Introduction to

 Linear and Combinatorial Optimization

 Linear and Combinatorial Optimization}

Introduction

1.1 Optimization Problems

Generic optimization problem

Given: feasible set X, objective function $f: X \rightarrow \mathbb{R}$
Task: find minimum $x^{*} \in X$ of f, i.e.,

$$
f\left(x^{*}\right) \leq f(x) \quad \text { for all } x \in X .
$$

- a maximum of f is a minimum of $-f$
- minima and maxima are called optima
- short forms

$$
\begin{array}{ll}
\operatorname{maximize} & f(x) \\
\text { subject to } & x \in X
\end{array}
$$

$$
\max \{f(x) \mid x \in X\}
$$

Generic optimization problem

Given: feasible set X, objective function $f: X \rightarrow \mathbb{R}$
Task: find minimum $x^{*} \in X$ of f, i.e.,

$$
f\left(x^{*}\right) \leq f(x) \quad \text { for all } x \in X
$$

- a maximum of f is a minimum of $-f$

$$
\max \{f(x) \mid x \in X\}
$$

Problem: Too general to say anything meaningful!

- Examples of decision variables (x)
- Size of some device
- Model parameters
- Amount invested in different assets
- Input of a dynamical system
- Examples of objective functions (f)
- Minimize costs / Maximize profits
- Minimize error / Maximize fit
- Minimize energy / power consumption
- Minimize risk
- Maximize fairness between different agents
- Example of constraints (X)
- Prior knowledge
- Physical limitations
- Budget

Definition 1.1 (Convexity)

Let $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$.
a X is convex if

$$
\lambda x+(1-\lambda) y \in X
$$

for all $x, y \in X$ and $\lambda \in[0,1]$.
b f is convex if X is convex and

$$
\lambda f(x)+(1-\lambda) f(y) \geq f(\lambda x+(1-\lambda) y)
$$

for all $x, y \in X$ and $\lambda \in[0,1]$.
c $\min \{f(x) \mid x \in X\}$ is a convex optimization
 problem if f is convex.

- f is called concave if $-f$ is convex

Definition 1.2 Let $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$.
$x^{\prime} \in X$ is a local optimum of the optimization problem $\min \{f(x) \mid x \in X\}$ if there is an $\varepsilon>0$ such that

$$
f\left(x^{\prime}\right) \leq f(x) \quad \text { for all } x \in X \text { with }\left\|x^{\prime}-x\right\|_{2} \leq \varepsilon .
$$

Theorem 1.3 For a convex optimization problem, every local optimum x is a (global) optimum.

Proof:

- let x be local optimum, for a contradiction assume $f\left(x^{*}\right)<f(x)$ for some $x^{*} \in X$
- for each $\lambda \in(0,1]$ we have

$$
f(\underbrace{\lambda x^{*}+(1-\lambda) x}_{\in X}) \leq \lambda f\left(x^{*}\right)+(1-\lambda) f(x)<f(x) .
$$

- but $\lambda x^{*}+(1-\lambda) x$ converges to x for $\lambda \rightarrow 0$, a contradiction!

Optimization Problems in this Course

```
maximize }f(x
subject to }x\in
```

- $X \subseteq \mathbb{R}^{n}$ polyhedron, f linear function
\longrightarrow linear optimization problem (LP)
- $X \subseteq \mathbb{Z}^{n}$ integer points of a polyhedron, f linear function
\longrightarrow integer linear optimization problem (IP)
- $Y \subseteq \mathbb{R}^{n}$ polyhedron, $X=Y \cap\left(\mathbb{R}^{n_{1}} \times \mathbb{Z}^{n_{2}}\right), f$ linear function \longrightarrow mixed integer linear optimization problem (MIP)
- X related to some combinatorial structure (e.g., graph)
\longrightarrow combinatorial optimization problem
- X finite (but usually huge) or countably infinite
\longrightarrow discrete optimization problem

