
15

Introduction to

Linear and Combinatorial Optimization

Large-Scale Linear Programming

15.1 Column Generation

Delayed Column Generation 15 | 2

Let A ∈ ℝ
m×n with rank(A) = m, b ∈ ℝm, c ∈ ℝn, and m ≪ n.

min c⊤ ⋅ x

s.t. A ⋅ x = b

x ≥ 0

Suppose that the number of columns n is huge such that A cannot be generated and
stored in your computer’s memory.

Remember: Revised simplex method only requires m basic columns and the column
which shall enter the basis.

Pricing problem: How to find column that should enter basis (i.e., c̄j < 0)?

Solution: Sometimes one can find j with c̄j = mini c̄i efficiently.

Conclusion:
Only work with few columns at a time (basic columns and some “promising”
non-basic columns).
Generate new relevant columns by solving pricing problem.

Example: Min-Cost Multi-Commodity Flows 15 | 3

Given: Digraph D = (V ,A), capacities u ∶ A→ℝ≥0, costs c ∶ A→ℝ≥0;
k source-sink pairs (si, ti) ∈ V × V with demands di ∈ ℝ≥0, i = 1, … , k.

Task: Send di units of flow from si to ti for all i without violating arc capacities;
minimize total cost.

Path-based LP formulation: Let i be the set of all si-ti-dipaths in D,  ∶= ⋃
k
i=1i.

Cost of path P ∈  is cP ∶= ∑a∈P c(a).

min ∑

P∈
cP xP

s.t. ∑

P∈∶a∈P
xP + sa = u(a) for all a ∈ A

∑

P∈i

xP = di for all i = 1, … , k

xP , sa ≥ 0 for all P ∈  , a ∈ A

Notice: The number of variables is exponential in the size of D.

Pricing Problem and Dual Separation Problem 15 | 4

Consider the dual LP:

max ∑

a∈A
u(a) ⋅ ya +

k

∑

i=1
di ⋅ zi

s.t. zi +∑

a∈P
ya ≤ cP for all P ∈ i, i = 1, … , k

ya ≤ 0 for all a ∈ A

Notice: The reduced cost of a primal variable is negative if and only if the corresponding
dual constraint is violated (Observation 7.9)
⟶ dual separation problem
Easy for slack variable sa: Check whether ya > 0.
For path variable xP , P ∈ i: zi +∑

a∈P
ya > cP =∑

a∈P
c(a)

⟺ ∑

a∈P
(c(a) − ya) < zi

Conclusion: Solve pricing problem by computing shortest si-ti-paths w.r.t. arc weights
c(a) − ya, for i = 1, … , k.

15

Introduction to

Linear and Combinatorial Optimization

Large-Scale Linear Programming

15.2 Cu�ing Planes

Cu�ing Plane Methods 15 | 6

Delayed column generation viewed in terms of the dual LP:

max p⊤ ⋅ b s.t. p⊤ ⋅ Ai ≤ ci for all i = 1, … ,n

If n is huge, instead of dealing with all n constraints, restrict to subset I ⊂ {1, … ,n}
and consider relaxed problem

max p⊤ ⋅ b s.t. p⊤ ⋅ Ai ≤ ci for all i ∈ I

Let p∗ be an optimal basic feasible solution:

If p∗ is feasible for original LP, it is also optimal there.

Otherwise, find a violated constraint and add it to relaxed problem.

Remark: Notice the similarity to the ellipsoid method where, in every iteration, the
separation problem needs to be solved.

P

p∗

b

P

p∗

b

P

p∗

b

Reminder: Solving the Subtour LP 15 | 8

For a given TSP instance, consider the subtour LP:

min ∑

e∈E
ce ⋅ xe

s.t. ∑

e∈�(v)
xe = 2 for all nodes v ∈ V ,

∑

e∈�(X)
xe ≥ 2 for all subsets ∅ ≠ X ⊊ V , (⋆)

0 ≤ xe ≤ 1 for all edges e.

