Introduction to

Linear and Combinatorial Optimization

Minimum Cost Flow Problem

12.1 Transshipments

Given: Digraph $D=(V, A)$, capacities $u: A \rightarrow \mathbb{R}_{\geq 0}$, arc costs $c: A \rightarrow \mathbb{R}$.

Definition 12.1

ii Let $b: V \rightarrow \mathbb{R}$. A flow x is called b-transshipment if

$$
\operatorname{ex}_{x}(v)=b(v) \quad \text { for all } v \in V .
$$

III The cost of a flow x is defined as $c(x):=\sum_{a \in A} c(a) \cdot x(a)$.

Observation 12.2 A feasible b-transshipment can be found by a max-flow computation.

Remark. The existence of a b-transshipment implies that $\sum_{v \in V} b(v)=0$.

Minimum-cost b-transshipment problem

Given: $D=(V, A), u: A \rightarrow \mathbb{R}_{\geq 0}, c: A \rightarrow \mathbb{R}, b: V \rightarrow \mathbb{R}$
Task: find a feasible b-transshipment of minimum cost

Special cases:

- min-cost s - t-flow problem (for given flow value)
- min-cost circulation problem

Cost of residual arc:
For a given feasible flow x, we extend the cost function c to A_{x} by defining

$$
c\left(a^{-1}\right):=-c(a) \quad \text { for } a \in A
$$

- we generalize the observations on adding and subtracting flows (Slide 10|8)
- If x is a feasible flow in (D, u) and y a feasible flow in $\left(D_{x}, u_{x}\right)$, then

$$
z(a):=x(a)+y(a)-y\left(a^{-1}\right) \quad \text { for } a \in A
$$

yields a feasible flow z in D (" $z:=x+y$ ") and $c(z)=c(x)+c(y)$.
Notice that $\mathrm{ex}_{z}(v)=\mathrm{ex}_{x}(v)+\mathrm{ex}_{y}(v)$ for each $v \in V$.

- If x, z are feasible flows in (D, u), then

$$
\begin{aligned}
y(a) & :=\max \{0, z(a)-x(a)\} & & \text { for } a \in A \cap A_{x}, \\
y\left(a^{-1}\right) & :=\max \{0, x(a)-z(a)\} & & \text { for } a^{-1} \in A^{-1} \cap A_{x},
\end{aligned}
$$

yields a feasible flow y in D_{x} (" $y:=z-x$ ") and $c(y)=c(z)-c(x)$.
Notice that $\mathrm{ex}_{y}(v)=\mathrm{ex}_{z}(v)-\mathrm{ex}_{x}(v)$ for each $v \in V$.

- the following generalizes Theorem 10.15 towards transshipments and costs

Theorem 12.3 For a b-transshipment x in D, there exist dipaths P_{1}, \ldots, P_{k}, where each P_{i} starts at a node v with $b(v)<0$ and ends at a node w with $b(w)>0$, as well as dicycle C_{1}, \ldots, C_{ℓ} in D with $k+\ell \leq m+n$ and values $y_{P_{1}}, \ldots, y_{P_{k}}, y_{C_{1}}, \ldots, y_{C_{\ell}} \geq 0$ with

$$
\begin{equation*}
x(a)=\sum_{i: a \in P_{i}} y_{P_{i}}+\sum_{j: a \in C_{j}} y_{C_{j}} \quad \text { for all } a \in A . \tag{}
\end{equation*}
$$

- Theorem 12.3 implies

$$
\begin{aligned}
c(x)=\sum_{a \in A} x(a) \cdot c(a) & \stackrel{(\star)}{=} \sum_{a \in A}\left(\sum_{i: a \in P_{i}} y_{P_{i}}+\sum_{j: a \in C_{j}} y_{C_{j}}\right) \cdot c(a) \\
& =\sum_{i=1}^{k} y_{P_{i}} \cdot c\left(P_{i}\right)+\sum_{j=1}^{\ell} y_{C_{j}} \cdot c\left(C_{j}\right),
\end{aligned}
$$

where $c\left(P_{i}\right)=\sum_{a \in P_{i}} c(a)$ and $c\left(C_{j}\right)=\sum_{a \in C_{j}} c(a)$.

Optimality Criteria

Theorem 12.4 A feasible b-transshipment x has minimum cost among all feasible b-transshipments if and only if each dicycle of D_{x} has nonnegative cost.

