Introduction to

Linear and Combinatorial Optimization

Linear Programming Complexity

13.1 Number of Simplex Iterations

Observation

The computational efficiency of the simplex method is determined by
i the computational effort of each iteration;
iii the number of iterations.

Question: How many iterations are needed in the worst case?

Idea for negative answer (lower bound)

Describe

- a polyhedron with an exponential number of vertices;
- a path that visits all vertices and always moves from a vertex to an adjacent one that has lower costs.

Unit cube

Consider the unit cube in \mathbb{R}^{n}, defined by the constraints

$$
0 \leq x_{i} \leq 1, \quad i=1, \ldots, n
$$

The unit cube has

- 2^{n} vertices;
- a spanning path, i.e., a path traveling along the edges of the cube visiting each vertex exactly once.

$$
n=2:
$$

Klee-Minty cube

Consider a perturbation of the unit cube in \mathbb{R}^{n}, defined by the constraints

$$
\begin{aligned}
0 & \leq x_{1} \leq 1, \\
\varepsilon x_{i-1} & \leq x_{i} \leq 1-\varepsilon x_{i-1}, \quad i=2, \ldots, n
\end{aligned}
$$

for some $\varepsilon \in(0,1 / 2)$.

$$
n=2:
$$

Klee-Minty cube

$$
\begin{aligned}
0 & \leq x_{1} \leq 1, \\
\varepsilon x_{i-1} & \leq x_{i} \leq 1-\varepsilon x_{i-1}, \quad i=2, \ldots, n
\end{aligned}
$$

Theorem 13.1 Consider the linear programming problem of minimizing $-x_{n}$ subject to the constraints above. Then,
a the feasible set has 2^{n} vertices;
b the vertices can be ordered so that each one is adjacent to and has lower cost than the previous one;
c there exists a pivoting rule under which the simplex method requires $2^{n}-1$ changes of basis before it terminates.

Remark

Such 'bad' instances exist for (almost) all popular pivoting rules.

Diameter of Polyhedra and Polytopes

Definition 13.2 (Graph, combinatorial diameter) Let $P \subset \mathbb{R}^{n}$ be a polyhedron.
ii The graph (1-skeleton) $G(P)$ consists of the vertices and edges of P.
Iif For vertices v, w of P, the distance $\delta_{P}(v, w)$ is the minimum length of a path connecting v and w in $G(P)$.
囲 $\delta(P):=\max \left\{\delta_{P}(v, w): v, w\right.$ vertices of $\left.P\right\}$ is called the (combinatorial) diameter of P.

Examples:

- $\delta(P)=1$ for the n-dimensional simplex P
- $\delta\left(C_{n}\right)=n$ for the n-dimensional hypercube C_{n}

Diameter of Polyhedra and Polytopes (Cont.)

Observation: Diameter of the polyhedron of an LP is lower bound on \# steps required by simplex method (no matter which pivoting rule).

Definition 13.3 For integers n and m let

$$
\begin{aligned}
\Delta(n, m) & :=\max \left\{\delta(P) \mid P \subseteq \mathbb{R}^{n} \text { polytope given by } m \text { inequalities }\right\} \\
\Delta_{u}(n, m) & :=\max \left\{\delta(P) \mid P \subseteq \mathbb{R}^{n} \text { polyhedron given by } m \text { inequalities }\right\}
\end{aligned}
$$

Examples.

$$
\begin{aligned}
\Delta(2,7) & =\left\lfloor\frac{7}{2}\right\rfloor=3 \\
\Delta(2, m) & =\left\lfloor\frac{m}{2}\right\rfloor
\end{aligned}
$$

Remark. $\Delta(n, n+1)=1$ and $\Delta(n, m) \leq \Delta(n, m+1)$.

Hirsch Conjecture (1957)

$$
\Delta(n, m) \leq m-n
$$

Remarks.

- Hirsch Conjecture is known to be true if $n \leq 3$ or $m \leq n+5$.
- Hirsch Conjecture is false for unbounded polyhedra:

$$
\Delta_{u}(n, m) \geq m-n+\left\lfloor\frac{n}{4}\right\rfloor \quad \text { for } m \geq 2 n
$$

- Known upper bounds:

$$
\begin{array}{ll}
\Delta(n, m) \leq m \cdot 2^{n-3} & (\text { Barnette 1969; Larman 1970) } \\
\Delta(n, m) \leq m^{\log n+2} & (\text { Kalai 1992; Kalai \& Kleitman 1992) }
\end{array}
$$

- Hirsch Conjecture disproven for $n=43, m=86$
F. Santos, A counterexample to the Hirsch Conjecture, Ann. Math., 2012

Polynomial Hirsch Conjecture

$$
\Delta(n, m) \leq \operatorname{poly}(m, n)
$$

Definition 13.4 Let $[0,1]^{n}$ be the n-dimensional unit cube with vertices $\{0,1\}^{n}$. A polytope $P \subseteq \mathbb{R}^{n}$ is called $0 / 1$-polytope if all vertices of P lie in $\{0,1\}^{n}$.

Lemma 13.5 Let $P \subseteq \mathbb{R}^{n}$ be $0 / 1$-polytope with $\operatorname{dim} P \leq n-1$. There is a $0 / 1$-polytope \tilde{P} that is a projection of P such that $G(P)$ and $G(\tilde{P})$ are isomorphic.
(graphs $G=(V, E)$ and $\tilde{G}=(\tilde{V}, \tilde{E})$ are isomorphic if there is a bijection $f: V \rightarrow \tilde{V}$ such that $\{v, w\} \in E$ iff $\{f(v), f(w)\} \in \tilde{E})$

- let $P \subseteq \mathbb{R}^{n}, \operatorname{dim}(P) \leq n-1$ be a $0 / 1$ polytope
- let $a \in \mathbb{R}^{n} \backslash\{0\}, \alpha \in \mathbb{R}$ be such that $a^{\top} x=\alpha$ for all $x \in P$, wlog $a_{n} \neq 0$
- let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be defined as
$\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)$
- let $\tilde{P}=\pi(P)$

Claim: $\pi: P \rightarrow \tilde{P}$ is a bijection

- for $y \in \tilde{P}$, the only $x \in P$ with $\pi(x)=y$ has $x_{n}=\frac{\alpha-\pi(a)^{\top} y}{a_{n}}$

