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I b-Transshipments and Costs

Given: Digraph D = (V, A), capacities 4 : A — Ry, arccostsc : A — R.
Definition 12.1
H Letb : V— R. Aflow x is called b-transshipment if

exx(v) = b(v) forallve V.

H The cost of a flow x is defined as ¢(x) := ) 4 c(a) - x(a).

Observation 12.2 A feasible b-transshipment can be found by a max-flow

computation.

Example: balance

/ DA 1N A
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— Minimum-Cost b-Transshipment Problem

Remark. The existence of a b-transshipment implies that ). s b(v) = 0.

Minimum-cost b-transshipment problem
Given:D=(V,A,u: A—R,yc: A—>Rb: V>R

Task: find a feasible b-transshipment of minimum cost

Special cases:
- min-cost s-t-flow problem (for given flow value)

- min-cost circulation problem

Cost of residual arc:

For a given feasible flow x, we extend the cost function c to A by defining

cat) := -c(a) fora € A.
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| Adding and Subtracting Flows

- we generalize the observations on adding and subtracting flows (Slide 10|8)
- If x is a feasible flow in (D, ©) and y a feasible flow in (D, uy), then
Z(a) := x(a) + y(a) - y(a') fora€ A

yields a feasible flow z in D (“z := x + y”) and ¢(z) = c(x) + c(y).

Notice that ex;(v) = exy(v) + ex, (V) for each v € V.
« If x, z are feasible flows in (D, u), then

Y(a) := max{0, z(a) - x(a)} fora€ An A,
y(a') 1= max{0, x(a) - z(a)} fora'€ A n A,
yields a feasible flow y in Dy (“y :=z - x") and ¢(y) = ¢(z) — c(x).
Notice that exy(Vv) = ex(v) — ex,(V) foreach v € V.



Flow Decomposition and Cost ———uss

the following generalizes Theorem 10.15 towards transshipments and costs

Theorem 12.3 For a b-transshipment x in D, there exist dipaths P, ..., Py, where
each P; starts at a node v with b(v) < 0 and ends at a node w with b(w) > 0, as well
as dicycle Cy,..., Cp in Dwith k+ £ < m+ nand values yp,, ..., yp, Yc,» ---» Yc, = 0
with

= Z yp, + Z /e forall a € A. (*)

i:a€eP; Jj:aeG;

Theorem 12.3 implies

9= T (@ o z( T e ¥ yq>-c<a>

acA acA \i:a€P; Jj:aeC;

k t
=Y ypdP)+ Y ye - oG,
i=1 Jj=1

where ¢(P;) =} ,cp. ¢(a) and ¢(C)) = Zaecj c(a)



I Optimality Criteria 206

Theorem 12.4 A feasible b-transshipment x has minimum cost among all feasible
b-transshipments if and only if each dicycle of D, has nonnegative cost.

Proof: “="

« let C be a dicycle in Dy, then y := §xC with § := mingec uy(a) is a feasible
circulation in Dy
- then z := x + y is a feasible D-transshipment in D
« o(x) = o(2) = c(x) + c(y) as x has minimum cost, thus, c¢(y) = 0
“e»
« let z be an arbitrary b-transshipment in D
« y =z - xis afeasible circulation in Dy with ¢(y) = ¢(2) — c(x)
. consider decomposition of y into flow along dicycles Cy, ..., Cp in Dy, i.e,
Ya) := Z yc,  forsome yc,, ..., yc, €€ Ry
JjracG

. o(y) = z;;l y6;¢(Gj) = 0,50 ¢(2) = c(x) and x has minumum cost O]



2|7

EE— Optimality Criteria and Potentials

Theorem 12.5 A feasible b-transshipment x has minimum cost among all feasible
b-transshipments if and only if there is a feasible potential y € RV in Dy, that is,

Yy + c((v, w)) >y for all (v, w) € A,.
Proof: x has minimum cost
< Dy contains no negative cost dicycle (by Theorem 12.4)

< Dy has a feasible potential (by Theorem 8.12) O



EEEEE— Alternative Proof of Theorem 12.5

« consider LP formulation of min-cost b-transshipment problem

Primal LP: min Zc(a)'xa
acA

st. Z Xq — Z Xq = b(v)

aed=(v) agdt(v)

X, < u(a)
X 20

Dual LP:  max Z b(v) -y, + Z ua) - z,
vevV acA

st Yw= W+ Zuw < c((v, w))

