Introduction to

Linear and Combinatorial Optimization

16.1 Local Sensitivity Analysis

Local Sensitivity Analysis

16 2

Consider a primal-dual pair of linear programs:

$$\begin{array}{ll} \min \ c^{\top} \cdot x & \max & p^{\top} \cdot b \\ \text{s.t.} & A \cdot x = b & \text{s.t.} & p^{\top} \cdot A \leq c^{\top} \\ & x \geq 0 \end{array}$$

Let B be an optimal basis for the primal LP, i.e.,

$$\begin{aligned} A_B^{-1} \cdot b &\geq 0 \qquad (\text{feasibility}), \\ c^\top - c_B^\top \cdot A_B^{-1} \cdot A &\geq 0 \qquad (\text{optimality}), \end{aligned}$$

and let x^* be a corresponding optimal basic solution.

Questions

- Under what conditions does *B* remain feasible and optimal when problem data is being changed?
- What if *B* is no longer feasible or optimal after the change?

Adding a New Variable

Add a new variable x_{n+1} to the primal LP

min
$$c^{\top} \cdot x + c_{n+1} \cdot x_{n+1}$$

s.t. $A \cdot x + A_{n+1} \cdot x_{n+1} = b$
 $(x, x_{n+1}) \ge 0$

- $(x^*, 0)$ is a basic feasible solution to the new problem.
- *B* remains optimal if $\bar{c}_{n+1} := c_{n+1} c_B^\top \cdot A_B^{-1} \cdot A_{n+1} \ge 0$.
- Otherwise apply the primal simplex algorithm to reoptimize!

Adding a New Inequality

16 4

Add a new inequality $a_{m+1}^{\top} \cdot x \ge b_{m+1}$ to the primal LP

- if x^* satisfies the new constraint, it remains optimal
- otherwise, introduce slack variable $x_{n+1} \ge 0$ and rewrite:

$$a_{m+1}^{\top} \cdot x - x_{n+1} = b_{m+1}$$
• new matrix $\bar{A} = \begin{pmatrix} A & 0 \\ a_{m+1}^{\top} & -1 \end{pmatrix}$, new basis $\bar{B} = (B(1), \dots, B(m), n+1)$
• $\bar{A}_{\bar{B}} = \begin{pmatrix} A_B & 0 \\ \tilde{a}^{\top} & -1 \end{pmatrix}$ with $\tilde{a} = (a_{m+1,B(1)}, \dots, a_{m+1,B(m)})^{\top}$
• $\bar{A}_{\bar{B}}^{-1} = \begin{pmatrix} A_{B}^{-1} & 0 \\ \tilde{a}^{\top}A_{B}^{-1} & -1 \end{pmatrix}$ with corr. basic solution $(x^*, \underline{a}_{m+1}^{\top} \cdot x^* - b_{m+1})$
• new reduced costs $[c^{\top}, 0] - [c_B^{\top}, 0]\bar{A}_{\bar{B}}^{-1} \cdot \bar{A} = [c^{\top} - c_B^{\top} \cdot A_{B}^{-1} \cdot A, 0] \ge 0$

apply the dual simplex algorithm to reoptimize!

Adding a New Equation

16 5

Add a new equation $a_{m+1}^{\top} \cdot x = b_{m+1}$ to the primal LP.

- if *x*^{*} satisfies the new constraint, it remains optimal
- otherwise, w.l.o.g. $a_{m+1}^{\top} \cdot x^* > b_{m+1}$; consider auxiliary problem (with *M* large enough):

>0

$$\min c^{\top} \cdot x + M \cdot x_{n+1}$$

s.t. $A \cdot x = b$
 $a_{m+1}^{\top} \cdot x - x_{n+1} = b_{m+1}$
 $(x, x_{n+1}) \ge 0$
• new feasible basis $A_{\bar{B}} := \begin{pmatrix} B & 0\\ \tilde{a}^{\top} & -1 \end{pmatrix}, A_{\bar{B}}^{-1} = \begin{pmatrix} A_{\bar{B}}^{-1} & 0\\ \tilde{a}^{\top} \cdot A_{\bar{B}}^{-1} & -1 \end{pmatrix}$, and associated basic feasible solution $(x^*, a_{m+1}^{\top} \cdot x^* - b_{m+1})$

apply the primal simplex algorithm to reoptimize!