Claim: x vertex of $P \quad \Longleftrightarrow \quad \pi(x)$ vertex of \tilde{P}

- we use the equivalence between vertices and extreme points of Theorem 3.21
- if there are $y, z \in P, \lambda \in(0,1)$ such that $x=\lambda y+(1-\lambda) z$, then $\pi(x)=\lambda \pi(y)+(1-y) \pi(z)$
- if there are $\tilde{y}, \tilde{z} \in \tilde{P}$ such that $\tilde{x}=\lambda \tilde{y}+(1-\lambda) \tilde{z}$, then

$$
\begin{aligned}
\pi^{-1}(\tilde{x}) & =\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n-1}, \frac{\alpha-\pi(a)^{\top} \tilde{x}}{a_{n}}\right) \\
& =\lambda\left(\tilde{y}_{1}, \ldots, \tilde{y}_{n-1}, \frac{\alpha-\pi(a)^{\top} \tilde{y}}{a_{n}}\right)+(1-\lambda)\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n-1}, \frac{\alpha-\pi(a)^{\top} \tilde{z}}{a_{n}}\right) \\
& =\lambda \pi^{-1}(\tilde{y})+(1-\lambda) \pi^{-1}(\tilde{z})
\end{aligned}
$$

Claim: vertices x, y adjacent in P
\Leftrightarrow vertices $\pi(x), \pi(y)$ adjacent in \tilde{P}

- let x, y be non-adjacent vertices in P
- $\frac{x+y}{2}=\sum_{i} \mu_{v_{i}} v_{i}$ for some vertices v_{i} of P and coefficients $\mu_{i} \geq 0$ with $\sum_{i} \mu_{v_{i}}=1$ and $\mu_{x}+\mu_{y}<1$
- then $\frac{\pi(x)+\pi(y)}{2}=\sum_{i} \mu_{v_{i}} \pi\left(v_{i}\right)$, i.e., $\pi(x)$ and $\pi(y)$ are non-adjacent in P
- similarly, one can show that if \tilde{x} and \tilde{y} are non-adjacent in \tilde{P}, then $\pi^{-1}(x)$ and $\pi^{-1}(y)$ are non-adjacent in $P \quad \square$

D. Naddef, The Hirsch conjecture is true for (0, 1)-polytopes, Math. Program., 1989

Theorem 13.6

ii Let $P \subseteq \mathbb{R}^{n}$ be a $0 / 1$-polytope. Then $\delta(P) \leq \operatorname{dim} P$.
iil Let $P \subseteq \mathbb{R}^{n}$ be an n-dimensional 0/1-polytope with m facets. Then $\delta(P) \leq m-n$.
Proof: Ii by induction on $n, n=1$ is trivial

- let v, w be two arbitrary vertices of P
- if there is a facet F of the hypercube $[0,1]^{n}$ with $v, w \in F$, then by induction

$$
\delta_{P}(v, w) \leq \delta(P \cap F) \leq \operatorname{dim}(P \cap F) \leq \operatorname{dim}(P)
$$

- otherwise v and w differ in all coordinates
- v has a neighbor \bar{v} contained in a common facet F of the hypercube $[0,1]^{n}$ with w, then

$$
\delta_{P}(v, w) \leq 1+\delta_{P}(\bar{v}, w) \leq 1+\delta(P \cap F) \leq 1+\operatorname{dim}(P \cap F) \leq \operatorname{dim}(P)
$$

II $\delta(P) \leq m-n$

- by Lemma 13.5 , it suffices to show this result for full-dimensional poytopes
- induction on $n, n=1$ is trivial
- if $m \geq 2 n$, then the result follows from ii
- since P is full-dimensional, all facets have dimension $n-1$ by Theorem 3.29
- every vertex of P is contained in at least n facets
- if $m<2 n$, all pairs of vertices u, v share a common facet F
- F has at most $m-1$ facets
- by induction

$$
\delta_{P}(v, w) \leq \delta(F) \leq(m-1)-(n-1)=m-n
$$

\square

Average Case Behavior of the Simplex Method - ${ }^{31} \mid 5$

- Despite the exponential lower bounds on the worst case behavior of the simplex method (Klee-Minty cubes etc.), the simplex method usually behaves well in practice.
- The number of iterations is "typically" $O(m)$.
- There have been several attempts to explain this phenomenon from a more theoretical point of view. These results say that "on average" the number of iterations is $O(\cdot)$ (usually polynomial).
- One main difficulty is to come up with a meaningful and, at the same time, manageable definition of the term "on average".
- Smoothed analysis: hybrid of worst-case and average-case analyses, measuring the expected performance of algorithms under slight random perturbations of worst-case inputs.
D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time, JACM, 2004

Introduction to

Linear and Combinatorial Optimization

Linear Programming Complexity

13.2 Ellipsoid Method

Complexity of Linear Programming

- no variant of the simplex method has been shown to have a polynomial running time
- complexity of Linear Programming remained unresolved for a long time
- in 1979, the Soviet mathematician Leonid Khachiyan proved that the so-called ellipsoid method earlier developed for nonlinear optimization can be modified in order to solve LPs in polynomial time
- in November 1979, the New York Times featured Khachiyan and his algorithm in a front-page story

An Approach to Difficult Problems

Mathematicians disagree as to the ultimate practical value of Leonid Khachiyan's new technique, but concur that in any case it is an important theoretical accomplishment.
Mr. Khachiyan's method is be lieved to offer an approach for the linear programming of computers to solve so-called "traveling salesman" problems. Such problems are among the most intractable in mathematics. They involve, for instance, finding the shortest route by which a salesman could visit a number of cities without his path touching the same city twice.
Each time a new city is added to the route, the problem becomes very much more complex. Very large numbers of variables must be calculated from large numbers of equations using a system of linear programming. At a certain point, the compexity becomes so great that a computer would require billions of years to find a solution.
In the past, "traveling salesmen" problems, including the efficient scheduling of airline crews or hospital nursing staffs, have been solved
on computers using the "simplex method" invented by George B. Dantzig of Stanford University.
As a rule, the simplex method works well, but it offers no guarantee that after a certain number of computer steps it will always find an answer. Mr. Khachiyan's approach offers a way of telling right from the start whether or not a problem will be soluble in a given number of steps.
Two mathematicians conducting research at Stanford already have applied the Khachiyan method to develop a program for a pocket calculator, which has solved problems that would not have been possible with a pocket calculator using the simplex method.
Mathematically, the Khachiyan approach uses equations to create imaginary ellipsoids that encapsulate the answer, unlike the simplex method, in which the answer is represented by the intersections of the sides of polyhedrons. As the ellipsoids are made smaller and smaller, the answer is known with greater precision. MALCOLMW. Browne

