Introduction to

Linear and Combinatorial Optimization

Sensitivity Analysis for LPs

16.1 Local Sensitivity Analysis

Consider a primal-dual pair of linear programs:

$$
\begin{aligned}
& \min c^{\top} \cdot x \\
& \text { s.t. } \quad A \cdot x=b \\
& \max \quad p^{\top} \cdot b \\
& \text { s.t. } \quad p^{\top} \cdot A \leq c^{\top} \\
& x \geq 0
\end{aligned}
$$

Let B be an optimal basis for the primal LP, i.e.,

$$
\begin{aligned}
A_{B}^{-1} \cdot b \geq 0 & \text { (feasibility), } \\
c^{\top}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A \geq 0 & \text { (optimality), }
\end{aligned}
$$

and let x^{*} be a corresponding optimal basic solution.

Questions

- Under what conditions does B remain feasible and optimal when problem data is being changed?
-What if B is no longer feasible or optimal after the change?

Add a new variable x_{n+1} to the primal LP

$$
\begin{aligned}
& \min c^{\top} \cdot x+c_{n+1} \cdot x_{n+1} \\
& \text { s.t. } \quad A \cdot x+A_{n+1} \cdot x_{n+1}=b \\
&\left(x, x_{n+1}\right) \geq 0
\end{aligned}
$$

- $\left(x^{*}, 0\right)$ is a basic feasible solution to the new problem.
- B remains optimal if $\bar{c}_{n+1}:=c_{n+1}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A_{n+1} \geq 0$.
- Otherwise apply the primal simplex algorithm to reoptimize!

Add a new inequality $a_{m+1}^{\top} \cdot x \geq b_{m+1}$ to the primal LP

- if x^{*} satisfies the new constraint, it remains optimal
- otherwise, introduce slack variable $x_{n+1} \geq 0$ and rewrite:

$$
a_{m+1}^{\top} \cdot x-x_{n+1}=b_{m+1}
$$

- new matrix $\bar{A}=\left(\begin{array}{rr}A & 0 \\ a_{m+1}^{\top} & -1\end{array}\right)$, new basis $\bar{B}=(B(1), \ldots, B(m), n+1)$
- $\bar{A}_{\bar{B}}=\left(\begin{array}{rr}A_{B} & 0 \\ \tilde{a}^{\top} & -1\end{array}\right)$ with $\tilde{a}=\left(a_{m+1, B(1)}, \ldots, a_{m+1, B(m)}\right)^{\top}$
- $\bar{A}_{\bar{B}}^{-1}=\left(\begin{array}{rr}A_{B}^{-1} & 0 \\ \tilde{a}^{\top} A_{B}^{-1} & -1\end{array}\right)$ with corr. basic solution $(x^{*}, \underbrace{a_{m+1}^{\top} \cdot x^{*}-b_{m+1}}_{<0})$
- new reduced costs $\left[c^{\top}, 0\right]-\left[c_{B}^{\top}, 0\right] \bar{A}_{\bar{B}}^{-1} \cdot \bar{A}=\left[c^{\top}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A, 0\right] \geq 0$
- apply the dual simplex algorithm to reoptimize!

Add a new equation $a_{m+1}^{\top} \cdot x=b_{m+1}$ to the primal LP.

- if x^{*} satisfies the new constraint, it remains optimal
- otherwise, w.l.o.g. $a_{m+1}^{\top} \cdot x^{*}>b_{m+1}$; consider auxiliary problem (with M large enough):

$$
\begin{aligned}
\min c^{\top} \cdot x+M \cdot x_{n+1} & \\
\text { s.t. } \quad A \cdot x & =b \\
a_{m+1}^{\top} \cdot x-x_{n+1} & =b_{m+1} \\
\left(x, x_{n+1}\right) & \geq 0
\end{aligned}
$$

- new feasible basis $A_{\bar{B}}:=\left(\begin{array}{rr}B & 0 \\ \tilde{a}^{\top} & -1\end{array}\right), A_{\bar{B}}^{-1}=\left(\begin{array}{rr}A_{B}^{-1} & 0 \\ \tilde{a}^{\top} \cdot A_{B}^{-1} & -1\end{array}\right)$, and associated basic feasible solution $\left(x^{*}, a_{m+1}^{\top} \cdot x^{*}-b_{m+1}\right)$

- apply the primal simplex algorithm to reoptimize!