Proof: " \Rightarrow "

- let C be a dicycle in D_{x}, then $y:=\delta \chi^{C}$ with $\delta:=\min _{a \in C} u_{x}(a)$ is a feasible circulation in D_{x}
- then $z:=x+y$ is a feasible b-transshipment in D
- $c(x) \leq c(z)=c(x)+c(y)$ as x has minimum cost, thus, $c(y) \geq 0$
" \Longleftarrow "
- let z be an arbitrary b-transshipment in D
- $y:=z-x$ is a feasible circulation in D_{x} with $c(y)=c(z)-c(x)$
- consider decomposition of y into flow along dicycles C_{1}, \ldots, C_{ℓ} in D_{x}, i.e,

$$
y(a):=\sum_{j: a \in C_{j}} y_{C_{j}} \quad \text { for some } y_{C_{1}}, \ldots, y_{C_{\ell}} \in \in \mathbb{R}_{\geq 0}
$$

- $c(y)=\sum_{j=1}^{\ell} y_{C_{j}} c\left(C_{j}\right) \geq 0$, so $c(z) \geq c(x)$ and x has minumum cost

Theorem 12.5 A feasible b-transshipment x has minimum cost among all feasible b-transshipments if and only if there is a feasible potential $y \in \mathbb{R}^{V}$ in D_{x}, that is,

$$
y_{v}+c((v, w)) \geq y_{w} \quad \text { for all }(v, w) \in A_{x} .
$$

Proof: x has minimum cost
$\Leftrightarrow D_{x}$ contains no negative cost dicycle (by Theorem 12.4)
$\Leftrightarrow D_{x}$ has a feasible potential (by Theorem 8.12)

- consider LP formulation of min-cost b-transshipment problem

$$
\begin{array}{rlll}
\text { Primal LP: } & \min & \sum_{a \in A} c(a) \cdot x_{a} & \\
& \text { s.t. } & \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=b(v) & \text { for all } v \in V \\
& & & \\
& & x_{a} \leq u(a) & \text { for all } a \in A \\
& x_{a} \geq 0 & \text { for all } a \in A \\
\text { Dual LP: } \max & \sum_{v \in V} b(v) \cdot y_{v}+\sum_{a \in A} u(a) \cdot z_{a} & \\
\text { s.t. } & y_{w}-y_{v}+z_{(v, w)} \leq c((v, w)) & \text { for all }(v, w) \in A \\
& z_{a} \leq 0 & \text { for all } a \in A
\end{array}
$$

- result follows from complementary slackness conditions

Introduction to

Linear and Combinatorial Optimization

Minimum Cost Flow Problem

12.2 Cycle Cancelling

Negative-Cycle Canceling Algorithm

i compute a feasible b-transshipment x or determine that none exists;
iii while there is a negative-cost dicycle C in D_{x}
国 $\operatorname{set} x:=x+\delta \cdot \chi^{C}$ with $\delta:=\min \left\{u_{x}(a) \mid a \in C\right\}$;

Remarks:

- negative-cost dicycle C in step Iif can be found in $O(n m)$ time by the Ford-Bellman Algorithm
min-cost circulation
- number of iterations is only pseudo-polynomial in the input size
- if arc capacities and b-values are integral, algorithm returns integral min-cost b-transshipment

capacity; cost

The mean cost of a dicycle C in D_{x} is

$$
\frac{c(C)}{|C|}=\frac{1}{|C|} \sum_{a \in C} c(a) .
$$

Theorem 12.6 Choosing a minimum mean-cost dicycle in step III of the Negative-Cycle Canceling Algorithm, the number of iterations is in $O\left(n \cdot m^{2} \cdot \log n\right)$.

- the following observation is similar to Observation 8.22 for shortest paths

Observation 12.7 For given arc costs $c \in \mathbb{R}^{A}$ and node potential $y \in \mathbb{R}^{V}$, define arc costs $c^{\prime} \in \mathbb{R}^{A}$ by $c_{(v, w)}^{\prime}:=c_{(v, w)}+y_{v}-y_{w}$. Then, a feasible b-transshipment x has minimum cost w.r.t. c if and only if it has minimum cost w.r.t. c^{\prime}. Moreover, for a dicycle $C \in D_{x}$ it holds that $c(C)=c^{\prime}(C)$.
Proof:

- $c^{\prime}(C)=\sum_{a=(v, w) \in C}\left(c(a)+y_{v}-y_{w}\right)=\sum_{a \in C} c(a)=c(C)$
- result follows from Theorem 12.4

