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I Local Sensitivity Analysis 16

Consider a primal-dual pair of linear programs:

min ¢' - x max p'-b
st. A-x=b st. pl-As<ch
x=0

Let B be an optimal basis for the primal LP, i.e,
A b=0 (feasibility),
¢’ - CE 'Al_;l “A=0 (optimality),

and let x* be a corresponding optimal basic solution.

Questions

- Under what conditions does B remain feasible and optimal when problem data is
being changed?

« What if Bis no longer feasible or optimal after the change?



Adding a New Variable

Add a new variable x;,.1 to the primal LP

min ¢’ - x + Cnil * Xna1
st. A-x+Ap X1 =Db

(x, x441) =2 0

« (x*,0) is a basic feasible solution to the new problem.
« Bremains optimal if ¢p41 1= Cpep — Cg -ABI -Ap 2 0.

- Otherwise apply the primal simplex algorithm to reoptimize!



Adding a New Inequality

T

Add a new inequality @, ., - X = by to the primal LP

if X" satisfies the new constraint, it remains optimal

otherwise, introduce slack variable x;,; = 0 and rewrite:

a;Hl *X T Xp+1 = bm+1
5 A 0 7
new matrix A = a | ) new basis B = (B(1),..., B(m),n+ 1)
m+l

- A 0 o~
B = <a£ 1) with a = (am+1,B(1); T am+1,B(m))T

. A0 .

Afgl = (NTAZ | with corr. basic solution (x", ay.i X = bmet)
a' Ag 1 N —
<0

new reduced costs [CT, O] - [cg, 0] Aél CA= [CT - cg -A]_Bl -A, 0] =0

apply the dual simplex algorithm to reoptimize!



Adding a New Equation

Add a new equation @, ., - x = b,,.; to the primal LP.
« if x" satisfies the new constraint, it remains optimal

- otherwise, w.l.o.g. a;m - X" > by.1; consider auxiliary problem

(with M large enough):

min ¢’
st. A-x =b

T
A1 " X~ Xne1 = bm+1

X+ M- x4

(x, %p41) 2 0

B 0 Ag
- new feasible basis Ag := (EIT Aél = <(~1T /113_1 .
CAF -

1)
. . . * T *
basic feasible solution (x", a,,,; - X" = byps1)
—_—
>0

- apply the primal simplex algorithm to reoptimize!

0
), and associated



Changing the Right-Hand Side

Change bto b + J - ¢;, that is, only b; is changed to b; +

Optimality condition ¢ = 0 is not affected!
Feasibility: Ag! - (b+ & - e;) = 0?
Let g := (Bii, ... Bmi)" be the ith column ofAZ;l:
Agl-(b+5-ei)=x§+5-g20
— xg(,.)+5-/g}l-20 forj=1,...,m
Xp; X
e g = 0% min g

Otherwise, apply the dual simplex algorithm to reoptimize!
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Changing the Cost Vector

Change cto ¢ + § - ¢, that is, only ¢; is changed to ¢; + &

Feasibility is not affected but optimality — apply the primal simplex algorithm to

reoptimize!

Case 1: xj is non-basic == only ¢; affected:
Gi=c+o-chAg A =6+6

Thus, B remains optimal, if and only if § = -G

Case 2: xj = Xp() is basic == all reduced costs affected:

ci—(cg+0-e) Az -A; =20 foralli # j
= G-0-q=20 forall i # j

where q;; = fth entry ofAI_B1 <A



I Changing a Column of A

Change Aj to A; + § - ¢;, that is, only aj is changed to a;; + &

Case 1: Aj is a non-basic column.

« Bis still feasible but ¢; is affected.

<lfcg— p' (Aj+5-e)=¢— 5 pi =0, then Bremains optimal.
N

T.A-1
cg-Ag

« Otherwise, apply the primal simplex algorithm to reoptimize!

Case 2: Aj is a basic column: See exercises.
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—— Global Dependence on the Right-Hand Side ——

Pb) :={x|A-x=0b, x 20}
S:={b|Pb)+0}={A-x|x=0} (convex)

F(b) :=minc' -x forbeS
xeP(b)

Assume that the dual feasible set is non-empty: {p | p' -A<c"} # @
= F(b) > - forall b € S.
Consider fixed b" € S and assume that B is a non-degenerate optimal basis:
xp=Ag -b'>0, ¢ =c' -cg -AF-A=0.

Changing b" to b with b - b’ sufficiently small, Az - b remains non-negative and Bis
still optimal.

= F(b)=cy-Ag'-b=p"-b  forbcloseto b".

Theorem 16.1 F(b) is a convex function of b. It is linear in vicinity of b* with
gradient p.



I Proof of Theorem 16.1
Consider the feasible dual LP:

max p'b st p'As<c.

W.Lo.g. rank(A) = msuch that Q := {p ER™|pTA< CT} is pointed. Let py, ..

be the extreme points of Q. By strong duality
F(b)= max p/b  forb€S.
i=1,...N

le., F is maximum of N linear functions, thus piecewise linear and convex.

F(b)
I\
|
I

T

Linear in the vicinity of b" with gradient p: see above.

A 4
<
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EEE— Set of all Dual Optimal Solutions

Definition 16.2 Let S < R” convex, F : S — R convex, and b" € S. Then p € R”
is a subgradient of F at b" if

Fb)+p - (b-b)<Fb) forallbes.

