Introduction to

Linear and Combinatorial Optimization

12.1 Transshipments

b-Transshipments and Costs

12 2

Given: Digraph D = (V, A), capacities $u : A \to \mathbb{R}_{\geq 0}$, arc costs $c : A \to \mathbb{R}$. Definition 12.1

1 Let $b : V \to \mathbb{R}$. A flow *x* is called *b*-transshipment if

$$ex_x(v) = b(v)$$
 for all $v \in V$.

The cost of a flow x is defined as $c(x) := \sum_{a \in A} c(a) \cdot x(a)$.

Observation 12.2 A feasible *b*-transshipment can be found by a max-flow computation.

Minimum-Cost *b*-Transshipment Problem ——

12 3

Remark. The existence of a *b*-transshipment implies that $\sum_{v \in V} b(v) = 0$.

Minimum-cost *b*-transshipment problem Given: $D = (V, A), u : A \rightarrow \mathbb{R}_{\geq 0}, c : A \rightarrow \mathbb{R}, b : V \rightarrow \mathbb{R}$

Task: find a feasible *b*-transshipment of minimum cost

Special cases:

- min-cost s-t-flow problem (for given flow value)
- min-cost circulation problem

Cost of residual arc:

For a given feasible flow x, we extend the cost function c to A_x by defining

$$c(a^{-1}) := -c(a)$$
 for $a \in A$.

Adding and Subtracting Flows

- we generalize the observations on adding and subtracting flows (Slide 10|8)
- If x is a feasible flow in (D, u) and y a feasible flow in (D_x, u_x) , then

$$z(a) := x(a) + y(a) - y(a^{-1})$$
 for $a \in A$

yields a feasible flow z in D ("z := x + y") and c(z) = c(x) + c(y). Notice that $ex_z(v) = ex_x(v) + ex_y(v)$ for each $v \in V$.

• If *x*, *z* are feasible flows in (*D*, *u*), then

$$y(a) := \max\{0, z(a) - x(a)\} \qquad \text{for } a \in A \cap A_x, y(a^{-1}) := \max\{0, x(a) - z(a)\} \qquad \text{for } a^{-1} \in A^{-1} \cap A_x,$$

yields a feasible flow y in D_x ("y := z - x") and c(y) = c(z) - c(x). Notice that $ex_y(v) = ex_z(v) - ex_x(v)$ for each $v \in V$.

Flow Decomposition and Cost

- · the following generalizes Theorem 10.15 towards transshipments and costs
 - **Theorem 12.3** For a *b*-transshipment *x* in *D*, there exist dipaths P_1, \ldots, P_k , where each P_i starts at a node *v* with b(v) < 0 and ends at a node *w* with b(w) > 0, as well as dicycle C_1, \ldots, C_ℓ in *D* with $k + \ell \le m + n$ and values $y_{P_1}, \ldots, y_{P_k}, y_{C_1}, \ldots, y_{C_\ell} \ge 0$ with

$$x(a) = \sum_{i:a \in P_i} y_{P_i} + \sum_{j:a \in C_j} y_{C_j} \quad \text{for all } a \in A. \tag{(\star)}$$

Theorem 12.3 implies

$$c(x) = \sum_{a \in A} x(a) \cdot c(a) \stackrel{(\star)}{=} \sum_{a \in A} \left(\sum_{i: a \in P_i} y_{P_i} + \sum_{j: a \in C_j} y_{C_j} \right) \cdot c(a)$$
$$= \sum_{i=1}^k y_{P_i} \cdot c(P_i) + \sum_{j=1}^\ell y_{C_j} \cdot c(C_j),$$

where $c(P_i) = \sum_{a \in P_i} c(a)$ and $c(C_j) = \sum_{a \in C_j} c(a)$.

