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15.1 Column Generation



| Delayed Column Generation ——

Let A € R™" with rank(A) = m, b€ R™, c € R",and m « n.

min ¢’ - x
st. A-x=b
x=0

Suppose that the number of columns n is huge such that A cannot be generated and
stored in your computer’s memory.

Remember: Revised simplex method only requires m basic columns and the column
which shall enter the basis.

Pricing problem: How to find column that should enter basis (i.e., ¢; < 0)?
Solution: Sometimes one can find j with ¢; = min; ¢; efficiently.

Conclusion:
« Only work with few columns at a time (basic columns and some “promising”
non-basic columns).

- Generate new relevant columns by solving pricing problem.



— Example: Min-Cost Multi-Commodity Flows —— s::

Given: Digraph D = (V, A), capacities 4 : A — Ry, costs ¢ : A — R.;
k source-sink pairs (s;, t;) € V x V with demands d; € R.o, i = 1,..., k.

Task: Send d; units of flow from s; to t; for all i without violating arc capacities;
minimize total cost.

Path-based LP formulation: Let P; be the set of all s;-t;-dipaths in D, P := U{il P;.
Cost of path P € Pis cp := ), cp c(a).

st. Z xp + S, = u(a) foralla€ A

foralli=1,...,k

™M
g
Il
Y

Xp,Sg =0 forallPe P,a€e A

Notice: The number of variables is exponential in the size of D.



— Pricing Problem and Dual Separation Problem —— s

Consider the dual LP:

k
max Zu(a)-ya+Zdi-zi
i=1

acA

s.t. Zi+ZYaSCP foralPe Py i=1,...,k
acP
Va<0 foralla€e A

Notice: The reduced cost of a primal variable is negative if and only if the corresponding
dual constraint is violated (Observation 7.9 )
— dual separation problem
Easy for slack variable s,: Check whether y, > 0.
For path variable xp, P € P;: zi + Z Ya>Cp= Z c(a)
acP acP
= Y-y <z
aeP
Conclusion: Solve pricing problem by computing shortest s;-t;-paths w.r.t. arc weights
ca) - yg, fori=1,...,k
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15.2 Cutting Planes



| Cutting Plane Methods 516
Delayed column generation viewed in terms of the dual LP:
max pT-b s.t. pT-A,-s Ci foralli=1,...,n

If nis huge, instead of dealing with all n constraints, restrict to subset I < {1,...,n}
and consider relaxed problem

max p'-b st p -Aj=g foralliel
Let p* be an optimal basic feasible solution:

- If p" is feasible for original LP, it is also optimal there.

- Otherwise, find a violated constraint and add it to relaxed problem.

Remark: Notice the similarity to the ellipsoid method where, in every iteration, the
separation problem needs to be solved.
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EE— Reminder: Solving the Subtour LP

For a given TSP instance, consider the subtour LP:

min Zce-xe
ecE

s.t. Z Xe =2 for all nodes v € V,
ec€d(v)
Z Xe = 2 forallsubsets @ # X g V, (%)
ecd(X)
O=x=1 for all edges e.

Notice that there are 2”1 — 1 subtour elimination constraints (*).

The corresponding separation problem is a min-cut problem that can be solved
efficiently by network flow methods.

Conclusion: Subtour LP is typically being solved by cutting plane methods.
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15.3 Dantzig-Wolfe-Decomposition



I Dantzig-Wolfe Decomposition

Consider a linear program of the form

ST T
min ¢ -x + ¢ X
st. Di-x; + Dy-xp = b()

F1 X1 = bl
Fz c Xy = bz
X1, Xop = 0

with ¢; € R™, ¢; € R™, by € R™, by € R™, by € R™.

Reformulation of the problem: For i = 1,2,let P; := {x; = 0 | F; - x; = b;}.

min ¢ -x + ¢ X
st. Di-xp + Dy-xp = b()
X1 € P1 , Xp € P2

o Let x:,] € J;, be the extreme points of P;.

. Let Wlk, k € K;, be a complete set of extreme rays of P;.

15[ 10



I Reformulation 1511

For i =1,2, x; € R it holds that x; € P; if and only if

SN Y ok

J€Ti keK;

for some /111:, Qik > 0 and Zje]i /Vl: =1

The reformulation thus leads to the following principal problem:

min Z/Vl (c x]) + Z OF (c] wk) + Z X () + Z 0F (¢ wk)

Jj€h keK; J€R kekK,

e S Sl ZAr)- D) - (1)
€ keKy kek, !
/11, Ag, 91, 92 >0

The principal problem has only my + 2 constraints but a huge number of variables. —>
Employ delayed column generation!