Notice that there are 2n−1 − 1 subtour elimination constraints (⋆).

The corresponding separation problem is a min-cut problem that can be solved
efficiently by network flow methods.

Conclusion: Subtour LP is typically being solved by cu�ing plane methods.

15

Introduction to

Linear and Combinatorial Optimization

Large-Scale Linear Programming

15.3 Dantzig-Wolfe-Decomposition

Dantzig-Wolfe Decomposition 15 | 10

Consider a linear program of the form

min c⊤1 ⋅ x1 + c⊤2 ⋅ x2
s.t. D1 ⋅ x1 + D2 ⋅ x2 = b0

F1 ⋅ x1 = b1
F2 ⋅ x2 = b2
x1, x2 ≥ 0

with c1 ∈ ℝn1 , c2 ∈ ℝn2 , b0 ∈ ℝm0 , b1 ∈ ℝm1 , b2 ∈ ℝm2 .

Reformulation of the problem: For i = 1, 2, let Pi ∶= {xi ≥ 0 ∣ Fi ⋅ xi = bi}.

min c⊤1 ⋅ x1 + c⊤2 ⋅ x2
s.t. D1 ⋅ x1 + D2 ⋅ x2 = b0

x1 ∈ P1 , x2 ∈ P2

Let xji , j ∈ Ji, be the extreme points of Pi.

Let wk
i , k ∈ Ki, be a complete set of extreme rays of Pi.

Reformulation 15 | 11

For i = 1, 2, xi ∈ ℝni it holds that xi ∈ Pi if and only if

xi =∑

j∈Ji

�
j
i ⋅ x

j
i + ∑

k∈Ki

�
k
i ⋅w

k
i

for some �ji , �
k
i ≥ 0 and ∑j∈Ji �

j
i = 1.

The reformulation thus leads to the following principal problem:

min∑

j∈J1

�
j
1 (c

⊤

1 x
j
1) +∑

k∈K1

�
k
1 (c

⊤

1w
k
1) +∑

j∈J2

�
j
2 (c

⊤

2 x
j
2) + ∑

k∈K2

�
k
2 (c

⊤

2w
k
2)

s.t.∑
j∈J1

�
j
1(

D1x
j
1

1
0)

+∑

k∈K1

�
k
1(

D1wk
1

0
0)

+∑

j∈J2

�
j
2(

D2x
j
2

0
1)

+∑

k∈K2

�
k
2(

D2wk
2

0
0)

=
(

b0
1
1)

�1, �2, �1, �2 ≥ 0

The principal problem has only m0 + 2 constraints but a huge number of variables. ⟶
Employ delayed column generation!

Example: Two-Commodity Flow Problem 15 | 12

Arc-based LP formulation of min-cost two-commodity flow problem:

min

2
∑

i=1(
∑

a∈A
c(a) ⋅ xi,a

)

s.t.
2
∑

i=1
xi,a ≤ u(a) for a ∈ A

∑

a∈�−(v)
xi,a − ∑

a∈�+(v)
xi,a =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

di if v = ti
−di if v = si
0 otherwise

for i = 1, 2

x ≥ 0

For i = 1, 2, let Pi ∶= {xi ∣ xi is si-ti-flow of value di}.

Extreme points of polyhedron Pi: si-ti-path flows of value di
(denoted by xPi for si-ti-path P ∈ i)

Extreme rays of polyhedron Pi: cycle flows; these can be ignored as they have positive
cost.

Example (Cont.) 15 | 13

Principal problem:

min ∑

P∈1

�
P
1 ⋅ (cP d1) + ∑

P∈2

�
P
2 ⋅ (cP d2)

s.t. ∑

P∈1∶a∈P
�
P
1 ⋅ d1 + ∑

P∈2∶a∈P
�
P
2 ⋅ d2 ≤ u(a) for a ∈ A

∑

P∈i

�
P
i = 1 for i = 1, 2

� ≥ 0

Se�ing xP ∶= �Pi ⋅ di for P ∈ i yields the path-based LP formulation!