Prerequisites for Proof of Thm. 12.6

Let $x_{0}, x_{1}, x_{2}, \ldots$ denote the b-transshipment after iterations $0,1,2, \ldots$
Let $A_{i}:=A_{x_{i}}$ and C_{i} be the dicycle in A_{i} chosen in iteration $i+1$.
By choice of C_{i}, the value $\varepsilon_{i}:=-c\left(C_{i}\right) /\left|C_{i}\right|$ is minimal such that there is a potential $y^{i} \in \mathbb{R}^{V}$ with

$$
c(a)+\varepsilon_{i} \geq y_{w}^{i}-y_{v}^{i} \quad \text { for all } a=(v, w) \in A_{i}
$$

Due to Observation 12.7, we may assume for some fixed i that $y^{i} \equiv 0$.

Lemma 12.8

i $\varepsilon_{i+1} \leq \varepsilon_{i}$ for all $i=0,1,2, \ldots$
iii $\varepsilon_{i+m} \leq\left(1-\frac{1}{n}\right) \cdot \varepsilon_{i}$ for all $i=0,1,2, \ldots$
四 Let $t:=2 \cdot n \cdot m \cdot\lceil\ln (n)\rceil$; then $\varepsilon_{t}<\frac{\varepsilon_{0}}{2 n}$.
iv For $i=0,1,2, \ldots$, there is an arc $a \in C_{i}$ with $a \notin C_{h}$ for all $h \geq i+t$.
wlog, we assume that $i=0$ and $y^{i}=0$
i) $\varepsilon_{i+1} \leq \varepsilon_{i}$

- c(a) $\geq-\varepsilon_{0}$ for all $a \in A_{0}$ and $c(a)=-\varepsilon_{0}$ for all $a \in C_{0}$
- $A_{1} \subseteq A_{0} \cup C_{0}^{-1}$ and $c(a)=\varepsilon_{0}>0$ for all $a \in C_{0}^{-1}$
$\Rightarrow c(a) \geq-\varepsilon_{0}$ for all $a \in A_{1} \Rightarrow \varepsilon_{1} \leq \varepsilon_{0}$
III $\varepsilon_{i+m} \leq\left(1-\frac{1}{n}\right) \varepsilon_{i}$
- at least one of the dicycles C_{0}, \ldots, C_{m-1} contains arc a with $c(a) \geq 0$ since otherwise all arcs on C_{0}, \ldots, C_{m-1} are negative and each A_{k} arises from A_{k-1} by deleting at least one arc of negative cost and adding only new arcs of positive cost
$\Rightarrow A_{m}$ has only non-negative arcs, the algorithm terminates, $\varepsilon_{m} \leq 0$
- let h be smallest index such that C_{h} contains a with $c(a) \geq 0$
$\Rightarrow c\left(C_{h}\right) \geq-\left(\left|C_{h}\right|-1\right) \varepsilon_{0}$
$\Rightarrow \varepsilon_{h}=-\frac{c\left(C_{h}\right)}{\left|C_{h}\right|} \leq \frac{\left|C_{h}\right|-1}{\left|C_{h}\right|} \varepsilon_{0} \leq \frac{n-1}{n} \varepsilon_{0}$

囲 $\varepsilon_{t}<\frac{\varepsilon_{0}}{2 n}$ for $t:=2 n m[\ln (n)\rceil$

$$
\text { - } \varepsilon_{t} \leq\left(1-\frac{1}{n}\right)^{2 n[\ln (n)]} \varepsilon_{0}<\varepsilon_{0}\left(\frac{1}{e}\right)^{2[\ln (n)]} \leq \frac{\varepsilon_{0}}{n^{2}} \leq \frac{\varepsilon_{0}}{2 n}
$$

