Linear and Combinatorial Optimization

11.1 Definition and Computation

Matchings

11 2

Definition 11.1 A matching in an undirected graph G = (V, E) is a subset of edges $M \subseteq E$ with $e \cap e' = \emptyset$ for all $e, e' \in M$ with $e \neq e'$.

• recall that a graph G = (V, E) is bipartite if V can be partitioned into L and R such that $E \subseteq \{\{l, r\} : l \in L, r \in R\}$

Maximum Cardinality Matchings

- a matching M is called a maximum matching if it has maximum cardinality, i.e., $|M| \ge |M'|$ for all matchings M'
- a matching is called **perfect** if |M| = |V|/2
- computation of maximum matchings in general graphs \longrightarrow ADM II
- the computation of maximum matchings in bipartite graphs can be done via a reduction to the maximum flow problem in *O*(*nm*)

Linear and Combinatorial Optimization

11.2 Kőnig's Theorem

Node Cover

Definition 11.2 A node cover for an undirected graph G = (V, E) is a subset of nodes $C \subseteq V$ with $e \cap C \neq \emptyset$ for all $e \in E$.

Observation: $|M| \leq |C|$ for any matching *M* and node cover *C*.

Kőnig's Theorem

11 6

Theorem 11.3 In bipartite graphs, the maximum cardinality of a matching equals the minimum cardinality of a node cover.

Proof: (Idea) Use max-flow min-cut theorem. Consider min-cut $\delta^-(U)$:

Observation: Kőnig's Theorem does not hold for arbitrary graph:

That is, there can be a 'duality gap' up to a factor of 2: $|M| \le |C| \le 2|M|$ for max matching M and min node cover C. (Why?)

Linear and Combinatorial Optimization

11.3 Hall's Theorem

Perfect Matchings

When does a bipartite graph have a perfect matching?

- |L| = |R| is clearly necessary
- there is no perfect matching if there is a set $S \subseteq L$ with too few potential matches N(S), i.e., |S| > |N(S)| where

$$N(S) = \{r \in R : \exists \{l, r\} \in E \text{ with } l \in S\}$$

Hall's Theorem

Theorem 11.4 (Marriage Theorem) A bipartite graph with |L| = |R| has a perfect matching if and only if $|N(S)| \ge |S|$ for all $S \subseteq L$.

Proof:

- if |N(S)| < |S| for some S ⊆ L, there is no perfect matching
- suppose no perfect matching
- consider min-cut $\delta^-(U)$, $u(\delta^-(U)) < |L|$
- $L^- = L \setminus U, L^+ = L \cap U, R^- = R \setminus U$
- $u(\delta^{-}(U)) = |L^{+}| + |R^{-}|$
- $N(L^{-}) \subseteq \mathbb{R}^{-}$ since $\delta^{-}(U)$ cannot contain ∞ -arcs, thus,

$$|N(L^{-})| \le |\mathbb{R}^{-}| = u(\delta^{-}(U)) - |L^{+}| < |L| - |L^{+}| = |L^{-}|$$

• choose $S = L^-$

Linear and Combinatorial Optimization

11.4 Stable Matchings

Stable Marriage/Matching Problem -

Given: set *M* of men and set *W* of women with |M| = |W| = nevery $m \in M$ has a total preference order over *W* every $w \in W$ has a total preference order over *M*

Task: find a stable matching

Stability: no incentive for a pair to undermine assignment by joint action.

- unmatched pair *m*, *w* is a blocking pair if man *m* and woman *w* prefer each other to their current partners
- Stable matching: perfect matching with no blocking pair.

М	1st	2nd	3rd	W	Brd	1st	2nd	
Xaver	Anne	Birte	Clara	Anne	lara	Yann	Xaver	Z
Yann	Birte	Anne	Clara	Birte	lara	Xaver	Yann	Z
Zoltan	Anne	Birte	Clara	Clara	lara	Xaver	Yann	Z

Stable Marriage/Matching Problem -

Given: set *M* of men and set *W* of women with |M| = |W| = nevery $m \in M$ has a total preference order over *W* every $w \in W$ has a total preference order over *M*

Task: find a stable matching

Stability: no incentive for a pair to undermine assignment by joint action.

- unmatched pair *m*, *w* is a blocking pair if man *m* and woman *w* prefer each other to their current partners
- Stable matching: perfect matching with no blocking pair.

М	1st	2nd	3rd		W	1st	2nd	3rd
Xaver	Anne	Birte	Clara	A	nne	Yann	Xaver	Zoltar
Yann	Birte	Anne	Clara	В	lirte	Xaver	Yann	Zoltar
Zoltan	Anne	Birte	Clara	C	lara	Xaver	Yann	Zoltar

	Example —											
M	1st	2nd	3rd		W	1st	2nd	3rd				
Xaver	Anne	Birte	Clara		Anne	Yann	Xaver	Zoltan				
Yann	Birte	Anne	Clara		Birte	Xaver	Yann	Zoltan				
Zoltan	Anne	Birte	Clara		Clara	Xaver	Yann	Zoltan				

	Example										
М	1st	2nd	3rd		W	1st	2nd	3rd	•		
Xaver	Anne	Birte	Clara		Anne	Yann	Xaver	Zoltan	-		
Yann	Birte	Anne	Clara		Birte	Xaver	Yann	Zoltan			
Zoltan	Anne	Birte	Clara		Clara	Xaver	Yann	Zoltan			

				- Examp	le —			11
М	1st	2nd	3rd		W	1st	2nd	3rd
Xaver	Anne	Birte	Clara		Anne	Yann	Xaver	Zoltan
Yann	Birte	Anne	Clara		Birte	Xaver	Yann	Zoltan
Zoltan	Anne	Birte	Clara		Clara	Xaver	Yann	Zoltan