Change b to $b+\delta \cdot e_{i}$, that is, only b_{i} is changed to $b_{i}+\delta$

- Optimality condition $\bar{c} \geq 0$ is not affected!
- Feasibility: $A_{B}^{-1} \cdot\left(b+\delta \cdot e_{i}\right) \geq 0$?
- Let $g:=\left(\beta_{1 i}, \ldots, \beta_{m i}\right)^{\top}$ be the i th column of A_{B}^{-1} :

$$
\begin{array}{ll}
& A_{B}^{-1} \cdot\left(b+\delta \cdot e_{i}\right)=x_{B}^{*}+\delta \cdot g \geq 0 \\
\Longleftrightarrow & x_{B(j)}^{*}+\delta \cdot \beta_{j i} \geq 0 \quad \text { for } j=1, \ldots, m \\
\Longleftrightarrow & \max _{j: \beta_{j i}>0}-\frac{x_{B(j)}^{*}}{\beta_{j i}} \leq \delta \leq \min _{j: \beta_{j i}<0}-\frac{x_{B(j)}^{*}}{\beta_{j i}}
\end{array}
$$

- Otherwise, apply the dual simplex algorithm to reoptimize!

Changing the Cost Vector

Change c to $c+\delta \cdot e_{j}$, that is, only c_{j} is changed to $c_{j}+\delta$

- Feasibility is not affected but optimality - apply the primal simplex algorithm to reoptimize!
- Case 1: x_{j} is non-basic \Longrightarrow only \bar{c}_{j} affected:

$$
\hat{c}_{j}:=c_{j}+\delta-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A_{j}=\bar{c}_{j}+\delta
$$

Thus, B remains optimal, if and only if $\delta \geq-\bar{c}_{j}$.

- Case 2: $x_{j}=x_{B(\ell)}$ is basic \Longrightarrow all reduced costs affected:

$$
\begin{array}{rlr}
c_{i}-\left(c_{B}+\delta \cdot e_{\ell}\right)^{\top} \cdot A_{B}^{-1} \cdot A_{i} \geq 0 & \text { for all } i \neq j \\
\bar{c}_{i}-\delta \cdot q_{\ell i} \geq 0 & \text { for all } i \neq j
\end{array}
$$

where $q_{\ell i}=\ell$ th entry of $A_{B}^{-1} \cdot A_{i}$.

Changing a Column of A

Change A_{j} to $A_{j}+\delta \cdot e_{i}$, that is, only $a_{i j}$ is changed to $a_{i j}+\delta$

Case 1: A_{j} is a non-basic column.

- B is still feasible but \bar{c}_{j} is affected.
- If $c_{j}-\underbrace{p^{\top}} \cdot\left(A_{j}+\delta \cdot e_{i}\right)=\bar{c}_{j}-\delta \cdot p_{i} \geq 0$, then B remains optimal. $c_{B}^{\top} \cdot A_{B}^{-1}$
- Otherwise, apply the primal simplex algorithm to reoptimize!

Case 2: A_{j} is a basic column: See exercises.

Introduction to

Linear and Combinatorial Optimization

16

Sensitivity Analysis for LPs

16.2 Global Dependences

Global Dependence on the Right-Hand Side

$$
\begin{aligned}
P(b) & :=\{x \mid A \cdot x=b, x \geq 0\} \\
S & :=\{b \mid P(b) \neq \varnothing\}=\{A \cdot x \mid x \geq 0\} \quad \text { (convex) } \\
F(b) & :=\min _{x \in P(b)} c^{\top} \cdot x \quad \text { for } b \in S
\end{aligned}
$$

Assume that the dual feasible set is non-empty: $\left\{p \mid p^{\top} \cdot A \leq c^{\top}\right\} \neq \varnothing$

$$
\Longrightarrow F(b)>-\infty \quad \text { for all } b \in S .
$$

Consider fixed $b^{*} \in S$ and assume that B is a non-degenerate optimal basis:

$$
x_{B}=A_{B}^{-1} \cdot b^{*}>0, \quad \bar{c}^{\top}=c^{\top}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A \geq 0 .
$$

Changing b^{*} to b with $b-b^{*}$ sufficiently small, $A_{B}^{-1} \cdot b$ remains non-negative and B is still optimal.

$$
\Longrightarrow \quad F(b)=c_{B}^{\top} \cdot A_{B}^{-1} \cdot b=p^{\top} \cdot b \quad \text { for } b \text { close to } b^{*} .
$$

Theorem 16.1 $F(b)$ is a convex function of b. It is linear in vicinity of b^{*} with gradient p.

Consider the feasible dual LP:

$$
\max p^{\top} b \quad \text { s.t. } \quad p^{\top} A \leq c^{\top} .
$$

W.I.o.g. $\operatorname{rank}(A)=m$ such that $Q:=\left\{p \in \mathbb{R}^{m} \mid p^{\top} A \leq c^{\top}\right\}$ is pointed. Let p_{1}, \ldots, p_{N} be the extreme points of Q. By strong duality

$$
F(b)=\max _{i=1, \ldots, N} p_{i}^{\top} b \quad \text { for } b \in S .
$$

I.e., F is maximum of N linear functions, thus piecewise linear and convex.

