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Extreme Rays 14

a one-dimensional face F of a polyhedron is an
extreme ray (face) if I has one vertex, i.e.,
F = x + cone({z}) with x e R", z € R"\ {0}

we call z an extreme ray

for a pointed polyhedral cone C, the extreme rays
are the points where n — 1 linearly independent

inequalities are active

for a pointed polyhedron, the extreme rays are the
extreme rays of the recession cone

- extreme rays of the polyhedron are in the

recession cone by Lemma 3.15

- n— 1 linearly independent inequalities
aj (x + Az) = b; active forall 1 = 0

« n— 1 linearly independent inequalities

aT

; 2 = 0 active for z



E— Characterization of Unbounded LPs =1

Theorem 14.1Let C := {x €R" | @/ - x =0, i = 1,..., m} be a pointed
polyhedral cone and ¢ € R". The minimal cost ¢' - x subject to x € C is equal to —c0
if and only if there is an extreme ray d of C with ¢" - d < 0.

Proof: “<" is clear by definition of rays.

“=": Suppose that min{c" - x | x € C} is unbounded

. thereisx€ C: ¢'-x<0

. thereisx€ C: ¢ -x=-1

P:={xeR"|c"-x=-1,a] x=20,i=1,...m}#0Q

« since C is pointed (i.e., a1, ..., @y, span R™), P is pointed as well
- consider extreme point d € P

« there are n linearly independent constraints active at d

« there are n — 1 linearly independent constraints a; - x = 0 active at d

« dis an extreme ray of C (note that d # 0 since ¢’ - d = -1) O
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— Characterization of Unbounded LPs (Cont.)

« Theorem 14.1 also holds for pointed polyhedra:

Theorem 14.2 Let P ¢ R" be a pointed polyhedron and ¢ € R™. The minimal cost
¢' - x subject to x € P is equal to -0 if and only if there is an extreme ray d of P
with ¢" - d < 0.

- if the simplex method observes that an LP is unbounded, the corresponding jth basic
direction is an extreme ray d with ¢ - d < 0



I Proof of Theorem 14.2
Let P= {x € R"| A- x = b} be pointed.

“<="is clear by definition of rays.

“=": Consider infeasible dual LP:

max p' -b st p -A=c, p=0

« replace objective function by p’ - 0 = problem remains infeasible:
max p' -0 st. pl-A=c', p=0
« corresponding primal LP is feasible and thus unbounded:
min ¢’ - x st. A-x=0
. by Theorem 14.1, there is an extreme ray d of {x | A-x = 0} withc" - d < 0.

« since {x | A- x = 0} is recession cone of P, d is extreme ray of P.
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Resolution Theorem 1|7

callaset W = {w!,..., W'} of extreme rays complete if A\w € W for all extreme rays
w for some A > 0

Theorem 14.3 Let P := {x € R" | A- x = b} # @ be pointed. Let x', ..., x* be
the extreme points and w', ..., W a complete set of extreme rays of P. Then,

k r k
P=q> %' +> 6w 2620 =1
i=1 j=1 i=1

Corollary 14.4 A non-empty polytope is equal to the convex hull of its extreme
points. 0

Corollary 14.5 Every element of a pointed polyhedral cone is a non-negative linear

combination (i.e., a conic combination) of its extreme rays. O



I Proof of Theorem 14.3
Let Q := {z{;l Boxl + X0 6w | 4,620, X, 4 = 1}.
P = Q: Clear by convexity of P and by definition of rays of P.

P < O: Assume by contradiction that thereisa z € P\ Q.
Since z € Q, the following LP is infeasible:

max 21‘110'/11'"2;:10‘9]'
st. Y hex+ Y0 w=z Yidi=1 4020
The corresponding dual LP is feasible and thus unbounded:
miin-z+q s.t. pT-xi+qu Vi, pT-wfzo vj
There is a solution (P, q) with p" - z + g < 0 and thus

ploz<p -x Vi and PpT-W=0 Vj

(*)



1419

I Proof of Theorem 14.3 (Cont.)
For this fixed vector p, consider the LP:
min p' -x st A-x=b

Notice that z is a feasible solution to this LP.

Case 1: The LP has finite optimal cost.
Then, there is an optimal extreme point x' for some i.

In particular, pT -z = pT - x* for this i, a contradiction to ().

Case 2: The LP is unbounded.
By Theorem 14.2, there is an extreme ray w with pT cw < 0,

again a contradiction to (). O
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— Converse to the Resolution Theorem

Definition 14.6 A set Q c R" is finitely generated if there are
xt, . 1K wh o, w" € R" such that

k r k
Q=12 Ai-x'+Y 6w |[2620 ) =1y,
i=1 j=1 i=1

Remark
« the Resolution Theorem states that a polyhedron with at least one extreme point
is finitely generated

- this is also true for general polyhedra

Theorem 14.7 A finitely generated set Q is a polyhedron. In particular, the convex

hull of finitely many vectors is a polytope.



[ Proof of Theorem 14.7 allk
For some z € R", consider the LP
max 21110'/11-+Z}=10'9j
st. YA+ Y 6ow=z YL A=1 4020
Then, z € Q if and only if the LP is feasible and bounded.
Thus, z € Q if and only if the dual LP is bounded:
min p' -z +q st. plox'+q=0 Vi p-w =0 Vj
Convert the dual LP to standard form:
min (p* -p)" -2+ (q" - q)
st. (P -p) - x'+(g-q)-a4=0 Vi
(" -p) W -p=0 vj
PLp.q.q.af=0

The set of feasible solutions of this LP in standard form is pointed.



I Proof of Theorem 14.7 (Cont.) 1ln
By Theorem 14.1, the dual LP in standard form is bounded if and only if
(P -p) z+(qd -q)=0 (*)

holds for all, finitely many, extreme rays (p*, p~, q*, q~, , ).

Conclusion:
z€(Q <<= dual LPisbounded

«— zfulfills finitely many linear inequalities (x)

Thus, Q is a polyhedron. O



I Representation of Polyhedra ———

Conclusion: There are two ways of representing a polyhedron:
H in terms of a finite set of linear constraints (outer representation);

H as a finitely generated set, in terms of its extreme points and rays (inner
representation).

Remarks

- Passing from one type of description to the other is, in general, a complicated
computational task.

« One description can be small while the other one is huge. Examples:

« An n-dimensional cube is given by 21 linear constraints and has 2" extreme
points.

- A representation of the convex hull of the 27 points
€1, —€1,€2,€2,..., €, —€y

in terms of linear constraints needs at least 2" linear inequalities.



