Introduction to

Linear and Combinatorial Optimization

15

Large-Scale Linear Programming

15.1 Column Generation

Let $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=m, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$, and $m \ll n$.

$$
\begin{aligned}
& \min c^{\top} \cdot x \\
& \text { s.t. } \quad A \cdot x=b \\
& x \geq 0
\end{aligned}
$$

Suppose that the number of columns n is huge such that A cannot be generated and stored in your computer's memory.

Remember: Revised simplex method only requires m basic columns and the column which shall enter the basis.

Pricing problem: How to find column that should enter basis (i.e., $\bar{c}_{j}<0$)?
Solution: Sometimes one can find j with $\bar{c}_{j}=\min _{i} \bar{c}_{i}$ efficiently.

Conclusion:

- Only work with few columns at a time (basic columns and some "promising" non-basic columns).
- Generate new relevant columns by solving pricing problem.

Example: Min-Cost Multi-Commodity Flows

Given: Digraph $D=(V, A)$, capacities $u: A \rightarrow \mathbb{R}_{\geq 0}$, costs $c: A \rightarrow \mathbb{R}_{\geq 0}$; k source-sink pairs $\left(s_{i}, t_{i}\right) \in V \times V$ with demands $d_{i} \in \mathbb{R}_{\geq 0}, i=1, \ldots, k$.

Task: Send d_{i} units of flow from s_{i} to t_{i} for all i without violating arc capacities; minimize total cost.

Path-based LP formulation: Let \mathcal{P}_{i} be the set of all $s_{i}-t_{i}$-dipaths in $D, \mathcal{P}:=\bigcup_{i=1}^{k} \mathcal{P}_{i}$. Cost of path $P \in \mathcal{P}$ is $c_{P}:=\sum_{a \in P} c(a)$.

$$
\begin{array}{rlr}
\min \sum_{P \in \mathcal{P}} c_{P} x_{P} & \\
\text { s.t. } \sum_{P \in \mathcal{P}: a \in P} x_{P}+s_{a}=u(a) & \text { for all } a \in A \\
\sum_{P \in \mathcal{P}_{i}} x_{P}=d_{i} & \text { for all } i=1, \ldots, k \\
x_{P}, s_{a} \geq 0 & & \text { for all } P \in \mathcal{P}, a \in A
\end{array}
$$

Notice: The number of variables is exponential in the size of D.

Consider the dual LP:

$$
\max \quad \sum_{a \in A} u(a) \cdot y_{a}+\sum_{i=1}^{k} d_{i} \cdot z_{i}
$$

$$
\begin{aligned}
\text { s.t. } \quad z_{i}+\sum_{a \in P} y_{a} \leq c_{P} & \text { for all } P \in \mathcal{P}_{i}, i=1, \ldots, k \\
y_{a} \leq 0 & \text { for all } a \in A
\end{aligned}
$$

Notice: The reduced cost of a primal variable is negative if and only if the corresponding dual constraint is violated (Observation 7.9)
\longrightarrow dual separation problem
Easy for slack variable s_{a} : Check whether $y_{a}>0$.
For path variable $x_{P}, P \in \mathcal{P}_{i}: \quad z_{i}+\sum_{a \in P} y_{a}>c_{P}=\sum_{a \in P} c(a)$

$$
\Longleftrightarrow \quad \sum_{a \in P}\left(c(a)-y_{a}\right)<z_{i}
$$

Conclusion: Solve pricing problem by computing shortest s_{i} - t_{i}-paths w.r.t. arc weights $c(a)-y_{a}$, for $i=1, \ldots, k$.