The ith subproblem (pricing problem for variables �Pi , P ∈ i) is a shortest si-ti-path
problem.

Pricing Problem 15 | 14

Let B be a feasible basis to the principal problem and p⊤ ∶= c⊤B ⋅ A
−1
B the associated

dual solution: p⊤ = (q⊤, r1, r2) with q ∈ ℝm0 , r1, r2 ∈ ℝ.

Compute the reduced cost coefficient of a variable �j1:

c⊤1 ⋅ x
j
1 − (q

⊤
, r1, r2) ⋅

⎛

⎜

⎜

⎝

D1 ⋅ x
j
1

1
0

⎞

⎟

⎟

⎠

= (c⊤1 − q
⊤
⋅ D1) ⋅ x

j
1 − r1

Compute the reduced cost coefficient of a variable �k1 :

c1⊤ ⋅wk
1 − (q

⊤
, r1, r2) ⋅

⎛

⎜

⎜

⎝

D1 ⋅wk
1

0
0

⎞

⎟

⎟

⎠

= (c⊤1 − q
⊤
⋅ D1) ⋅wk

1

In order to solve the pricing problem for variables �ji and �ki , we consider the following
LP:

min (c⊤i − q
⊤
⋅ Di) ⋅ xi s.t. xi ∈ Pi

This is called the ith subproblem.

Pricing Problem (Cont.) 15 | 15

Consider ith subproblem: min (c⊤i − q
⊤
⋅ Di) ⋅ xi s.t. xi ∈ Pi

Case 1: ith subproblem is unbounded:
⟹ simplex algorithm yields extreme ray wk

i with (c⊤i − q
⊤
⋅ Di) ⋅wk

i < 0
⟹ reduced cost of �ki is negative

⟶ generate column
(

Diwk
i

0
0)

and let it enter the basis in pricipal problem.

Case 2: ith subproblem has finite optimal cost < ri:
⟹ simplex algorithm yields extreme point xji with (c⊤i − q

⊤
⋅ Di) ⋅ x

j
i < ri

⟹ reduced cost of �ji is negative

⟶ generate column
(

Dix
j
i

⋮)
and let it enter the basis in principal problem.

Case 3: ith subproblem has finite optimal cost ≥ ri:

⟹ (c⊤i − q
⊤
⋅ Di) ⋅ x

j
i ≥ ri for all j ∈ Ji and

(c⊤i − q
⊤
⋅ Di) ⋅wk

i ≥ 0 for all k ∈ Ki.

⟹ Variables �ji and �ki have reduced cost ≥ 0, for all j ∈ Ji, k ∈ Ki.

Summary 15 | 16

The given problem is transformed into an equivalent problem with few constraints but
many variables.

The pricing problem can be solved by solving smaller LPs over the polyhedra Pi.

Economic interpretation: Organization with two divisions and common objective
D1 ⋅ x1 + D2 ⋅ x2 = b0.

Central planner assigns values q for each unit of contribution towards common
objective.

Division i wants to minimize c⊤i ⋅ xi s.t. its own constraint xi ∈ Pi.

Since xi contributes Di ⋅ xi towards common objective, the overall objective for
division i ismin(c⊤i − q

⊤
⋅ Di) ⋅ xi.

The divisions propose solutions to the central planner who combines them with
previous solutions and comes up with new values q.

Example (Cont.) 15 | 17

Principal problem:

min ∑

P∈1

�
P
1 ⋅ (cP d1) + ∑

P∈2

�
P
2 ⋅ (cP d2)

s.t. ∑

P∈1∶a∈P
�
P
1 ⋅ d1 + ∑

P∈2∶a∈P
�
P
2 ⋅ d2 ≤ u(a) for a ∈ A

∑

P∈i

�
P
i = 1 for i = 1, 2

� ≥ 0

Let B be a feasible basis to the principal problem and p⊤ ∶= c⊤B ⋅ A
−1
B the associated

dual solution: p⊤ = (y⊤, z1, z2) with y ∈ ℝA, z1, z2 ∈ ℝ.

