
12

Introduction to

Linear and Combinatorial Optimization

Minimum Cost Flow Problem

12.1 Transshipments

b-Transshipments and Costs 12 | 2

Given: Digraph D = (V ,A), capacities u ∶ A→ℝ≥0, arc costs c ∶ A→ℝ.

Definition 12.1
i Let b ∶ V →ℝ. A flow x is called b-transshipment if

exx(v) = b(v) for all v ∈ V .

ii The cost of a flow x is defined as c(x) ∶= ∑a∈A c(a) ⋅ x(a).
Observation 12.2 A feasible b-transshipment can be found by a max-flow
computation.

Example: −2
−5−3

6

3

1

balance
capacities

s t

2
5

3

6

3

1

Minimum-Cost b-Transshipment Problem 12 | 3

Remark. The existence of a b-transshipment implies that ∑v∈V b(v) = 0.

Minimum-cost b-transshipment problem
Given: D = (V ,A), u ∶ A→ℝ≥0, c ∶ A→ℝ, b ∶ V →ℝ
Task: find a feasible b-transshipment of minimum cost

Special cases:

min-cost s-t-flow problem (for given flow value)

min-cost circulation problem

Cost of residual arc:
For a given feasible flow x, we extend the cost function c to Ax by defining

c(a−1) ∶= −c(a) for a ∈ A.

Adding and Subtracting Flows 12 | 4

we generalize the observations on adding and subtracting flows (Slide 10|8)

If x is a feasible flow in (D,u) and y a feasible flow in (Dx ,ux), then

z(a) ∶= x(a) + y(a) − y(a−1) for a ∈ A
yields a feasible flow z in D (“z ∶= x + y”) and c(z) = c(x) + c(y).
Notice that exz(v) = exx(v) + exy(v) for each v ∈ V .

If x, z are feasible flows in (D,u), then

y(a) ∶= max{0, z(a) − x(a)} for a ∈ A ∩ Ax ,

y(a−1) ∶= max{0, x(a) − z(a)} for a−1 ∈ A−1 ∩ Ax ,

yields a feasible flow y in Dx (“y ∶= z − x”) and c(y) = c(z) − c(x).
Notice that exy(v) = exz(v) − exx(v) for each v ∈ V .

Flow Decomposition and Cost 12 | 5

the following generalizes Theorem 10.15 towards transshipments and costs

Theorem 12.3 For a b-transshipment x in D, there exist dipaths P1, … ,Pk, where
each Pi starts at a node v with b(v) < 0 and ends at a node w with b(w) > 0, as well
as dicycle C1, … ,C� in D with k + � ≤ m + n and values yP1 , … ,yPk ,yC1 , … ,yC� ≥ 0
with

x(a) = ∑
i∶a∈Pi yPi + ∑

j∶a∈Cj

yCj for all a ∈ A. (⋆)

Theorem 12.3 implies

c(x) = ∑
a∈A x(a) ⋅ c(a) (⋆)= ∑

a∈A(∑
i∶a∈Pi yPi + ∑

j∶a∈Cj

yCj) ⋅ c(a)
= k∑

i=1 yPi ⋅ c(Pi) + �∑
j=1 yCj ⋅ c(Cj),

where c(Pi) = ∑a∈Pi c(a) and c(Cj) = ∑a∈Cj
c(a).

Optimality Criteria 12 | 6

Theorem 12.4 A feasible b-transshipment x has minimum cost among all feasible
b-transshipments if and only if each dicycle of Dx has nonnegative cost.

Proof: “⇒”

let C be a dicycle in Dx , then y ∶= ��C with � ∶= mina∈C ux(a) is a feasible
circulation in Dx

then z ∶= x + y is a feasible b-transshipment in D

c(x) ≤ c(z) = c(x) + c(y) as x has minimum cost, thus, c(y) ≥ 0
“⇐”

let z be an arbitrary b-transshipment in D

y ∶= z − x is a feasible circulation in Dx with c(y) = c(z) − c(x)
consider decomposition of y into flow along dicycles C1, … ,C� in Dx , i.e,

y(a) ∶= ∑
j∶a∈Cj

yCj for some yC1 , … ,yC� ∈∈ ℝ≥0
c(y) = ∑�

j=1 yCjc(Cj) ≥ 0, so c(z) ≥ c(x) and x has minumum cost

Optimality Criteria and Potentials 12 | 7

Theorem 12.5 A feasible b-transshipment x has minimum cost among all feasible
b-transshipments if and only if there is a feasible potential y ∈ ℝV in Dx , that is,

yv + c((v,w)) ≥ yw for all (v,w) ∈ Ax .