11 | 12

Computing a Stable Matching

- for $m \in M$ and $w, w' \in W$ we write $w \prec_m w'$ if *m* prefers *w* to w'
- For $w \in W$ and $m, m' \in M$ we write $m \prec_w m'$ if w prefers m to m'

Gale-Shapley Algorithm

- initially, all men and women are free (i.e., not engaged)
- 2 while there exists a free man $m \in M$
- **3** let *w* be first woman (w.r.t. \prec_m) to whom *m* has not yet proposed
- 4 if w is free or engaged to $m' \in M$ with $m \prec_w m'$
- 5 m and w become engaged (and m' becomes free)

Theorem 11.5 The Gale-Shapley Algorithm finds a stable matching in time $O(n^2)$.

D. Gale, L. S. Shapley: College Admissions and the Stability of Marriage, *American Mathematical Monthly* 69, 9-14, 1962

Gale-Shapley Algorithm: Example									
М	1st	2nd	3rd	W	1st	2nd	3		
Xaver	Anne	Birte	Clara	Anne	Zoltan	Xaver	Ya		
Yann	Birte	Anne	Clara	Birte	Xaver	Yann	Zo		
Zoltan	Anne	Birte	Clara	Clara	Xaver	Yann	Zo		

Gale-Shapley Algorithm: Example										
М	1st	2nd	3rd							
laver	Anne	Birte	Clara							
Yann	Birte	Anne	Clara							
Zoltan	Anne	Birte	Clara							

Gale-Shapley Algorithm: Example									
М	1st	2nd	3rd	W	1st	2nd	3rd		
Xaver	Anne	Birte	Clara	Anne	Zoltan	Xaver	Yan		
Yann	Birte	Anne	Clara	Birte	Xaver	Yann	Zolta		
Zoltan	Anne	Birte	Clara	Clara	Xaver	Yann	Zolta		

Gale-Shapley Algorithm: Example									
М	1st	2nd	3rd	W	1st	2nd	3rd		
Xaver	Anne	Birte	Clara	Anne	Zoltan	Xaver	Yan		
Yann	Birte	Anne	Clara	Birte	Xaver	Yann	Zolta		
Zoltan	Anne	Birte	Clara	Clara	Xaver	Yann	Zolta		

	Gale-Shapley Algorithm: Example										
М	1st	2nd	3rd	W	1st	2nd	3rd				
Xaver	Anne	Birte	Clara	Anne	Zoltan	Xaver	Yann				
Yann	Birte	Anne	Clara	Birte	Xaver	Yann	Zoltan				
Zoltan	Anne	Birte	Clara	Clara	Xaver	Yann	Zoltan				

Proof of Theorem 11.5

The algorithm computes a perfect matching in time $O(n^2)$ because:

- The edges joining currently engaged couples always form a matching.
- **By** construction, once a woman w is engaged, she always remains engaged while her fiancé may change (and only get better w.r.t. $<_w$).
- The woman w in Step 3 always exists: Since |M| = |W| and m is free, there exists a free woman w' to whom m has not yet proposed by **1**.
- In every iteration, a man proposes. Since every man proposes to every woman at most once, the number of iterations is bounded by $O(n^2)$.

We now argue that the computed matching is stable:

- Assume by contradiction that there is an instability m, w, i.e., m is matched with $w' \succ_m w$ and w is matched with $m' \succ_w m$.
- Before proposing to his wife w', m must have proposed to w.
- From then on, by $\underline{\mathbf{m}}$, *w* is always engaged to some man whom she likes at least as good as m.

Multiplicity of Stable Matchings

- All three matchings (yellow, blue, red) are stable.
- The yellow matching found by the Gale-Shapley Algorithm is best possible for all men and worst possible for all women.
- The red matching is best possible for all women and worst possible for all men (found by Gale-Shapley if women propose instead of men).
- The blue matching lies inbetween and might be a good compromise.

Proposing Pays Off!

For $x \in M \cup W$, let best(x) and worst(x) be the best and worst partner (w.r.t. \prec_x), respectively, that x can have in any stable matching.

Theorem 11.6 The Gale-Shapley Algorithm matches every man m to best(m) and every woman w to worst(w). In particular, it finds a unique stable matching.

Remarks

- stable matchings can be generalized to arbitrary bipartite graphs (not necessarily complete, $|M| \neq |W|$ etc.)
- in non-bipartite graphs, the problem is known as the Stable Roommates Problem.
- in 2012, the Nobel Memorial Prize in Economics was awarded to Lloyd S. Shapley and Alvin E. Roth "for the theory of stable allocations and the practice of market design."

Proof of Theorem 11.6

Claim: For each $m \in M$, worst(best(m)) = m.

Proof: Otherwise, for w := best(m) we get $m \prec_w worst(w)$.

Consider stable matching where w is matched with worst(w).

Then, *m* is matched with some $w' \neq w = \text{best}(m)$ such that $w \prec_m w'$.

As $m <_w worst(w)$ and $w <_m w'$, pair m, w is a blocking pair.

Proof of Theorem 11.6:

By contradiction, consider first iteration in which some $m \in M$ is rejected by w := best(m) in favor of $m' \prec_w m$.

Then, m' has not previously been rejected by best(m') and thus likes w better than any $w' \neq w$ he can be matched with in a stable matching.

Consider a stable matching where *m* is matched with w = best(m).

Then m' is matched with $w' \succ_{m'} w$ and m', w is a blocking pair.