
16

Introduction to

Linear and Combinatorial Optimization

Sensitivity Analysis for LPs

16.1 Local Sensitivity Analysis



Local Sensitivity Analysis 16 | 2

Consider a primal-dual pair of linear programs:min c⊤ ⋅ x max p⊤ ⋅ b
s.t. A ⋅ x = b s.t. p⊤ ⋅ A ≤ c⊤

x ≥ 0

Let B be an optimal basis for the primal LP, i.e.,

A−1
B ⋅ b ≥ 0 (feasibility),

c⊤ − c⊤B ⋅ A−1
B ⋅ A ≥ 0 (optimality),

and let x∗ be a corresponding optimal basic solution.

�estions
Under what conditions does B remain feasible and optimal when problem data is
being changed?

What if B is no longer feasible or optimal after the change?
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Add a new variable xn+1 to the primal LPmin c⊤ ⋅ x + cn+1 ⋅ xn+1
s.t. A ⋅ x + An+1 ⋅ xn+1 = b(x, xn+1) ≥ 0

(x∗, 0) is a basic feasible solution to the new problem.

B remains optimal if c̄n+1 ∶= cn+1 − c⊤B ⋅ A−1
B ⋅ An+1 ≥ 0.

Otherwise apply the primal simplex algorithm to reoptimize!
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Add a new inequality a⊤m+1 ⋅ x ≥ bm+1 to the primal LP

if x∗ satisfies the new constraint, it remains optimal

otherwise, introduce slack variable xn+1 ≥ 0 and rewrite:

a⊤m+1 ⋅ x − xn+1 = bm+1
new matrix Ā = ( A 0

a⊤m+1 −1), new basis B̄ = (B(1),… ,B(m),n + 1)
ĀB̄ = (AB 0

ã⊤ −1) with ã = (am+1,B(1), … , am+1,B(m))⊤
Ā−1
B̄ = ( A−1

B 0
ã⊤A−1

B −1) with corr. basic solution (x∗, a⊤m+1 ⋅ x∗ − bm+1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟<0 )
new reduced costs [c⊤, 0] − [c⊤B , 0]Ā−1

B̄ ⋅ Ā = [c⊤ − c⊤B ⋅ A−1
B ⋅ A, 0] ≥ 0

apply the dual simplex algorithm to reoptimize!
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Add a new equation a⊤m+1 ⋅ x = bm+1 to the primal LP.

if x∗ satisfies the new constraint, it remains optimal

otherwise, w.l.o.g. a⊤m+1 ⋅ x∗ > bm+1; consider auxiliary problem
(with M large enough): min c⊤ ⋅ x +M ⋅ xn+1

s.t. A ⋅ x = b

a⊤m+1 ⋅ x − xn+1 = bm+1(x, xn+1) ≥ 0

new feasible basis AB̄ ∶= ( B 0
ã⊤ −1), A−1

B̄ = ( A−1
B 0

ã⊤ ⋅ A−1
B −1), and associated

basic feasible solution (x∗, a⊤m+1 ⋅ x∗ − bm+1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟>0 )
apply the primal simplex algorithm to reoptimize!
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Change b to b + � ⋅ ei, that is, only bi is changed to bi + �
Optimality condition c̄ ≥ 0 is not affected!

Feasibility: A−1
B ⋅ (b + � ⋅ ei) ≥ 0?

Let g ∶= (�1i, … , �mi)⊤ be the ith column of A−1
B :

A−1
B ⋅ (b + � ⋅ ei) = x∗B + � ⋅ g ≥ 0⟺ x∗B(j) + � ⋅ �ji ≥ 0 for j = 1, … ,m⟺ max

j∶�ji>0−x∗B(j)�ji ≤ � ≤ min
j∶�ji<0−x∗B(j)�ji

Otherwise, apply the dual simplex algorithm to reoptimize!
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Change c to c + � ⋅ ej , that is, only cj is changed to cj + �
Feasibility is not affected but optimality – apply the primal simplex algorithm to
reoptimize!

Case 1: xj is non-basic ⟹ only c̄j affected:

ĉj ∶= cj + � − c⊤B ⋅ A−1
B ⋅ Aj = c̄j + �

Thus, B remains optimal, if and only if � ≥ −c̄j .
Case 2: xj = xB(�) is basic ⟹ all reduced costs affected:

ci − (cB + � ⋅ e� )⊤ ⋅ A−1
B ⋅ Ai ≥ 0 for all i ≠ j⟺ c̄i − � ⋅ q� i ≥ 0 for all i ≠ j

where q� i = �th entry of A−1
B ⋅ Ai.