Trivial Solution Strategy

Given: finite set X of feasible solutions, objective function $f: X \rightarrow \mathbb{R}$
Task: find $x \in X$ minimizing $f(x)$
William R. Pulleyblank about the 1960's
[From: M. Jünger et al.: Combinatorial Optimization (Edmonds Festschrift), 2003]
Problems were finite or infinite, and once a problem was known to be finite there were no algorithmic questions to be asked because it was all over.
I remember when I took my first combinatorics class from the distinguished combinatorialist Eric Milner, and there was a point where we were talking about a theorem, and I said "how would
 you find one of these?". And he looked at me with a kind look, but the sort of look a parent gives a child when he says something sort of stupid.

Trivial Solution Strategy

Given: finite set X of feasible solutions, objective function $f: X \rightarrow \mathbb{R}$
Task: find $x \in X$ minimizing $f(x)$

Trivial solution strategy

11 choose some $x_{0} \in X$
2 for all $x \in X$: if $f(x)<f\left(x_{0}\right)$, then $x_{0}:=x$
3 output x_{0}
Running time: $O(|X| \cdot F)$ where F is time to evaluate f at $x \in X$

Problem

Usually, X is not explicitly but only implicitly given.
$\Longrightarrow|X|$ might be huge (exponential) compared to input size.

Introduction to
 Linear and Combinatorial Optimization

Introduction

1.2 Notation

Numbers

- set of integers \mathbb{Z}, set of rational numbers \mathbb{Q}, set of real numbers \mathbb{R}
- set of non-negative numbers $\mathbb{Z}_{\geq 0}, \mathrm{Q}_{\geq 0}, \mathbb{R}_{\geq 0}$
- set of positive numbers $\mathbb{N}:=\mathbb{Z}_{>0}, Q_{>0}, \mathbb{R}_{>0}$
- set of integers $[n]:=\{1, \ldots, n\}$

Vectors

- all vectors $x=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ are column vectors
- for a finite set V, we identify a function $x: V \rightarrow \mathbb{R}$ with a vector $x \in \mathbb{R}^{V}, x(v)$ and x_{v} are used interchangeably
- for $U \subseteq V$, the incidence vector χ^{U} in \mathbb{R}^{V} is defined as

$$
\chi^{U}(s)= \begin{cases}1 & \text { if } s \in U \\ 0 & \text { otherwise }\end{cases}
$$

- $\mathbb{R}^{n}:=\mathbb{R}^{\{1, \ldots, n\}}, e_{i}:=\chi^{\{i\}}:=\chi^{i}, \mathbf{0}=\chi^{\varnothing}$
($m \times n$)-Matrix $A \in \mathbb{R}^{m \times n}$
- entry in row i and column $j: a_{i j}$
- j-th column: A_{j}

Definition 1.4 (Graph)

Tuple $G=(V, E)$ with

- finite node set V
- finite edge set $E \subseteq\{e \subseteq V,|e|=2\}$
- $G=(V, E)$ is a graph with $V=\{1,2, \ldots, 6\}$, $E=\{\{1,3\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{5,6\}\}$

Definition 1.5 (Digraph)

Tuple $G=(V, A)$ with

- finite node set V
- finite arc set $A \subseteq V \times V$
- u and v are called tail and head of $\operatorname{arc}(u, v) \in A$.
- $H=(V, A)$ is a digraph with $V=\{1,2, \ldots, 6\}$, $A=\{(3,1),(3,4),(4,3),(4,5),(5,3),(5,6),(6,3)\}$