Changing the Right-Hand Side

16 6

Change *b* to $b + \delta \cdot e_i$, that is, only b_i is changed to $b_i + \delta$

- Optimality condition $\bar{c} \ge 0$ is not affected!
- Feasibility: $A_B^{-1} \cdot (b + \delta \cdot e_i) \ge 0$?
- Let $g := (\beta_{1i}, \dots, \beta_{mi})^{\top}$ be the *i*th column of A_B^{-1} :

$$A_B^{-1} \cdot (b + \delta \cdot e_i) = x_B^* + \delta \cdot g \ge 0$$

$$\iff x_{B(j)}^* + \delta \cdot \beta_{ji} \ge 0 \quad \text{for } j = 1, \dots, m$$

$$\iff \max_{j:\beta_{ji}>0} -\frac{x_{B(j)}^*}{\beta_{ji}} \le \delta \le \min_{j:\beta_{ji}<0} -\frac{x_{B(j)}^*}{\beta_{ji}}$$

• Otherwise, apply the dual simplex algorithm to reoptimize!

Changing the Cost Vector

Change *c* to $c + \delta \cdot e_j$, that is, only c_j is changed to $c_j + \delta$

- Feasibility is not affected but optimality apply the primal simplex algorithm to reoptimize!
- Case 1: x_j is non-basic \implies only \bar{c}_j affected: $\hat{c}_j := c_j + \delta - c_B^\top \cdot A_B^{-1} \cdot A_j = \bar{c}_j + \delta$

Thus, *B* remains optimal, if and only if $\delta \ge -\bar{c}_j$.

• Case 2: $x_j = x_{B(\ell)}$ is basic \implies all reduced costs affected:

$$c_i - (c_B + \delta \cdot e_\ell)^\top \cdot A_B^{-1} \cdot A_i \ge 0 \qquad \text{for all } i \neq j$$

$$\iff \qquad \bar{c}_i - \delta \cdot q_{\ell i} \ge 0 \qquad \text{for all } i \neq j$$

where $q_{\ell i} = \ell$ th entry of $A_B^{-1} \cdot A_i$.

16 7

Changing a Column of A —

16 8

Change A_j to $A_j + \delta \cdot e_i$, that is, only a_{ij} is changed to $a_{ij} + \delta$

Case 1: A_i is a non-basic column.

- *B* is still feasible but \bar{c}_j is affected.
- If $c_j \underbrace{p}_{c_B^\top \cdot A_B^{-1}}^\top \cdot (A_j + \delta \cdot e_i) = \overline{c}_j \delta \cdot p_i \ge 0$, then *B* remains optimal.
- Otherwise, apply the primal simplex algorithm to reoptimize!

Case 2: A_i is a basic column: See exercises.

Introduction to

Linear and Combinatorial Optimization

16.2 Global Dependences

Global Dependence on the Right-Hand Side — 16110

$$P(b) := \{x \mid A \cdot x = b, x \ge 0\}$$

$$S := \{b \mid P(b) \ne \emptyset\} = \{A \cdot x \mid x \ge 0\}$$
 (convex)

$$F(b) := \min_{x \in P(b)} c^{\top} \cdot x \quad \text{for } b \in S$$

Assume that the dual feasible set is non-empty: $\{p \mid p^{\top} \cdot A \leq c^{\top}\} \neq \emptyset$

 \implies $F(b) > -\infty$ for all $b \in S$.

Consider fixed $b^* \in S$ and assume that *B* is a non-degenerate optimal basis:

$$x_B = A_B^{-1} \cdot b^* > 0$$
, $\bar{c}^\top = c^\top - c_B^\top \cdot A_B^{-1} \cdot A \ge 0$.

Changing b^* to b with $b - b^*$ sufficiently small, $A_B^{-1} \cdot b$ remains non-negative and B is still optimal.

$$\implies F(b) = c_B^\top \cdot A_B^{-1} \cdot b = p^\top \cdot b \qquad \text{for } b \text{ close to } b^*.$$

Theorem 16.1 F(b) is a convex function of b. It is linear in vicinity of b^* with gradient p.