Optimality Criteria

12 6

Theorem 12.4 A feasible *b*-transshipment *x* has minimum cost among all feasible *b*-transshipments if and only if each dicycle of D_x has nonnegative cost. **Proof:** " \Rightarrow "

- let *C* be a dicycle in D_x , then $y := \delta \chi^C$ with $\delta := \min_{a \in C} u_x(a)$ is a feasible circulation in D_x
- then z := x + y is a feasible *b*-transshipment in *D*
- $c(x) \le c(z) = c(x) + c(y)$ as x has minimum cost, thus, $c(y) \ge 0$ " \Leftarrow "
- let z be an arbitrary b-transshipment in D
- y := z x is a feasible circulation in D_x with c(y) = c(z) c(x)
- consider decomposition of y into flow along dicycles C_1, \ldots, C_ℓ in D_x , i.e,

$$y(a) := \sum_{j:a \in C_j} y_{C_j}$$
 for some $y_{C_1}, \dots, y_{C_\ell} \in \mathbb{R}_{\geq 0}$

• $c(y) = \sum_{j=1}^{\ell} y_{C_j} c(C_j) \ge 0$, so $c(z) \ge c(x)$ and x has minumum cost

Optimality Criteria and Potentials

12 7

Theorem 12.5 A feasible *b*-transshipment *x* has minimum cost among all feasible *b*-transshipments if and only if there is a feasible potential $y \in \mathbb{R}^V$ in D_x , that is,

 $y_v + c((v, w)) \ge y_w$ for all $(v, w) \in A_x$.

Proof: *x* has minimum cost

 $\iff D_x$ contains no negative cost dicycle (by Theorem 12.4)

 \Leftrightarrow D_x has a feasible potential (by Theorem 8.12)

Alternative Proof of Theorem 12.5

12 8

• consider LP formulation of min-cost *b*-transshipment problem

Primal LP: min
$$\sum_{a \in A} c(a) \cdot x_a$$

s.t. $\sum_{a \in \delta^-(v)} x_a - \sum_{a \in \delta^+(v)} x_a = b(v)$ for all $v \in V$
 $x_a \le u(a)$ for all $a \in A$
 $x_a \ge 0$ for all $a \in A$
Dual LP: max $\sum_{v \in V} b(v) \cdot y_v + \sum_{a \in A} u(a) \cdot z_a$
s.t. $y_w - y_v + z_{(v,w)} \le c((v, w))$ for all $(v, w) \in A$
 $z_a \le 0$ for all $a \in A$

result follows from complementary slackness conditions

Introduction to

Linear and Combinatorial Optimization

12.2 Cycle Cancelling

Negative-Cycle Canceling Algorithm -

Negative-Cycle Canceling Algorithm

\blacksquare compute a feasible *b*-transshipment *x* or determine that none exists;

iii while there is a negative-cost dicycle C in D_x

set
$$x := x + \delta \cdot \chi^C$$
 with $\delta := \min\{u_x(a) \mid a \in C\};$

Remarks:

- negative-cost dicycle C in step \blacksquare can be found in O(nm) time by the Ford-Bellman Algorithm min-cost circulation
- number of iterations is only pseudo-polynomial in the input size
- if arc capacities and *b*-values are integral, algorithm returns integral min-cost *b*-transshipment

capacity; cost

Minimum-Mean-Cycle Canceling Algorithm — 12111

The mean cost of a dicycle C in D_x is

$$\frac{c(C)}{|C|} = \frac{1}{|C|} \sum_{a \in C} c(a).$$

Theorem 12.6 Choosing a minimum mean-cost dicycle in step \blacksquare of the Negative-Cycle Canceling Algorithm, the number of iterations is in $O(n \cdot m^2 \cdot \log n)$.

• the following observation is similar to Observation 8.22 for shortest paths

Observation 12.7 For given arc costs $c \in \mathbb{R}^A$ and node potential $y \in \mathbb{R}^V$, define arc costs $c' \in \mathbb{R}^A$ by $c'_{(v,w)} := c_{(v,w)} + y_v - y_w$. Then, a feasible *b*-transshipment *x* has minimum cost w.r.t. *c* if and only if it has minimum cost w.r.t. *c'*. Moreover, for a dicycle $C \in D_x$ it holds that c(C) = c'(C).