iv $\exists a \in C_{i}$ with $a \notin C_{h}$ for all $h \geq i+t$

- wlog, assume that $i=0, y^{t}=0 \quad\left(\Rightarrow c(a) \geq-\varepsilon_{t}, \forall a \in A_{t}\right)$
- $c\left(C_{0}\right)=-\varepsilon_{0}\left|C_{0}\right|$
\Rightarrow there is $a_{0} \in C_{0}$ with $c\left(a_{0}\right) \leq-\varepsilon_{0}<-2 n \varepsilon_{t} \leq-\varepsilon_{t}$
$\Rightarrow a_{0} \notin A_{t} \Rightarrow x_{t}\left(a_{0}\right)=u_{a_{0}}\left(w \log a_{0} \in A\right)$
- assume that $x_{h}\left(a_{0}\right)<x_{t}\left(a_{0}\right)$ for some $h>t$
$\Rightarrow x_{t}-x_{h}$ is a circulation in $D_{h}=\left(V, A_{h}\right)$
$\Rightarrow A_{h}$ contains dicycle C with $a_{0} \in C$
$\Rightarrow A_{t}$ contains C^{-1}
$\Rightarrow-c(a)=c\left(a^{-1}\right) \geq-\varepsilon_{t}$ for all $a \in C$
$\Rightarrow c(C)=c\left(a_{0}\right)+c\left(C \backslash\left\{a_{0}\right\}\right)<-2 n \varepsilon_{t}+(|C|-1) \varepsilon_{t} \leq-n \varepsilon_{h} \leq-|C| \varepsilon_{h} \nmid$

Running Time

Proof of Theorem 12.6:

- by Lemma 12.8 , in every iteration i there is an $\operatorname{arc} a \in C_{i}$ with $a \notin C_{h}$ for all $h \geq i+2 n m\lceil\ln (n)\rceil$
- after $O\left(n m^{2} \log n\right)$ iterations no arc can appear in any negative cycle
| Theorem 12.9 A minimum mean-cost dicycle can be found in $O(n \cdot m)$ time.
Proof: cf. sketch on next slides.
Corollary 12.10 A min-cost b-transshipment can be found in $O\left(n^{2} \cdot m^{3} \cdot \log n\right)$ time.

Remarks

- The running time of the Minimum-mean Cycle Canceling Algorithm can be improved to $O\left(n \cdot m^{2} \cdot \log ^{2} n\right)$.
- The Minimum-mean Cycle Canceling Algorithm can be interpreted as a generalization of the Edmonds-Karp Algorithm.

Computation of a minimum mean-cost dicycle

Theorem: A minimum mean-cost dicycle can be found in $O(n \cdot m)$ time.
Lemma Let $D=(V, A)$ be a digraph with arc costs $c_{a}, \forall a \in A$, and denote by $d^{k}(v)$ the least cost of a walk starting from v and traversing exactly k arcs, $k \geq 0$. Then, the minimum mean-cost of a dicycle in D is equal to

$$
\alpha:=\min _{v \in V} \max _{0 \leq k \leq n-1} \frac{d^{n}(v)-d^{k}(v)}{n-k}
$$

Proof:

- We first prove the lemma in the case that the min cost of a dicycle is 0 (and hence the minimum mean-cost of a dicycle is 0).
- Let $v \in V$ arbitrary. The walk of $d^{n}(v)$ must have a cycle (of length $\ell>0$). Removing this cycle yields a walk of length $k=n-\ell<n$, of cost at most $d^{n}(v)$. $\Rightarrow d^{k}(v) \leq d^{n}(v)$.

This shows: $\forall v \in V, \exists k<n: d^{n}(v) \geq d^{k}(v)$, i.e., $\alpha \geq 0$.

Computation of a minimum mean-cost dicycle - ${ }^{21 \mid \square}$

Proof (cont.):

- To prove $\alpha \leq 0$, we need to show $\exists v \in V: \forall k<n, d^{n}(v) \leq d^{k}(v)$.
- Let C be a cycle of cost 0 , and v^{\prime} an arbitrary node on the cycle. Let $k^{*}<n$ such that $d^{k^{*}}\left(v^{\prime}\right)$ is minimal.
- Let $v \in C$ be the node such that walking around C for $n-k^{*}$ steps ends in v^{\prime} if we start in v. Let W_{1} be this walk, and W_{2} be the $v^{\prime}-v$ path of length u along C.

- For all $0 \leq k \leq n-1$, it holds
$d^{n}(v) \leq c\left(W_{1}\right)+d^{k^{*}}\left(v^{\prime}\right) \leq c\left(W_{1}\right)+d^{k+u}\left(v^{\prime}\right) \leq c\left(W_{1}\right)+c\left(W_{2}\right)+d^{k}(v) \leq d^{k}(v)$.