Proof: x has minimum cost⇔ Dx contains no negative cost dicycle (by Theorem 12.4)⇔ Dx has a feasible potential (by Theorem 8.12)

Alternative Proof of Theorem 12.5 12 | 8

consider LP formulation of min-cost b-transshipment problem

Primal LP: min ∑
a∈A c(a) ⋅ xa

s.t. ∑
a∈�−(v) xa − ∑

a∈�+(v) xa = b(v) for all v ∈ V
xa ≤ u(a) for all a ∈ A
xa ≥ 0 for all a ∈ A

Dual LP: max ∑
v∈V b(v) ⋅ yv +∑

a∈A u(a) ⋅ za
s.t. yw − yv + z(v,w) ≤ c((v,w)) for all (v,w) ∈ A

za ≤ 0 for all a ∈ A
result follows from complementary slackness conditions

12

Introduction to

Linear and Combinatorial Optimization

Minimum Cost Flow Problem

12.2 Cycle Cancelling

Negative-Cycle Canceling Algorithm 12 | 10

Negative-Cycle Canceling Algorithm
i compute a feasible b-transshipment x or determine that none exists;

ii while there is a negative-cost dicycle C in Dx

iii set x ∶= x + � ⋅ �C with � ∶= min{ux(a) ∣ a ∈ C};

Remarks:

negative-cost dicycle C in step ii can be found in O(nm) time by the Ford-Bellman
Algorithm

number of iterations is only pseudo-polynomial in the
input size

if arc capacities and b-values are integral, algorithm
returns integral min-cost b-transshipment

min-cost circulation

capacity; cost

M
0M

0

10

M

0
M

0 −12M

Minimum-Mean-Cycle Canceling Algorithm 12 | 11

The mean cost of a dicycle C in Dx is

c(C)|C| = 1|C| ∑a∈C c(a).
Theorem 12.6 Choosing a minimum mean-cost dicycle in step ii of the
Negative-Cycle Canceling Algorithm, the number of iterations is in O(n ⋅m2 ⋅ logn).
the following observation is similar to Observation 8.22 for shortest paths

Observation 12.7 For given arc costs c ∈ ℝA and node potential y ∈ ℝV , define
arc costs c ′ ∈ ℝA by c ′(v,w) ∶= c(v,w) + yv − yw . Then, a feasible b-transshipment x
has minimum cost w.r.t. c if and only if it has minimum cost w.r.t. c ′. Moreover, for a
dicycle C ∈ Dx it holds that c(C) = c ′(C).

Proof:

c ′(C) = ∑a=(v,w)∈C(c(a) + yv − yw) = ∑a∈C c(a) = c(C)
result follows from Theorem 12.4

Prerequisites for Proof of Thm. 12.6 12 | 12

Let x0, x1, x2, … denote the b-transshipment after iterations 0, 1, 2, …
Let Ai ∶= Axi and Ci be the dicycle in Ai chosen in iteration i + 1.

By choice of Ci, the value "i ∶= −c(Ci)/|Ci| is minimal such that there is a
potential yi ∈ ℝV with

c(a) + "i ≥ yiw − yiv for all a = (v,w) ∈ Ai. (⋆)

Due to Observation 12.7, we may assume for some fixed i that yi ≡ 0.

Lemma 12.8
i "i+1 ≤ "i for all i = 0, 1, 2, …
ii "i+m ≤ (1 − 1

n) ⋅ "i for all i = 0, 1, 2, …
iii Let t ∶= 2 ⋅ n ⋅m ⋅ ⌈ln(n)⌉; then "t < "0

2n .

iv For i = 0, 1, 2, … , there is an arc a ∈ Ci with a ∉ Ch for all h ≥ i + t.