Proof:

•
$$c'(C) = \sum_{a=(v,w)\in C} (c(a) + y_v - y_w) = \sum_{a\in C} c(a) = c(C)$$

• result follows from Theorem 12.4

Prerequisites for Proof of Thm. 12.6 — 12

Let $x_0, x_1, x_2, ...$ denote the *b*-transshipment after iterations 0, 1, 2, ...

Let $A_i := A_{x_i}$ and C_i be the dicycle in A_i chosen in iteration i + 1.

By choice of C_i , the value $\varepsilon_i := -c(C_i)/|C_i|$ is minimal such that there is a potential $y^i \in \mathbb{R}^V$ with

$$c(a) + \varepsilon_i \ge y_w^i - y_v^i \qquad \text{for all } a = (v, w) \in A_i. \tag{(\star)}$$

Due to Observation 12.7, we may assume for some fixed *i* that $y^i \equiv 0$.

Lemma 12.8 i $\varepsilon_{i+1} \le \varepsilon_i$ for all i = 0, 1, 2, ... **ii** $\varepsilon_{i+m} \le \left(1 - \frac{1}{n}\right) \cdot \varepsilon_i$ for all i = 0, 1, 2, ... **iii** Let $t := 2 \cdot n \cdot m \cdot \left[\ln(n)\right]$; then $\varepsilon_t < \frac{\varepsilon_0}{2n}$. **iv** For i = 0, 1, 2, ..., there is an arc $a \in C_i$ with $a \notin C_h$ for all $h \ge i + t$.

Proof of Lemma 12.8

wlog, we assume that i = 0 and $y^i = 0$

 $\mathbf{i} \ \mathcal{E}_{i+1} \le \mathcal{E}_i$

• $c(a) \ge -\varepsilon_0$ for all $a \in A_0$ and $c(a) = -\varepsilon_0$ for all $a \in C_0$

•
$$A_1 \subseteq A_0 \cup C_0^{-1}$$
 and $c(a) = \varepsilon_0 > 0$ for all $a \in C_0^{-1}$

$$\Rightarrow c(a) \ge -\varepsilon_0$$
 for all $a \in A_1 \Rightarrow \varepsilon_1 \le \varepsilon_0$

$$\mathbb{I} \mathcal{E}_{i+m} \le \left(1 - \frac{1}{n}\right) \mathcal{E}_i$$

 at least one of the dicycles C₀,..., C_{m-1} contains arc a with c(a) ≥ 0 since otherwise all arcs on C₀,..., C_{m-1} are negative and each A_k arises from A_{k-1} by deleting at least one arc of negative cost and adding only new arcs of positive cost

 \Rightarrow A_m has only non-negative arcs, the algorithm terminates, $\varepsilon_m \leq 0$

• let *h* be smallest index such that C_h contains *a* with $c(a) \ge 0$

$$\Rightarrow c(C_h) \ge -(|C_h| - 1)\varepsilon_0 \Rightarrow \varepsilon_h = -\frac{c(C_h)}{|C_h|} \le \frac{|C_h| - 1}{|C_h|}\varepsilon_0 \le \frac{n - 1}{n}\varepsilon_0$$

Proof of Lemma 12.8 (Cont.)

 $\lim \varepsilon_t < \frac{\varepsilon_0}{2n} \text{ for } t := 2nm[\ln(n)]$

•
$$\varepsilon_t \leq \left(1 - \frac{1}{n}\right)^{2n\lceil \ln(n) \rceil} \varepsilon_0 < \varepsilon_0 \left(\frac{1}{e}\right)^{2\lceil \ln(n) \rceil} \leq \frac{\varepsilon_0}{n^2} \leq \frac{\varepsilon_0}{2n}$$

 $\blacksquare \exists a \in C_i \text{ with } a \notin C_h \text{ for all } h \ge i + t$

• wlog, assume that $i = 0, y^t = 0$ $(\Rightarrow c(a) \ge -\varepsilon_t, \forall a \in A_t)$