Definition 13.7 A symmetric matrix $D \in \mathbb{R}^{n \times n}$ is positive definite if

$$
x^{\top} \cdot D \cdot x>0 \quad \text { for all } x \in \mathbb{R}^{n} \backslash\{0\} .
$$

Lemma 13.8 For a symmetric matrix $D \in \mathbb{R}^{n \times n}$, the following statements are equivalent:
ii D is positive definite.
Iiil D^{-1} exists and is positive definite.
䧃 D has only real and positive eigenvalues.
(v) $D=B^{\top} \cdot B$ for a non-singular matrix $B \in \mathbb{R}^{n \times n}$.

Definition 13.9 A set $E \subseteq \mathbb{R}^{n}$ of the form

$$
E=E(z, D):=\left\{x \in \mathbb{R}^{n} \mid(x-z)^{\top} \cdot D^{-1} \cdot(x-z) \leq 1\right\}
$$

with $z \in \mathbb{R}^{n}, D \in \mathbb{R}^{n \times n}$ positive definite is called ellipsoid with center z.

Examples:

- $E\left(z, r^{2} \cdot I\right)=\left\{x \in \mathbb{R}^{n} \mid(x-z)^{\top} \cdot(x-z) \leq r^{2}\right\}=\left\{x \in \mathbb{R}^{n} \mid\|x-z\|_{2} \leq r\right\}$, is the ball of radius r at z, $\operatorname{Vol}\left(E\left(z, r^{2} I\right)\right)=r^{n} \operatorname{Vol}(E(0, I))=r^{n} \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}$
- $E\left(0,\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\right)=\left\{x \in \mathbb{R}^{2} \left\lvert\, \frac{1}{2} x_{1}^{2}+x_{2}^{2} \leq 1\right.\right\}, \operatorname{Vol}\left(E\left(0,\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\right)\right)=\sqrt{2} \pi$

- $\operatorname{Vol}(E(z, D))=\sqrt{\operatorname{det}(D)} \operatorname{Vol}(E(0, I))$

The ellipsoid method solves the following problem:
Given: $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$, polyhedron $P:=\left\{x \in \mathbb{Q}^{n} \mid A \cdot x \geq b\right\}$.
Task: Find a point $x \in P$ or determine that P is empty.

Example:

The ellipsoid method solves the following problem:
Given: $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$, polyhedron $P:=\left\{x \in \mathbb{Q}^{n} \mid A \cdot x \geq b\right\}$.
Task: Find a point $x \in P$ or determine that P is empty.

Example:

The ellipsoid method solves the following problem:
Given: $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$, polyhedron $P:=\left\{x \in \mathbb{Q}^{n} \mid A \cdot x \geq b\right\}$.
Task: Find a point $x \in P$ or determine that P is empty.

Example:

The ellipsoid method solves the following problem:
Given: $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$, polyhedron $P:=\left\{x \in \mathbb{Q}^{n} \mid A \cdot x \geq b\right\}$.
Task: Find a point $x \in P$ or determine that P is empty.

Example:

The ellipsoid method solves the following problem:
Given: $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$, polyhedron $P:=\left\{x \in \mathbb{Q}^{n} \mid A \cdot x \geq b\right\}$.
Task: Find a point $x \in P$ or determine that P is empty.

Example:

Theorem 13.10 Let $E=E(z, D)$ be an ellipsoid in \mathbb{R}^{n} and $a \in \mathbb{R}^{n} \backslash\{0\}$. Consider the halfspace $H:=\left\{x \in \mathbb{R}^{n} \mid a^{\top} \cdot x \geq a^{\top} \cdot z\right\}$ and set

$$
\begin{aligned}
& \bar{z}:=z+\frac{1}{n+1} \cdot \frac{D \cdot a}{\sqrt{a^{\top} \cdot D \cdot a}}, \\
& \bar{D}:=\frac{n^{2}}{n^{2}-1} \cdot\left(D-\frac{2}{n+1} \cdot \frac{D \cdot a \cdot a^{\top} \cdot D}{a^{\top} \cdot D \cdot a}\right) .
\end{aligned}
$$

The matrix \bar{D} is symmetric and positive definite. Thus, $\bar{E}:=E(\bar{z}, \bar{D})$ is an ellipsoid. Moreover:
ii $E \cap H \subseteq \bar{E}$
IiI $\operatorname{Vol}(\bar{E})<e^{-\frac{1}{2(n+1)}} \cdot \operatorname{Vol}(E)$
Proof: See Bertsimas \& Tsitsiklis, Section 8.2.

Definition 13.11 A polyhedron $P \subseteq \mathbb{R}^{n}$ is full-dimensional if it has non-zero volume.

simplifying assumptions:

- polyhedron P is bounded (i.e., a polytope) and either empty or full-dimensional, i.e.,
- $P \subseteq E\left(x_{0}, r^{2} \cdot I\right)=: E_{0}$ with $r>0 ; V:=\operatorname{Vol}\left(E_{0}\right)$.
- $\operatorname{Vol}(P)>v$ for some $v>0$ (or P is empty).
- assume that E_{0}, V, and v are known a priori.
- calculations (including square roots) can be made in infinite precision