Proof of Lemma 12.8 12 | 13

wlog, we assume that i = 0 and yi = 0
i "i+1 ≤ "i
c(a) ≥ −"0 for all a ∈ A0 and c(a) = −"0 for all a ∈ C0

A1 ⊆ A0 ∪ C−10 and c(a) = "0 > 0 for all a ∈ C−10⇒ c(a) ≥ −"0 for all a ∈ A1 ⇒ "1 ≤ "0
ii "i+m ≤ (1 − 1

n)"i
at least one of the dicycles C0, … ,Cm−1 contains arc a with c(a) ≥ 0 since otherwise
all arcs on C0, … ,Cm−1 are negative and each Ak arises from Ak−1 by deleting at
least one arc of negative cost and adding only new arcs of positive cost⇒ Am has only non-negative arcs, the algorithm terminates, "m ≤ 0
let h be smallest index such that Ch contains a with c(a) ≥ 0⇒ c(Ch) ≥ −(|Ch| − 1)"0⇒ "h = − c(Ch)|Ch| ≤ |Ch|−1|Ch| "0 ≤ n−1

n "0

Proof of Lemma 12.8 (Cont.) 12 | 14

iii "t < "0
2n for t ∶= 2nm⌈ln(n)⌉

"t ≤ (1 − 1
n)2n⌈ln(n)⌉"0 < "0(1e)2⌈ln(n)⌉ ≤ "0

n2 ≤ "0
2n

iv ∃a ∈ Ci with a ∉ Ch for all h ≥ i + t
wlog, assume that i = 0, yt = 0 (⇒ c(a) ≥ −"t , ∀a ∈ At)

c(C0) = −"0|C0|⇒ there is a0 ∈ C0 with c(a0) ≤ −"0 < −2n"t ≤ −"t⇒ a0 ∉ At ⇒ xt(a0) = ua0 (wlog a0 ∈ A)

assume that xh(a0) < xt(a0) for some h > t⇒ xt − xh is a circulation in Dh = (V ,Ah)⇒ Ah contains dicycle C with a0 ∈ C⇒ At contains C−1⇒−c(a) = c(a−1) ≥ −"t for all a ∈ C⇒ c(C) = c(a0)+c(C ⧵ {a0}) < −2n"t+(|C|−1)"t ≤ −n"h ≤ −|C|"h E

Running Time 12 | 15

Proof of Theorem 12.6:

by Lemma 12.8, in every iteration i there is an arc a ∈ Ci with a ∉ Ch for all
h ≥ i + 2nm⌈ln(n)⌉
after O(nm2 logn) iterations no arc can appear in any negative cycle

Theorem 12.9 A minimum mean-cost dicycle can be found in O(n ⋅m) time.

Proof: cf. sketch on next slides.

Corollary 12.10 A min-cost b-transshipment can be found in O(n2 ⋅m3 ⋅ logn)
time.

Remarks
The running time of the Minimum-mean Cycle Canceling Algorithm can be
improved to O(n ⋅m2 ⋅ log2 n).
The Minimum-mean Cycle Canceling Algorithm can be interpreted as a
generalization of the Edmonds-Karp Algorithm.

Computation of a minimummean-cost dicycle 12 | 16

Theorem: A minimum mean-cost dicycle can be found in O(n ⋅m) time.

Lemma Let D = (V ,A) be a digraph with arc costs ca, ∀a ∈ A, and denote by dk(v)
the least cost of a walk starting from v and traversing exactly k arcs, k ≥ 0. Then, the
minimum mean-cost of a dicycle in D is equal to� ∶= min

v∈V max
0≤k≤n−1 dn(v) − dk(v)

n − k .
Proof:

We first prove the lemma in the case that the min cost of a dicycle is 0 (and hence the
minimum mean-cost of a dicycle is 0).

Let v ∈ V arbitrary. The walk of dn(v)must have a cycle (of length � > 0). Removing
this cycle yields a walk of length k = n − � < n, of cost at most dn(v).⇒ dk(v) ≤ dn(v).
This shows: ∀v ∈ V , ∃k < n ∶ dn(v) ≥ dk(v), i.e., � ≥ 0.

Computation of a minimummean-cost dicycle 12 | 17

Proof (cont.):
To prove � ≤ 0, we need to show ∃v ∈ V ∶ ∀k < n,dn(v) ≤ dk(v).
Let C be a cycle of cost 0, and v ′ an arbitrary node on the cycle. Let k∗ < n such that
dk

∗(v ′) is minimal.

Let v ∈ C be the node such that walking around C for n − k∗ steps ends in v ′ if we
start in v. Let W1 be this walk, and W2 be the v ′ − v path of length u along C .

v
v ′

|W1| = n − k∗

|W2| = u

For all 0 ≤ k ≤ n − 1, it holds
dn(v) ≤ c(W1) + dk∗(v ′) ≤ c(W1) + dk+u(v ′) ≤ c(W1) + c(W2) + dk(v) ≤ dk(v).