— Example: Two-Commodity Flow Problem

1512

Arc-based LP formulation of min-cost two-commodity flow problem:

min zZ: <Z o(a) - xi,a>

i=1 \acA
2
st Z Xia < u(@) fora€ A
i=1
di ifv=t
Xia = Z Xig=1-d;i ifv=s; fori=1,2
aed™(v) acs*(v)

0 otherwise

« Fori=1,2,let P; := {x; | x;is s;-t;-flow of value d;}.

- Extreme points of polyhedron P;: s;-t;-path flows of value d;
(denoted by le for s;-t;-path P € P))

« Extreme rays of polyhedron P;: cycle flows; these can be ignored as they have positive
cost.



I Example (Cont.) 15113

Principal problem:

min Z /lf (cpdy) + Z Ag-(cP dy)

Pepy Pep,

st > Medi+ Y, M -dy<u(a) fora€ A
PeP; : aeP PeP, : aeP
Y ar=1 fori=1,2
PeP;
A=0

- Setting xp := AL - d; for P € P; yields the path-based LP formulation!

« The ith subproblem (pricing problem for variables AP P € P))is a shortest si-ti-path

i
problem.



| Pricing Problem 1514

Let B be a feasible basis to the principal problem and p™ := ¢j - A; the associated
dual solution: p" = (q", ry, ) with g € R™, r, r, € R.

Compute the reduced cost coefficient of a variable /1{:

| Dy - x| |
ClT‘x{‘(qT,rl,rz)' 1 :(ClT—qT'Dl)'X{—Vl
0

Compute the reduced cost coefficient of a variable le:
D1 . W{C
T

c - W{C —-(q" )| 0 =(¢f -q' -Dy)- Wf
0

In order to solve the pricing problem for variables /VI: and Qik, we consider the following
LP:

min (¢/ -q' - D) -x st x €P
This is called the ith subproblem.



| Pricing Problem (Cont.)

Consider ith subproblem: min (¢/ - q" - D;) - x; st. x; € P;

Case 1: ith subproblem is unbounded:
= simplex algorithm yields extreme ray wllc with (¢] - q" - D) - wllC <0
= reduced cost of Gik is negative

Dywf . L
—> generate column ( 0 ) and let it enter the basis in pricipal problem.
0

Case 2: ith subproblem has finite optimal cost < 7;: _
= simplex algorithm yields extreme point x] with (¢] — q" - D;) - x, < ;
= reduced cost of /1% is negative

— generate column (D’x{) and let it enter the basis in principal problem.

Case 3: ith subproblem has finite optimal cost = r;:

— (] -q -D)-x]=r forallj€ Jand
(CiT—qT'Di)-WlkzO for all k € K.

= Variables )L]l: and 6 have reduced cost = 0, for all j € J;, k € K;.

15|15



Summary 1516

- The given problem is transformed into an equivalent problem with few constraints but

many variables.

- The pricing problem can be solved by solving smaller LPs over the polyhedra P;.
Economic interpretation: Organization with two divisions and common objective
D1 'X1+D2'JC2 = b().

« Central planner assigns values g for each unit of contribution towards common

objective.
- Division i wants to minimize Cl-T - X; s.t. its own constraint x; € P;.

- Since x; contributes D; - x; towards common objective, the overall objective for
division i is min(c,-T -q"-Dj) - x.

« The divisions propose solutions to the central planner who combines them with

previous solutions and comes up with new values gq.



Example (Cont.) 15117

Principal problem:

min Z Af (cpdy) + Z Ag-(cP dy)

PePy Pep,

st > Medi+ Y, M -dy<u(a) fora€ A
PeP; : aeP PeP, : aeP
Y ar=1 fori=1,2
PeP;
A=0

Let B be a feasible basis to the principal problem and p™ := ¢j - AJ_BI the associated
dual solution: pT = (yT, 21, 22) with yE€ ]RA, 21,22 €ER.
In order to solve the pricing problem for variables /1];, we consider the LP:

min (CT - yT) -x; st x; €P,.

This is equivalent to finding a shortest s;-t;-path for arc weights c(a) — y,.