We discuss these assumptions later in greater detail...
ii set $t^{*}:=\lceil 2(n+1) \log (V / v)\rceil ; E_{0}:=E\left(x_{0}, r^{2} \cdot I\right) ; D_{0}:=r^{2} \cdot I ; t:=0$;
Iï if $t=t^{*}$ then stop and output " P is empty";
四 if $x_{t} \in P$ then stop and output x_{t};
iv find violated constraint in $A \cdot x_{t} \geq b$, i.e., $a_{i}^{\top} \cdot x_{t}<b_{i}$ for some i;
v set $H_{t}:=\left\{x \in \mathbb{R}^{n} \mid a_{i}^{\top} \cdot x \geq a_{i}^{\top} \cdot x_{t}\right\} ;($ halfspace containing P)
viv find ellipsoid $E_{t+1} \supseteq E_{t} \cap H_{t}$ by applying Theorem 13.10;
V77 $\operatorname{set} t:=t+1$ and go to step Iii;

ii set $t^{*}:=\lceil 2(n+1) \log (V / v)\rceil ; E_{0}:=E\left(x_{0}, r^{2} \cdot I\right) ; D_{0}:=r^{2} \cdot I ; t:=0$;
Iï if $t=t^{*}$ then stop and output " P is empty";
四 if $x_{t} \in P$ then stop and output x_{t};
iv find violated constraint in $A \cdot x_{t} \geq b$, i.e., $a_{i}^{\top} \cdot x_{t}<b_{i}$ for some i;
v set $H_{t}:=\left\{x \in \mathbb{R}^{n} \mid a_{i}^{\top} \cdot x \geq a_{i}^{\top} \cdot x_{t}\right\} ;($ halfspace containing P)
viv find ellipsoid $E_{t+1} \supseteq E_{t} \cap H_{t}$ by applying Theorem 13.10;
Vi7 set $t:=t+1$ and go to step Iif;

Theorem 13.12 The ellipsoid method returns a point in P or decides correctly that $P=\varnothing$.

Proof: If $x_{t} \in P$ for some $t<t^{*}$, then the algorithm returns x_{t}.
Otherwise: By induction $P \subseteq E_{k}$ for $k=0,1, \ldots, t^{*}$.
By Theorem 13.10 we get $\frac{\operatorname{Vol}\left(E_{t+1}\right)}{\operatorname{Vol}\left(E_{t}\right)}<e^{-\frac{1}{2(n+1)}}$ for all t.
Thus, $\frac{\operatorname{Vol}\left(E_{t^{*}}\right)}{\operatorname{Vol}\left(E_{0}\right)}<e^{-\frac{t^{t}}{2(n+1)}}$.

$$
\Longrightarrow \quad \operatorname{Vol}\left(E_{t^{*}}\right)<V \cdot e^{-\frac{[2(n+1) \log (V / v]]}{2(n+1)}} \leq V \cdot e^{-\log (V / v)}=v .
$$

Since v is a lower bound on the volume of non-empty P, the algorithm correctly decides that $P=\varnothing$.

What if P is Unbounded?

Lemma 13.13 Let $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{R}^{m}$, and let U be the largest absolute value of entries in A and b. Every extreme point of polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$ satisfies

$$
-(n U)^{n} \leq x_{j} \leq(n U)^{n} \quad \text { for } j=1, \ldots, n .
$$

Proof: let x be an extreme point

- there are n linearly independent rows of $A x \geq b$ that are active
- there is a submatrix $\bar{A} \in \mathbb{Z}^{n \times n}, \bar{b} \in \mathbb{R}^{n}$ such that $\bar{A} x=\bar{b}$
- $x=\bar{A}^{-1} \bar{b}$, by Cramer's rule $x_{j}=\frac{\operatorname{det} \bar{A}^{j}}{\operatorname{det} \bar{A}^{\prime}}$

$$
\begin{aligned}
\left|x_{j}\right| & \leq\left|\operatorname{det} \bar{A}^{j}\right|=\left|\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} \bar{a}_{i, \sigma(s)}^{j}\right| \\
& \leq \sum_{\sigma \in S_{n}} \prod_{i=1}^{n}\left|\bar{a}_{i, \sigma(i)}^{j}\right| \leq(n!) U^{n} \leq(n U)^{n}
\end{aligned}
$$

Dealing with Unbounded P

- let $P_{B}:=\left\{x \in P \mid-(n U)^{n} \leq x_{j} \leq(n U)^{n}\right.$ for all $\left.j\right\}$
- under the assumption that $\operatorname{rank}(A)=n$, we get

$$
P \neq \varnothing \quad \Longleftrightarrow \quad P \text { contains an extreme point } \quad \Longleftrightarrow \quad P_{B} \neq \varnothing
$$

- thus, it suffices to look for a point in $P_{B} \subseteq P$ instead of P
- start with ellipsoid $E_{0}:=E\left(0, n(n U)^{2 n} \cdot I\right)$, then

$$
\begin{aligned}
E\left(0, n(n U)^{2 n} I\right) & =\left\{x \in \mathbb{R}^{n}: \sum_{j=1}^{n} x_{i}^{2} \leq n(n U)^{2 n}\right\} \\
& \supseteq\left\{x \in P:\left|x_{j}\right| \leq(n U)^{n} \text { for all } j\right\}=P_{B} \\
\operatorname{Vol}\left(E_{0}\right) & \leq\left(n(n U)^{2 n}\right)^{n / 2} \operatorname{Vol}(E(0, I)) \\
& =n^{n / 2}(n U)^{n^{2}} \operatorname{Vol}(E(0, I)) \\
& \leq n^{n / 2}(n U)^{n^{2}} 2^{n}=: V
\end{aligned}
$$

Lemma 13.14 Let $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and let U be the largest absolute value of entries in A and b. Consider polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$, define

$$
\varepsilon:=\frac{((n+1) U)^{-(n+1)}}{2(n+1)}
$$

and a new polyhedron

$$
P_{\varepsilon}:=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b-\varepsilon \cdot \mathbf{1}\right\} .
$$

Then it holds that
a $P=\varnothing \quad \Longrightarrow \quad P_{\varepsilon}=\varnothing$
b $P \neq \varnothing \quad \Longrightarrow \quad P_{\varepsilon}$ is full-dimensional
c Given a point in P_{ε}, a point in P can be obtained in polynomial time.
b follows since $x \in P$ implies $x+\delta e_{i} \in P_{\varepsilon}$ for all $i, \delta>0$ small enough
ca can be shown by rounding techniques (omitted here)
a $P=\varnothing \Rightarrow P_{\varepsilon}=\varnothing$