Computation of a minimum mean-cost dicycle - ${ }^{12 \mid 18}$

Proof (cont.):

- So far, we have proved $\alpha=0$ whenever the minimum mean-cost dicycle is 0 .
- The general case (\min mean-cost $\neq 0$) can be reduced to the above case by modifying the costs of the digraph (cf. exercises).

Theorem: A minimum mean-cost dicycle can be found in $O(n \cdot m)$ time.

Proof:

There is a dynamic program for computing the minimum mean-cost

$$
\alpha:=\min _{v \in V} \max _{0 \leq k \leq n-1} \frac{d^{n}(v)-d^{k}(v)}{n-k}
$$

in $O(n m)$. Moreover, the dynamic program can be adapted to also return a cycle realizing the mean-cost α (see exercises).

Introduction to

Linear and Combinatorial Optimization

Minimum Cost Flow Problem

12.3 Successive Shortest Paths

Augmenting Flow Along Min-Cost Dipaths

Remarks

In the following we assume without loss of generality that in a given min-cost b-transshipment problem
i all arc costs are nonnegative;
Iii there is a dipath of infinite capacity between every pair of nodes.

Theorem 12.11 Let x be a feasible min-cost b-transshipment, $s, t \in V$, and P a min-cost s - t-dipath in D_{x} with bottleneck capacity $u_{x}(P):=\min _{a \in P} u_{x}(a)$. Then,

$$
x+\delta \cdot \chi^{P} \quad \text { with } \quad 0 \leq \delta \leq u_{x}(P)
$$

is a feasible min-cost b^{\prime}-transshipment with

$$
b^{\prime}(v):= \begin{cases}b(v)+\delta & \text { for } v=t \\ b(v)-\delta & \text { for } v=s \\ b(v) & \text { otherwise }\end{cases}
$$

- $x^{\prime}=x+\delta \chi^{P}$ is obviously a feasible b^{\prime}-transshipment
- to prove that x^{\prime} has minimum cost, we show that there is a feasible potential in $D_{x^{\prime}}$
- let $p(v)$ be the cost of a min-cost s - v-dipath in D_{x}, then p is a feasible potential
- P is a min-cost s - t-dipath in D_{x}, thus,

$$
\begin{array}{ll}
c(a) \geq p(w)-p(v) & \text { for all } a=(v, w) \in A_{x} \\
c(a)=p(w)-p(v) & \text { for all } a=(v, w) \in P
\end{array}
$$

$\Rightarrow c\left(a^{-1}\right)=p(v)-p(w)$ for all $a^{-1}=(w, v) \in P^{-1}$

- p is a feasible potential for $D_{x^{\prime}}$ as well because $A_{x^{\prime}} \subseteq A_{x} \cup P^{-1}$

Successive Shortest Path Algorithm

ii set $x:=0 ; \bar{b}:=b$;
III while $\bar{b} \neq 0$
囲 find min-cost $s-t$-dipath P in D_{x} for $s, t \in V, \bar{b}(s)<0, \bar{b}(t)>0$;
iv \quad set $\delta:=\min \left\{-\bar{b}(s), \bar{b}(t), u_{x}(P)\right\}$ and

$$
x:=x+\delta \cdot \chi^{P}, \quad \bar{b}(s):=\bar{b}(s)+\delta, \quad \bar{b}(t):=\bar{b}(t)-\delta ;
$$

flow | capacity; cost balance

residual capacity; residual cost imbalance

Successive Shortest Path Algorithm

ii set $x:=0 ; \bar{b}:=b$;
III while $\bar{b} \neq 0$
囲 find min-cost $s-t$-dipath P in D_{x} for $s, t \in V, \bar{b}(s)<0, \bar{b}(t)>0$;
iv \quad set $\delta:=\min \left\{-\bar{b}(s), \bar{b}(t), u_{x}(P)\right\}$ and

$$
x:=x+\delta \cdot \chi^{P}, \quad \bar{b}(s):=\bar{b}(s)+\delta, \quad \bar{b}(t):=\bar{b}(t)-\delta ;
$$

flow | capacity; cost balance

residual capacity; residual cost imbalance

Successive Shortest Path Algorithm

ii set $x:=0 ; \bar{b}:=b$;
III while $\bar{b} \neq 0$
囲 find min-cost $s-t$-dipath P in D_{x} for $s, t \in V, \bar{b}(s)<0, \bar{b}(t)>0$;
iv \quad set $\delta:=\min \left\{-\bar{b}(s), \bar{b}(t), u_{x}(P)\right\}$ and

$$
x:=x+\delta \cdot \chi^{P}, \quad \bar{b}(s):=\bar{b}(s)+\delta, \quad \bar{b}(t):=\bar{b}(t)-\delta ;
$$

flow | capacity; cost balance

residual capacity; residual cost imbalance
|Theorem 12.12 If all arc capacities and b-values are integral and $\sum_{v \in V} b(v)=0$, the Successive Shortest Path Algorithm terminates with an integral min-cost b-transshipment after at most $\frac{1}{2} \sum_{v \in V}|b(v)|$ iterations.