Introduction to

Linear and Combinatorial Optimization

15

Large-Scale Linear Programming

15.2 Cutting Planes

Cutting Plane Methods

Delayed column generation viewed in terms of the dual LP:

$$
\max \quad p^{\top} \cdot b \quad \text { s.t. } \quad p^{\top} \cdot A_{i} \leq c_{i} \quad \text { for all } i=1, \ldots, n
$$

If n is huge, instead of dealing with all n constraints, restrict to subset $I \subset\{1, \ldots, n\}$ and consider relaxed problem

$$
\max \quad p^{\top} \cdot b \quad \text { s.t. } p^{\top} \cdot A_{i} \leq c_{i} \quad \text { for all } i \in I
$$

Let p^{*} be an optimal basic feasible solution:

- If p^{*} is feasible for original LP, it is also optimal there.
- Otherwise, find a violated constraint and add it to relaxed problem.

Remark: Notice the similarity to the ellipsoid method where, in every iteration, the separation problem needs to be solved.

For a given TSP instance, consider the subtour LP:

$$
\begin{array}{lll}
\min & \sum_{e \in E} c_{e} \cdot x_{e} & \\
\text { s.t. } & \sum_{e \in \delta(v)} x_{e}=2 & \text { for all nodes } v \in V, \\
& \sum_{e \in \delta(X)} x_{e} \geq 2 & \text { for all subsets } \varnothing \neq X \subsetneq V, \\
& 0 \leq x_{e} \leq 1 & \text { for all edges } e .
\end{array}
$$

Notice that there are $2^{n-1}-1$ subtour elimination constraints (\star).

The corresponding separation problem is a min-cut problem that can be solved efficiently by network flow methods.

Conclusion: Subtour LP is typically being solved by cutting plane methods.

Introduction to

Linear and Combinatorial Optimization

15

Large-Scale Linear Programming

15.3 Dantzig-Wolfe-Decomposition

Consider a linear program of the form

$$
\begin{aligned}
& \min c_{1}^{\top} \cdot x_{1}+c_{2}^{\top} \cdot x_{2} \\
& \text { s.t. } D_{1} \cdot x_{1}+D_{2} \cdot x_{2}=b_{0} \\
& F_{1} \cdot x_{1}=b_{1} \\
& F_{2} \cdot x_{2}=b_{2} \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

with $c_{1} \in \mathbb{R}^{n_{1}}, c_{2} \in \mathbb{R}^{n_{2}}, b_{0} \in \mathbb{R}^{m_{0}}, b_{1} \in \mathbb{R}^{m_{1}}, b_{2} \in \mathbb{R}^{m_{2}}$.

Reformulation of the problem: For $i=1,2$, let $P_{i}:=\left\{x_{i} \geq 0 \mid F_{i} \cdot x_{i}=b_{i}\right\}$.

$$
\begin{aligned}
\min & c_{1}^{\top} \cdot x_{1}+c_{2}^{\top} \cdot x_{2} \\
\mathrm{s.t.} & D_{1} \cdot x_{1}+D_{2} \cdot x_{2}=b_{0} \\
& x_{1} \in P_{1}, x_{2} \in P_{2}
\end{aligned}
$$

- Let $x_{i}^{j}, j \in \mathcal{F}_{i}$, be the extreme points of P_{i}.
- Let $w_{i}^{k}, k \in K_{i}$, be a complete set of extreme rays of P_{i}.

For $i=1,2, x_{i} \in \mathbb{R}^{n_{i}}$ it holds that $x_{i} \in P_{i}$ if and only if

$$
x_{i}=\sum_{j \in \mathcal{F}_{i}} \lambda_{i}^{j} \cdot x_{i}^{j}+\sum_{k \in K_{i}} \theta_{i}^{k} \cdot w_{i}^{k}
$$

for some $\lambda_{i}^{j}, \theta_{i}^{k} \geq 0$ and $\sum_{j \in \mathcal{F}_{i}} \lambda_{i}^{j}=1$.
The reformulation thus leads to the following principal problem:

$$
\begin{aligned}
& \min \sum_{j \in \mathcal{F}_{1}} \lambda_{1}^{j}\left(c_{1}^{\top} x_{1}^{j}\right)+\sum_{k \in K_{1}} \theta_{1}^{k}\left(c_{1}^{\top} w_{1}^{k}\right)+\sum_{j \in \mathcal{F}_{2}} \lambda_{2}^{j}\left(c_{2}^{\top} x_{2}^{j}\right)+\sum_{k \in K_{2}} \theta_{2}^{k}\left(c_{2}^{\top} w_{2}^{k}\right) \\
& \text { s.t. } \sum_{j \in \mathcal{F}_{1}} \lambda_{1}^{j}\left(\begin{array}{c}
D_{1} x_{1}^{j} \\
1 \\
0
\end{array}\right)+\sum_{k \in K_{1}} \theta_{1}^{k}\binom{D_{1} w_{1}^{k}}{0}+\sum_{j \in \mathcal{Y}_{2}} \lambda_{2}^{j}\left(\begin{array}{c}
D_{2} x_{2}^{j} \\
0 \\
1
\end{array}\right)+\sum_{k \in K_{2}} \theta_{2}^{k}\binom{D_{2} w_{2}^{k}}{0}=\left(\begin{array}{c}
b_{0} \\
1 \\
1
\end{array}\right) \\
& \quad \lambda_{1}, \lambda_{2}, \theta_{1}, \theta_{2} \geq 0
\end{aligned}
$$

The principal problem has only $m_{0}+2$ constraints but a huge number of variables. \longrightarrow Employ delayed column generation!

Arc-based LP formulation of min-cost two-commodity flow problem:

$$
\begin{array}{ll}
\min & \sum_{i=1}^{2}\left(\sum_{a \in A} c(a) \cdot x_{i, a}\right) \\
\text { s.t. } & \sum_{i=1}^{2} x_{i, a} \leq u(a) \quad \text { for } a \in A \\
& \sum_{a \in \delta^{-}(v)} x_{i, a}-\sum_{a \in \delta^{+}(v)} x_{i, a}=\left\{\begin{aligned}
d_{i} & \text { if } v=t_{i} \\
-d_{i} & \text { if } v=s_{i} \\
0 & \text { otherwise }
\end{aligned} \quad \text { for } i=1,2\right. \\
& x \geq 0
\end{array}
$$

- For $i=1,2$, let $P_{i}:=\left\{x_{i} \mid x_{i}\right.$ is s_{i} - t_{i}-flow of value $\left.d_{i}\right\}$.
- Extreme points of polyhedron $P_{i}: s_{i}-t_{i}$-path flows of value d_{i} (denoted by x_{i}^{P} for $s_{i}-t_{i}$-path $P \in \mathcal{P}_{i}$)
- Extreme rays of polyhedron P_{i} : cycle flows; these can be ignored as they have positive cost.

Principal problem:

$$
\begin{array}{lll}
\min & \sum_{P \in \mathcal{P}_{1}} \lambda_{1}^{P} \cdot\left(c_{P} d_{1}\right)+\sum_{P \in \mathcal{P}_{2}} \lambda_{2}^{P} \cdot\left(c_{P} d_{2}\right) & \\
\text { s.t. } & \sum_{P \in \mathcal{P}_{1}: a \in P} \lambda_{1}^{P} \cdot d_{1}+\sum_{P \in \mathcal{P}_{2}: a \in P} \lambda_{2}^{P} \cdot d_{2} \leq u(a) & \text { for } a \in A \\
& \sum_{P \in \mathcal{P}_{i}} \lambda_{i}^{P}=1 & \text { for } i=1,2 \\
& \lambda \geq 0 &
\end{array}
$$

- Setting $x_{P}:=\lambda_{i}^{P} \cdot d_{i}$ for $P \in \mathcal{P}_{i}$ yields the path-based LP formulation!
- The i th subproblem (pricing problem for variables $\lambda_{i}^{P}, P \in \mathcal{P}_{i}$) is a shortest s_{i} - t_{i}-path problem.

Let B be a feasible basis to the principal problem and $p^{\top}:=c_{B}^{\top} \cdot A_{B}^{-1}$ the associated dual solution: $p^{\top}=\left(q^{\top}, r_{1}, r_{2}\right)$ with $q \in \mathbb{R}^{m_{0}}, r_{1}, r_{2} \in \mathbb{R}$.