Primal: $\min 0^{\top} x$

$$
\text { s.t. } \quad A x \geq b
$$

infeasible

Dual: $\max p^{\top} b$

$$
\begin{aligned}
\text { s.t. } \quad p^{\top} A & =0^{\top} \\
p & \geq 0
\end{aligned}
$$

$$
\text { dual contains } p=0
$$

dual unbounded

- there is $p \geq 0$ with $p^{\top} A=0^{\top}$ and $p^{\top} b=1$
- by Lemma 13.13 , there is a basic feasible solution \hat{p} to $p^{\top} A=0^{\top}, p^{\top} b=1, p \geq 0$ such that $\left|\hat{p}_{i}\right| \leq((n+1) U)^{n+1}$ for all i and at most $n+1$ components of \hat{p} are non-zero
- $\hat{p}^{\top}(b-\varepsilon \mathbf{1})=\hat{p}^{\top} b-\varepsilon \sum_{i=1}^{m} \hat{p}_{i} \geq 1-\varepsilon(n+1)((n+1) U)^{n+1}$

$$
=1-\frac{1}{2}=\frac{1}{2}>0
$$

- $\max \left\{p^{\top}(b-\varepsilon \mathbf{1})\right.$ s.t. $\left.p^{\top} A=0^{\top}, p \geq 0\right\}$ unbounded
- $\min 0^{\top} x$ s.t. $A x \geq b-\varepsilon \mathbf{1}$ infeasible

Lemma 13.15 If the polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$ is full-dimensional and bounded with U as above, then

$$
\operatorname{Vol}(P)>n^{-n}(n U)^{-n(n+1)}
$$

Proof idea:

- P has $n+1$ extreme points v^{0}, \ldots, v^{n}
- $\operatorname{so} \operatorname{Vol}(P) \geq \operatorname{Vol}\left(\operatorname{conv}\left(v^{0}, \ldots, v^{n}\right)\right)=\frac{1}{n!}\left|\operatorname{det}\left(\begin{array}{cccc}1 & 1 & \cdots & 1 \\ v_{0} & v_{1} & \cdots & v_{n}\end{array}\right)\right|$
- By Cramer's rule, $\left(v_{i}\right)_{j}=\frac{\operatorname{det} B_{i j}}{\operatorname{det} B_{i}}$, where B_{i} is a submatrix of A, and $B_{i j}$ is obtained by replacing the j th column of B_{i} by elements of b.
- $\operatorname{det}\left(\begin{array}{cccc}1 & 1 & \cdots & 1 \\ v_{0} & v_{1} & \cdots & v_{n}\end{array}\right)=\frac{1}{\prod_{i=0}^{n}\left|\operatorname{det} B_{i}\right|}\left|\operatorname{det}\left(\begin{array}{cccc}\operatorname{det} B_{0} & \operatorname{det} B_{1} & \cdots & \operatorname{det} B_{n} \\ \operatorname{det} B_{0} v_{0} & \operatorname{det} B_{1} v_{1} & \cdots & \operatorname{det} B_{n} v_{n}\end{array}\right)\right|$
- The big integer determinant above is ≥ 1, and $\left|\operatorname{det} B_{i}\right| \leq(n U)^{n}$. So we get

$$
\operatorname{Vol}(P) \geq \frac{1}{n!}(n U)^{-n(n+1)}>n^{-n}(n U)^{-n(n+1)}
$$

Theorem 13.16

The number of iterations of the ellipsoid method can be bounded by
$O\left(n^{5} \log (n U)\right)$.

Proof sketch:

- ellipsoid method requires $t^{*}=2(n+1) \log (V / v)$ iterations
- first form bounded polyhedron P_{B} and then perturb it to $P_{B, \varepsilon}$
- for P_{B} largest entry is $U_{B}=(n U)^{n}$ and largest denominator is $1 / \varepsilon_{B}=2(n+1)\left((n+1) U_{B}\right)^{(n+1)}$
- re-normalizing to integers yields $\tilde{U}=2(n U)^{n}(n+1)\left[(n+1)(n U)^{n}\right]^{n+1} \approx(n U)^{n^{2}}$
- $V=n^{n / 2} 2^{n}(n U)^{n^{2}} \approx(n U)^{n^{2}}$
- by Lemma 13.15, $v=n^{-n}(n \tilde{U})^{-n(n+1)} \approx(n U)^{-n^{4}}$
- $\log \left(\frac{V}{v}\right) \leq \log \left(\frac{\left(2 n n^{n}(n U)^{n^{2}}\right.}{n^{-n}(n \tilde{U})^{-n(n+1)}}\right)=O\left(n^{4} \log (n U)\right)$

Major problems:

- Bound number of arithmetic operations per iteration.
- How to take square roots?
- Only finite precision possible!

Theorem 13.17 Using only $O\left(n^{3} \log U\right)$ binary digits of precision, the ellipsoid method still correctly decides whether P is empty in $O\left(n^{6} \log (n U)\right)$ iterations. Thus, the Linear Inequalities problem can be solved in polynomial time.

Consider a pair of primal and dual LPs:

$$
\begin{aligned}
\min & c^{\top} \cdot x & \max & p^{\top} \cdot b \\
\text { s.t. } & A \cdot x \geq b & \text { s.t. } & p^{\top} \cdot A \leq c^{\top} \\
& x \geq 0 & & p \geq 0
\end{aligned}
$$

Solve the primal and dual LP by finding a point (x, p) in the polyhedron given by

$$
\left\{(x, p) \mid c^{\top} \cdot x=p^{\top} \cdot b, A \cdot x \geq b, p^{\top} \cdot A \leq c^{\top}, x, p \geq 0\right\} .
$$

| Theorem 13.18 Linear programs can be solved in polynomial time.

Introduction to

Linear and Combinatorial Optimization

Linear Programming Complexity

13.3 Optimization vs. Separation

- The number of iterations of the ellipsoid method only depends on the dimension n and U, but not on the number of constraints m.
- Thus there is hope to solve LPs with exponentially many constraints (that are implicitly given) in polynomial time.