Linear in the vicinity of b^{*} with gradient p : see above.

Definition 16.2 Let $S \subseteq \mathbb{R}^{n}$ convex, $F: S \rightarrow \mathbb{R}$ convex, and $b^{*} \in S$. Then $p \in \mathbb{R}^{n}$ is a subgradient of F at b^{*} if

$$
F\left(b^{*}\right)+p^{\top} \cdot\left(b-b^{*}\right) \leq F(b) \quad \text { for all } b \in S \text {. }
$$

Remarks:

- If F is differentiable at b^{*}, then there is a unique subgradient (the gradient $p=\nabla F\left(b^{*}\right)$).
- If b^{*} is a breakpoint of F, then there are several subgradients.

Set of all Dual Optimal Solutions

Definition 16.2 Let $S \subseteq \mathbb{R}^{n}$ convex, $F: S \rightarrow \mathbb{R}$ convex, and $b^{*} \in S$. Then $p \in \mathbb{R}^{n}$ is a subgradient of F at b^{*} if

$$
F\left(b^{*}\right)+p^{\top} \cdot\left(b-b^{*}\right) \leq F(b) \quad \text { for all } b \in S \text {. }
$$

Remarks:

- If F is differentiable at b^{*}, then there is a unique subgradient (the gradient $p=\nabla F\left(b^{*}\right)$).
- If b^{*} is a breakpoint of F, then there are several subgradients.

Let $F(b):=\min \left\{c^{\top} \cdot x \mid A \cdot x=b, x \geq 0\right\}$.
Theorem 16.3 Suppose that the LP $\min c^{\top} x$, s.t. $A x=b^{*}, x \geq 0$ is feasible and bounded. Then p is an optimal solution to the dual LP if and only if p is a subgradient of F at b^{*}.
$" \Rightarrow$ ": Let p an optimal dual solution. Then $p^{\top} b^{*}=F\left(b^{*}\right)$ (strong duality). For $b \in S$ it holds that $p^{\top} b \leq F(b)$ (weak duality).

$$
\Longrightarrow \quad F\left(b^{*}\right)+p^{\top}\left(b-b^{*}\right)=\underbrace{F\left(b^{*}\right)-p^{\top} b^{*}}_{=0}+p^{\top} b \leq F(b)
$$

" $\Leftarrow "$. Let p be a subgradient of F at b^{*}, that is,

$$
F\left(b^{*}\right)+p^{\top}\left(b-b^{*}\right) \leq F(b) \quad \text { for all } b \in S
$$

Let $x \geq 0$ and $b:=A x$. Then, $x \in P(b)$ and $F(b) \leq c^{\top} x$. Thus,

$$
p^{\top} A x=p^{\top} b \stackrel{(\star)}{\leq} F(b)-F\left(b^{*}\right)+p^{\top} b^{*} \leq c^{\top} x-F\left(b^{*}\right)+p^{\top} b^{*} .
$$

This inequality holds for all $x \geq 0 \Longrightarrow p^{\top} A \leq c^{\top}$ (dual feasibility).
For $x=0$ inequal. ($\star \star)$ yields $F\left(b^{*}\right) \leq p^{\top} b^{*}$, i.e., p is optimal dual sol.

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ with $\{x \mid A \cdot x=b, x \geq 0\} \neq \varnothing$ and for $c \in \mathbb{R}^{n}$

$$
\begin{aligned}
G(c) & :=\min \left\{c^{\top} \cdot x \mid A \cdot x=b, x \geq 0\right\} \\
Q(c) & :=\left\{p \in \mathbb{R}^{m} \mid p^{\top} \cdot A \leq c^{\top}\right\} \\
T & :=\left\{c \in \mathbb{R}^{n} \mid Q(c) \neq \varnothing\right\} \quad \text { (convex). }
\end{aligned}
$$

Note that $T=\{c \mid G(c)>-\infty\}$ and, for $c \in T$,

$$
G(c)=\min _{i=1, \ldots, N} c^{\top} \cdot x^{i} \quad \text { where } x^{1}, \ldots, x^{N} \text { are the basic feasible solutions. }
$$

Theorem 16.4 Consider a feasible linear program in standard form.
ii The set T is convex.
Iii $G(c)$ is a concave function on T.
田 If, for some $c \in T$, the primal LP has a unique optimal solution x^{*}, then G is linear in the vicinity of c and its gradient is equal to x^{*}.

Introduction to

Linear and Combinatorial Optimization

Sensitivity Analysis for LPs

16.3 Parametric LPs

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c, d \in \mathbb{R}^{n}$.

Parametric Linear Program.

