
13

Introduction to

Linear and Combinatorial Optimization

Linear Programming Complexity

13.1 Number of Simplex Iterations

Computational Efficiency of the Simplex Method 13 | 2

Observation
The computational efficiency of the simplex method is determined by

i the computational effort of each iteration;

ii the number of iterations.

�estion: How many iterations are needed in the worst case?

Idea for negative answer (lower bound)
Describe

a polyhedron with an exponential number of vertices;

a path that visits all vertices and always moves from a vertex to an adjacent one
that has lower costs.

Efficiency of the Simplex Method 13 | 3

Unit cube
Consider the unit cube in ℝn, defined by the constraints

0 ≤ xi ≤ 1, i = 1, … ,n
The unit cube has

2n vertices;

a spanning path, i.e., a path traveling along the edges of the cube visiting each
vertex exactly once.

n = 2:

11 x1
0

x2

n = 3:

11

1

x1x2
0

x3

Efficiency of the Simplex Method (Cont.) 13 | 4

Klee-Minty cube
Consider a perturbation of the unit cube in ℝn, defined by the constraints

0 ≤ x1 ≤ 1,"xi−1 ≤ xi ≤ 1 − "xi−1, i = 2, … ,n
for some " ∈ (0, 1/2).
n = 2:

11 x1
0

x2

n = 3:

11

1

x1x2
0

x3

Efficiency of the Simplex Method (Cont.) 13 | 5

Klee-Minty cube
0 ≤ x1 ≤ 1,"xi−1 ≤ xi ≤ 1 − "xi−1, i = 2, … ,n

Theorem 13.1 Consider the linear programming problem of minimizing −xn subject
to the constraints above. Then,

a the feasible set has 2n vertices;

b the vertices can be ordered so that each one is adjacent to and has lower cost than
the previous one;

c there exists a pivoting rule under which the simplex method requires 2n − 1
changes of basis before it terminates.

Remark
Such ‘bad’ instances exist for (almost) all popular pivoting rules.

Diameter of Polyhedra and Polytopes 13 | 6

Definition 13.2 (Graph, combinatorial diameter) Let P ⊂ ℝn be a
polyhedron.

i The graph (1-skeleton) G(P) consists of the vertices and edges of P.

ii For vertices v,w of P, the distance �P(v,w) is the minimum length of a path
connecting v and w in G(P).

iii �(P) ∶= max{�P(v,w) ∶ v,w vertices of P} is called the (combinatorial)
diameter of P.

Examples:�(P) = 1 for the n-dimensional simplex P�(Cn) = n for the n-dimensional hypercube Cn

Diameter of Polyhedra and Polytopes (Cont.) 13 | 7

Observation: Diameter of the polyhedron of an LP is lower bound on # steps required by
simplex method (no ma�er which pivoting rule).

Definition 13.3 For integers n and m letΔ(n,m) ∶= max{�(P) ∣ P ⊆ ℝn polytope given by m inequalities}Δu(n,m) ∶= max{�(P) ∣ P ⊆ ℝn polyhedron given by m inequalities}
Examples.

Δ(2, 7) = ⌊72⌋ = 3Δ(2,m) = ⌊m2 ⌋
Δu(2, 7) = 7 − 2 = 5Δu(2,m) = m − 2

Remark. Δ(n,n + 1) = 1 and Δ(n,m) ≤ Δ(n,m + 1).

Hirsch Conjecture 13 | 8

Hirsch Conjecture (1957) Δ(n,m) ≤ m − n
Remarks.

Hirsch Conjecture is known to be true if n ≤ 3 or m ≤ n + 5.

Hirsch Conjecture is false for unbounded polyhedra:Δu(n,m) ≥ m − n + ⌊n4⌋ for m ≥ 2n.

Known upper bounds:Δ(n,m) ≤ m ⋅ 2n−3 (Barne�e 1969; Larman 1970)Δ(n,m) ≤ mlogn+2 (Kalai 1992; Kalai & Kleitman 1992)

Hirsch Conjecture disproven for n = 43, m = 86
F. Santos, A counterexample to the Hirsch Conjecture, Ann. Math., 2012

Polynomial Hirsch ConjectureΔ(n,m) ≤ poly(m,n)

0/1-Polytopes 13 | 9

Definition 13.4 Let [0, 1]n be the n-dimensional
unit cube with vertices {0, 1}n. A polytope P ⊆ ℝn is
called 0/1-polytope if all vertices of P lie in {0, 1}n.

P

Lemma 13.5 Let P ⊆ ℝn be 0/1-polytope withdimP ≤ n − 1. There is a 0/1-polytope P̃ that is a
projection of P such that G(P) and G(P̃) are
isomorphic.