Example: Consider the following LP relaxation of the TSP (subtour LP):

$$
\begin{array}{lll}
\min & \sum_{e \in E} c_{e} \cdot x_{e} & \\
\text { s.t. } & \sum_{e \in \delta(v)} x_{e}=2 & \text { for all nodes } v \in V, \\
& \sum_{e \in \delta(X)} x_{e} \geq 2 & \text { for all subsets } \varnothing \neq X \subsetneq V, \tag{13.1}\\
& 0 \leq x_{e} \leq 1 & \text { for all edges } e .
\end{array}
$$

Notice that there are $2^{n-1}-1$ subtour elimination constraints (13.1).

- Describe polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$ by specifying n and an integer vector h of primary data of dimension $O\left(n^{k}\right)$ with k constant.
Let $U_{0}:=\max _{i}\left|h_{i}\right|$.
- There is a mapping which, given n and h, defines $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$. Let

$$
U:=\max \left\{\left|a_{i j}\right|,\left|b_{i}\right| \mid i=1, \ldots, m, j=1, \ldots, n\right\} .
$$

- We assume that there are constants C and ℓ such that

$$
\log U \leq C \cdot n^{\ell} \cdot \log ^{\ell} U_{0},
$$

that is, U can be encoded polynomially in the input size.

- The number of iterations of the ellipsoid method is

$$
O\left(n^{6} \log (n U)\right)=O\left(n^{6} \log n+n^{6+\ell} \log ^{\ell} U_{0}\right)
$$

and thus polynomial in the input size of the primary problem data.

In every iteration of the ellipsoid method, we have to solve the following problem:
Definition 13.19 Given a polyhedron $P \subseteq \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$, the separation problem is to
ii either decide that $x \in P$, or
iii find $d \in \mathbb{R}^{n}$ with $d^{\top} \cdot x<d^{\top} \cdot y$ for all $y \in P$.

Example: The subtour elimination constraints (13.1) can be separated in polynomial time by finding a minimum capacity cut.

Optimization is as Difficult as Separation

The following Theorem by Grötschel, Lovász, and Schrijver is a consequence of the ellipsoid method.

| Theorem 13.20

i Given a family of polyhedra, if we can solve the separation problem in time polynomial in n and $\log U$, then we can also solve LPs over those polyhedra in time polynomial in n and $\log U$.

Iii The converse is also true under some technical conditions.

Example: The subtour LP for the TSP can be solved in polynomial time since the subtour elimination constraints (13.1) can be separated efficiently.

Let \mathcal{P} be the set of all $s-t$-dipaths in digraph D.

$$
\begin{array}{rll}
\max & \sum_{P \in \mathcal{P}} y_{P} & \\
\text { s.t. } & \sum_{P \in \mathcal{P}: a \in P} y_{P} \leq u(a) & \text { for all } a \in A \\
& y_{P} \geq 0 & \text { for all } P \in \mathcal{P}
\end{array}
$$

Dual LP:

$$
\begin{array}{lll}
\min & \sum_{a \in A} u(a) \cdot z_{a} & \\
\text { s.t. } & \sum_{a \in P} z_{a} \geq 1 & \text { for all } P \in \mathcal{P} \tag{13.2}\\
& z_{a} \geq 0 & \text { for all } a \in A
\end{array}
$$

Since constraints (13.2) can be separated efficiently by a shortest path computation, the dual LP can be solved efficiently. Using complementary slackness conditions, also the primal LP can be solved in polynomial time.

Introduction to

Linear and Combinatorial Optimization

Linear Programming Complexity

13.4 Interior Point Method

- Consider the LP

$$
\begin{aligned}
\min & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

- To get rid off the ≥ 0-constraints, we approximate the problem by using a log-barrier:

$$
\begin{array}{cl}
\min & c^{\top} x-\mu \sum_{i} \log \left(x_{i}\right) \\
\text { s.t. } & A x=b
\end{array}
$$

- We define the central path

$$
\left\{x^{*}(\mu): \mu>0\right\},
$$

where x^{*} solves $\left(P_{\mu}\right)$.

- Interior point methods "follow" the path and let $\mu \rightarrow 0$.

- We can form the log-penalized version of the dual problem, too

$$
\begin{array}{llll}
& \min \quad c^{\top} x & & \max \quad b^{\top} y \\
& \text { s.t. } A x=b & (P) & \\
& x \geq 0 & & \\
& & & \\
\text { s.t. } \quad A^{\top} y+s=c \\
\min \quad c^{\top} x-\mu \sum_{i} \log \left(x_{i}\right) & \left(P_{\mu}\right) & \max \quad b^{\top} y+\mu \sum_{i} \log \left(s_{i}\right) \\
\text { s.t. } A x=b & \text { s.t. } \quad A^{\top} y+s=c
\end{array}
$$

Theorem 13.21 Consider the pair of programs $\left(P_{\mu}\right)$ and $\left(D_{\mu}\right)$ for some $\mu>0$.

- $\left(P_{\mu}\right)$ and $\left(D_{\mu}\right)$ are convex problems, and are dual from each other
- If (P) and (D) are strictly feasible, then the perturbed problems have a unique solution $x^{*}(\mu), y^{*}(\mu), s^{*}(\mu)$. These solutions solve the KKT system

$$
\begin{cases}A x=b ; & x>0, s>0 \\ A^{\top} y+s=c ; & x_{i} \cdot s_{i}=\mu, \forall i \in\{1, \ldots, n\}\end{cases}
$$

Primal-Dual Path-Following Method

If (P) and (D) are strictly feasible, then the perturbed problems have a unique solution $x^{*}(\mu), y^{*}(\mu), s^{*}(\mu)$. These solutions solve the KKT system

$$
\begin{cases}A x=b ; & x>0, s>0 ; \\ A^{\top} y+s=c ; & x_{i} \cdot s_{i}=\mu, \forall i \in\{1, \ldots, n\}\end{cases}
$$