Compute the reduced cost coefficient of a variable λ_{1}^{j} :

$$
c_{1}^{\top} \cdot x_{1}^{j}-\left(q^{\top}, r_{1}, r_{2}\right) \cdot\left(\begin{array}{c}
D_{1} \cdot x_{1}^{j} \\
1 \\
0
\end{array}\right)=\left(c_{1}^{\top}-q^{\top} \cdot D_{1}\right) \cdot x_{1}^{j}-r_{1}
$$

Compute the reduced cost coefficient of a variable θ_{1}^{k} :

$$
c_{1}^{\top} \cdot w_{1}^{k}-\left(q^{\top}, r_{1}, r_{2}\right) \cdot\left(\begin{array}{c}
D_{1} \cdot w_{1}^{k} \\
0 \\
0
\end{array}\right)=\left(c_{1}^{\top}-q^{\top} \cdot D_{1}\right) \cdot w_{1}^{k}
$$

In order to solve the pricing problem for variables λ_{i}^{j} and θ_{i}^{k}, we consider the following LP:

$$
\min \left(c_{i}^{\top}-q^{\top} \cdot D_{i}\right) \cdot x_{i} \quad \text { s.t. } x_{i} \in P_{i}
$$

This is called the i th subproblem.

Pricing Problem (Cont.)

Consider i th subproblem: $\min \left(c_{i}^{\top}-q^{\top} \cdot D_{i}\right) \cdot x_{i}$ s.t. $x_{i} \in P_{i}$
Case 1: i th subproblem is unbounded:
\Longrightarrow simplex algorithm yields extreme ray w_{i}^{k} with $\left(c_{i}^{\top}-q^{\top} \cdot D_{i}\right) \cdot w_{i}^{k}<0$
\Longrightarrow reduced cost of θ_{i}^{k} is negative
\longrightarrow generate column $\left(\begin{array}{c}D_{i} w_{i}^{k} \\ 0 \\ 0\end{array}\right)$ and let it enter the basis in pricipal problem.
Case 2: i th subproblem has finite optimal cost $<r_{i}$:
\Longrightarrow simplex algorithm yields extreme point x_{i}^{j} with $\left(c_{i}^{\top}-q^{\top} \cdot D_{i}\right) \cdot x_{i}^{j}<r_{i}$
\Longrightarrow reduced cost of λ_{i}^{j} is negative
\longrightarrow generate column $\binom{D_{i} x_{i}^{j}}{\vdots}$ and let it enter the basis in principal problem.
Case 3: i th subproblem has finite optimal cost $\geq r_{i}$:
$\Longrightarrow\left(c_{i}^{\top}-q^{\top} \cdot D_{i}\right) \cdot x_{i}^{j} \geq r_{i} \quad$ for all $j \in \mathcal{F}_{i}$ and $\left(c_{i}^{\top}-q^{\top} \cdot D_{i}\right) \cdot w_{i}^{k} \geq 0 \quad$ for all $k \in K_{i}$.
\Longrightarrow Variables λ_{i}^{j} and θ_{i}^{k} have reduced cost ≥ 0, for all $j \in \mathcal{F}_{i}, k \in K_{i}$.

- The given problem is transformed into an equivalent problem with few constraints but many variables.
- The pricing problem can be solved by solving smaller LPs over the polyhedra P_{i}.

Economic interpretation: Organization with two divisions and common objective $D_{1} \cdot x_{1}+D_{2} \cdot x_{2}=b_{0}$.

- Central planner assigns values q for each unit of contribution towards common objective.
- Division i wants to minimize $c_{i}^{\top} \cdot x_{i}$ s.t. its own constraint $x_{i} \in P_{i}$.
- Since x_{i} contributes $D_{i} \cdot x_{i}$ towards common objective, the overall objective for division i is $\min \left(c_{i}^{\top}-q^{\top} \cdot D_{i}\right) \cdot x_{i}$.
- The divisions propose solutions to the central planner who combines them with previous solutions and comes up with new values q.