I Generalization 15]18

min

-
k=3

~ |l
—_

.xl.

s.t. D;-x;= bo

I
N

F,--xl-=b,- fori=1,...,t

X5y X0 20
« Proceed as before — t subproblems for pricing,.

. Sometimes even useful for t = 1.



I Example for ¢ = 1 151

5
min [ Z X(c" %)
=

xl D~x=b0
ot 5

5 5
Y HDA)=b, Y ¥ =1, /120}
j=1

Jj=1

x4
x3

Basis of the principal problem: (1, 5)



I Example for ¢ = 1 151

5 5 5
min[Z}Lj(chj) S HDA)=by, Y ¥=1,12= 0}
j=1 j=1 J=1

xl D~x=b0
x°

Basis of the principal problem: (3, 5)



I Example for 1 = 1

5 5 5
min[z}tj(chj) S HDA)=by, Y ¥=1,12= 0}
j=1 j=1 J=1

xl D~x=b0
x°

x3

Basis of the principal problem: (3, 4)

15[19



— Dantzig-Wolfe Decomposition: Phase |

How to find an initial basic feasible solution?

« Use phase | of simplex method to find an extreme point xl-1 of Pyfori=1,... ¢

- Wlo.g. Z;rzl D; - xl-1 < by. Introduce slack variables y € R™ and solve auxiliary
principal problem:

my

min )y,
s=1
T . .

st. Z(Z XDi-x)+ Y 08D - wf)) +y=h

=1 \jej; kekK;
Z/ljl:=1 fori=1,...,t
J€di

A0G y=0

15|20
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15.4 Benders Decomposition



EE— Two-stage Optimization Problems ——— 2

- Consider a linear program of the form

min  f'y +c'x
s.t. Fy >h
Ay +Bx =D
x=0

- The above form occurs in many real-world problems with different stages of decision.
Typically, y variables represent here-and-now decisions, while x variables represent
wait-and-see decisions, whose domain depends on the value of the first stage variables.

More generally, B can have a min ny + ClTxl T szk
block-diagonal structure, so Benders st. Py = h
Decomposition can be used to handle Aty + Bixy > by
problems of the form: Azy +Byx, > by
— Benders Decomposition can be :

viewed as Dantzig-Wolfe applied to Ay + Bexp > by

the dual problem.



I Recourse model 1523

« It holds
min  fTy  +cx = min fTy+Q0)
st. Fy >h Fy=h
Ay +Bx =D

x=0

where Q(y) :=min{c'x : Bx = b- Ay, x = 0} is the cost of the recourse
decisions.

- Dualizing Q(y) yields Q(y) = max{u'(b- Ay) : B'u<c, u=0}.
. The domain U" := {u : B'u < c,u= 0} of the recourse problem does not depend
on y. Soif U" # @, the original problem rewrites
min f'y+z
Fy=h
u'(b-Ay)<z, Vuel
o This is a problem with infinitely many constraints, but we can reduce to finitely many
by considering extreme points and extreme rays of U".



Benders Decomposition 1524

|
Let V" :={u: B'us<cu=0},
R := {extreme rays of U’} and V := {extreme points of U}

Theorem 15.1 If U # @, we have
min  f'y +c'x = min f'y+z
s.t. Fy > h Fy=h
Ay +Bx =b u'(b-Ay) <0, VueR
x=0 u'(b-Ay) <z, VueV
Proof:

« If the optimal value is < 0o, then 3y" : Q(y") < oo. For all 2,
- u'(b-Ay)<0, VueR
0=z = u(b-A)=szVuel { WT(b-Ay) <z, YueV
« If the primal problem is infeasible, then either
«Y={y:Fy=h}=0
- or the recourse problem is infeasible for all y. Since the dual recourse problem is
feasible, this implies that the dual recourse problem is unbounded, for all y:
Vy€Y,3ueR: u'(b- Ay) > 0.
In both cases, the Benders decomposition is infeasible. O



- Solving Benders Decomposition with Cutting Planes

- Initialize (possibly empty) subsets Rand V of extreme rays/points of U, and consider
the restricted master problem

min f'y+z
st. Fy=h
u'(b-Ay) < 0,Yu € R
u'(b-Ay) < z,Vue 14

« In every iteration, given a previous solution (3, Z) of the RMP, solve the separation
problem

max{u' (b- Ay) : ueU}.

