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a one-dimensional face F of a polyhedron is an
extreme ray (face) if F has one vertex, i.e.,
F = x + cone({z}) with x ∈ ℝ

n, z ∈ ℝ
n
⧵ {0}

we call z an extreme ray

for a pointed polyhedral cone C, the extreme rays
are the points where n − 1 linearly independent
inequalities are active

for a pointed polyhedron, the extreme rays are the
extreme rays of the recession cone

extreme rays of the polyhedron are in the
recession cone by Lemma 3.15
n − 1 linearly independent inequalities
a⊤i (x + �z) ≥ bi active for all � ≥ 0
n − 1 linearly independent inequalities
a⊤i z ≥ 0 active for z
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Theorem 14.1 Let C ∶= {x ∈ ℝ
n
∣ a⊤i ⋅ x ≥ 0, i = 1, … ,m} be a pointed

polyhedral cone and c ∈ ℝ
n. The minimal cost c⊤ ⋅ x subject to x ∈ C is equal to −∞

if and only if there is an extreme ray d of C with c⊤ ⋅ d < 0.

Proof: “⇐” is clear by definition of rays.
“⇒”: Suppose that min{c⊤ ⋅ x ∣ x ∈ C} is unbounded

there is x ∈ C ∶ c⊤ ⋅ x < 0
there is x ∈ C ∶ c⊤ ⋅ x = −1
P ∶= {x ∈ ℝ

n
∣ c⊤ ⋅ x = −1, a⊤i ⋅ x ≥ 0, i = 1, … ,m} ≠ ∅

since C is pointed (i.e., a1, … , am span ℝ
n), P is pointed as well

consider extreme point d ∈ P

there are n linearly independent constraints active at d

there are n − 1 linearly independent constraints a⊤i ⋅ x ≥ 0 active at d

d is an extreme ray of C (note that d ≠ 0 since c⊤ ⋅ d = −1)



Characterization of Unbounded LPs (Cont.) 14 | 4

Theorem 14.1 also holds for pointed polyhedra:

Theorem 14.2 Let P ⊆ ℝ
n be a pointed polyhedron and c ∈ ℝ

n. The minimal cost
c⊤ ⋅ x subject to x ∈ P is equal to −∞ if and only if there is an extreme ray d of P
with c⊤ ⋅ d < 0.

if the simplex method observes that an LP is unbounded, the corresponding jth basic
direction is an extreme ray d with c⊤ ⋅ d < 0
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Let P = {x ∈ ℝ
n
∣ A ⋅ x ≥ b} be pointed.

“⇐” is clear by definition of rays.

“⇒”: Consider infeasible dual LP:

max p⊤ ⋅ b s.t. p⊤ ⋅ A = c⊤, p ≥ 0

replace objective function by p⊤ ⋅ 0⟹ problem remains infeasible:

max p⊤ ⋅ 0 s.t. p⊤ ⋅ A = c⊤, p ≥ 0

corresponding primal LP is feasible and thus unbounded:

min c⊤ ⋅ x s.t. A ⋅ x ≥ 0

by Theorem 14.1, there is an extreme ray d of {x ∣ A ⋅ x ≥ 0} with c⊤ ⋅ d < 0.

since {x ∣ A ⋅ x ≥ 0} is recession cone of P, d is extreme ray of P.
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call a set W = {w1
, … ,wr

} of extreme rays complete if �w ∈ W for all extreme rays
w for some � > 0

Theorem 14.3 Let P ∶= {x ∈ ℝ
n
∣ A ⋅ x ≥ b} ≠ ∅ be pointed. Let x1, … , xk be

the extreme points and w1
, … ,wr a complete set of extreme rays of P. Then,

P =

{
k

∑

i=1
�i ⋅ xi +

r

∑

j=1
�j ⋅wj

|
|
|
|
|

�i, �j ≥ 0,
k

∑

i=1
�i = 1

}

.

Corollary 14.4 A non-empty polytope is equal to the convex hull of its extreme
points.

Corollary 14.5 Every element of a pointed polyhedral cone is a non-negative linear
combination (i.e., a conic combination) of its extreme rays.
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Let Q ∶=

{

∑
k
i=1 �i ⋅ x

i
+∑

r
j=1 �j ⋅w

j
∣ �i, �j ≥ 0, ∑k

i=1 �i = 1
}

.