• $c(C_0) = -\varepsilon_0 |C_0|$ \Rightarrow there is $a_0 \in C_0$ with $c(a_0) \leq -\varepsilon_0 < -2n\varepsilon_t \leq -\varepsilon_t$ $\Rightarrow a_0 \notin A_t \Rightarrow x_t(a_0) = u_{a_0} \pmod{a_0} \in A$ • assume that $x_h(a_0) < x_t(a_0)$ for some h > t $\Rightarrow x_t - x_h$ is a circulation in $D_h = (V, A_h)$ \Rightarrow A_h contains dicycle C with $a_0 \in C$ \Rightarrow A_t contains C⁻¹ $\Rightarrow -c(a) = c(a^{-1}) \ge -\varepsilon_t$ for all $a \in C$ $\Rightarrow c(C) = c(a_0) + c(C \setminus \{a_0\}) < -2n\varepsilon_t + (|C| - 1)\varepsilon_t \leq -n\varepsilon_h \leq -|C|\varepsilon_h \neq 0$

Running Time

Proof of Theorem 12.6:

- by Lemma 12.8, in every iteration *i* there is an arc $a \in C_i$ with $a \notin C_h$ for all $h \ge i + 2nm[\ln(n)]$
- after $O(nm^2 \log n)$ iterations no arc can appear in any negative cycle

Theorem 12.9 A minimum mean-cost dicycle can be found in $O(n \cdot m)$ time. **Proof:** cf. sketch on next slides.

Corollary 12.10 A min-cost *b*-transshipment can be found in $O(n^2 \cdot m^3 \cdot \log n)$ time.

Remarks

- The running time of the Minimum-mean Cycle Canceling Algorithm can be improved to $O(n \cdot m^2 \cdot \log^2 n)$.
- The Minimum-mean Cycle Canceling Algorithm can be interpreted as a generalization of the Edmonds-Karp Algorithm.

Computation of a minimum mean-cost dicycle — 12/16

Theorem: A minimum mean-cost dicycle can be found in $O(n \cdot m)$ time.

Lemma Let D = (V, A) be a digraph with arc costs c_a , $\forall a \in A$, and denote by $d^k(v)$ the least cost of a walk starting from v and traversing exactly k arcs, $k \ge 0$. Then, the minimum mean-cost of a dicycle in D is equal to

$$\alpha := \min_{v \in V} \max_{0 \le k \le n-1} \frac{d^n(v) - d^k(v)}{n-k}.$$

Proof:

- We first prove the lemma in the case that the min cost of a dicycle is 0 (and hence the minimum mean-cost of a dicycle is 0).
- Let v ∈ V arbitrary. The walk of dⁿ(v) must have a cycle (of length ℓ > 0). Removing this cycle yields a walk of length k = n − ℓ < n, of cost at most dⁿ(v).
 ⇒ d^k(v) ≤ dⁿ(v).

This shows: $\forall v \in V, \exists k < n : d^n(v) \ge d^k(v)$, i.e., $\alpha \ge 0$.

Computation of a minimum mean-cost dicycle — 12/17

Proof (cont.):

- To prove $\alpha \le 0$, we need to show $\exists v \in V : \forall k < n, d^n(v) \le d^k(v)$.
- Let *C* be a cycle of cost 0, and ν' an arbitrary node on the cycle. Let $k^* < n$ such that $d^{k^*}(\nu')$ is minimal.
- Let $v \in C$ be the node such that walking around C for $n k^*$ steps ends in v' if we start in v. Let W_1 be this walk, and W_2 be the v' v path of length u along C.

• For all $0 \le k \le n - 1$, it holds $d^n(v) \le c(W_1) + d^{k^*}(v') \le c(W_1) + d^{k+u}(v') \le c(W_1) + c(W_2) + d^k(v) \le d^k(v)$.

Computation of a minimum mean-cost dicycle — 12/18

Proof (cont.):

- So far, we have proved $\alpha = 0$ whenever the minimum mean-cost dicycle is 0.
- The general case (min mean-cost ≠ 0) can be reduced to the above case by modifying the costs of the digraph (cf. exercises).

Theorem: A minimum mean-cost dicycle can be found in $O(n \cdot m)$ time.