Principal problem:

$$
\begin{array}{lll}
\min & \sum_{P \in \mathcal{P}_{1}} \lambda_{1}^{P} \cdot\left(c_{P} d_{1}\right)+\sum_{P \in \mathcal{P}_{2}} \lambda_{2}^{P} \cdot\left(c_{P} d_{2}\right) & \\
\text { s.t. } & \sum_{P \in \mathcal{P}_{1}: a \in P} \lambda_{1}^{P} \cdot d_{1}+\sum_{P \in \mathcal{P}_{2}: a \in P} \lambda_{2}^{P} \cdot d_{2} \leq u(a) & \text { for } a \in A \\
& \sum_{P \in \mathcal{P}_{i}} \lambda_{i}^{P}=1 & \text { for } i=1,2 \\
& \lambda \geq 0 &
\end{array}
$$

Let B be a feasible basis to the principal problem and $p^{\top}:=c_{B}^{\top} \cdot A_{B}^{-1}$ the associated dual solution: $p^{\top}=\left(y^{\top}, z_{1}, z_{2}\right)$ with $y \in \mathbb{R}^{A}, z_{1}, z_{2} \in \mathbb{R}$.

In order to solve the pricing problem for variables λ_{i}^{P}, we consider the LP:

$$
\min \left(c^{\top}-y^{\top}\right) \cdot x_{i} \quad \text { s.t. } x_{i} \in P_{i}
$$

This is equivalent to finding a shortest $s_{i}-t_{i}$-path for arc weights $c(a)-y_{a}$.

$$
\begin{aligned}
\min & \sum_{i=1}^{t} c_{i}^{\top} \cdot x_{i} \\
\text { s.t. } & \sum_{i=1}^{t} D_{i} \cdot x_{i}=b_{0} \\
& F_{i} \cdot x_{i}=b_{i} \quad \text { for } i=1, \ldots, t \\
& x_{1}, \ldots, x_{t} \geq 0
\end{aligned}
$$

- Proceed as before $\longrightarrow t$ subproblems for pricing.
- Sometimes even useful for $t=1$.
$\min \left\{\sum_{j=1}^{5} \lambda^{j}\left(c^{\top} x^{j}\right) \mid \sum_{j=1}^{5} \lambda^{j}\left(D x^{j}\right)=b_{0}, \sum_{j=1}^{5} \lambda^{j}=1, \lambda \geq 0\right\}$

Basis of the principal problem: $(1,5)$
$\min \left\{\sum_{j=1}^{5} \lambda^{j}\left(c^{\top} x^{j}\right) \mid \sum_{j=1}^{5} \lambda^{j}\left(D x^{j}\right)=b_{0}, \sum_{j=1}^{5} \lambda^{j}=1, \lambda \geq 0\right\}$

Basis of the principal problem: $(3,5)$

$$
\min \left\{\sum_{j=1}^{5} \lambda^{j}\left(c^{\top} x^{j}\right) \mid \sum_{j=1}^{5} \lambda^{j}\left(D x^{j}\right)=b_{0}, \sum_{j=1}^{5} \lambda^{j}=1, \lambda \geq 0\right\}
$$

Basis of the principal problem: $(3,4)$

Dantzig-Wolfe Decomposition: Phase I

How to find an initial basic feasible solution?

- Use phase I of simplex method to find an extreme point x_{i}^{1} of P_{i}, for $i=1, \ldots, t$.
- W.I.o.g. $\sum_{i=1}^{\top} D_{i} \cdot x_{i}^{1} \leq b_{0}$. Introduce slack variables $y \in \mathbb{R}^{m_{0}}$ and solve auxiliary principal problem:

$$
\begin{aligned}
\min & \sum_{s=1}^{m_{0}} y_{s} \\
\text { s.t. } & \sum_{i=1}^{\top}\left(\sum_{j \in \mathcal{F}_{i}} \lambda_{i}^{j}\left(D_{i} \cdot x_{i}^{j}\right)+\sum_{k \in K_{i}} \theta_{i}^{k}\left(D_{i} \cdot w_{i}^{k}\right)\right)+y=b_{0} \\
& \sum_{j \in \mathcal{F}_{i}} \lambda_{i}^{j}=1 \quad \text { for } i=1, \ldots, t \\
& \lambda, \theta, y \geq 0
\end{aligned}
$$