Proof of Theorem 16.1

16 11

Consider the feasible dual LP:

 $\max p^{\top}b \quad \text{s.t.} \quad p^{\top}A \leq c^{\top}.$ W.l.o.g. rank(A) = m such that Q := $\left\{ p \in \mathbb{R}^m \mid p^{\top}A \leq c^{\top} \right\}$ is pointed. Let p_1, \dots, p_N

be the extreme points of Q. By strong duality

$$F(b) = \max_{i=1,\dots,N} p_i^\top b \quad \text{for } b \in S.$$

I.e., F is maximum of N linear functions, thus piecewise linear and convex.

Linear in the vicinity of b^* with gradient p: see above.

Set of all Dual Optimal Solutions

16 | 12

Definition 16.2 Let $S \subseteq \mathbb{R}^n$ convex, $F : S \longrightarrow \mathbb{R}$ convex, and $b^* \in S$. Then $p \in \mathbb{R}^n$ is a subgradient of F at b^* if

$$F(b^*) + p^\top \cdot (b - b^*) \le F(b)$$
 for all $b \in S$.

Remarks:

- If *F* is differentiable at b^* , then there is a unique subgradient (the gradient $p = \nabla F(b^*)$).
- If b^* is a breakpoint of *F*, then there are several subgradients.

Set of all Dual Optimal Solutions

Definition 16.2 Let $S \subseteq \mathbb{R}^n$ convex, $F : S \longrightarrow \mathbb{R}$ convex, and $b^* \in S$. Then $p \in \mathbb{R}^n$ is a subgradient of F at b^* if

$$F(b^*) + p^\top \cdot (b - b^*) \le F(b)$$
 for all $b \in S$.

Remarks:

- If *F* is differentiable at b^* , then there is a unique subgradient (the gradient $p = \nabla F(b^*)$).
- If b^* is a breakpoint of *F*, then there are several subgradients.

Let $F(b) := \min\{c^{\top} \cdot x \mid A \cdot x = b, x \ge 0\}.$

Theorem 16.3 Suppose that the LP min $c^{\top}x$, s.t. $Ax = b^*$, $x \ge 0$ is feasible and bounded. Then p is an optimal solution to the dual LP if and only if p is a subgradient of F at b^* .

Proof of Theorem 16.3

"⇒": Let *p* an optimal dual solution. Then $p^{\top}b^* = F(b^*)$ (strong duality). For $b \in S$ it holds that $p^{\top}b \leq F(b)$ (weak duality).

$$\implies F(b^*) + p^{\top}(b - b^*) = \underbrace{F(b^*) - p^{\top}b^*}_{=0} + p^{\top}b \leq F(b)$$

" \Leftarrow ": Let *p* be a subgradient of *F* at b^* , that is,

$$F(b^*) + p^{\top}(b - b^*) \le F(b) \qquad \text{for all } b \in S. \tag{(\star)}$$

Let $x \ge 0$ and b := Ax. Then, $x \in P(b)$ and $F(b) \le c^{\top}x$. Thus,

$$p^{\top}Ax = p^{\top}b \stackrel{(\star)}{\leq} F(b) - F(b^{*}) + p^{\top}b^{*} \leq c^{\top}x - F(b^{*}) + p^{\top}b^{*}.$$
 (**)

This inequality holds for all $x \ge 0 \implies p^{\top}A \le c^{\top}$ (dual feasibility).

For x = 0 inequal. (**) yields $F(b^*) \le p^{\top}b^*$, i.e., p is optimal dual sol.

Global Dependence on the Cost Vector -

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ with $\{x \mid A \cdot x = b, x \ge 0\} \neq \emptyset$ and for $c \in \mathbb{R}^n$

$$G(c) := \min\{c^{\top} \cdot x \mid A \cdot x = b, x \ge 0\}$$

$$Q(c) := \{p \in \mathbb{R}^m \mid p^{\top} \cdot A \le c^{\top}\}$$

$$T := \{c \in \mathbb{R}^n \mid Q(c) \neq \emptyset\} \quad \text{(convex).}$$

Note that $T = \{c \mid G(c) > -\infty\}$ and, for $c \in T$,

$$G(c) = \min_{i=1,...,N} c^{\top} \cdot x^i$$
 where $x^1, ..., x^N$ are the basic feasible solutions.

Theorem 16.4 Consider a feasible linear program in standard form.

- The set T is convex.
- \blacksquare G(c) is a concave function on T.
 - If, for some $c \in T$, the primal LP has a unique optimal solution x^* , then G is linear in the vicinity of c and its gradient is equal to x^* .