2.0

- result follows from complementary slackness conditions

forallve V

foralla€e A
forallae A

forall (v, w) € A
forallae A
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E— Negative-Cycle Canceling Algorithm ——— v

Negative-Cycle Canceling Algorithm
H compute a feasible b-transshipment x or determine that none exists;
H while there is a negative-cost dicycle C in Dy

Bl setx :=x+8-xCwithd := min{u.a)| a€ C};

Remarks:

« negative-cost dicycle C in step H can be found in O(nm) time by the Ford-Bellman

Algorithm min-cost circulation

- number of iterations is only pseudo-polynomial in the /MV K
input size 0 v

if arc capacities and b-values are integral, algorithm \()A

returns integral min-cost b-transshipment M -l

capacity; cost



— Minimum-Mean-Cycle Canceling Algorithm —— zin

The mean cost of a dicycle C in Dy is

ICI “la Z

acC
Theorem 12.6 Choosing a minimum mean-cost dicycle in step H of the
Negative-Cycle Canceling Algorithm, the number of iterations is in O(n - m? - log n).

- the following observation is similar to Observation 8.22 for shortest paths

Observation 12.7 For given arc costs ¢ € R and node potential y € RV, define
arc costs ¢’ € R by C/v,w) Y= C(yw) T Vv = Yw- Then, a feasible b-transshipment x
has minimum cost w.r.t. ¢ if and only if it has minimum cost w.r.t. ¢’. Moreover, for a
dicycle C € Dy it holds that ¢(C) = ¢’(C).

Proof:

- '(0) = Za:(v,w)EC(c(a) Y~ YW) = Yaec (@) = ¢(C)

« result follows from Theorem 12.4 O




— Prerequisites for Proof of Thm. 12.6 ——— i
Let Xp, X1, X2, ... denote the b-transshipment after iterations 0, 1,2, ...
Let A; := Ay, and C; be the dicycle in A; chosen in iteration i + 1.

By choice of C;, the value ¢; := —¢(C;)/|Cy| is minimal such that there is a
potential ' € RV with
ca)+e =y, -y foralla=(v,w)€ A, (*)

Due to Observation 12.7, we may assume for some fixed i that y' = 0.

Lemma 12.8

H &g <¢gforali=0,1,2,...

B cims(1-21) gforalli=0,1,2,..
il Lett:=2-n-m-[In(n)]; then & < 5.

Fori=0,1,2,...,thereisanarc a € C;witha & Cyforall h = i + t.



| Proof of Lemma 12.8
wlog, we assume that i = 0 and yi =0

Héa=¢
- c(a) = —¢g forall a € Ag and c(a) = —& forall a € Cy

< AjcAyuCyland c(a) = & > Oforall a € Cy!

= c(a) =z —gforalla€ Ay = & < g

12|13

« at least one of the dicycles Cy, ..., Cp—1 contains arc a with ¢(a) = 0 since otherwise

all arcs on Cy, ..., Cp-1 are negative and each Ay arises from Ag_; by deleting at

least one arc of negative cost and adding only new arcs of positive cost
= A,y has only non-negative arcs, the algorithm terminates, &, < 0

« let h be smallest index such that C, contains a with ¢(a) = 0

= o(Cp) = ~(ICh| - D&y

_ _dCh) _ [Gyf-1 n-1
= & = Chl =< ICil & =< n &




Proof of Lemma 12.8 (Cont.)

i & < 52 for t := 2nm[In(n)]

)Zn[ln(n)]go B Eo(le)ZHn(n)] < 8

ftS(l—%

M3a € Cwithag Cpforallh =i+t

wlog, assume that i =0, y' =0 (= c(a) = —&,Va € Ay)

() = —&|Col

= there is ag € Gy with c(ag) < -5 < -2n& < —¢

= ay € Ay = x1(ap) = Uy, (Wlog ap € A)

assume that x5(dg) < x:(ap) for some h > t

= x; — Xy, is a circulation in Dy, = (V, Ap)

= Ay, contains dicycle C with gy € C

= A, contains C!