Introduction to

Linear and Combinatorial Optimization

Large-Scale Linear Programming

15.4 Benders Decomposition

- Consider a linear program of the form

$$
\begin{aligned}
\min & f^{\top} y+c^{\top} x \\
\text { s.t. } & F y \quad h \\
& A y+B x \geq b \\
& x \geq 0
\end{aligned}
$$

- The above form occurs in many real-world problems with different stages of decision. Typically, y variables represent here-and-now decisions, while x variables represent wait-and-see decisions, whose domain depends on the value of the first stage variables.
- More generally, B can have a block-diagonal structure, so Benders Decomposition can be used to handle problems of the form:
- \rightarrow Benders Decomposition can be viewed as Dantzig-Wolfe applied to the dual problem.

$$
\begin{aligned}
& \min \quad f^{\top} y \quad+c_{1}^{\top} x_{1}+\ldots+c_{k}^{\top} x_{k} \\
& \text { s.t. } \quad F y \\
& A_{1} y \quad+B_{1} x_{1} \quad \geq b_{1} \\
& A_{2} y \quad+B_{2} x_{2} \quad \geq b_{2} \\
& A_{k} y \\
& +B_{k} x_{k} \geq b_{k} \\
& x_{1}, \ldots, x_{k} \geq 0
\end{aligned}
$$

- It holds

$$
\begin{array}{rlll}
\min & f^{\top} y+c^{\top} x & = & \min \\
f^{\top} y+Q(y) \\
\text { s.t. } & F y & & F y \geq h
\end{array}
$$

where $Q(y):=\min \left\{c^{\top} x: B x \geq b-A y, x \geq 0\right\}$ is the cost of the recourse decisions.

- Dualizing $Q(y)$ yields $Q(y)=\max \left\{u^{\top}(b-A y): B^{\top} u \leq c, u \geq 0\right\}$.
- The domain $\mathcal{V}:=\left\{u: B^{\top} u \leq c, u \geq 0\right\}$ of the recourse problem does not depend on y. So if $\mathcal{V} \neq \varnothing$, the original problem rewrites

$$
\begin{aligned}
\min & f^{\top} y+z \\
& F y \geq h \\
& u^{\top}(b-A y) \leq z, \quad \forall u \in \mathcal{V}
\end{aligned}
$$

- This is a problem with infinitely many constraints, but we can reduce to finitely many by considering extreme points and extreme rays of \mathcal{V}.

Let $\mathcal{V}:=\left\{u: B^{\top} u \leq c, u \geq 0\right\}$,
$R:=\{$ extreme rays of $\mathcal{V}\}$ and $V:=\{$ extreme points of $\mathcal{V}\}$
Theorem 15.1 If $\mathcal{U} \neq \varnothing$, we have
$\min f^{\top} y+c^{\top} x=\min f^{\top} y+z$
s.t.

$$
\geq h
$$

$$
F y \geq h
$$

$$
u^{\top}(b-A y) \leq 0, \quad \forall u \in R
$$

$$
u^{\top}(b-A y) \leq z, \quad \forall u \in V
$$

Proof:

- If the optimal value is $<\infty$, then $\exists y^{*}: Q\left(y^{*}\right)<\infty$. For all z,
$Q(y) \leq z \Longleftrightarrow u^{\top}(b-A y) \leq z, \forall u \in \mathcal{V} \Longleftrightarrow \begin{cases}u^{\top}(b-A y) \leq 0, & \forall u \in R \\ u^{\top}(b-A y) \leq z, & \forall u \in V\end{cases}$
- If the primal problem is infeasible, then either
- $Y=\{y: F y \geq h\}=\varnothing$
- or the recourse problem is infeasible for all y. Since the dual recourse problem is feasible, this implies that the dual recourse problem is unbounded, for all y : $\forall y \in Y, \exists u \in R: u^{\top}(b-A y)>0$.
In both cases, the Benders decomposition is infeasible.