In order to solve the pricing problem for variables �Pi , we consider the LP:

min (c⊤ − y⊤) ⋅ xi s.t. xi ∈ Pi.

This is equivalent to finding a shortest si-ti-path for arc weights c(a) − ya.

Generalization 15 | 18

min

t

∑

i=1
c⊤i ⋅ xi

s.t.
t

∑

i=1
Di ⋅ xi = b0

Fi ⋅ xi = bi for i = 1, … , t

x1, … , xt ≥ 0

Proceed as before ⟶ t subproblems for pricing.

Sometimes even useful for t = 1.

Example for t = 1 15 | 19

min

{
5
∑

j=1
�
j
(c⊤ xj)

|
|
|
|
|

5
∑

j=1
�
j
(D xj) = b0,

5
∑

j=1
�
j
= 1, � ≥ 0

}

D ⋅ x = b0

P

x1

x5

x4

x3

x2 c

Basis of the principal problem: (1, 5)

Example for t = 1 15 | 19

min

{
5
∑

j=1
�
j
(c⊤ xj)

|
|
|
|
|

5
∑

j=1
�
j
(D xj) = b0,

5
∑

j=1
�
j
= 1, � ≥ 0

}

D ⋅ x = b0

P

x1

x5

x4

x3

x2 c

Basis of the principal problem: (3, 5)

Example for t = 1 15 | 19

min

{
5
∑

j=1
�
j
(c⊤ xj)

|
|
|
|
|

5
∑

j=1
�
j
(D xj) = b0,

5
∑

j=1
�
j
= 1, � ≥ 0

}

D ⋅ x = b0

P

x1

x5

x4

x3

x2 c

Basis of the principal problem: (3, 4)

Dantzig-Wolfe Decomposition: Phase I 15 | 20

How to find an initial basic feasible solution?

Use phase I of simplex method to find an extreme point x1i of Pi, for i = 1, … , t.

W.l.o.g. ∑⊤

i=1Di ⋅ x1i ≤ b0. Introduce slack variables y ∈ ℝm0 and solve auxiliary
principal problem:

min

m0

∑

s=1
ys

s.t.
⊤

∑

i=1(
∑

j∈Ji

�
j
i(Di ⋅ x

j
i) + ∑

k∈Ki

�
k
i (Di ⋅wk

i)
)
+ y = b0

∑

j∈Ji

�
j
i = 1 for i = 1, … , t

�, �, y ≥ 0

15

Introduction to

Linear and Combinatorial Optimization

Large-Scale Linear Programming

15.4 Benders Decomposition

Two-stage Optimization Problems 15 | 22

Consider a linear program of the form

min f ⊤y + c⊤x
s.t. Fy ≥ h

Ay + Bx ≥ b
x ≥ 0

The above form occurs in many real-world problems with different stages of decision.
Typically, y variables represent here-and-now decisions, while x variables represent
wait-and-see decisions, whose domain depends on the value of the first stage variables.

More generally, B can have a
block-diagonal structure, so Benders
Decomposition can be used to handle
problems of the form:

→ Benders Decomposition can be
viewed as Dantzig-Wolfe applied to
the dual problem.