P ⊇ Q: Clear by convexity of P and by definition of rays of P.

P ⊆ Q: Assume by contradiction that there is a z ∈ P ⧵ Q.

Since z ∉ Q, the following LP is infeasible:

max ∑
k
i=1 0 ⋅ �i +∑

r
j=1 0 ⋅ �j

s.t. ∑
k
i=1 �i ⋅ x

i
+∑

r
j=1 �j ⋅w

j
= z, ∑

k
i=1 �i = 1 �, � ≥ 0

The corresponding dual LP is feasible and thus unbounded:

min p⊤ ⋅ z + q s.t. p⊤ ⋅ xi + q ≥ 0 ∀i, p⊤ ⋅wj
≥ 0 ∀j

There is a solution (p̄, q̄) with p̄⊤ ⋅ z + q̄ < 0 and thus

p̄⊤ ⋅ z < p̄⊤ ⋅ xi ∀i and p̄⊤ ⋅wj
≥ 0 ∀j (⋆)
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For this fixed vector p̄, consider the LP:

min p̄⊤ ⋅ x s.t. A ⋅ x ≥ b

Notice that z is a feasible solution to this LP.

Case 1: The LP has finite optimal cost.

Then, there is an optimal extreme point xi for some i.

In particular, p̄⊤ ⋅ z ≥ p̄⊤ ⋅ xi for this i, a contradiction to (⋆).

Case 2: The LP is unbounded.

By Theorem 14.2, there is an extreme ray wj with p̄⊤ ⋅wj
< 0,

again a contradiction to (⋆).
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Definition 14.6 A set Q ⊆ ℝ
n is finitely generated if there are

x1, … , xk,w1
, … ,wr

∈ ℝ
n such that

Q =

{
k

∑

i=1
�i ⋅ xi +

r

∑

j=1
�j ⋅wj

∣ �i, �j ≥ 0,
k

∑

i=1
�i = 1

}

.

Remark
the Resolution Theorem states that a polyhedron with at least one extreme point
is finitely generated

this is also true for general polyhedra

Theorem 14.7 A finitely generated set Q is a polyhedron. In particular, the convex
hull of finitely many vectors is a polytope.
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For some z ∈ ℝ
n, consider the LP

max ∑
k
i=1 0 ⋅ �i +∑

r
j=1 0 ⋅ �j

s.t. ∑
k
i=1 �i ⋅ x

i
+∑

r
j=1 �j ⋅w

j
= z, ∑

k
i=1 �i = 1 �, � ≥ 0

Then, z ∈ Q if and only if the LP is feasible and bounded.

Thus, z ∈ Q if and only if the dual LP is bounded:

min p⊤ ⋅ z + q s.t. p⊤ ⋅ xi + q ≥ 0 ∀i, p⊤ ⋅wj
≥ 0 ∀j

Convert the dual LP to standard form:

min (p+ − p−)⊤ ⋅ z + (q+ − q−)

s.t. (p+ − p−)⊤ ⋅ xi + (q+ − q−) − �i = 0 ∀i

(p+ − p−)⊤ ⋅wj
− �j = 0 ∀j

p+,p−,q+,q−, �, � ≥ 0

The set of feasible solutions of this LP in standard form is pointed.
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By Theorem 14.1, the dual LP in standard form is bounded if and only if

(p+ − p−)⊤ ⋅ z + (q+ − q−) ≥ 0 (⋆)

holds for all, finitely many, extreme rays (p+,p−,q+,q−, �, �).

Conclusion:
z ∈ Q ⟺ dual LP is bounded

⟺ z fulfills finitely many linear inequalities (⋆)

Thus, Q is a polyhedron.
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Conclusion: There are two ways of representing a polyhedron:

i in terms of a finite set of linear constraints (outer representation);

ii as a finitely generated set, in terms of its extreme points and rays (inner
representation).

Remarks
Passing from one type of description to the other is, in general, a complicated
computational task.

One description can be small while the other one is huge. Examples:

An n-dimensional cube is given by 2n linear constraints and has 2n extreme
points.
A representation of the convex hull of the 2n points

e1, −e1, e2, −e2, … , en, −en

in terms of linear constraints needs at least 2n linear inequalities.