■ Solving Benders Decomposition with Cutting Planes ${ }_{15 / 25}$

- Initialize (possibly empty) subsets \hat{R} and \hat{V} of extreme rays/points of \mathcal{V}, and consider the restricted master problem

$$
\begin{aligned}
\min & f^{\top} y+z \\
\text { s.t. } & F y \geq h \\
& u^{\top}(b-A y) \leq 0, \forall u \in \hat{R} \\
& u^{\top}(b-A y) \leq z, \forall u \in \hat{V}
\end{aligned}
$$

- In every iteration, given a previous solution (\bar{y}, \bar{z}) of the RMP, solve the separation problem

$$
\max \left\{u^{\top}(b-A \bar{y}): u \in \mathcal{V}\right\}
$$

- Since $\mathcal{V} \neq \varnothing$, only 2 cases can occur:
- The subproblem is unbounded. Then, we find a ray $u \in R$ such that $u^{\top}(b-A \bar{y})>0 . \rightarrow$ Set $\hat{R}:=\hat{R} \cup\{u\}$.
- The subproblem has a finite optimal solution at some extreme point $u \in V$.
\rightarrow If $u^{T}(b-A \bar{y}) \leq \bar{z}$: STOP; solution is optimal.
\rightarrow Else, set $\hat{V}:=\hat{V} \cup\{u\}$

Example: Two-stage stochastic transshipment - ${ }^{15126}$

- An E-commerce company has some initial stock $s_{i} \geq 0$ of some commodity at location $i, \forall i \in I$.
- Between two selling periods, the company can resplenish the warehouses, by moving stocks from location $i \in I$ to location $j \in I$ (unit cost= $=f_{i j}$)
- There is a random demand d_{k} in region $k, \forall k \in K$. Serving one unit of this demand from location $j \in I$ costs $c_{j k}$.
- We have a set of historical samples $\Omega=\left\{d^{1}, \ldots, d^{n}\right\}$ for the vector of demands $d=\left(d_{k}\right)_{k \in K} \in \mathbb{R}_{\geq 0}^{|K|}$, and we estimate the probability distribution of the demands by

$$
\operatorname{Pr}\left[d=d^{\omega}\right]=\frac{1}{|\Omega|}, \quad \forall \omega \in \Omega
$$

- The resplenishment flow $\left(y_{i j}\right)_{i \in I, j \in I}$ is a here-and-now variable, which must be decided before observing the demand.
- The delivery flow $\left(x_{j k}^{\omega}\right)_{j \in I, k \in K, \omega \in \Omega}$ can be decided after observing the demand, hence it depend on the observed scenario: we serve $x_{j k}^{\omega}$ units of the demand of region k from warehouse j in the scenario ω.
- We assume there is enough stock: $\sum_{i \in I} s_{i} \geq \sum_{k \in K} d_{k}^{\omega}, \forall \omega \in \Omega$

Example with $|I|=3$ warehouses, $|K|=2$ demand regions and $|\Omega|=3$ scenarios.

- $d_{1}^{\omega_{3}}$
- $d_{2}^{\omega_{3}}$

Example with $|I|=3$ warehouses, $|K|=2$ demand regions and $|\Omega|=3$ scenarios.

- $d_{1}^{\omega_{1}}$
- $d_{2}^{\omega_{1}}$

- $d_{1}^{\omega_{3}}$
- $d_{2}^{\omega_{3}}$

Example with $|I|=3$ warehouses, $|K|=2$ demand regions and $|\Omega|=3$ scenarios.