- primal simplex maintains primal feasibility \& complementary slackness \rightarrow progress to achieve dual feasibility
- dual simplex maintains dual feasibility \& complementary slackness \rightarrow progress to achieve primal feasibility
- In contrast, Interior Point methods maintain primal and dual feasibility \rightarrow work towards achieving complementary slackness.
Theorem 13.22 Let $\mu=\frac{\varepsilon}{n}$ for some $\varepsilon>0$. The optimal solutions $x^{*}(\mu), y^{*}(\mu), s^{*}(\mu)$ of $\left(P_{\mu}\right)-\left(D_{\mu}\right)$ are ε-suboptimal for the original pair of problems $(P)-(D)$.
Proof: Let x, y, s solve the KKT system.
- Primal and dual feasibility is clear
- The duality gap is $c^{\top} x-b^{\top} y=y^{\top} A x+s^{\top} x-y^{\top} A x=\sum_{i} s_{i} x_{i}=n \mu=\varepsilon$
- In practice, it is impossible to remain exactly on the path.
- Let $x \odot s:=\left(x_{1} \cdot s_{1}, \ldots, x_{n} \cdot s_{n}\right)^{\top}$ and $e:=(1, \ldots, 1)^{\top}$.
- If (x, y, s) were on the central path, $x \odot s=\mu e \Longrightarrow \mu=\frac{x^{\top} s}{n}$
- For $\theta \in[0,1)$, we define the neighborhood
$\mathcal{N}_{2}(\theta)=\left\{(x, y, s): A x=b, A^{\top} y+s=c, x, s>0,\left\|(x \odot s)-\left(\frac{x^{\top} s}{n}\right) e\right\| \leq \theta\left(\frac{x^{\top} s}{n}\right)\right\}$
A primal-dual feasible solution (x, y, s) lies
- on the central path if $x \odot s$ is on the dashed ray
- in $\mathcal{N}_{2}(\theta)$ if $x \odot s$ lies in some cone

- Simplifying assumption: We are given an initial solution $\left(x_{0}, y_{0}, s_{0}\right) \in \mathcal{N}_{2}(\theta)$.

For some fixed parameters $\theta, \sigma \in(0,1)$:

- Given $\left(x_{k}, y_{k}, s_{k}\right) \in \mathcal{N}_{2}(\theta)$, with $\mu_{k}=\frac{x_{k}^{\top} s_{k}}{n}$.
- If $\mu_{k} \leq \varepsilon / n$: Stop
- Compute a direction $(\Delta x, \Delta y, \Delta s)$, and let

$$
\left(x_{k+1}, y_{k+1}, s_{k+1}\right):=\left(x_{k}, y_{k}, s_{k}\right)+(\Delta x, \Delta y, \Delta s)
$$

such that $\left(x_{k+1}, y_{k+1}, s_{k+1}\right) \in \mathcal{N}_{2}(\theta)$ and $\mu_{k+1}:=\frac{\mu_{k+1}^{\top} x_{k+1}}{n}=\sigma \mu_{k}$

Path followed by

$$
z_{k}:=\left(x_{k} \odot s_{k}\right)
$$

- Given $(x, y, s) \in \mathcal{N}_{2}(\theta)$ with $\frac{x^{\top} s}{n}=\mu$
- We want $(x+\Delta x, y+\Delta y, s+\Delta s)$ feasible and $(x+\Delta x) \odot(s+\Delta s)=\sigma \mu e$:

$$
\left\{\begin{array} { r l }
{ A (x + \Delta x) } & { = b } \\
{ A ^ { \top } (y + \Delta y) + s + \Delta s } & { = c } \\
{ (x + \Delta x) \odot (s + \Delta s) } & { = \sigma \mu e }
\end{array} \Longleftrightarrow \left\{\begin{array}{rl}
A(\Delta x) & =0 \\
A^{\top}(\Delta y)+(\Delta s) & =0 \\
x \odot s+x \odot(\Delta s)+s \odot(\Delta x) & \\
+(\Delta x) \odot(\Delta s) & =\sigma \mu e
\end{array}\right.\right.
$$

- Newton's method consists in linearizing the above equation by neglecting the quadratic term $(\Delta x) \odot(\Delta s)$.
- Setting $X:=\operatorname{Diag}(x)$ and $S:=\operatorname{Diag}(s)$, we obtain $(\Delta x, \Delta y, \Delta s)$ by solving:

$$
\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{\top} & I \\
S & 0 & X
\end{array}\right) \cdot\left(\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\sigma \mu e-x \odot s
\end{array}\right)
$$

Correctness and Number of iterations

- Let $(x, y, s) \in \mathcal{N}_{2}(\theta)$ with $\mu=\frac{x^{\top} s}{n}$. We denote

$$
\left(x^{+}, y^{+}, s^{+}\right)=(x+\Delta x, y+\Delta y, s+\Delta s), \quad \mu^{+}:=\frac{\left(x^{+}\right)^{\top}\left(s^{+}\right)}{n}
$$

| Lemma $13.23 \mu^{+}=\sigma \mu$

Proof:

- From $A^{\top}(\Delta y)+(\Delta s)=0$ and $A(\Delta x)=0$, we have $\Delta s^{\top} \Delta x=-(\Delta y)^{\top} A(\Delta x)=0$.
- $x \odot(\Delta s)+s \odot(\Delta x)=\sigma \mu e-x \odot s \Longrightarrow x^{\top}(\Delta s)+s^{\top}(\Delta x)=\sigma \mu n-x^{\top} s=n \mu(\sigma-1)$
- $\mu^{+}=\frac{(x+\Delta x)^{\top}(s+\Delta s)}{n}=\frac{1}{n}\left(x^{\top} s+n \mu(\sigma-1)\right)=\sigma \mu$.

Theorem 13.24 Let $\theta=0.4$. If $(x, y, s) \in \mathcal{N}_{2}(\theta)$ and $\sigma=1-\frac{\theta}{\sqrt{n}}$, then $\left(x^{+}, y^{+}, s^{+}\right) \in \mathcal{N}_{2}(\theta)$. As a result, the algorithm finds an ε-suboptimal solution after $O\left(\sqrt{n} \log \left(\frac{n \mu_{0}}{\varepsilon}\right)\right)$ iterations.
Proof: If the iterates remain in $\mathcal{N}_{2}(\theta), \mu_{k}=\left(1-\frac{\theta}{\sqrt{n}}\right)^{k} \mu_{0} \Longrightarrow \mu_{K} \leq \frac{\varepsilon}{n}$ for

$$
K=\left\lceil\frac{\log \left(\epsilon /\left(n \mu_{0}\right)\right)}{\log (1-\theta / \sqrt{n})}\right\rceil=O\left(\sqrt{n} \log \left(\frac{n \mu_{0}}{\varepsilon}\right)\right) .
$$

Lemma 13.25 Let $u, v \in \mathbb{R}^{n}$ with $u \geq 0, v \geq 0$. Then

$$
\|u \odot v\| \leq 2^{-\frac{3}{2}}\|u+v\|^{2}
$$

Proof: See Wright, Chapter 5.
| Lemma 13.26 If $\|z-\mu e\| \leq \theta \mu$, then $\min _{i} z_{i} \geq(1-\theta) \mu$.
Proof: Let $i \in\{1, \ldots, n\}$.

