Introduction to

Linear and Combinatorial Optimization

14
Representation of Polyhedra
14.1 Extreme Rays

- a one-dimensional face F of a polyhedron is an extreme ray (face) if F has one vertex, i.e., $F=x+\operatorname{cone}(\{z\})$ with $x \in \mathbb{R}^{n}, z \in \mathbb{R}^{n} \backslash\{0\}$
- we call z an extreme ray
- for a pointed polyhedral cone C, the extreme rays are the points where $n-1$ linearly independent inequalities are active

- for a pointed polyhedron, the extreme rays are the extreme rays of the recession cone
- extreme rays of the polyhedron are in the recession cone by Lemma 3.15
- $n-1$ linearly independent inequalities $a_{i}^{\top}(x+\lambda z) \geq b_{i}$ active for all $\lambda \geq 0$
- $n-1$ linearly independent inequalities
$a_{i}^{\top} z \geq 0$ active for z

Theorem 14.1 Let $C:=\left\{x \in \mathbb{R}^{n} \mid a_{i}^{\top} \cdot x \geq 0, i=1, \ldots, m\right\}$ be a pointed polyhedral cone and $c \in \mathbb{R}^{n}$. The minimal cost $c^{\top} \cdot x$ subject to $x \in C$ is equal to $-\infty$ if and only if there is an extreme ray d of C with $c^{\top} \cdot d<0$.
Proof: " \Longleftarrow " is clear by definition of rays.
$" \Rightarrow$ ": Suppose that $\min \left\{c^{\top} \cdot x \mid x \in C\right\}$ is unbounded

- there is $x \in C: c^{\top} \cdot x<0$
- there is $x \in C: c^{\top} \cdot x=-1$
- $P:=\left\{x \in \mathbb{R}^{n} \mid c^{\top} \cdot x=-1, a_{i}^{\top} \cdot x \geq 0, i=1, \ldots, m\right\} \neq \varnothing$
- since C is pointed (i.e., a_{1}, \ldots, a_{m} span \mathbb{R}^{n}), P is pointed as well
- consider extreme point $d \in P$
- there are n linearly independent constraints active at d
- there are $n-1$ linearly independent constraints $a_{i}^{\top} \cdot x \geq 0$ active at d
- d is an extreme ray of C (note that $d \neq 0$ since $c^{\top} \cdot d=-1$)

Characterization of Unbounded LPs (Cont.)

- Theorem 14.1 also holds for pointed polyhedra:

Theorem 14.2 Let $P \subseteq \mathbb{R}^{n}$ be a pointed polyhedron and $c \in \mathbb{R}^{n}$. The minimal cost $c^{\top} \cdot x$ subject to $x \in P$ is equal to $-\infty$ if and only if there is an extreme ray d of P with $c^{\top} \cdot d<0$.

- if the simplex method observes that an LP is unbounded, the corresponding j th basic direction is an extreme ray d with $c^{\top} \cdot d<0$

Let $P=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\}$ be pointed.
$" \Longleftarrow "$ is clear by definition of rays.
" \Rightarrow ": Consider infeasible dual LP:

$$
\max p^{\top} \cdot b \quad \text { s.t. } \quad p^{\top} \cdot A=c^{\top}, \quad p \geq 0
$$

- replace objective function by $p^{\top} \cdot 0 \Longrightarrow$ problem remains infeasible:

$$
\max p^{\top} \cdot 0 \quad \text { s.t. } \quad p^{\top} \cdot A=c^{\top}, \quad p \geq 0
$$

- corresponding primal LP is feasible and thus unbounded:

$$
\min c^{\top} \cdot x \quad \text { s.t. } \quad A \cdot x \geq 0
$$

- by Theorem 14.1, there is an extreme ray d of $\{x \mid A \cdot x \geq 0\}$ with $c^{\top} \cdot d<0$.
- since $\{x \mid A \cdot x \geq 0\}$ is recession cone of P, d is extreme ray of P.

Introduction to

Linear and Combinatorial Optimization

14
Representation of Polyhedra
14.2 Resolution Theorem

- call a set $W=\left\{w^{1}, \ldots, w^{r}\right\}$ of extreme rays complete if $\lambda w \in W$ for all extreme rays w for some $\lambda>0$

Theorem 14.3 Let $P:=\left\{x \in \mathbb{R}^{n} \mid A \cdot x \geq b\right\} \neq \varnothing$ be pointed. Let x^{1}, \ldots, x^{k} be the extreme points and w^{1}, \ldots, w^{r} a complete set of extreme rays of P. Then,

$$
P=\left\{\sum_{i=1}^{k} \lambda_{i} \cdot x^{i}+\sum_{j=1}^{r} \theta_{j} \cdot w^{j} \mid \lambda_{i}, \theta_{j} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1\right\} .
$$

Corollary 14.4 A non-empty polytope is equal to the convex hull of its extreme points.

Corollary 14.5 Every element of a pointed polyhedral cone is a non-negative linear combination (i.e., a conic combination) of its extreme rays.