(graphs G = (V ,E) and G̃ = (Ṽ , Ẽ) are isomorphic if there

is a bijection f ∶ V → Ṽ such that {v,w} ∈ E iff{f (v), f (w)} ∈ Ẽ)
P̃

P

Proof of Lemma 13.5 13 | 10

let P ⊆ ℝn, dim(P) ≤ n − 1 be a 0/1 polytope

let a ∈ ℝn ⧵ {0}, � ∈ ℝ be such that a⊤x = � for all
x ∈ P, wlog an ≠ 0
let � ∶ ℝn →ℝn−1 be defined as(x1, … , xn−1, xn) ↦ (x1, … , xn−1)
let P̃ = �(P)

P

Claim: � ∶ P → P̃ is a bijection

for y ∈ P̃, the only x ∈ P with �(x) = y has xn = �−�(a)⊤y
an

Proof of Lemma 13.5 (Cont.) 13 | 11

Claim: x vertex of P ⇔ �(x) vertex of P̃

we use the equivalence between vertices and extreme
points of Theorem 3.21

if there are y, z ∈ P, � ∈ (0, 1) such that
x = �y + (1 − �)z, then �(x) = ��(y) + (1 − y)�(z)
if there are ỹ, z̃ ∈ P̃ such that x̃ = �ỹ + (1 − �)z̃, then

P̃

P

�−1(x̃) = (x̃1, … , x̃n−1, �−�(a)⊤x̃an)= �(ỹ1, … , ỹn−1, �−�(a)⊤ỹan) + (1 − �)(z̃1, … , z̃n−1, �−�(a)⊤z̃an)= ��−1(ỹ) + (1 − �)�−1(z̃)

Proof of Lemma 13.5 (Cont.) 13 | 12

Claim: vertices x,y adjacent in P⇔ vertices �(x), �(y) adjacent in P̃

let x,y be non-adjacent vertices in P
x+y
2 = ∑i �vivi for some vertices vi of P and coefficients�i ≥ 0 with ∑i �vi = 1 and �x + �y < 1

then �(x)+�(y)
2 = ∑i �vi�(vi), i.e., �(x) and �(y) are

non-adjacent in P̃

similarly, one can show that if x̃ and ỹ are non-adjacent
in P̃, then �−1(x) and �−1(y) are non-adjacent in P

P̃

P

Hirsch Conjecture for 0/1-Polytopes 13 | 13

D. Naddef, The Hirsch conjecture is true for (0, 1)-polytopes, Math. Program., 1989

Theorem 13.6
i Let P ⊆ ℝn be a 0/1-polytope. Then �(P) ≤ dimP.

ii Let P ⊆ ℝn be an n-dimensional 0/1-polytope with m facets. Then �(P) ≤ m − n.

Proof: i by induction on n, n = 1 is trivial

let v,w be two arbitrary vertices of P

if there is a facet F of the hypercube [0, 1]n with v,w ∈ F , then by induction�P(v,w) ≤ �(P ∩ F) ≤ dim(P ∩ F) ≤ dim(P)
otherwise v and w differ in all coordinates

v has a neighbor v̄ contained in a common facet F of the hypercube [0, 1]n with w,
then �P(v,w) ≤ 1 + �P(v̄,w) ≤ 1 + �(P ∩ F) ≤ 1 + dim(P ∩ F) ≤ dim(P)

Proof of Hirsch Conjecture for 0/1-Polytopes 13 | 14

ii �(P) ≤ m − n
by Lemma 13.5, it suffices to show this result for full-dimensional poytopes

induction on n, n = 1 is trivial

if m ≥ 2n, then the result follows from i

since P is full-dimensional, all facets have dimension n − 1 by Theorem 3.29

every vertex of P is contained in at least n facets

if m < 2n, all pairs of vertices u, v share a common facet F

F has at most m − 1 facets

by induction �P(v,w) ≤ �(F) ≤ (m − 1) − (n − 1) = m − n

Average Case Behavior of the Simplex Method 13 | 15

Despite the exponential lower bounds on the worst case behavior of the simplex
method (Klee-Minty cubes etc.), the simplex method usually behaves well in practice.

The number of iterations is “typically” O(m).
There have been several a�empts to explain this phenomenon from a more theoretical
point of view. These results say that “on average” the number of iterations is O(⋅)
(usually polynomial).

One main difficulty is to come up with a meaningful and, at the same time,
manageable definition of the term “on average”.

Smoothed analysis: hybrid of worst-case and average-case analyses, measuring the
expected performance of algorithms under slight random perturbations of worst-case
inputs.