- $\left|z_{i}-\mu\right| \leq\|z-\mu e\|_{\infty} \leq\|z-\mu e\|_{2} \leq \theta \mu$.
- $z_{i}-\mu \geq-\theta \mu \Longrightarrow z_{i} \geq \mu(1-\theta)$.

Lemma $13.27\left\|x^{+} \odot s^{+}-\mu^{+} e\right\| \leq \frac{\theta^{2}+n(1-\sigma)^{2}}{2^{\frac{3}{2}}(1-\theta)} \mu$
Proof:

- Let $u, v \in \mathbb{R}^{n}$ with $u_{i}=\sqrt{\frac{x_{i}}{s_{i}}}(\Delta x)_{i}$ and $v_{i}=\sqrt{\frac{s_{i}}{x_{i}}}(\Delta s)_{i}$.
- From $x_{i}(\Delta s)_{i}+s_{i}(\Delta x)_{i}=\sigma \mu-x_{i} s_{i}$, we have $(u+v)_{i}=\frac{1}{\sqrt{x_{i} s_{i}}}\left(\sigma \mu-x_{i} s_{i}\right)$
- $\|\Delta x \odot \Delta s\|=\|u \odot v\| \leq 2^{-\frac{3}{2}}\|u+v\|^{2} \leq 2^{-\frac{3}{2}} \frac{\|\sigma \mu e-x \odot\|^{2}}{\min _{i} x_{i} i_{i}}$
- We have shown $\|\Delta x \odot \Delta s\| \leq 2^{-\frac{3}{2}} \frac{\|\sigma \mu e-x \odot s\|^{2}}{\min _{i} x_{i} i_{i}}$
- By Lemma 13.26 applied to $z=x \odot s$, the denominator is

$$
\min _{i} z_{i} \geq \mu(1-\theta)
$$

- To bound the numerator, we write

$$
\begin{aligned}
\|\sigma \mu e-x \odot s\|^{2} & =\|(\mu e-x \odot s)-(1-\sigma) \mu e\|^{2} \\
& =\underbrace{\|\mu e-x \odot s\|^{2}}_{\leq \theta^{2} \mu^{2}}+(1-\sigma)^{2} \mu^{2} n-2(1-\sigma) \mu \underbrace{e^{\top}(\mu e-x \odot s)}_{=\mu n-x^{\top} s=0} \\
& \leq \mu^{2}\left(\theta^{2}+(1-\sigma)^{2} n\right)
\end{aligned}
$$

- Putting all together,

$$
\|\Delta x \odot \Delta s\| \leq \frac{\mu\left(\theta^{2}+(1-\sigma)^{2} n\right)}{2^{\frac{3}{2}}(1-\theta)}
$$

- Finally, we have $x \odot s+x \odot \Delta s+s \odot \Delta x-\sigma \mu e=0$, which implies

$$
x^{+} \odot s^{+}-\mu^{+} e=(\Delta x) \odot(\Delta s) .
$$

Theorem 13.28 Let the parameters $\theta \in(0,1)$ and $\sigma \in(0,1)$ be such that

$$
\frac{\theta^{2}+n(1-\sigma)^{2}}{2^{3 / 2}(1-\theta)} \leq \sigma \theta .
$$

(in particular, this works for all $n \geq 1$ with $\theta=0.4$ and $\sigma=1-\frac{\theta}{\sqrt{n}}$). Then

$$
(x, y, s) \in \mathcal{N}_{2}(\theta) \Longrightarrow\left(x^{+}, y^{+}, s^{+}\right) \in \mathcal{N}_{2}(\theta) .
$$

Proof: (Sketch)

- $A x^{+}=b$ and $A^{\top} y^{+}+s^{+}=c$ are clear from the definition of $(\Delta x, \Delta y, \Delta s)$.
- $\left\|x^{+} \odot s^{+}-\mu^{+} e\right\| \leq \theta \mu^{+}$follows from Lemma (13.27) and (\star).
- So we only have to show that $x^{+}>0$ and $s^{+}>0$.
- Let $i \in\{1, \ldots, n\}$. By Lemma (13.26),

$$
x_{i}^{+} \cdot s_{i}^{+}>(1-\theta) \mu^{+}=(1-\theta) \sigma \mu>0
$$

- More generally, one can show that $(x+\alpha \Delta x)_{i}\left(s_{i}+\alpha \Delta s\right)_{i}>0$ holds for all $\alpha \in[0,1]$. So there is no $\alpha \in[0,1]$ such that $(x+\alpha \Delta x)_{i}=0$ or $(s+\alpha \Delta s)_{i}=0$. Thus, $x_{i}^{+}>0$ and $s_{i}^{+}>0$.
- The first polynomial-time interior point method for linear programming was discovered by Karmarkar in 1984.
- The main work in each iteration is to solve a linear system of size $O(n+m)$.
- To obtain a polynomial time algorithm, we would need to show that
a an ϵ-subobtimal solution can be rounded to an exact solution in $O\left(n^{3}\right)$ if $\epsilon \leq 2^{-2 L}$, for an instance with integer data of bitlength L;
b we can obtain in polynomial time an initial point with $\mu_{0} \leq 2^{\beta L}$ for some constant β.
- a can be shown, similar as for the ellipsoid method; By using (variants) of the studied path-following method, we can achieve b. This yields a total iteration complexity of $O(\sqrt{n} L)$.
- The parameters θ and σ used in this presentation are selected to make the method run in polynomial time; In practice, one can use other parameters to achieve faster convergence.
- State-of-the art (academic and commercial) solvers use a mix of the simplex algorithm and some interior point method.

