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11.1 Definition and Computation



[ Matchings |2

Definition 11.1 A matching in an undirected graph G = (V, E) is a subset of edges
Mc Ewithene’ =@foralle,e’ € M withe # e’

N\ —
N

/

Matching Matching /! in a bipartite graph

. recall that a graph G = (V, E) is bipartite if V can be partitioned into L and R such
that Ec {{Lr} : l€ L, r € R}
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EEEE— Maximum Cardinality Matchings

« amatching M is called a maximum matching if it has maximum cardinality, i.e.,
|M| = |[M’| for all matchings M’

- a matching is called perfect if |M| = |V|/2
- computation of maximum matchings in general graphs —> ADM I

- the computation of maximum matchings in bipartite graphs can be done via a
reduction to the maximum flow problem in O(nm)
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11.2 K6nig’s Theorem



I Node Cover e

Definition 11.2 A node cover for an undirected graph G = (V, E) is a subset of

nodes Cc Vwithen C # @forall e € E.

—— o«

Node cover C Node cover C in a bipartite graph

Observation: | V| = |C| for any matching /\/ and node cover C.



| Kénig’s Theorem "l

Theorem 11.3 In bipartite graphs, the maximum cardinality of a matching equals
the minimum cardinality of a node cover.

Proof: (Idea) Use max-flow min-cut theorem. Consider min-cut 6~ (U):
o0

Z 2

Observation: Kénig’s Theorem does not hold for arbitrary graph: / \

—_ = A= A=\
—_ A= ==

t
U

That is, there can be a ‘duality gap’ up to a factor of 2:
|M| < |C| = 2|M| for max matching M and min node cover C. (Why?)
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11.3 Hall’s Theorem



I Perfect Matchings "

When does a bipartite graph have a perfect matching?

L| = |R| is clearly necessary

- there is no perfect matching if there is a set S = L with too few potential matches

N(S), e, |S| > [N(S)| where
N(S)={reR:3{Lr} € Ewithle S}



I Hall’s Theorem o

Theorem 11.4 (Marriage Theorem) A bipartite graph with |L| = |R| has a
perfect matching if and only if [IN(S)| = |S| for all S < L.

Proof: o
- if IN(S)| < |S| for some S c L, there is no 1 1
perfect matching
- suppose no perfect matching 1 1
. consider min-cut 8§~ (U), u(8~(U))<|L| 1 1_’0

« L"=L\U,L"=LnU,R =R\U

- u(6(U)) = | +|R]

« N(L") ¢ R since § (U) cannot contain
oo-arcs, thus,

INC = IR | = (8~ (U)) - |L7| < L] - [L7] = ||

« choose S = L~ O
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11.4 Stable Matchings



 — Stable Marriage/Matching Problem ————n

Given: set M of men and set W of women with |M| = |W|=n

Task:

every m € M has a total preference order over W
every w € W has a total preference order over M

find a stable matching

Stability: no incentive for a pair to undermine assignment by joint action.

- unmatched pair m, w is a blocking pair if man m and woman w prefer each other to

their current partners

« Stable matching: perfect matching with no blocking pair.

M 1st 2nd 3rd w 1st 2nd 3rd
Xaver Anne Birte Clara Anne  Yann  Xaver Zoltan
Yann Birte Anne Clara Birte Xaver Yann Zoltan

Zoltan Anne Birte Clara Clara Xaver Yann Zoltan
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M 1st 2nd 3rd
Xaver Anne Birte Clara
Yann Birte Anne Clara
Zoltan Anne Birte Clara

A
N
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Example

w 1st 2nd 3rd

Anne Yann Xaver Zoltan

Birte Xaver Yann Zoltan

Clara Xaver Yann Zoltan
B C
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w 1st 2nd 3rd
Anne Yann Xaver Zoltan
Birte Xaver Yann Zoltan
Clara Xaver Yann Zoltan
B C
N\
1 2 3 12/3
2 1 3 1.2 3
4 ~,



Example nie

M 1st 2nd 3rd w 1st 2nd 3rd
Xaver Anne Birte Clara Anne  Yann Xaver Zoltan
Yann Birte Anne Clara Birte Xaver Yann Zoltan
Zoltan Anne Birte Clara Clara Xaver Yann Zoltan

A B C

7'\

2\13 1 2 3 12/3

1T 2.3 2 1 3 1.2 3

XV \Y/ \Z



I Computing a Stable Matching ————— s

. form€ M and w,w € W we write w <,,, w’ if m prefers w to w’

« Forw € W and m, m’ € M we write m <,, m’ if w prefers m to m’

Gale-Shapley Algorithm
initially, all men and women are free (i.e., not engaged)
while there exists a free man m € M
let w be first woman (w.r.t. <,;) to whom m has not yet proposed
/

if wis free or engaged to m’ € M with m <, m

m and w become engaged (and m’ becomes free)

| Theorem 11.5 The Gale-Shapley Algorithm finds a stable matching in time O(n?).