D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually

takes polynomial time, JACM, 2004

13

Introduction to

Linear and Combinatorial Optimization

Linear Programming Complexity

13.2 Ellipsoid Method

Complexity of Linear Programming 13 | 17

no variant of the simplex method has been shown to have a polynomial running time

complexity of Linear Programming remained unresolved for a long time

in 1979, the Soviet mathematician Leonid Khachiyan proved that the so-called
ellipsoid method earlier developed for nonlinear optimization can be modified in order
to solve LPs in polynomial time

in November 1979, the New York Times featured Khachiyan and his algorithm in a
front-page story

New York Times, Nov. 27, 1979

Geometric Basics: Positive Definite Matrices 13 | 19

Definition 13.7 A symmetric matrix D ∈ ℝn×n is positive definite if

x⊤ ⋅ D ⋅ x > 0 for all x ∈ ℝn ⧵ {0}.

Lemma 13.8 For a symmetric matrix D ∈ ℝn×n, the following statements are
equivalent:

i D is positive definite.

ii D−1 exists and is positive definite.

iii D has only real and positive eigenvalues.

iv D = B⊤ ⋅ B for a non-singular matrix B ∈ ℝn×n.

Geometric Basics: Ellipsoids 13 | 20

Definition 13.9 A set E ⊆ ℝn of the form

E = E(z,D) ∶= {x ∈ ℝn ∣ (x − z)⊤ ⋅ D−1 ⋅ (x − z) ≤ 1}
with z ∈ ℝn, D ∈ ℝn×n positive definite is called ellipsoid with center z.

Examples:

E(z, r2 ⋅ I) = {x ∈ ℝn ∣ (x − z)⊤ ⋅ (x − z) ≤ r2} = {x ∈ ℝn ∣ ‖x − z‖2 ≤ r}, is the

ball of radius r at z, Vol(E(z, r2I)) = rnVol(E(0, I)) = rn � n
2Γ(n2+1)

E(0, (2 0
0 1)) = {

x∈ℝ2 ∣ 1
2x

2
1 + x22 ≤ 1

}
, Vol(E(0, (2 0

0 1))) = √
2�

x1

x2

r r

r

r
z

x1

x2

√
2

√
2

1

1
0

Vol(E(z,D)) = √det(D)Vol(E(0, I))

Ellipsoid Method: Rough Idea 13 | 21

The ellipsoid method solves the following problem:

Given: A ∈ ℤm×n and b ∈ ℤm, polyhedron P ∶= {x ∈ ℚn ∣ A ⋅ x ≥ b}.

Task: Find a point x ∈ P or determine that P is empty.

Example:

x0

x1

x2

P

x3

Ellipsoid Method: Rough Idea 13 | 21

The ellipsoid method solves the following problem:

Given: A ∈ ℤm×n and b ∈ ℤm, polyhedron P ∶= {x ∈ ℚn ∣ A ⋅ x ≥ b}.

Task: Find a point x ∈ P or determine that P is empty.

Example:

x0

x1

x2

P

x3

Ellipsoid Method: Rough Idea 13 | 21

The ellipsoid method solves the following problem:

Given: A ∈ ℤm×n and b ∈ ℤm, polyhedron P ∶= {x ∈ ℚn ∣ A ⋅ x ≥ b}.

Task: Find a point x ∈ P or determine that P is empty.

Example:

x0

x1

x2

P

x3

Ellipsoid Method: Rough Idea 13 | 21

The ellipsoid method solves the following problem:

Given: A ∈ ℤm×n and b ∈ ℤm, polyhedron P ∶= {x ∈ ℚn ∣ A ⋅ x ≥ b}.

Task: Find a point x ∈ P or determine that P is empty.

Example:

x0

x1

x2

P

x3

Ellipsoid Method: Rough Idea 13 | 21

The ellipsoid method solves the following problem:

Given: A ∈ ℤm×n and b ∈ ℤm, polyhedron P ∶= {x ∈ ℚn ∣ A ⋅ x ≥ b}.

Task: Find a point x ∈ P or determine that P is empty.

Example:

x0

x1

x2

P x3

How to Find the Next Ellipsoid? 13 | 22

Theorem 13.10 Let E = E(z,D) be an ellipsoid in ℝn and a ∈ ℝn ⧵ {0}. Consider
the halfspace H ∶= {x ∈ ℝn ∣ a⊤ ⋅ x ≥ a⊤ ⋅ z} and set

z̄ ∶= z + 1
n + 1 ⋅ D ⋅ a√

a⊤ ⋅ D ⋅ a ,
D̄ ∶= n2

n2 − 1 ⋅ (D − 2
n + 1 ⋅ D ⋅ a ⋅ a⊤ ⋅ D

a⊤ ⋅ D ⋅ a) .
The matrix D̄ is symmetric and positive definite. Thus, Ē ∶= E(z̄, D̄) is an ellipsoid.
Moreover:

i E ∩ H ⊆ Ē

ii Vol(Ē) < e− 1
2(n+1) ⋅ Vol(E)

Proof: See Bertsimas & Tsitsiklis, Section 8.2.