Computation of a minimummean-cost dicycle 12 | 18

Proof (cont.):

So far, we have proved � = 0 whenever the minimum mean-cost dicycle is 0.

The general case (min mean-cost ≠ 0) can be reduced to the above case by modifying
the costs of the digraph (cf. exercises).

Theorem: A minimum mean-cost dicycle can be found in O(n ⋅m) time.

Proof:
There is a dynamic program for computing the minimum mean-cost� ∶= min

v∈V max
0≤k≤n−1 dn(v) − dk(v)

n − k
in O(nm). Moreover, the dynamic program can be adapted to also return a cycle
realizing the mean-cost � (see exercises).

12

Introduction to

Linear and Combinatorial Optimization

Minimum Cost Flow Problem

12.3 Successive Shortest Paths

Augmenting Flow Along Min-Cost Dipaths 12 | 20

Remarks
In the following we assume without loss of generality that in a given min-cost
b-transshipment problem

i all arc costs are nonnegative;

ii there is a dipath of infinite capacity between every pair of nodes.

Theorem 12.11 Let x be a feasible min-cost b-transshipment, s, t ∈ V , and P a
min-cost s-t-dipath in Dx with bo�leneck capacity ux(P) ∶= mina∈P ux(a). Then,

x + � ⋅ �P with 0 ≤ � ≤ ux(P)
is a feasible min-cost b′-transshipment with

b′(v) ∶= ⎧⎪⎪⎪⎨⎪⎪⎪⎩
b(v) + � for v = t,
b(v) − � for v = s,
b(v) otherwise.

Proof of Theorem 12.11 12 | 21

x ′ = x + ��P is obviously a feasible b′-transshipment

to prove that x ′ has minimum cost, we show that there is a feasible potential in Dx ′
let p(v) be the cost of a min-cost s-v-dipath in Dx , then p is a feasible potential

P is a min-cost s-t-dipath in Dx , thus,

c(a) ≥ p(w) − p(v) for all a = (v,w) ∈ Ax

c(a) = p(w) − p(v) for all a = (v,w) ∈ P⇒ c(a−1) = p(v) − p(w) for all a−1 = (w, v) ∈ P−1
p is a feasible potential for Dx ′ as well because Ax ′ ⊆ Ax ∪ P−1

Successive Shortest Path Algorithm 12 | 22

Successive Shortest Path Algorithm
i set x ∶= 0; b̄ ∶= b;

ii while b̄ ≠ 0
iii find min-cost s-t-dipath P in Dx for s, t ∈ V , b̄(s) < 0, b̄(t) > 0;

iv set � ∶= min{−b̄(s), b̄(t),ux(P)} and

x ∶= x + � ⋅ �P , b̄(s) ∶= b̄(s) + �, b̄(t) ∶= b̄(t) − �;

flow | capacity; cost
balance

−4 4

0

0

0 |4;
2

0 |2; 2

0 |2; 1

0 |3; 3

0 |5;
1

residual capacity; residual cost
imbalance

−4 4

0

0

4; 2

2; 2

2; −2

2; 2

2; −2

2; 1

2; −2

3; 3

5; 1

3; 1

2; −1

Successive Shortest Path Algorithm 12 | 22

Successive Shortest Path Algorithm
i set x ∶= 0; b̄ ∶= b;

ii while b̄ ≠ 0
iii find min-cost s-t-dipath P in Dx for s, t ∈ V , b̄(s) < 0, b̄(t) > 0;

iv set � ∶= min{−b̄(s), b̄(t),ux(P)} and

x ∶= x + � ⋅ �P , b̄(s) ∶= b̄(s) + �, b̄(t) ∶= b̄(t) − �;

flow | capacity; cost
balance

−4 4

0

0

0 |4;
2

2 |2; 2

0 |2; 1

0 |3; 3

2 |5;
1

residual capacity; residual cost
imbalance

−2 2

0

0

4; 2

2; 2

2; −2
2; 2

2; −2 2; 1

2; −2

3; 3

5; 1

3; 1

2; −1

Successive Shortest Path Algorithm 12 | 22

Successive Shortest Path Algorithm
i set x ∶= 0; b̄ ∶= b;