Proof:

- initial flow $x \equiv 0$ is a min-cost-circulation since $c(a) \geq 0$ for all $a \in A$
- by induction and Theorem 12.11, x always satisfies the optimality criterion and is, thus, a min-cost $(b-\bar{b})$-transshipment
- since all arc capacities and b-values are integral, the algorithm maintains an integral flow and an integral imbalance in every iteration
$\Rightarrow \delta$ is integral $\Rightarrow \delta \geq 1$
$\Rightarrow \sum_{v \in V}|\bar{b}(v)|$ is decreased by at least 2 in every iteration

For a flow x and $\Delta>0$, let $A_{x}^{\Delta}:=\left\{a \in A_{x} \mid u_{x}(a) \geq \Delta\right\}, D_{x}^{\Delta}:=\left(V, A_{x}^{\Delta}\right)$; set $U:=\max \left\{\max _{a \in A} u(a), \max _{v \in V}\left|b_{v}\right|\right\}$.

Successive Shortest Path Algorithm with Capacity Scaling

i set $x:=0, \Delta:=2^{\lfloor\log U]}, p(v):=0$ for all $v \in V$;
iii while $\Delta \geq 1$
囘 for all $a=(v, w) \in A_{x}^{\Delta}$ with $c(a)<p(w)-p(v)$
iv $\quad \operatorname{set} b(v):=b(v)+u_{x}(a)$ and $b(w):=b(w)-u_{x}(a)$; augment x by sending $u_{x}(a)$ units of flow along arc a;
v $\operatorname{set} S(\Delta):=\{v \in V \mid b(v) \leq-\Delta\}, T(\Delta):=\{v \in V \mid b(v) \geq \Delta\}$;
vi \quad while $S(\Delta) \neq \varnothing$ and $T(\Delta) \neq \varnothing$
vii
find min-cost s - t-dipath P in D_{x}^{Δ} for some $s \in S(\Delta), t \in T(\Delta)$; set p to the vector of shortest (min-cost) path distances from s; augment Δ flow units along P in x; update $b, S(\Delta), T(\Delta), D_{x}^{\Delta}$; $\Delta:=\Delta / 2 ;$

Remark

- Steps 前-iv ensure that optimality conditions are always fulfilled.

Theorem 12.13 If all arc capacities and b-values are integral, the Successive Shortest Path Algorithm with Capacity Scaling terminates with an integral min-cost b-transshipment after at most $O(m \log U)$ calls to a shortest path subroutine.

- a variant of the Successive Shortest Path Algorithm with strongly polynomial running time can be obtained by a refined use of capacity scaling
[J. B. Orlin: A faster strongly polynomial minimum cost flow algorithm, Oper. Res., 1993]
- by construction, the optimality criterion is always fullfilled in D_{x}^{Λ}
- after last iteration $D_{x}^{1}=D_{x}$ and the computed b-transshipment has minimum cost
- we claim that at the start of the inner while loop (step vii), we have

$$
\sum_{v \in v: b_{v}>0} b_{v} \leq 2 \Delta(n+m)
$$

- at the end of the previous inner while loop, either $S(2 \Delta)=\varnothing$ or $T(2 \Delta)=\varnothing$, thus, either $\sum_{v \in V: b_{v}>0} b_{v}=-\sum_{v \in V: b_{v}<0} b_{v} \leq 2 n \Delta$
- (holds also before the first iteration since $S(2 U)=T(2 U)=\varnothing$)
- at the beginning of the iteration in steps 囲 and iv only arcs are saturated with $\Delta \leq u_{x}(a) \leq 2 \Delta$
- steps 囲 and iv increase $\sum_{v \in V: b_{v}>0} b_{v}$ by at most $2 \Delta m$
- by (\star), there are at most $O(m)$ iterations of the inner while-loop in step iv
- the number of iterations of the outer while loop is $O(\log U)$