min f ⊤y + c⊤1 x1 +… + c⊤k xk
s.t. Fy ≥ h

A1y + B1x1 ≥ b1
A2y +B2x2 ≥ b2
⋮

Aky + Bkxk ≥ bk
x1, … , xk ≥ 0

Recourse model 15 | 23

It holds

min f ⊤y + c⊤x = min f ⊤y + Q(y)

s.t. Fy ≥ h Fy ≥ h

Ay + Bx ≥ b

x ≥ 0

where Q(y) ∶= min{c⊤x ∶ Bx ≥ b − Ay, x ≥ 0} is the cost of the recourse
decisions.
Dualizing Q(y) yields Q(y) = max{u⊤(b − Ay) ∶ B⊤u ≤ c, u ≥ 0}.
The domain  ∶= {u ∶ B⊤u ≤ c,u ≥ 0} of the recourse problem does not depend
on y. So if  ≠ ∅, the original problem rewrites

min f ⊤y + z

Fy ≥ h

u⊤(b − Ay) ≤ z, ∀u ∈ 

This is a problem with infinitely many constraints, but we can reduce to finitely many
by considering extreme points and extreme rays of  .

Benders Decomposition 15 | 24

Let  ∶= {u ∶ B⊤u ≤ c,u ≥ 0},
R ∶= {extreme rays of  } and V ∶= {extreme points of  }

Theorem 15.1 If  ≠ ∅, we have

min f ⊤y + c⊤x = min f ⊤y + z

s.t. Fy ≥ h Fy ≥ h

Ay + Bx ≥ b u⊤(b − Ay) ≤ 0, ∀u ∈ R

x ≥ 0 u⊤(b − Ay) ≤ z, ∀u ∈ V
Proof:

If the optimal value is < ∞, then ∃y∗ ∶ Q(y∗) < ∞. For all z,

Q(y) ≤ z ⟺ u⊤(b − Ay) ≤ z, ∀u ∈  ⟺

{

u⊤(b − Ay) ≤ 0, ∀u ∈ R
u⊤(b − Ay) ≤ z, ∀u ∈ V

If the primal problem is infeasible, then either
Y = {y ∶ Fy ≥ h} = ∅
or the recourse problem is infeasible for all y. Since the dual recourse problem is
feasible, this implies that the dual recourse problem is unbounded, for all y:
∀y ∈ Y , ∃u ∈ R ∶ u⊤(b − Ay) > 0.

In both cases, the Benders decomposition is infeasible.

Solving Benders Decomposition with Cu�ing Planes 15 | 25

Initialize (possibly empty) subsets R̂ and V̂ of extreme rays/points of  , and consider
the restricted master problem

min f ⊤y + z
s.t. Fy ≥ h

u⊤(b − Ay) ≤ 0, ∀u ∈ R̂

u⊤(b − Ay) ≤ z, ∀u ∈ V̂

In every iteration, given a previous solution (ȳ, z̄) of the RMP, solve the separation
problem

max{u⊤(b − Aȳ) ∶ u ∈  }.

Since  ≠ ∅, only 2 cases can occur:

The subproblem is unbounded. Then, we find a ray u ∈ R such that
u⊤(b − Aȳ) > 0. → Set R̂ ∶= R̂ ∪ {u}.
The subproblem has a finite optimal solution at some extreme point u ∈ V .

→ If uT (b − Aȳ) ≤ z̄: STOP; solution is optimal.
→ Else, set V̂ ∶= V̂ ∪ {u}

Example: Two-stage stochastic transshipment 15 | 26

An E-commerce company has some initial stock si ≥ 0 of some commodity at
location i, ∀i ∈ I .
Between two selling periods, the company can resplenish the warehouses, by moving
stocks from location i ∈ I to location j ∈ I (unit cost=fij)
There is a random demand dk in region k, ∀k ∈ K . Serving one unit of this demand
from location j ∈ I costs cjk.
We have a set of historical samplesΩ = {d1, ...,dn} for the vector of demands
d = (dk)k∈K ∈ ℝ

|K |

≥0 , and we estimate the probability distribution of the demands by

Pr[d = d!] =
1
|Ω|

, ∀! ∈ Ω.