Simplifying Assumptions 13 | 23

Definition 13.11 A polyhedron P ⊆ ℝn is full-dimensional if it has non-zero
volume.

simplifying assumptions:

polyhedron P is bounded (i.e., a polytope) and either empty
or full-dimensional, i.e.,

P ⊆ E(x0, r2 ⋅ I) =∶ E0 with r > 0; V ∶= Vol(E0).
Vol(P) > v for some v > 0 (or P is empty).

assume that E0, V , and v are known a priori.

calculations (including square roots) can be made in infinite
precision

P

We discuss these assumptions later in greater detail. . .

Ellipsoid Method 13 | 24

i set t∗ ∶= ⌈2(n + 1) log(V /v)⌉; E0 ∶= E(x0, r2 ⋅ I); D0 ∶= r2 ⋅ I ; t ∶= 0;

ii if t = t∗ then stop and output “P is empty”;

iii if xt ∈ P then stop and output xt ;

iv find violated constraint in A ⋅ xt ≥ b, i.e., a⊤i ⋅ xt < bi for some i;

v set Ht ∶= {x ∈ ℝn ∣ a⊤i ⋅ x ≥ a⊤i ⋅ xt}; (halfspace containing P)

vi find ellipsoid Et+1 ⊇ Et ∩ Ht by applying Theorem 13.10;

vii set t ∶= t + 1 and go to step ii ;

Et ∩ Ht

xt

xt+1
Et+1

P

Ellipsoid Method 13 | 24

i set t∗ ∶= ⌈2(n + 1) log(V /v)⌉; E0 ∶= E(x0, r2 ⋅ I); D0 ∶= r2 ⋅ I ; t ∶= 0;

ii if t = t∗ then stop and output “P is empty”;

iii if xt ∈ P then stop and output xt ;

iv find violated constraint in A ⋅ xt ≥ b, i.e., a⊤i ⋅ xt < bi for some i;

v set Ht ∶= {x ∈ ℝn ∣ a⊤i ⋅ x ≥ a⊤i ⋅ xt}; (halfspace containing P)

vi find ellipsoid Et+1 ⊇ Et ∩ Ht by applying Theorem 13.10;

vii set t ∶= t + 1 and go to step ii ;

Et ∩ Ht

xt

xt+1
Et+1

P

Correctness of the Ellipsoid Method 13 | 25

Theorem 13.12 The ellipsoid method returns a point in P or decides correctly that
P = ∅.

Proof: If xt ∈ P for some t < t∗, then the algorithm returns xt .

Otherwise: By induction P ⊆ Ek for k = 0, 1, … , t∗.
By Theorem 13.10 we get

Vol(Et+1)
Vol(Et) < e− 1

2(n+1) for all t.

Thus,
Vol(Et∗)
Vol(E0) < e− t∗

2(n+1) .

⟹ Vol(Et∗) < V ⋅ e− ⌈2(n+1) log(V /v)⌉
2(n+1) ≤ V ⋅ e− log(V /v) = v .

Since v is a lower bound on the volume of non-empty P, the algorithm correctly decides
that P = ∅.

What if P is Unbounded? 13 | 26

Lemma 13.13 Let A ∈ ℤm×n, b ∈ ℝm, and let U be the largest absolute value of
entries in A and b. Every extreme point of polyhedron P = {x ∈ ℝn ∣ A ⋅ x ≥ b}
satisfies −(nU)n ≤ xj ≤ (nU)n for j = 1, … ,n.

Proof: let x be an extreme point

there are n linearly independent rows of Ax ≥ b that are active

there is a submatrix Ā ∈ ℤn×n, b̄ ∈ ℝn such that Āx = b̄

x = Ā−1b̄, by Cramer’s rule xj = det Ājdet Ā|xj| ≤ ||| det Āj||| = ||||| ∑�∈Sn sgn(�) n∏
i=1 āji,�(s)|||||≤ ∑�∈Sn n∏

i=1 |||āji,�(i)||| ≤ (n!)Un ≤ (nU)n

Dealing with Unbounded P 13 | 27

let PB ∶= {x ∈ P ∣ −(nU)n ≤ xj ≤ (nU)n for all j}
under the assumption that rank(A) = n, we get

P ≠ ∅ ⟺ P contains an extreme point ⟺ PB ≠ ∅
thus, it suffices to look for a point in PB ⊆ P instead of P

start with ellipsoid E0 ∶= E(0,n(nU)2n ⋅ I), then

E(0,n(nU)2nI) = {
x ∈ ℝn ∶ n∑

j=1 x2i ≤ n(nU)2n}
⊇ {

x ∈ P ∶ |xj| ≤ (nU)n for all j
} = PB

Vol(E0) ≤ (n(nU)2n)n/2Vol(E(0, I))= nn/2(nU)n2Vol(E(0, I))≤ nn/2(nU)n22n =∶ V

PB

−(nU)n (nU)n

−(nU)n

(nU)n P

E0

What if P is not Full-Dimensional? 13 | 29

Lemma 13.14 Let A ∈ ℤm×n, b ∈ ℤm, and let U be the largest absolute value of
entries in A and b. Consider polyhedron P = {x ∈ ℝn ∣ A ⋅ x ≥ b}, define