D. Gale, L. S. Shapley: College Admissions and the Stability of Marriage, American Mathematical Monthly 69,
9-14, 1962



E— Gale-Shapley Algorithm: Example
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M 1st 2nd 3rd w 1st 2nd 3rd
Xaver Anne Birte Clara Anne Zoltan Xaver  Yann
Yann Birte Anne Clara Birte  Xaver Yann Zoltan
Zoltan Anne Birte Clara Clara Xaver Yann Zoltan

A C

N 7\ ]
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E— Gale-Shapley Algorithm: Example = 1

M 1st 2nd 3rd w 1st 2nd 3rd
Xaver Anne Birte Clara Anne Zoltan Xaver  Yann
Yann Birte Anne Clara Birte  Xaver Yann Zoltan
Zoltan Anne Birte Clara Clara Xaver Yann Zoltan

A C
N 7\ ]
31 1 3 1 2/3
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E— Gale-Shapley Algorithm: Example = 1

M 1st 2nd 3rd w 1st 2nd 3rd
Xaver Anne Birte Clara Anne Zoltan Xaver  Yann
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Zoltan Anne Birte Clara Clara Xaver Yann Zoltan
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EE— Gale-Shapley Algorithm: Example = 1

M 1st 2nd 3rd w 1st 2nd 3rd
Xaver Anne Birte Clara Anne Zoltan Xaver  Yann
Yann Birte Anne Clara Birte  Xaver Yann Zoltan

Zoltan Anne Birte Clara Clara Xaver Yann Zoltan
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— Gale-Shapley Algorithm: Example

M 1st 2nd 3rd w 1st 2nd 3rd
Xaver Anne Birte Clara Anne Zoltan Xaver  Yann
Yann Birte Anne Clara Birte  Xaver Yann Zoltan
Zoltan Anne Birte Clara Clara Xaver Yann Zoltan

X e mmmEmmmem== N =




| Proof of Theorem 11.5 s

The algorithm computes a perfect matching in time O(n?) because:

H The edges joining currently engaged couples always form a matching.

H By construction, once a woman w is engaged, she always remains engaged while
her fiancé may change (and only get better w.r.t. <,,).

B The woman w in Step 3 always exists: Since |[M| = |W| and m is free, there exists a
free woman w’ to whom m has not yet proposed by .

In every iteration, a man proposes. Since every man proposes to every woman at
most once, the number of iterations is bounded by O(n?).

We now argue that the computed matching is stable:

- Assume by contradiction that there is an instability m, w, i.e., m is matched
with w” >,, wand w is matched with m’ >,, m.

- Before proposing to his wife w’, m must have proposed to w.

« From then on, by H, w is always engaged to some man whom she likes at least as
good as m. 4 O



11|16

Multiplicity of Stable Matchings

|
Example:

A B C

\12 2/3\1 12/

1 27 3 3.1 2 2.3, 1

XV \Y/ \Z
« All three matchings ( , blue, red) are stable.
- The found by the Gale-Shapley Algorithm is best possible for all men

and worst possible for all women.

« The red matching is best possible for all women and worst possible for all men (found
by Gale-Shapley if women propose instead of men).

- The blue matching lies inbetween and might be a good compromise.



| Proposing Pays Off! niw

For x € M u W, let best(x) and worst(x) be the best and worst partner (w.r.t. <),
respectively, that x can have in any stable matching.

Theorem 11.6 The Gale-Shapley Algorithm matches every man m to best(m) and
every woman w to worst(w). In particular, it finds a unique stable matching.

Remarks

- stable matchings can be generalized to arbitrary bipartite graphs (not necessarily
complete, [M| # |W| etc.)

« in non-bipartite graphs, the problem is known as the Stable Roommates Problem.

« in 2012, the Nobel Memorial Prize in Economics was awarded to Lloyd S. Shapley

and Alvin E. Roth “for the theory of stable allocations and the practice of market
design”



I Proof of Theorem 11.6 e
Claim: For each m € M, worst(best(m)) = m.

Proof: Otherwise, for w : = best(m) we get m <,, worst(w).
Consider stable matching where w is matched with worst(w).
Then, m is matched with some W’ # w = best(m) such that w <, w’.

As m <., worst(w) and w <,, w’, pair m, w is a blocking pair. 7 O

Proof of Theorem 11.6:

By contradiction, consider first iteration in which some m € M is rejected

by w := best(m) in favor of m’ <,, m.

Then, m’ has not previously been rejected by best(m”) and thus likes w better than any
w’ # w he can be matched with in a stable matching.

Consider a stable matching where m is matched with w = best(m).

Then m’ is matched with w” >, wand m’, wis a blocking pair. 4 O