« Since U" # @, only 2 cases can occur:
« The subproblem is unbounded. Then, we find a ray © € R such that
u'(b-Ay) > 0. — Set R := Ru {u}.
« The subproblem has a finite optimal solution at some extreme point u € V.
— If ul(b- Ay) < z: STOP; solution is optimal.
— Else,set V := Vu {u}



— Example: Two-stage stochastic transshipment — sz

« An E-commerce company has some initial stock s; = 0 of some commodity at
location i, Vi € I.

« Between two selling periods, the company can resplenish the warehouses, by moving
stocks from location i € I to location j € I (unit cost=f;;)

« There is a random demand dj. in region k, Yk € K. Serving one unit of this demand
from location j € I costs Cj.

- We have a set of historical samples Q = {d’, ..., d"} for the vector of demands
d = (di)rex € ]R'ZI;‘, and we estimate the probability distribution of the demands by

1
Pr(d =d”] = @, Yo € Q.

The resplenishment flow (yjj)icr jer is a here-and-now variable, which must be decided
before observing the demand.

The delivery flow (xﬁj)jel,keK,weQ can be decided after observing the demand, hence it
depend on the observed scenario: we serve xjﬁ units of the demand of region k from
warehouse j in the scenario w.

- We assume there is enough stock: )7 Si = Y eg 4, Vo € Q



— Example: Two-stage stochastic transshipment — sz

Example with |I| = 3 warehouses, |K| = 2 demand regions and |Q| = 3 scenarios.
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— Example: Two-stage stochastic transshipment — sz

Example with |I| = 3 warehouses, |K| = 2 demand regions and |Q| = 3 scenarios.
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— Example: Two-stage stochastic transshipment — sz

Example with |I| = 3 warehouses,

K| = 2 demand regions and |Q| = 3 scenarios.

[0
o d”
[0
o d"
S1 \
N s
N o d
A
$2 S NN
AR NN
ASCUARAN o d>
AR \\
53 AN AN
N~ T~ N NN
flow yj NN RNARN
N AN
SO e d”
N
w3 <~ W\
ﬂowak \\\\\\\
AN da}3



[— Two-stage stochastic transshipment: LP formulation s

The problem of minimizing the total expected cost (over both decision stages) can be
represented as a large LP:

min ) fyyi+ ZII Y, xR

i€l jel WEQ JjeLkeK
s.t. Zyij =s;, Viel
jeI
Dox= Dy YELVoEeQ
keK i€l
Y Xy =d, vkeKVoeQ
jeI
x,y=0

+ Denote by s; D) =Y Yij the stock of j after the resplenishment
« The recourse problem for a fixed scenario w € Q is a simple transshipment problem

Qu(y mm{zcjkx]k: ZXJS Zx]k‘dk> x =0}

= max{- Zuj (y) + kadk, Ve - U< Ck, u=0}



r Two-stage stochastic transshipment: Benders decomp.si»

« Restricted Master Problem  (no extreme rays, recourse problem always feasible)

min Zf]yl]+z |Q|

i€l jel WEQ
s.t. Zyif =s;, Viel
el
sj’= Zy,-j, viel
i€l
Z ujs + Z vedy = 2% Y(u,v) € Ve
jel
y=0

« Recourse problem for scenario o, given a first-stage solution y: solve the dual
transhipment problem

max{—Zujsj/(y)+kad,‘;’, k- U< cyp, VELKEK, u=0}
J k

- If optimal recourse has value < z for all w € Q: STOP.

« Otherwise, add an extreme point in V¢ for each scenario > z and re-solve RMP.



— Benders decomposition and Integer variables — s»

- In fact, one can also consider problems with integer first-stage variables

« This does not change anything in the derivation of the Benders decomposition, but we
need a MIP solver to solve the RMP

For example, we could modify the previous example to compute the number of trucks
required for the first-stage transshipment.

« The cost for a truck from i to j is f;]t

« Each truck has a capacity of C

- This is equivalent to assuming that the cost for transporting y;; units from i to j

is equal to [%] fl]t

« Denote by n;; the number of trucks driving from ito j. The RMP is changed as follows:
« The objective function becomes: ZieIJeIﬁfnU + )00 ﬁzw
« We need to add the following constraints:

y,-jsC'n,-j, vi,jel
njj € Zan Vi,j € I