" ∶= ((n + 1)U)−(n+1)
2(n + 1)

and a new polyhedron

P" ∶= {x ∈ ℝn ∣ A ⋅ x ≥ b − " ⋅ 1} .
Then it holds that

a P = ∅ ⟹ P" = ∅
b P ≠ ∅ ⟹ P" is full-dimensional

c Given a point in P" , a point in P can be obtained in polynomial time.

b follows since x ∈ P implies x + �ei ∈ P" for all i, � > 0 small enough
c can be shown by rounding techniques (omi�ed here)

Proof of Lemma 13.14 13 | 30

a P = ∅ ⇒ P" = ∅
Primal: min 0⊤x

s.t. Ax ≥ b

infeasible

↔ Dual: max p⊤b
s.t. p⊤A = 0⊤

p ≥ 0

dual contains p = 0
dual unbounded

there is p ≥ 0 with p⊤A = 0⊤ and p⊤b = 1
by Lemma 13.13, there is a basic feasible solution p̂ to p⊤A = 0⊤, p⊤b = 1, p ≥ 0 such
that |p̂i| ≤ ((n + 1)U)n+1 for all i and at most n + 1 components of p̂ are non-zero

p̂⊤(b − "1) = p̂⊤b − " ∑m
i=1 p̂i ≥ 1 − "(n + 1)((n + 1)U)n+1= 1 − 1

2 = 1
2 > 0max{p⊤(b − "1) s.t. p⊤A = 0⊤,p ≥ 0} unboundedmin 0⊤x s.t. Ax ≥ b − "1 infeasible

Bounding the Minimum Volume 13 | 31

Lemma 13.15 If the polyhedron P = {x ∈ ℝn ∣ A ⋅ x ≥ b} is full-dimensional and
bounded with U as above, then

Vol(P) > n−n(nU)−n(n+1) .
Proof idea:

P has n + 1 extreme points v0, … , vn
so Vol(P) ≥ Vol(conv(v0, … , vn)) = 1

n! |||||det(1 1 ⋯ 1
v0 v1 ⋯ vn)|||||

By Cramer’s rule, (vi)j = detBijdetBi , where Bi is a submatrix of A, and Bij is obtained by
replacing the jth column of Bi by elements of b.det(1 1 ⋯ 1

v0 v1 ⋯ vn) = 1∏n
i=0 | detBi| |||||det(detB0 detB1 ⋯ detBndetB0v0 detB1v1 ⋯ detBnvn)|||||

The big integer determinant above is ≥ 1, and | detBi| ≤ (nU)n. So we get

Vol(P) ≥ 1
n!(nU)−n(n+1) > n−n(nU)−n(n+1)

Bounding the number of iterations 13 | 32

Theorem 13.16
The number of iterations of the ellipsoid method can be bounded by
O(n5 log(nU)).

Proof sketch:

ellipsoid method requires t∗ = 2(n + 1) log(V /v) iterations

first form bounded polyhedron PB and then perturb it to PB,"
for PB largest entry is UB = (nU)n and largest denominator is
1/"B = 2(n + 1)((n + 1)UB)(n+1)
re-normalizing to integers yields Ũ = 2(nU)n(n + 1)[(n + 1)(nU)n]n+1 ≈ (nU)n2
V = nn/22n(nU)n2 ≈ (nU)n2
by Lemma 13.15, v = n−n(nŨ)−n(n+1) ≈ (nU)−n4log(Vv) ≤ log((2n)n(nU)n2

n−n(nŨ)−n(n+1)) = O(n4 log(nU))

Required Numeric Precision 13 | 33

Major problems:

Bound number of arithmetic operations per iteration.

How to take square roots?

Only finite precision possible!

Theorem 13.17 Using only O(n3 logU) binary digits of precision, the ellipsoid
method still correctly decides whether P is empty in O(n6 log(nU)) iterations. Thus,
the Linear Inequalities problem can be solved in polynomial time.

Solving LPs in Polynomial Time 13 | 34

Consider a pair of primal and dual LPs:min c⊤ ⋅ x max p⊤ ⋅ b
s.t. A ⋅ x ≥ b s.t. p⊤ ⋅ A ≤ c⊤

x ≥ 0 p ≥ 0

Solve the primal and dual LP by finding a point (x,p) in the polyhedron given by{(x,p) ∣ c⊤ ⋅ x = p⊤ ⋅ b, A ⋅ x ≥ b, p⊤ ⋅ A ≤ c⊤, x,p ≥ 0
} .