= —c(a) = c(a’!) = -¢ forallae C

— (C) = dan)+(C\ {a}) < ~2ney+(|Cl-1)e, < ~ney = ~|Clen £

12|14



Running Time 215

Proof of Theorem 12.6:

- by Lemma 12.8, in every iteration i there is an arc a € C; with a € Cy, for all
h = i+ 2nm[In(n)]

. after O(nm? log n) iterations no arc can appear in any negative cycle O

| Theorem 12.9 A minimum mean-cost dicycle can be found in O(n - m) time.
Proof: cf. sketch on next slides.
Corollary 12.10 A min-cost b-transshipment can be found in O(n? - m® - log n)
time.
Remarks
« The running time of the Minimum-mean Cycle Canceling Algorithm can be
improved to O(n - m? - log? n).
- The Minimum-mean Cycle Canceling Algorithm can be interpreted as a
generalization of the Edmonds-Karp Algorithm.



Computation of a minimum mean-cost dicycle — i
— Comp y
Theorem: A minimum mean-cost dicycle can be found in O(n - m) time.

Lemma Let D = (V, A) be a digraph with arc costs ¢,, Va € A, and denote by d*(v)
the least cost of a walk starting from v and traversing exactly k arcs, k = 0. Then, the
minimum mean-cost of a dicycle in D is equal to

. d"(v) - d*(v)
g :=mm max ——.
veV 0<ksn-1 n-k

Proof:

« We first prove the lemma in the case that the min cost of a dicycle is 0 (and hence the
minimum mean-cost of a dicycle is 0).

. Let v € V arbitrary. The walk of d"(v) must have a cycle (of length £ > 0). Removing

this cycle yields a walk of length k = n— £ < n, of cost at most d"(v).
= d*(v) < d"(v).

This shows: Vv € V,3k < n : d"(v) = d¥(v), i, & = 0.



— Computation of a minimum mean-cost dicycle — =»

Proof (cont.):

. To prove & < 0, we need to show 3v € V : Vk < n, d"(v) < d*(v).

« Let C be a cycle of cost 0, and v/ an arbitrary node on the cycle. Let k* < n such that
d¥ (v') is minimal.

. Let v € C be the node such that walking around C for n — k" steps ends in v’ if we
start in v. Let W] be this walk, and W, be the v/ — v path of length u along C .

« Forall0 < k < n-1,it holds
d"(W) < c(Wy) + dF (V') = o(Wy) + dF¥(v') < (W) + c(Wh) + d¥(v) < d¥(w).



— Computation of a minimum mean-cost dicycle — i

Proof (cont.):
« So far, we have proved o = 0 whenever the minimum mean-cost dicycle is 0.

« The general case (min mean-cost # 0) can be reduced to the above case by modifying
the costs of the digraph (cf. exercises). O

Theorem: A minimum mean-cost dicycle can be found in O(n - m) time.

Proof:

There is a dynamic program for computing the minimum mean-cost
, d"(v) - d(v)
o :=mn max ————
veV 0<ksn-1 n-k

in O(nm). Moreover, the dynamic program can be adapted to also return a cycle
realizing the mean-cost « (see exercises). O
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E— Augmenting Flow Along Min-Cost Dipaths

Remarks

In the following we assume without loss of generality that in a given min-cost
b-transshipment problem

H all arc costs are nonnegative;

H there is a dipath of infinite capacity between every pair of nodes.

Theorem 12.11 Let x be a feasible min-cost b-transshipment, s,t € V,and P a
min-cost s-t-dipath in D, with bottleneck capacity u,(P) := mingep uy(a). Then,
x+68-xF with 0= 6= ulP)
is a feasible min-cost b’-transshipment with
b(v)+ 5 forv=t,
b'(v) :={b(v)- 5 forv=s,

b(v) otherwise.




Proof of Theorem 12.11 2|2

x’ = x + 8y" is obviously a feasible b’-transshipment
to prove that x” has minimum cost, we show that there is a feasible potential in D,
let p(v) be the cost of a min-cost s-v-dipath in Dy, then p is a feasible potential
P is a min-cost s-t-dipath in Dy, thus,
c(a) = p(w) - p(v) foralla=(v,w)€ A,
c(a) = p(w) - p(v) foralla=(v,w)€P
= c(a!) = p(v) - p(w) forall @ = (w,v) € P!