Introduction to

Linear and Combinatorial Optimization

16.3 Parametric LPs

Parametric Linear Programming

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c, d \in \mathbb{R}^n$.

Parametric Linear Program. Solve, for all $\theta \in \mathbb{R}$:

$$g(\theta) := \min (c + \theta \cdot d)^{\top} \cdot x$$

s.t. $A \cdot x = b$
 $x \ge 0$

Assume that $\{x \mid A \cdot x = b, x \ge 0\} \neq \emptyset$. Then

$$g(\theta) = \min_{i=1,\dots,N} (c + \theta \cdot d)^{\top} \cdot x^{i}$$

for those θ with $g(\theta) > -\infty$, where x^1, \dots, x^N are the extreme points.

Parametric LP Example

$$g(\theta) := \min (-3 + 2\theta) x_1 + (3 - \theta) x_2 + x_3$$

s.t. $x_1 + 2 x_2 - 3 x_3 \le 5$
 $2 x_1 + x_2 - 4 x_3 \le 7$
 $x_1, x_2, x_3 \ge 0$

Introduce slack variables and set up the simplex tableau:

If $-3 + 2\theta \ge 0$ and $3 - \theta \ge 0$ (i.e., $\theta \in \left[\frac{3}{2}, 3\right]$), this basis is optimal, i.e.,

$$g(\theta) = 0$$
 for $\theta \in \left[\frac{3}{2}, 3\right]$.

Parametric LP Example (Cont.)

If $\theta > 3$, then $\bar{c}_2 < 0$ and we do a pivoting step:

	$-\frac{15}{2} + \frac{5}{2}\theta$	$-\frac{9}{2}+\frac{5}{2}\theta$	0	$\frac{11}{2} - \frac{3}{2}\theta$	$-\frac{3}{2}+\frac{1}{2}\theta$	0
<i>x</i> ₂ =	$\frac{5}{2}$	$\frac{1}{2}$	1	$-\frac{3}{2}$	$\frac{1}{2}$	0
<i>x</i> ₅ =	$\frac{9}{2}$	$\frac{3}{2}$	0	$-\frac{5}{2}$	$-\frac{1}{2}$	1

This basic solution is optimal for $3 \le \theta \le \frac{11}{3}$, i.e.,

4

$$g(\theta) = \frac{15}{2} - \frac{5}{2}\theta$$
 for $\theta \in \left[3, \frac{11}{3}\right]$.

If $\theta > \frac{11}{3}$, then $\bar{c}_3 < 0$ and the problem is unbounded, i.e.,

$$g(\theta) = -\infty$$
 for $\theta > \frac{11}{3}$

Parametric LP Example (Cont.)

Return to the initial tableau on Slide 16|17:

If $\theta < \frac{3}{2}$, then $\bar{c}_1 < 0$ and we do a pivoting step:

	$\frac{21}{2}-7\theta$	0	$\frac{9}{2}-2\theta$	$-5 + 4\theta$	0	$\frac{3}{2} - \theta$
<i>x</i> ₄ =	$\frac{3}{2}$	0	$\frac{3}{2}$	-1	1	$-\frac{1}{2}$
<i>x</i> ₁ =	$\frac{7}{2}$	1	$\frac{1}{2}$	-2	0	$\frac{1}{2}$

This basic solution is optimal for $\frac{5}{4} \le \theta \le \frac{3}{2}$, i.e.,

$$g(\theta) = -\frac{21}{2} + 7\theta$$
 for $\theta \in \left[\frac{5}{4}, \frac{3}{2}\right]$.

If $\theta < \frac{5}{4}$, then $\bar{c}_3 < 0$ and the problem is unbounded, i.e.,

$$g(\theta) = -\infty$$
 for $\theta < \frac{5}{4}$.

Parametric LP Example (Cont.)

Summarizing,

Solving Parametric Linear Programs

Remarks

- The demonstrated approach works for arbitrary parametric LPs
- With an anti-cycling rule (e.g., lexicographic pivoting rule), the method terminates after finitely many iterations. (Cannot visit a basis more than once.)

Bad news:

- Number of iterations can be exponential in the input size.
- Even worse, the function g can have exponentially many breakpoints.
- That is, the parametric LP can have exponentially many different optimal solutions over the entire range of the parameter θ .