Theorem 13.18 Linear programs can be solved in polynomial time.

13

Introduction to

Linear and Combinatorial Optimization

Linear Programming Complexity

13.3 Optimization vs. Separation

LPs with Exponentially Many Constraints 13 | 36

The number of iterations of the ellipsoid method only depends on the dimension n
and U , but not on the number of constraints m.

Thus there is hope to solve LPs with exponentially many constraints (that are
implicitly given) in polynomial time.

Example: Consider the following LP relaxation of the TSP (subtour LP):min ∑
e∈E ce ⋅ xe

s.t. ∑
e∈�(v) xe = 2 for all nodes v ∈ V ,

∑
e∈�(X) xe ≥ 2 for all subsets ∅ ≠ X ⊊ V , (13.1)

0 ≤ xe ≤ 1 for all edges e.

Notice that there are 2n−1 − 1 subtour elimination constraints (13.1).

LPs with Exponentially Many Constraints 13 | 37

Describe polyhedron P = {x ∈ ℝn ∣ A ⋅ x ≥ b} by specifying n and an integer vector
h of primary data of dimension O(nk) with k constant.
Let U0 ∶= maxi |hi|.
There is a mapping which, given n and h, defines A ∈ ℤm×n and b ∈ ℤm. Let

U ∶= max{|aij|, |bi| ∣ i = 1, … ,m, j = 1, … ,n} .
We assume that there are constants C and � such thatlogU ≤ C ⋅ n� ⋅ log� U0 ,
that is, U can be encoded polynomially in the input size.

The number of iterations of the ellipsoid method is

O(n6 log(nU)) = O(n6 logn + n6+� log� U0)
and thus polynomial in the input size of the primary problem data.

Separation Problem 13 | 38

In every iteration of the ellipsoid method, we have to solve the following problem:

Definition 13.19 Given a polyhedron P ⊆ ℝn and x ∈ ℝn, the separation problem
is to

i either decide that x ∈ P, or

ii find d ∈ ℝn with d⊤ ⋅ x < d⊤ ⋅ y for all y ∈ P.

Example: The subtour elimination constraints (13.1) can be separated in polynomial
time by finding a minimum capacity cut.

Optimization is as Difficult as Separation 13 | 39

The following Theorem by Grötschel, Lovász, and Schrijver is a consequence of the
ellipsoid method.

Theorem 13.20
i Given a family of polyhedra, if we can solve the separation problem in time

polynomial in n and logU , then we can also solve LPs over those polyhedra in
time polynomial in n and logU .

ii The converse is also true under some technical conditions.

Example: The subtour LP for the TSP can be solved in polynomial time since the subtour
elimination constraints (13.1) can be separated efficiently.

Path-Based LP Formulation for Flow Problems 13 | 40

Let  be the set of all s-t-dipaths in digraph D.max ∑
P∈ yP

s.t. ∑
P∈∶a∈P yP ≤ u(a) for all a ∈ A
yP ≥ 0 for all P ∈ 

Dual LP: min ∑
a∈A u(a) ⋅ za

s.t. ∑
a∈P za ≥ 1 for all P ∈  (13.2)

za ≥ 0 for all a ∈ A
Since constraints (13.2) can be separated efficiently by a shortest path computation, the
dual LP can be solved efficiently. Using complementary slackness conditions, also the
primal LP can be solved in polynomial time.

13

Introduction to

Linear and Combinatorial Optimization

Linear Programming Complexity

13.4 Interior Point Method

Primal-Dual Interior-Point Methods, Wright, Chapter 5

General idea: The central path 13 | 42

Consider the LP min c⊤x
s.t. Ax = b

x ≥ 0
To get rid off the ≥ 0-constraints, we approximate the problem by using a log-barrier:min c⊤x − �∑

i
log(xi) (P�)

s.t. Ax = b

We define the central path{x∗(�) ∶ � > 0},
where x∗ solves (P�).

Interior point methods “follow” the
path and let � → 0.

Primal-dual central path 13 | 43

We can form the log-penalized version of the dual problem, toomin c⊤x
s.t. Ax = b (P)

x ≥ 0

max b⊤y
s.t. A⊤y + s = c (D)

s ≥ 0min c⊤x − �∑
i
log(xi) (P�)

s.t. Ax = b

max b⊤y + �∑
i
log(si) (D�)

s.t. A⊤y + s = c

Theorem 13.21 Consider the pair of programs (P�) and (D�) for some � > 0.

