to whom m has not yet proposed

4 if w is free or engaged to m′ ∈ M with m ≺w m′
5 m and w become engaged (and m′ becomes free)

Theorem 11.5 The Gale-Shapley Algorithm finds a stable matching in time O(n2).
D. Gale, L. S. Shapley: College Admissions and the Stability of Marriage, American Mathematical Monthly 69,

9-14, 1962
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The algorithm computes a perfect matching in time O(n2) because:

i The edges joining currently engaged couples always form a matching.

ii By construction, once a woman w is engaged, she always remains engaged while
her fiancé may change (and only get be�er w.r.t. ≺w).

iii The woman w in Step 3 always exists: Since |M| = |W | and m is free, there exists a
free woman w ′ to whom m has not yet proposed by ii .

iv In every iteration, a man proposes. Since every man proposes to every woman at
most once, the number of iterations is bounded by O(n2).

We now argue that the computed matching is stable:

Assume by contradiction that there is an instability m,w, i.e., m is matched
with w ′ ≻m w and w is matched with m′ ≻w m.

Before proposing to his wife w ′, m must have proposed to w.

From then on, by ii , w is always engaged to some man whom she likes at least as
good as m.E
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Example:
A B C

X Y Z

3

1

3

1

3

1

2

2

2

2

2

2

1

3

1

3

1

3

All three matchings (yellow, blue, red) are stable.

The yellow matching found by the Gale-Shapley Algorithm is best possible for all men
and worst possible for all women.

The red matching is best possible for all women and worst possible for all men (found
by Gale-Shapley if women propose instead of men).

The blue matching lies inbetween and might be a good compromise.
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For x ∈ M ∪W , let best(x) and worst(x) be the best and worst partner (w.r.t. ≺x),
respectively, that x can have in any stable matching.

Theorem 11.6 The Gale-Shapley Algorithm matches every man m to best(m) and
every woman w to worst(w). In particular, it finds a unique stable matching.

Remarks
stable matchings can be generalized to arbitrary bipartite graphs (not necessarily
complete, |M| ≠ |W | etc.)

in non-bipartite graphs, the problem is known as the Stable Roommates Problem.

in 2012, the Nobel Memorial Prize in Economics was awarded to Lloyd S. Shapley
and Alvin E. Roth “for the theory of stable allocations and the practice of market
design.”
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Claim: For each m ∈ M, worst(best(m)) = m.

Proof: Otherwise, for w ∶= best(m) we get m ≺w worst(w).
Consider stable matching where w is matched with worst(w).
Then, m is matched with some w ′ ≠ w = best(m) such that w ≺m w ′.
As m ≺w worst(w) and w ≺m w ′, pair m,w is a blocking pair.E

Proof of Theorem 11.6:

By contradiction, consider first iteration in which some m ∈ M is rejected
by w ∶= best(m) in favor of m′ ≺w m.

Then, m′ has not previously been rejected by best(m′) and thus likes w be�er than any
w ′ ≠ w he can be matched with in a stable matching.

Consider a stable matching where m is matched with w = best(m).
Then m′ is matched with w ′ ≻m′ w and m′,w is a blocking pair.E