Changing a Column of A 16 | 8

Change Aj to Aj + � ⋅ ei, that is, only aij is changed to aij + �
Case 1: Aj is a non-basic column.

B is still feasible but c̄j is affected.

If cj − p⊤⏟⏟⏟
c⊤B ⋅A−1

B

⋅(Aj + � ⋅ ei) = c̄j − � ⋅ pi ≥ 0, then B remains optimal.

Otherwise, apply the primal simplex algorithm to reoptimize!

Case 2: Aj is a basic column: See exercises.
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P(b) ∶= {x ∣ A ⋅ x = b, x ≥ 0}
S ∶= {b ∣ P(b) ≠ ∅} = {A ⋅ x ∣ x ≥ 0} (convex)

F(b) ∶= min
x∈P(b) c⊤ ⋅ x for b ∈ S

Assume that the dual feasible set is non-empty: {p ∣ p⊤ ⋅ A ≤ c⊤} ≠ ∅⟹ F(b) > −∞ for all b ∈ S.

Consider fixed b∗ ∈ S and assume that B is a non-degenerate optimal basis:

xB = A−1
B ⋅ b∗ > 0 , c̄⊤ = c⊤ − cB⊤ ⋅ A−1

B ⋅ A ≥ 0 .
Changing b∗ to b with b − b∗ sufficiently small, A−1

B ⋅ b remains non-negative and B is
still optimal. ⟹ F(b) = c⊤B ⋅ A−1

B ⋅ b = p⊤ ⋅ b for b close to b∗.
Theorem 16.1 F(b) is a convex function of b. It is linear in vicinity of b∗ with
gradient p.
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Consider the feasible dual LP:max p⊤b s.t. p⊤A ≤ c⊤.
W.l.o.g. rank(A) = m such that Q ∶= {

p ∈ ℝm ∣ p⊤A ≤ c⊤} is pointed. Let p1, … , pN
be the extreme points of Q. By strong duality

F(b) = max
i=1,…,N p⊤i b for b ∈ S.

I.e., F is maximum of N linear functions, thus piecewise linear and convex.

b

F(b)

Linear in the vicinity of b∗ with gradient p: see above.
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Definition 16.2 Let S ⊆ ℝn convex, F ∶ S →ℝ convex, and b∗ ∈ S. Then p ∈ ℝn

is a subgradient of F at b∗ if

F(b∗) + p⊤ ⋅ (b − b∗) ≤ F(b) for all b ∈ S.

Remarks:
If F is differentiable at b∗, then there is a unique subgradient (the gradient
p = ∇F(b∗)).
If b∗ is a breakpoint of F , then there are several subgradients.

b

F(b)

b∗

Let F(b) ∶= min{c⊤ ⋅ x ∣ A ⋅ x = b, x ≥ 0}.

Theorem 16.3 Suppose that the LP min c⊤x, s.t. Ax = b∗, x ≥ 0 is feasible and
bounded. Then p is an optimal solution to the dual LP if and only if p is a subgradient
of F at b∗.
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“⇒”: Let p an optimal dual solution. Then p⊤b∗ = F(b∗) (strong duality). For b ∈ S it

holds that p⊤b ≤ F(b) (weak duality).⟹ F(b∗) + p⊤(b − b∗) = F(b∗) − p⊤b∗⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟=0 +p⊤b ≤ F(b)
“⇐”: Let p be a subgradient of F at b∗, that is,

F(b∗) + p⊤(b − b∗) ≤ F(b) for all b ∈ S. (⋆)

Let x ≥ 0 and b ∶= Ax. Then, x ∈ P(b) and F(b) ≤ c⊤x. Thus,

p⊤Ax = p⊤b (⋆)≤ F(b) − F(b∗) + p⊤b∗ ≤ c⊤x − F(b∗) + p⊤b∗. (⋆⋆)

This inequality holds for all x ≥ 0 ⟹ p⊤A ≤ c⊤ (dual feasibility).

For x = 0 inequal. (⋆⋆) yields F(b∗) ≤ p⊤b∗, i.e., p is optimal dual sol.