ii while b̄ ≠ 0
iii find min-cost s-t-dipath P in Dx for s, t ∈ V , b̄(s) < 0, b̄(t) > 0;

iv set � ∶= min{−b̄(s), b̄(t),ux(P)} and

x ∶= x + � ⋅ �P , b̄(s) ∶= b̄(s) + �, b̄(t) ∶= b̄(t) − �;

flow | capacity; cost
balance

−4 4

0

0

2 |4;
2

2 |2; 2

2 |2; 1

0 |3; 3

4 |5;
1

residual capacity; residual cost
imbalance

0 0

0

0

4; 2

2; 2

2; −2

2; 2

2; −2

2; 1

2; −2
3; 3

5; 1

1; 1

4; −1

Proof of Theorem 12.12 12 | 23

Theorem 12.12 If all arc capacities and b-values are integral and ∑v∈V b(v) = 0,
the Successive Shortest Path Algorithm terminates with an integral min-cost
b-transshipment after at most 1

2 ∑v∈V |b(v)| iterations.

Proof:

initial flow x ≡ 0 is a min-cost-circulation since c(a) ≥ 0 for all a ∈ A
by induction and Theorem 12.11, x always satisfies the optimality criterion and is,
thus, a min-cost (b − b̄)−transshipment

since all arc capacities and b-values are integral, the algorithm maintains an integral
flow and an integral imbalance in every iteration⇒� is integral ⇒� ≥ 1⇒∑v∈V |b̄(v)| is decreased by at least 2 in every iteration

Capacity Scaling 12 | 24

For a flow x and Δ > 0, let AΔx ∶= {a ∈ Ax ∣ ux(a) ≥ Δ}, DΔx ∶= (V ,AΔx); set
U ∶= max{maxa∈A u(a),maxv∈V |bv |}.

Successive Shortest Path Algorithmwith Capacity Scaling
i set x ∶= 0, Δ ∶= 2⌊logU⌋, p(v) ∶= 0 for all v ∈ V ;

ii while Δ ≥ 1
iii for all a = (v,w) ∈ AΔx with c(a) < p(w) − p(v)
iv set b(v) ∶= b(v) + ux(a) and b(w) ∶= b(w) − ux(a);

augment x by sending ux(a) units of flow along arc a;

v set S(Δ) ∶= {v ∈ V ∣ b(v) ≤ −Δ}, T(Δ) ∶= {v ∈ V ∣ b(v) ≥ Δ};

vi while S(Δ) ≠ ∅ and T(Δ) ≠ ∅
vii find min-cost s-t-dipath P in DΔx for some s ∈ S(Δ), t ∈ T(Δ);

set p to the vector of shortest (min-cost) path distances from s;

augment Δ flow units along P in x; update b, S(Δ), T(Δ), DΔx ;

viii Δ ∶= Δ/2;

Analysis of Running Time 12 | 25

Remark
Steps iii– iv ensure that optimality conditions are always fulfilled.

Theorem 12.13 If all arc capacities and b-values are integral, the Successive
Shortest Path Algorithm with Capacity Scaling terminates with an integral min-cost
b-transshipment after at most O(m logU) calls to a shortest path subroutine.

a variant of the Successive Shortest Path Algorithm with strongly polynomial running
time can be obtained by a refined use of capacity scaling
[J. B. Orlin: A faster strongly polynomial minimum cost flow algorithm, Oper. Res., 1993]

Proof of Theorem 12.13 12 | 26

by construction, the optimality criterion is always fullfilled in DΔx
after last iteration D1

x = Dx and the computed b-transshipment has minimum cost

we claim that at the start of the inner while loop (step vi), we have∑
v∈v∶bv>0 bv ≤ 2Δ(n +m) (⋆)

at the end of the previous inner while loop, either S(2Δ) = ∅ or T(2Δ) = ∅,
thus, either ∑v∈V∶bv>0 bv = −∑v∈V∶bv<0 bv ≤ 2nΔ
(holds also before the first iteration since S(2U) = T(2U) = ∅)
at the beginning of the iteration in steps iii and iv only arcs are saturated withΔ ≤ ux(a) ≤ 2Δ
steps iii and iv increase ∑v∈V∶bv>0 bv by at most 2Δm

by (⋆), there are at most O(m) iterations of the inner while-loop in step iv

the number of iterations of the outer while loop is O(logU)