Remarks:
« If Fis differentiable at ", then there is a unique subgradient (the gradient
p = VE(b")).
- If b" is a breakpoint of F, then there are several subgradients.
F(b)

A

><
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EEE— Set of all Dual Optimal Solutions

Definition 16.2 Let S < R” convex, F : S — R convex, and b" € S. Then p € R”
is a subgradient of F at b" if

Fb)+p - (b-b)<Fb) forallbes.

Remarks:
« If Fis differentiable at ", then there is a unique subgradient (the gradient
p = VE(b")).

- If b" is a breakpoint of F, then there are several subgradients.
Let F(b) :=min{c" - x| A-x=b, x = 0}.

Theorem 16.3 Suppose that the LP min ¢'x, s.t. Ax = b", x = 0 is feasible and

bounded. Then p is an optimal solution to the dual LP if and only if p is a subgradient
of Fatb'.



Proof of Theorem 16.3

holds that p"b < F(b) (weak duality).

— F¥)+p(b-b) = Fb)-p' b +p'b = F(b)
—_—
=0

“<=": Let p be a subgradient of F at V", that is,
F(b)+p'(b-b)<F(b) forallbeS.
Let x = 0 and b := Ax. Then, x € P(b) and F(b) < ¢ x. Thus,

p
This inequality holds for all x = 0

For x = 0 inequal. (x*) yields F(b") < p"b", i.e., p is optimal dual sol.

= p'A < c' (dual feasibility).

TAx=p'b L FB)- Fp)+p'b < ¢"x— F(b)+ p'b.
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“=": Let p an optimal dual solution. Then p' b* = F(b") (strong duality). For b € Sit



— Global Dependence on the Cost Vector ——— v/
Let A€ R™™ be R"with{x| A-x=0b, x 20} # @and forc € R"
G(c) :=min{c" ‘x| A-x=b, x>0}
Q) :={peR™[p' A=}
T :={ceR"| Qc) + @} (convex).
Note that T = {c¢ | G(c) > -0} and, for c € T,
T

Gl(c) = minN ¢"-x' where x',...,x" are the basic feasible solutions.
i=1,...,

Theorem 16.4 Consider a feasible linear program in standard form.
H The set T is convex.

Hl G(c) is a concave function on T.

M If, for some ¢ € T, the primal LP has a unique optimal solution x", then G is linear
in the vicinity of ¢ and its gradient is equal to x". O
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EE— Parametric Linear Programming
Let A€ R™" be R™ and c,d € R".

Parametric Linear Program.
Solve, for all 6 € R:

g :=min (c+60-d)" - x
st. A-x=b

x=0

Assume that {x | A-x=b, x = 0} # @. Then
R AT i
g(0) = min (c+0-d) -x

for those 6 with g(0) > —co, where x', ..., XN are the extreme points.
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| Parametric LP Example

16 [ 17

g0) := min (-3+20)x; + B3-0)x, +
s.t. X + 2x — 3x3 <5
2x + Xy — 4x3 <7

X1, X2, X3 =2 0
Introduce slack variables and set up the simplex tableau:

X1 LY, X3 X4 X5
[0[-3+20 3-6 1 0 0
X4 =15 1 2 -3 1 0
X5=17 2 1 -4 0 1

If-3+20=20and3-60=0(ie,0€ [%, 3] ), this basis is optimal, i.e.,

g@) =0 for 0 € [2,3}.



Parametric LP Example (Cont.) ——— s

If @ > 3, then ¢; < 0 and we do a pivoting step:

20 —%+%0 0o ¥-3¢ —%+19 0

-3+ 2 2 2

_ 5 1 3 1
X = 2 : 13 2 0

_ 9 3 5 1
X5 = P 2 0 = 51

This basic solution is optimal for 3 < 6 < g, ie.,
15 11
0)=— - 79 for 0 €
&) = [ 3]

If0 > %, then ¢3 < 0 and the problem is unbounded, i.e.,

g0) =0 forf> %1



| Parametric LP Example (Cont.) = v
Return to the initial tableau on Slide 16|17:

If 0 < %, then ¢; < 0 and we do a pivoting step:

21 9 3
?—70 0 5—20 —5+49 0 5—0

0

X4 -1 1 -

oI MW
[T T[N
[ CIT= S YN

X1 = 1

This basic solution is optimal for % <0< %, ie.,
21 53
0)=-—+70 for6e |-, —|.
80) = - or [ 1 2}

If 0 < %, then ¢3 < 0 and the problem is unbounded, i.e.,

g(0) = —c0  forf < Z



I Parametric LP Example (Cont.) ———

Summarizing,

-0

21
Y + 70

15 59

5/4 3/2

-5/3 1

-7/4 4

if9<§or9>%,



— Solving Parametric Linear Programs =

Remarks

- The demonstrated approach works for arbitrary parametric LPs

- With an anti-cycling rule (e.g., lexicographic pivoting rule), the method
terminates after finitely many iterations. (Cannot visit a basis more than once.)

Bad news:

- Number of iterations can be exponential in the input size.
- Even worse, the function g can have exponentially many breakpoints.

« That is, the parametric LP can have exponentially many different optimal solutions

over the entire range of the parameter 0.