Global Dependence on the Cost Vector 16 | 14

Let A ∈ ℝm×n, b ∈ ℝm with {x ∣ A ⋅ x = b, x ≥ 0} ≠ ∅ and for c ∈ ℝn

G(c) ∶= min{c⊤ ⋅ x ∣ A ⋅ x = b, x ≥ 0}
Q(c) ∶= {p ∈ ℝm ∣ p⊤ ⋅ A ≤ c⊤}

T ∶= {c ∈ ℝn ∣ Q(c) ≠ ∅} (convex).
Note that T = {c ∣ G(c) > −∞} and, for c ∈ T ,

G(c) = min
i=1,…,N c⊤ ⋅ xi where x1, … , xN are the basic feasible solutions.

Theorem 16.4 Consider a feasible linear program in standard form.

i The set T is convex.

ii G(c) is a concave function on T .

iii If, for some c ∈ T , the primal LP has a unique optimal solution x∗, then G is linear
in the vicinity of c and its gradient is equal to x∗.



16

Introduction to

Linear and Combinatorial Optimization

Sensitivity Analysis for LPs

16.3 Parametric LPs



Parametric Linear Programming 16 | 16

Let A ∈ ℝm×n, b ∈ ℝm, and c,d ∈ ℝn.

Parametric Linear Program.
Solve, for all � ∈ ℝ:

g(�) ∶= min (c + � ⋅ d)⊤ ⋅ x
s.t. A ⋅ x = b

x ≥ 0

Assume that {x ∣ A ⋅ x = b, x ≥ 0} ≠ ∅. Then

g(�) = min
i=1,…,N(c + � ⋅ d)⊤ ⋅ xi

for those � with g(�) > −∞, where x1, … , xN are the extreme points.
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g(�) ∶= min (−3 + 2�) x1 + (3 − �) x2 + x3
s.t. x1 + 2 x2 − 3 x3 ≤ 5

2 x1 + x2 − 4 x3 ≤ 7
x1, x2, x3 ≥ 0

Introduce slack variables and set up the simplex tableau:

x1 x2 x3 x4 x5
0 −3 + 2� 3 − � 1 0 0

x4 = 5 1 2 −3 1 0
x5 = 7 2 1 −4 0 1

If −3 + 2� ≥ 0 and 3 − � ≥ 0 (i.e., � ∈ [32 , 3]), this basis is optimal, i.e.,

g(�) = 0 for � ∈ [32 , 3].
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If � > 3, then c̄2 < 0 and we do a pivoting step:−15
2 + 5

2� −9
2 + 5

2� 0 11
2 − 3

2� −3
2 + 1

2� 0

x2 = 5
2

1
2 1 −3

2
1
2 0

x5 = 9
2

3
2 0 −5

2 −1
2 1

This basic solution is optimal for 3 ≤ � ≤ 11
3 , i.e.,

g(�) = 15
2 − 5

2� for � ∈ [3, 113 ].

If � > 11
3 , then c̄3 < 0 and the problem is unbounded, i.e.,

g(�) = −∞ for � > 11
3 .
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Return to the initial tableau on Slide 16|17:

If � < 3
2 , then c̄1 < 0 and we do a pivoting step:

21
2 − 7� 0 9

2 − 2� −5 + 4� 0 3
2 − �

x4 = 3
2 0 3

2 −1 1 −1
2

x1 = 7
2 1 1

2 −2 0 1
2

This basic solution is optimal for 5
4 ≤ � ≤ 3

2 , i.e.,

g(�) = −212 + 7� for � ∈ [54 , 32].

If � < 5
4 , then c̄3 < 0 and the problem is unbounded, i.e.,

g(�) = −∞ for � < 5
4 .
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Summarizing,

g(�) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∞ if � < 5

4 or � > 11
3 ,−21

2 + 7� if � ∈ [54 , 32],

0 if � ∈ [32 , 3],
15
2 − 5

2� if � ∈ [3, 113 ].

0 �g(�)

−7/4−5/3

5/4 3/2 3 11/3
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Remarks
The demonstrated approach works for arbitrary parametric LPs

With an anti-cycling rule (e.g., lexicographic pivoting rule), the method
terminates after finitely many iterations. (Cannot visit a basis more than once.)

Bad news:

Number of iterations can be exponential in the input size.

Even worse, the function g can have exponentially many breakpoints.

That is, the parametric LP can have exponentially many different optimal solutions
over the entire range of the parameter � .