Proof:

There is a dynamic program for computing the minimum mean-cost

$$\alpha := \min_{v \in V} \max_{0 \le k \le n-1} \frac{d^n(v) - d^k(v)}{n-k}$$

in O(nm). Moreover, the dynamic program can be adapted to also return a cycle realizing the mean-cost α (see exercises).

Introduction to

Linear and Combinatorial Optimization

12.3 Successive Shortest Paths

Augmenting Flow Along Min-Cost Dipaths —— 12/20

Remarks

In the following we assume without loss of generality that in a given min-cost b-transshipment problem

- i all arc costs are nonnegative;
- iii there is a dipath of infinite capacity between every pair of nodes.

Theorem 12.11 Let *x* be a feasible min-cost *b*-transshipment, *s*, $t \in V$, and *P* a min-cost *s*-*t*-dipath in D_x with bottleneck capacity $u_x(P) := \min_{a \in P} u_x(a)$. Then, $x + \delta \cdot \chi^P$ with $0 \le \delta \le u_x(P)$

is a feasible min-cost b'-transshipment with

$$b'(v) := \begin{cases} b(v) + \delta & \text{for } v = t, \\ b(v) - \delta & \text{for } v = s, \\ b(v) & \text{otherwise.} \end{cases}$$

Proof of Theorem 12.11

- $x' = x + \delta \chi^P$ is obviously a feasible b'-transshipment
- to prove that x' has minimum cost, we show that there is a feasible potential in $D_{x'}$
- let p(v) be the cost of a min-cost *s*-*v*-dipath in D_x , then *p* is a feasible potential
- P is a min-cost *s*-*t*-dipath in D_x , thus,

$$c(a) \ge p(w) - p(v) \quad \text{for all } a = (v, w) \in A_x$$
$$c(a) = p(w) - p(v) \quad \text{for all } a = (v, w) \in P$$

$$\implies c(a^{-1}) = p(v) - p(w) \text{ for all } a^{-1} = (w, v) \in P^{-1}$$

- p is a feasible potential for $D_{x'}$ as well because $A_{x'} \subseteq A_x \cup P^{-1}$

Successive Shortest Path Algorithm

12 22

Successive Shortest Path Algorithm

i set
$$x := 0; \bar{b} := b;$$

 \mathbf{ii} while $\bar{b} \neq 0$

find min-cost *s*-*t*-dipath *P* in D_x for $s, t \in V$, $\bar{b}(s) < 0$, $\bar{b}(t) > 0$;

set
$$\delta := \min\{-\bar{b}(s), \bar{b}(t), u_x(P)\}$$
 and

 $x := x + \delta \cdot \chi^P$, $\overline{b}(s) := \overline{b}(s) + \delta$, $\overline{b}(t) := \overline{b}(t) - \delta$;

Successive Shortest Path Algorithm

12 22

Successive Shortest Path Algorithm

i set
$$x := 0; \bar{b} := b;$$

 \mathbf{ii} while $\bar{b} \neq 0$

find min-cost *s*-*t*-dipath *P* in D_x for $s, t \in V$, $\bar{b}(s) < 0$, $\bar{b}(t) > 0$;

set
$$\delta := \min\{-\bar{b}(s), \bar{b}(t), u_x(P)\}$$
 and

 $x := x + \delta \cdot \chi^P$, $\overline{b}(s) := \overline{b}(s) + \delta$, $\overline{b}(t) := \overline{b}(t) - \delta$;

Successive Shortest Path Algorithm

12 22

Successive Shortest Path Algorithm

i set
$$x := 0; \bar{b} := b;$$

 \mathbf{ii} while $\bar{b} \neq 0$

find min-cost *s*-*t*-dipath *P* in D_x for $s, t \in V$, $\bar{b}(s) < 0$, $\bar{b}(t) > 0$;

set
$$\delta := \min\{-\bar{b}(s), \bar{b}(t), u_x(P)\}$$
 and

 $x := x + \delta \cdot \chi^P$, $\overline{b}(s) := \overline{b}(s) + \delta$, $\overline{b}(t) := \overline{b}(t) - \delta$;

Proof of Theorem 12.12

Theorem 12.12 If all arc capacities and *b*-values are integral and $\sum_{v \in V} b(v) = 0$, the Successive Shortest Path Algorithm terminates with an integral min-cost *b*-transshipment after at most $\frac{1}{2} \sum_{v \in V} |b(v)|$ iterations.