(P�) and (D�) are convex problems, and are dual from each other

If (P) and (D) are strictly feasible, then the perturbed problems have a unique
solution x∗(�),y∗(�), s∗(�). These solutions solve the KKT system{

Ax = b ; x > 0, s > 0 ;
A⊤y + s = c ; xi ⋅ si = �, ∀i ∈ {1, … ,n}

Primal-Dual Path-Following Method 13 | 44

If (P) and (D) are strictly feasible, then the perturbed problems have a unique solution
x∗(�),y∗(�), s∗(�). These solutions solve the KKT system{

Ax = b ; x > 0, s > 0 ;
A⊤y + s = c ; xi ⋅ si = �, ∀i ∈ {1, … ,n}

primal simplex maintains primal feasibility & complementary slackness→ progress to achieve dual feasibility

dual simplex maintains dual feasibility & complementary slackness→ progress to achieve primal feasibility

In contrast, Interior Point methods maintain primal and dual feasibility→ work towards achieving complementary slackness.

Theorem 13.22 Let � = "
n for some " > 0. The optimal solutions x∗(�),y∗(�), s∗(�)

of (P�)-(D�) are "-suboptimal for the original pair of problems (P)-(D).

Proof: Let x,y, s solve the KKT system.

Primal and dual feasibility is clear

The duality gap is c⊤x − b⊤y = y⊤Ax + s⊤x − y⊤Ax = ∑i sixi = n� = "

Path Neighborhood 13 | 45

In practice, it is impossible to remain exactly on the path.

Let x ⊙ s ∶= (x1 ⋅ s1, … , xn ⋅ sn)⊤ and e ∶= (1, … , 1)⊤.

If (x,y, s) were on the central path, x ⊙ s = �e ⟹ � = x⊤s
n

For � ∈ [0, 1), we define the neighborhood

2(�) = {(x,y, s) ∶ Ax = b,A⊤y + s = c, x, s > 0, ‖‖‖‖(x ⊙ s) − (x⊤sn)e‖‖‖‖ ≤ �(x⊤sn)}
A primal-dual feasible solution(x,y, s) lies

on the central path if x ⊙ s is on
the dashed ray

in 2(�) if x ⊙ s lies in some cone

x1 ⋅ s1

x2 ⋅ s20

2(�)

Simplifying assumption: We are given an initial solution (x0,y0, s0) ∈2(�).

General Idea 13 | 46

For some fixed parameters �, � ∈ (0, 1):
Given (xk,yk, sk) ∈2(�), with �k = x⊤k sk

n .
If �k ≤ "/n: Stop
Compute a direction (Δx, Δy, Δs), and let(xk+1,yk+1, sk+1) ∶= (xk,yk, sk) + (Δx, Δy, Δs),
such that (xk+1,yk+1, sk+1) ∈2(�) and �k+1 ∶= �⊤k+1xk+1

n = ��k(zk)1

(zk)20

�0e�1e�2e�3e
z0z1

z2z3

Path followed by
zk ∶= (xk ⊙ sk)

Computing the Newton direction 13 | 47

Given (x,y, s) ∈2(�) with x⊤s
n = �

We want (x + Δx,y + Δy, s + Δs) feasible and (x + Δx) ⊙ (s + Δs) = ��e :

⎧⎪⎪⎨⎪⎪⎩
A(x + Δx) = b

A⊤(y + Δy) + s + Δs = c(x + Δx) ⊙ (s + Δs) = ��e ⟺ ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A(Δx) = 0

A⊤(Δy) + (Δs) = 0
x ⊙ s + x ⊙ (Δs) + s ⊙ (Δx)+(Δx) ⊙ (Δs) = ��e

Newton’s method consists in linearizing the above equation by neglecting the
quadratic term (Δx) ⊙ (Δs).
Se�ing X ∶= Diag(x) and S ∶= Diag(s), we obtain (Δx, Δy, Δs) by solving:⎛⎜⎜⎝

A 0 0
0 A⊤ I
S 0 X

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝
ΔxΔyΔs⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0��e − x ⊙ s⎞⎟⎟⎠ .

Correctness and Number of iterations 13 | 48

Let (x,y, s) ∈2(�) with � = x⊤s
n . We denote(x+,y+, s+) = (x + Δx,y + Δy, s + Δs), �+ ∶= (x+)⊤(s+)

n
.

Lemma 13.23 �+ = ��
Proof:

From A⊤(Δy) + (Δs) = 0 and A(Δx) = 0, we have Δs⊤Δx = −(Δy)⊤A(Δx) = 0.

x ⊙ (Δs) + s ⊙ (Δx) = ��e − x ⊙ s ⟹ x⊤(Δs) + s⊤(Δx) = ��n− x⊤s = n�(� − 1)�+ = (x+Δx)⊤(s+Δs)
n = 1

n (x⊤s + n�(� − 1)) = ��.
Theorem 13.24 Let � = 0.4. If (x,y, s) ∈2(�) and � = 1 − �√

n , then(x+,y+, s+) ∈2(�). As a result, the algorithm finds an "-suboptimal solution after
O(√n log(n�0")) iterations.