The resplenishment flow (yij)i∈I ,j∈I is a here-and-now variable, which must be decided
before observing the demand.
The delivery flow (x!jk)j∈I ,k∈K,!∈Ω can be decided after observing the demand, hence it
depend on the observed scenario: we serve x!jk units of the demand of region k from
warehouse j in the scenario !.
We assume there is enough stock: ∑i∈I si ≥ ∑k∈K d!k , ∀! ∈ Ω

Example: Two-stage stochastic transshipment 15 | 27

Example with |I | = 3 warehouses, |K | = 2 demand regions and |Ω| = 3 scenarios.

s3

s2

s1

d!32

d!31

d!22

d!21

d!12

d!11

flow yij

flow x!1jk

Example: Two-stage stochastic transshipment 15 | 27

Example with |I | = 3 warehouses, |K | = 2 demand regions and |Ω| = 3 scenarios.

s3

s2

s1

d!32

d!31

d!22

d!21

d!12

d!11

flow yij
flow x!2jk

Example: Two-stage stochastic transshipment 15 | 27

Example with |I | = 3 warehouses, |K | = 2 demand regions and |Ω| = 3 scenarios.

s3

s2

s1

d!32

d!31

d!22

d!21

d!12

d!11

flow yij

flow x!3jk

Two-stage stochastic transshipment: LP formulation 15 | 28

The problem of minimizing the total expected cost (over both decision stages) can be
represented as a large LP:

min ∑

i∈I ,j∈I
fijyij + ∑

!∈Ω

1
|Ω|

∑

j∈I ,k∈K
cjkx

!

jk

s.t. ∑

j∈I
yij = si, ∀i ∈ I

∑

k∈K
x!jk ≤ ∑

i∈I
yij , ∀j ∈ I , ∀! ∈ Ω

∑

j∈I
x!jk = d!k , ∀k ∈ K, ∀! ∈ Ω

x,y ≥ 0

Denote by s ′j (y) = ∑i∈I yij the stock of j after the resplenishment
The recourse problem for a fixed scenario ! ∈ Ω is a simple transshipment problem

Q!(y) = min{∑
jk

cjkxjk ∶ ∑

k
xjk ≤ s ′j (y), ∑

j
xjk = d!k , x ≥ 0}

= max{−∑

j
ujs ′j (y) +∑

k
vkd!k , vk − uj ≤ cjk, u ≥ 0}

Two-stage stochastic transshipment: Benders decomp.15 | 29

Restricted Master Problem (no extreme rays, recourse problem always feasible)

min ∑

i∈I ,j∈I
fijyij + ∑

!∈Ω

1
|Ω|

z!

s.t. ∑

j∈I
yij = si, ∀i ∈ I

s ′j =∑

i∈I
yij , ∀j ∈ I

−∑

j∈I
ujs ′j +∑

k
vkd

!

k ≤ z!, ∀(u, v) ∈ V̂!

y ≥ 0
Recourse problem for scenario !, given a first-stage solution y: solve the dual
transhipment problem

max{−∑

j
ujs ′j (y) +∑

k
vkd

!

k , vk − uj ≤ cjk, ∀j ∈ I , k ∈ K, u ≥ 0}

If optimal recourse has value ≤ z! for all ! ∈ Ω: STOP.

Otherwise, add an extreme point in V̂! for each scenario > z! and re-solve RMP.

Benders decomposition and Integer variables 15 | 30

In fact, one can also consider problems with integer first-stage variables

This does not change anything in the derivation of the Benders decomposition, but we
need a MIP solver to solve the RMP

For example, we could modify the previous example to compute the number of trucks
required for the first-stage transshipment.

The cost for a truck from i to j is f tij .
Each truck has a capacity of C
This is equivalent to assuming that the cost for transporting yij units from i to j
is equal to ⌈

yij
C ⌉ ⋅ f tij .

Denote by nij the number of trucks driving from i to j. The RMP is changed as follows:

The objective function becomes: ∑i∈I ,j∈I f
t
ijnij +∑

!∈Ω

1
|Ω|
z!

We need to add the following constraints:

yij ≤ C ⋅ nij, ∀i, j ∈ I

nij ∈ ℤ≥0, ∀i, j ∈ I .