Proof:

- initial flow $x \equiv 0$ is a min-cost-circulation since $c(a) \ge 0$ for all $a \in A$
- by induction and Theorem 12.11, x always satisfies the optimality criterion and is, thus, a min-cost $(b \bar{b})$ -transshipment
- since all arc capacities and *b*-values are integral, the algorithm maintains an integral flow and an integral imbalance in every iteration
 - $\Rightarrow \delta$ is integral $\Rightarrow \delta \ge 1$
 - $\Longrightarrow \sum_{\mathbf{v} \in V} |\bar{b}(\mathbf{v})|$ is decreased by at least 2 in every iteration

Capacity Scaling

For a flow x and $\Delta > 0$, let $A_x^{\Delta} := \{a \in A_x \mid u_x(a) \ge \Delta\}, D_x^{\Delta} := (V, A_x^{\Delta})$; set $U := \max\{\max_{a \in A} u(a), \max_{v \in V} |b_v|\}.$

Successive Shortest Path Algorithm with Capacity Scaling i set $x := 0, \Delta := 2^{\lfloor \log U \rfloor}, p(v) := 0$ for all $v \in V$; while $\Delta \ge 1$ ii. for all $a = (v, w) \in A_r^{\Delta}$ with c(a) < p(w) - p(v)iii set $b(v) := b(v) + u_x(a)$ and $b(w) := b(w) - u_x(a)$; iv augment x by sending $u_x(a)$ units of flow along arc a; set $S(\Delta) := \{ v \in V \mid b(v) \le -\Delta \}, T(\Delta) := \{ v \in V \mid b(v) \ge \Delta \};$ v while $S(\Delta) \neq \emptyset$ and $T(\Delta) \neq \emptyset$ vi find min-cost *s*-*t*-dipath *P* in D_r^{Δ} for some $s \in S(\Delta)$, $t \in T(\Delta)$; vii set *p* to the vector of shortest (min-cost) path distances from *s*; augment Δ flow units along *P* in *x*; update *b*, *S*(Δ), *T*(Δ), D_x^{Δ} ; $\Delta := \Delta/2;$ vii

Analysis of Running Time

Remark

• Steps iii-iv ensure that optimality conditions are always fulfilled.

Theorem 12.13 If all arc capacities and *b*-values are integral, the Successive Shortest Path Algorithm with Capacity Scaling terminates with an integral min-cost *b*-transshipment after at most $O(m \log U)$ calls to a shortest path subroutine.

• a variant of the Successive Shortest Path Algorithm with strongly polynomial running time can be obtained by a refined use of capacity scaling

[J. B. Orlin: A faster strongly polynomial minimum cost flow algorithm, Oper. Res., 1993]

Proof of Theorem 12.13

- by construction, the optimality criterion is always fullfilled in D_x^{Δ}
- after last iteration $D_x^1 = D_x$ and the computed *b*-transshipment has minimum cost
- we claim that at the start of the inner while loop (step v), we have

$$\sum_{v \in v: \ b_v > 0} b_v \le 2\Delta(n+m) \tag{(\star)}$$

- at the end of the previous inner while loop, either $S(2\Delta) = \emptyset$ or $T(2\Delta) = \emptyset$, thus, either $\sum_{v \in V: b_v > 0} b_v = -\sum_{v \in V: b_v < 0} b_v \le 2n\Delta$
- (holds also before the first iteration since $S(2U) = T(2U) = \emptyset$)
- at the beginning of the iteration in steps m and m only arcs are saturated with $\Delta \le u_x(a) \le 2\Delta$
- steps iii and $\overline{\mathbf{w}}$ increase $\sum_{\nu \in V: \ b_{\nu} > 0} b_{\nu}$ by at most $2 \Delta m$
- by (\star), there are at most O(m) iterations of the inner while-loop in step \mathbf{w}
- the number of iterations of the outer while loop is $O(\log U)$