- $d_{1}^{\omega_{1}}$
- $d_{2}^{\omega_{1}}$

— Two-stage stochastic transshipment: LP formulation ${ }^{15 / 28}$

The problem of minimizing the total expected cost (over both decision stages) can be represented as a large LP:

$$
\begin{array}{ll}
\min & \sum_{i \in I, j \in I} f_{i j} y_{i j}+\sum_{\omega \in \Omega} \frac{1}{|\Omega|} \sum_{j \in I, k \in K} c_{j k} x_{j k}^{\omega} \\
\text { s.t. } & \sum_{j \in I} y_{i j}=s_{i}, \quad \forall i \in I \\
& \sum_{k \in K} x_{j k}^{\omega} \leq \sum_{i \in I} y_{i j}, \quad \forall j \in I, \forall \omega \in \Omega \\
& \sum_{j \in I} x_{j k}^{\omega}=d_{k}^{\omega}, \quad \forall k \in K, \forall \omega \in \Omega \\
& x, y \geq 0
\end{array}
$$

- Denote by $s_{j}^{\prime}(y)=\sum_{i \in I} y_{i j}$ the stock of j after the resplenishment
- The recourse problem for a fixed scenario $\omega \in \Omega$ is a simple transshipment problem

$$
\begin{aligned}
Q_{\omega}(y) & =\min \left\{\sum_{j k} c_{j k} x_{j k}: \quad \sum_{k} x_{j k} \leq s_{j}^{\prime}(y), \quad \sum_{j} x_{j k}=d_{k}^{\omega}, \quad x \geq 0\right\} \\
& =\max \left\{-\sum_{j} u_{j} s_{j}^{\prime}(y)+\sum_{k} v_{k} d_{k}^{\omega}, \quad v_{k}-u_{j} \leq c_{j k}, \quad u \geq 0\right\}
\end{aligned}
$$

- Restricted Master Problem (no extreme rays, recourse problem always feasible)

$$
\begin{array}{ll}
\min & \sum_{i \in I, j \in I} f_{i j} y_{i j}+\sum_{\omega \in \Omega} \frac{1}{|\Omega|} z^{\omega} \\
\text { s.t. } & \sum_{j \in I} y_{i j}=s_{i}, \quad \forall i \in I \\
& s_{j}^{\prime}=\sum_{i \in I} y_{i j}, \quad \forall j \in I \\
& -\sum_{j \in I} u_{j} s_{j}^{\prime}+\sum_{k} v_{k} d_{k}^{\omega} \leq z^{\omega}, \quad \forall(u, v) \in \hat{V}^{\omega} \\
& y \geq 0
\end{array}
$$

- Recourse problem for scenario ω, given a first-stage solution y : solve the dual transhipment problem

$$
\max \left\{-\sum_{j} u_{j} s_{j}^{\prime}(y)+\sum_{k} v_{k} d_{k}^{\omega}, \quad v_{k}-u_{j} \leq c_{j k}, \forall j \in I, k \in K, \quad u \geq 0\right\}
$$

- If optimal recourse has value $\leq z^{\omega}$ for all $\omega \in \Omega$: STOP.
- Otherwise, add an extreme point in \hat{V}^{ω} for each scenario > z^{ω} and re-solve RMP.
- In fact, one can also consider problems with integer first-stage variables
- This does not change anything in the derivation of the Benders decomposition, but we need a MIP solver to solve the RMP
- For example, we could modify the previous example to compute the number of trucks required for the first-stage transshipment.
- The cost for a truck from i to j is $f_{i j}^{t}$.
- Each truck has a capacity of C
- This is equivalent to assuming that the cost for transporting $y_{i j}$ units from i to j is equal to $\left\lceil\frac{y_{i j}}{C}\right\rceil \cdot f_{i j}^{t}$.
- Denote by $n_{i j}$ the number of trucks driving from i to j. The RMP is changed as follows:
- The objective function becomes: $\sum_{i \in I, j \in I} f_{i j}^{t} n_{i j}+\sum_{\omega \in \Omega} \frac{1}{|\Omega|} z^{\omega}$
- We need to add the following constraints:

$$
\begin{array}{ll}
y_{i j} \leq C \cdot n_{i j}, & \forall i, j \in I \\
n_{i j} \in \mathbb{Z}_{\geq 0}, & \forall i, j \in I .
\end{array}
$$