Let $Q:=\left\{\sum_{i=1}^{k} \lambda_{i} \cdot x^{i}+\sum_{j=1}^{r} \theta_{j} \cdot w^{j} \mid \lambda_{i}, \theta_{j} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1\right\}$.
$P \supseteq Q$: Clear by convexity of P and by definition of rays of P.
$P \subseteq Q:$ Assume by contradiction that there is a $z \in P \backslash Q$.
Since $z \notin Q$, the following LP is infeasible:

$$
\begin{array}{cl}
\max & \sum_{i=1}^{k} 0 \cdot \lambda_{i}+\sum_{j=1}^{r} 0 \cdot \theta_{j} \\
\text { s.t. } & \sum_{i=1}^{k} \lambda_{i} \cdot x^{i}+\sum_{j=1}^{r} \theta_{j} \cdot w^{j}=z, \quad \sum_{i=1}^{k} \lambda_{i}=1 \quad \lambda, \theta \geq 0
\end{array}
$$

The corresponding dual LP is feasible and thus unbounded:

$$
\min p^{\top} \cdot z+q \quad \text { s.t. } \quad p^{\top} \cdot x^{i}+q \geq 0 \quad \forall i, \quad p^{\top} \cdot w^{j} \geq 0 \quad \forall j
$$

There is a solution (\bar{p}, \bar{q}) with $\bar{p}^{\top} \cdot z+\bar{q}<0$ and thus

$$
\bar{p}^{\top} \cdot z<\bar{p}^{\top} \cdot x^{i} \quad \forall i \quad \text { and } \quad \bar{p}^{\top} \cdot w^{j} \geq 0 \quad \forall j
$$

For this fixed vector \bar{p}, consider the LP:

$$
\min \bar{p}^{\top} \cdot x \quad \text { s.t. } \quad A \cdot x \geq b
$$

Notice that z is a feasible solution to this LP.

Case 1: The LP has finite optimal cost.
Then, there is an optimal extreme point x^{i} for some i.
In particular, $\bar{p}^{\top} \cdot z \geq \bar{p}^{\top} \cdot x^{i}$ for this i, a contradiction to (\star).

Case 2: The LP is unbounded.
By Theorem 14.2, there is an extreme ray w^{j} with $\bar{p}^{\top} \cdot w^{j}<0$, again a contradiction to (\star).

Definition 14.6 A set $Q \subseteq \mathbb{R}^{n}$ is finitely generated if there are $x^{1}, \ldots, x^{k}, w^{1}, \ldots, w^{r} \in \mathbb{R}^{n}$ such that

$$
Q=\left\{\sum_{i=1}^{k} \lambda_{i} \cdot x^{i}+\sum_{j=1}^{r} \theta_{j} \cdot w^{j} \mid \lambda_{i}, \theta_{j} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1\right\} .
$$

Remark

- the Resolution Theorem states that a polyhedron with at least one extreme point is finitely generated
- this is also true for general polyhedra

Theorem 14.7 A finitely generated set Q is a polyhedron. In particular, the convex hull of finitely many vectors is a polytope.

For some $z \in \mathbb{R}^{n}$, consider the LP

$$
\begin{array}{cl}
\max & \sum_{i=1}^{k} 0 \cdot \lambda_{i}+\sum_{j=1}^{r} 0 \cdot \theta_{j} \\
\text { s.t. } & \sum_{i=1}^{k} \lambda_{i} \cdot x^{i}+\sum_{j=1}^{r} \theta_{j} \cdot w^{j}=z, \quad \sum_{i=1}^{k} \lambda_{i}=1 \quad \lambda, \theta \geq 0
\end{array}
$$

Then, $z \in Q$ if and only if the LP is feasible and bounded.
Thus, $z \in Q$ if and only if the dual LP is bounded:

$$
\min p^{\top} \cdot z+q \quad \text { s.t. } \quad p^{\top} \cdot x^{i}+q \geq 0 \quad \forall i, \quad p^{\top} \cdot w^{j} \geq 0 \quad \forall j
$$

Convert the dual LP to standard form:

$$
\begin{array}{lll}
\min & \left(p^{+}-p^{-}\right)^{\top} \cdot z+\left(q^{+}-q^{-}\right) & \forall i \\
\text { s.t. } & \left(p^{+}-p^{-}\right)^{\top} \cdot x^{i}+\left(q^{+}-q^{-}\right)-\alpha_{i}=0 & \forall j \\
& \left(p^{+}-p^{-}\right)^{\top} \cdot w^{j}-\beta_{j}=0 &
\end{array}
$$

The set of feasible solutions of this LP in standard form is pointed.

By Theorem 14.1, the dual LP in standard form is bounded if and only if

$$
\left(p^{+}-p^{-}\right)^{\top} \cdot z+\left(q^{+}-q^{-}\right) \geq 0
$$

holds for all, finitely many, extreme rays ($p^{+}, p^{-}, q^{+}, q^{-}, \alpha, \beta$).
Conclusion:
$z \in Q \quad \Longleftrightarrow$ dual LP is bounded
$\Longleftrightarrow \quad z$ fulfills finitely many linear inequalities (\star)
Thus, Q is a polyhedron.

Conclusion: There are two ways of representing a polyhedron:
ii in terms of a finite set of linear constraints (outer representation);
iii as a finitely generated set, in terms of its extreme points and rays (inner representation).

Remarks

- Passing from one type of description to the other is, in general, a complicated computational task.
- One description can be small while the other one is huge. Examples:
- An n-dimensional cube is given by $2 n$ linear constraints and has 2^{n} extreme points.
- A representation of the convex hull of the $2 n$ points

$$
e_{1},-e_{1}, e_{2},-e_{2}, \ldots, e_{n},-e_{n}
$$

in terms of linear constraints needs at least 2^{n} linear inequalities.