Solve, for all $\theta \in \mathbb{R}$:

$$
\begin{gathered}
g(\theta):=\min (c+\theta \cdot d)^{\top} \cdot x \\
\text { s.t. } A \cdot x=b \\
x \geq 0
\end{gathered}
$$

Assume that $\{x \mid A \cdot x=b, x \geq 0\} \neq \varnothing$. Then

$$
g(\theta)=\min _{i=1, \ldots, N}(c+\theta \cdot d)^{\top} \cdot x^{i}
$$

for those θ with $g(\theta)>-\infty$, where x^{1}, \ldots, x^{N} are the extreme points.

$$
g(\theta):=\min \begin{aligned}
(-3+2 \theta) x_{1}+(3-\theta) & x_{2}+x_{3} \\
\text { s.t. } & x_{1}+ \\
2 x_{1}+ & x_{2}-3 x_{3} \leq 5 \\
& x_{2}-4 x_{3} \leq 7 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Introduce slack variables and set up the simplex tableau:

x_{4}
x_{4}
x_{5}
:---:
5
7

If $-3+2 \theta \geq 0$ and $3-\theta \geq 0$ (i.e., $\theta \in\left[\frac{3}{2}, 3\right]$), this basis is optimal, i.e.,

$$
g(\theta)=0 \quad \text { for } \theta \in\left[\frac{3}{2}, 3\right]
$$

If $\theta>3$, then $\bar{c}_{2}<0$ and we do a pivoting step:

$$
x_{2}=\begin{array}{|c|ccccc|}
\hline-\frac{15}{2}+\frac{5}{2} \theta & -\frac{9}{2}+\frac{5}{2} \theta & 0 & \frac{11}{2}-\frac{3}{2} \theta & -\frac{3}{2}+\frac{1}{2} \theta & 0 \\
\hline \frac{5}{2} & \frac{1}{2} & 1 & -\frac{3}{2} & \frac{1}{2} & 0 \\
x_{5}= & \frac{9}{2} & \frac{3}{2} & 0 & -\frac{5}{2} & -\frac{1}{2} \\
\hline
\end{array}
$$

This basic solution is optimal for $3 \leq \theta \leq \frac{11}{3}$, i.e.,

$$
g(\theta)=\frac{15}{2}-\frac{5}{2} \theta \quad \text { for } \theta \in\left[3, \frac{11}{3}\right]
$$

If $\theta>\frac{11}{3}$, then $\bar{c}_{3}<0$ and the problem is unbounded, i.e.,

$$
g(\theta)=-\infty \quad \text { for } \theta>\frac{11}{3}
$$

Return to the initial tableau on Slide 16|17:
If $\theta<\frac{3}{2}$, then $\bar{c}_{1}<0$ and we do a pivoting step:

$$
x_{4}=\begin{array}{|c|ccccc|}
\hline \frac{21}{2}-7 \theta & 0 & \frac{9}{2}-2 \theta & -5+4 \theta & 0 & \frac{3}{2}-\theta \\
\hline \frac{3}{2} & 0 & \frac{3}{2} & -1 & 1 & -\frac{1}{2} \\
x_{1}= & \frac{7}{2} & 1 & \frac{1}{2} & -2 & 0
\end{array} \frac{1}{2} .
$$

This basic solution is optimal for $\frac{5}{4} \leq \theta \leq \frac{3}{2}$, i.e.,

$$
g(\theta)=-\frac{21}{2}+7 \theta \quad \text { for } \theta \in\left[\frac{5}{4}, \frac{3}{2}\right]
$$

If $\theta<\frac{5}{4}$, then $\bar{c}_{3}<0$ and the problem is unbounded, i.e.,

$$
g(\theta)=-\infty \quad \text { for } \theta<\frac{5}{4}
$$

Summarizing,

$$
\begin{aligned}
& g(\theta)= \begin{cases}-\infty & \text { if } \theta<\frac{5}{4} \text { or } \theta>\frac{11}{3}, \\
-\frac{21}{2}+7 \theta & \text { if } \theta \in\left[\frac{5}{4}, \frac{3}{2}\right], \\
0 & \text { if } \theta \in\left[\frac{3}{2}, 3\right] \\
\frac{15}{2}-\frac{5}{2} \theta & \text { if } \theta \in\left[3, \frac{11}{3}\right]\end{cases} \\
& g(\theta)
\end{aligned}
$$

Remarks

- The demonstrated approach works for arbitrary parametric LPs
- With an anti-cycling rule (e.g., lexicographic pivoting rule), the method terminates after finitely many iterations. (Cannot visit a basis more than once.)

Bad news:

- Number of iterations can be exponential in the input size.
- Even worse, the function g can have exponentially many breakpoints.
- That is, the parametric LP can have exponentially many different optimal solutions over the entire range of the parameter θ.