pis a feasible potential for D, as well because A, € Ay U P! O



— Successive Shortest Path Algorithm ——— 12

Successive Shortest Path Algorithm

Hsetx :=0;b:= b,

| while b # 0

B  find min-cost s-t-dipath P in Dy for s, t € V, B(S) <0, i?(t) > 0;
set & := min{-b(s), b(t), uy(P)} and

x :=x+5-)(P, b(s) := b(s)+ 8, bt) := b(t) - &

flow | capac1ty, cost residual capaCIty, residual cost
balance

-4

imbalance



— Successive Shortest Path Algorithm ——— 12

Successive Shortest Path Algorithm

Hsetx :=0;b:= b,

| while b # 0

B  find min-cost s-t-dipath P in Dy for s, t € V, B(S) <0, i?(t) > 0;
set & := min{-b(s), b(t), uy(P)} and

x :=x+5-)(P, b(s) := b(s)+ 8, bt) := b(t) - &

flow | capac1ty, cost residual capaCIty, residual cost
balance

-4

imbalance



— Successive Shortest Path Algorithm ——— 12

Successive Shortest Path Algorithm

Hsetx :=0;b:= b,

| while b # 0

B  find min-cost s-t-dipath P in Dy for s, t € V, B(s) <0, E(t) > 0;
set & := min{-b(s), b(t), uy(P)} and

x:i=x+08-x5, b(s):=Db(s)+ 5, b(t) :=b(t)-5;

0 2 0
L 0 v 3.
(L\Du /33 g ;3
Us
o 2021 4 0 22| 0

/23 B\ Yo ‘g
0 0

flow | capacity; cost residual capacity; residual cost

balance imbalance



I Proof of Theorem 12.12 2|2

Theorem 12.12 If all arc capacities and b-values are integral and ). .y, b(v) = 0,
the Successive Shortest Path Algorithm terminates with an integral min-cost
b-transshipment after at most % Y vy |b(v)| iterations.

Proof:
- initial flow x = 0 is a min-cost-circulation since c(a) = 0 foralla € A

« by induction and Theorem 12.11, x always satisfies the optimality criterion and is,
thus, a min-cost (b — b)-transshipment

- since all arc capacities and b-values are integral, the algorithm maintains an integral
flow and an integral imbalance in every iteration

= Jis integral = § > 1

= Y v |b(v)| is decreased by at least 2 in every iteration O



[ Capacity Scaling )28

Foraflow xand A > 0, let AY := {a € A, | uc(a) = A}, D} := (V, AD); set

U := max{maxgea t(a), maxcy |by|}.

Successive Shortest Path Algorithm with Capacity Scaling
| setx :=0A := ZLIOgUJ,p(v) :=0forallve V;

M| whileA =1

@ forall a= (v, w) € AY with c(a) < p(w) - p(v)

set b(v) 1= b(v) + uy(a) and b(w) := b(w) — u.(a);
augment x by sending u,(a) units of flow along arc g;

set S(A) :={ve V| blv)<-A}, T(A) :={ve V| b)) =A};

while S(A) # @ and T(A) # @

vii find min-cost s-t-dipath P in D2 for some s € S(A), t € T(A);
set p to the vector of shortest (min-cost) path distances from s;
augment A flow units along P in x; update b, S(A), T(A), Dﬁ;

w A :=A2



Analysis of Running Time 12]25

Remark

- Steps Hl-B ensure that optimality conditions are always fulfilled.

Theorem 12.13 If all arc capacities and b-values are integral, the Successive
Shortest Path Algorithm with Capacity Scaling terminates with an integral min-cost
b-transshipment after at most O(mlog U) calls to a shortest path subroutine.

« avariant of the Successive Shortest Path Algorithm with strongly polynomial running
time can be obtained by a refined use of capacity scaling

[J. B. Orlin: A faster strongly polynomial minimum cost flow algorithm, Oper. Res., 1993]



| Proof of Theorem 12.13 ]2

- by construction, the optimality criterion is always fullfilled in D;%
« after last iteration D,lc = Dy and the computed b-transshipment has minimum cost

« we claim that at the start of the inner while loop (step M), we have

Zva:b‘pO bv = ZA(H + m) (*)

- at the end of the previous inner while loop, either S(2A) = @ or T(2A) = @,
thus, either )’ v p. -0 bv = = Dvev: p,<0 by < 2nA
« (holds also before the first iteration since SQ2U) = T(2U) = @)
« at the beginning of the iteration in steps i and B only arcs are saturated with
A < uy(a) < 2A
« steps il and Bl increase )’y ., - by by at most 2Am
« by (*), there are at most O(m) iterations of the inner while-loop in step

« the number of iterations of the outer while loop is O(log U) O