Proof: If the iterates remain in 2(�), �k = (1 − �√
n)k�0 ⟹ �K ≤ "

n for

K = ⌈ log(�/(n�0))log(1 − �/√n)⌉ = O (√n log(n�0")) .

Iterates stay in the neighborhood (1/3) 13 | 49

Lemma 13.25 Let u, v ∈ ℝn with u ≥ 0, v ≥ 0. Then‖u ⊙ v‖ ≤ 2− 3
2 ‖u + v‖2

Proof: See Wright, Chapter 5.

Lemma 13.26 If ‖z − �e‖ ≤ ��, thenmini zi ≥ (1 − �)�.

Proof: Let i ∈ {1, … ,n}.|zi − �| ≤ ‖z − �e‖∞ ≤ ‖z − �e‖2 ≤ ��.
zi − � ≥ −�� ⟹ zi ≥ �(1 − �).
Lemma 13.27 ‖x+ ⊙ s+ − �+e‖ ≤ �2+n(1−�)2

2
3
2 (1−�) �

Proof:
Let u, v ∈ ℝn with ui = √

xi
si
(Δx)i and vi = √

si
xi
(Δs)i.

From xi(Δs)i + si(Δx)i = �� − xisi, we have (u + v)i = 1√
xisi
(�� − xisi)‖Δx ⊙ Δs‖ = ‖u ⊙ v‖ ≤ 2− 3

2 ‖u + v‖2 ≤ 2− 3
2 ‖��e−x⊙s‖2mini xisi

Iterates stay in the neighborhood (2/3) 13 | 50

We have shown ‖Δx ⊙ Δs‖ ≤ 2− 3
2 ‖��e−x⊙s‖2mini xisi

By Lemma 13.26 applied to z = x ⊙ s, the denominator ismin
i

zi ≥ �(1 − �)
To bound the numerator, we write‖��e − x ⊙ s‖2 = ‖(�e − x ⊙ s) − (1 − �)�e‖2= ‖�e − x ⊙ s‖2⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟≤�2�2 +(1 − �)2�2n − 2(1 − �)� e⊤(�e − x ⊙ s)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟=�n−x⊤s=0≤ �2(�2 + (1 − �)2n)
Pu�ing all together, ‖Δx ⊙ Δs‖ ≤ �(�2 + (1 − �)2n)

2 3
2 (1 − �)

Finally, we have x ⊙ s + x ⊙ Δs + s ⊙ Δx − ��e = 0, which implies

x+ ⊙ s+ − �+e = (Δx) ⊙ (Δs).

Iterates stay in the neighborhood (3/3) 13 | 51

Theorem 13.28 Let the parameters � ∈ (0, 1) and � ∈ (0, 1) be such that�2 + n(1 − �)2
23/2(1 − �) ≤ ��. (⋆)

(in particular, this works for all n ≥ 1 with � = 0.4 and � = 1 − �√
n). Then(x,y, s) ∈2(�) ⟹ (x+,y+, s+) ∈2(�).

Proof: (Sketch)

Ax+ = b and A⊤y+ + s+ = c are clear from the definition of (Δx, Δy, Δs).‖x+ ⊙ s+ − �+e‖ ≤ ��+ follows from Lemma (13.27) and (⋆).
So we only have to show that x+ > 0 and s+ > 0.
Let i ∈ {1, … ,n}. By Lemma (13.26),

x+i ⋅ s+i > (1 − �)�+ = (1 − �)�� > 0

More generally, one can show that (x + �Δx)i(si + �Δs)i > 0 holds for all � ∈ [0, 1].
So there is no � ∈ [0, 1] such that (x + �Δx)i = 0 or (s + �Δs)i = 0.
Thus, x+i > 0 and s+i > 0.

Final Remarks 13 | 52

The first polynomial-time interior point method for linear programming was
discovered by Karmarkar in 1984.

The main work in each iteration is to solve a linear system of size O(n +m).
To obtain a polynomial time algorithm, we would need to show that

a an �−subobtimal solution can be rounded to an exact solution in O(n3) if� ≤ 2−2L, for an instance with integer data of bitlength L;
b we can obtain in polynomial time an initial point with �0 ≤ 2�L for some

constant �.

a can be shown, similar as for the ellipsoid method; By using (variants) of the studied
path-following method, we can achieve b . This yields a total iteration complexity of
O(√nL).
The parameters � and � used in this presentation are selected to make the method
run in polynomial time; In practice, one can use other parameters to achieve faster
convergence.

State-of-the art (academic and commercial) solvers use a mix of the simplex algorithm
and some interior point method.