set of incident edges for node $v \in V$
- $\delta(v):=\{e \in E \mid v \in e\}$
- e.g., $\delta(5)=\{\{4,5\},\{3,5\},\{5,6\}\}$
cut induced by set of nodes $S \subseteq V$
- $\delta(S):=\{e \in E \mid e \cap S \neq \varnothing$ and $e \cap(V \backslash S) \neq \varnothing\}$
- e.g., $\delta(\{3,4,5\})=\{\{1,3\},\{3,6\},\{5,6\}\}$
set of outgoing/incoming arcs of node $v \in V$
- $\delta^{+}(v):=A \cap(\{v\} \times V), \delta^{-}(v):=A \cap(V \times\{v\})$
- e.g., $\delta^{+}(3)=\{(3,1),(3,4)\}, \delta^{-}(3)=\{(4,3),(5,3),(6,3)\}$
directed cuts induced by set of nodes $S \subseteq V$
- $\delta^{+}(S):=A \cap(S \times(V \backslash S)), \delta^{-}(S):=A \cap((V \backslash S) \times S)$
- e.g., $\delta^{+}(\{3,4\})=\{(3,1),(4,5)\}, \delta^{-}(\{3,4\})=\{(5,3),(6,3)\}$

- a walk P is a sequence

$$
P=v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{k-1}, e_{k}, v_{k}
$$

with $k \in \mathbb{N}$ and $e_{i}=\left\{v_{i-1}, v_{i}\right\} \in E$ for all $i=1, \ldots, k$

- a directed walk (or diwalk) P is a sequence

$$
Q=v_{0}, a_{1}, v_{1}, a_{2}, \ldots, v_{k-1}, a_{k}, v_{k}
$$

with $k \in \mathbb{N}$ and $a_{i}=\left(v_{i-1}, v_{i}\right) \in A$ for all $i=1, \ldots, k$

- we also call P a $v_{0}-v_{k}$-walk and Q a $v_{0}-v_{k}$-diwalk
- (di-)paths are (di-)walks with $v_{i} \neq v_{j}$ for all $i \neq j$
- closed (di-)walks are (di-)walks with $v_{0}=v_{k}$
- (di-)cycles are closed (di-)walks with $k \geq 1$ and $v_{i} \neq v_{j}$ for all $0 \leq i<j<k$
- we say walk, path, cycle instead of diwalk, dipath, dicycle, when clear from context

Connectedness

- an undirected graph is connected if there is a v - w-walk for all $v, w \in V$
- e.g., G is not connected
- e.g., G^{\prime} is connected
- a digraph is connected if the underlying undirected graph obtained from ignoring the direction of each edge is connected
- e.g., H is not connected
- e.g., H^{\prime} is connected
- a digraph is strongly connected if there is a v - w-diwalk for all $v, w \in V$
- e.g. H^{\prime} is not strongly connected
- e.g. $H^{\prime \prime}$ is strongly connected

Connectedness

- an undirected graph is connected if there is a v - w-walk for all $v, w \in V$
- e.g., G is not connected
- e.g., G^{\prime} is connected
- a digraph is connected if the underlying undirected graph obtained from ignoring the direction of each edge is connected
- e.g., H is not connected
- e.g., H^{\prime} is connected
- a digraph is strongly connected if there is a v - w-diwalk for all $v, w \in V$
- e.g. H^{\prime} is not strongly connected
- e.g. $H^{\prime \prime}$ is strongly connected

Connectedness

- an undirected graph is connected if there is a v - w-walk for all $v, w \in V$
- e.g., G is not connected
- e.g., G^{\prime} is connected
- a digraph is connected if the underlying undirected graph obtained from ignoring the direction of each edge is connected
- e.g., H is not connected
- e.g., H^{\prime} is connected

- a digraph is strongly connected if there is a v - w-diwalk for all $v, w \in V$
- e.g. H^{\prime} is not strongly connected
- e.g. $H^{\prime \prime}$ is strongly connected

Introduction to
 Linear and Combinatorial Optimization

Introduction

1.3 Examples

Given: undirected graph $G=(V, E)$, edge costs $c_{e} \in \mathbb{R}_{\geq 0}, e \in E$
Task: find connected subgraph of G containing all nodes in V with minimum total cost

- $X=\left\{E^{\prime} \subseteq E \mid \bigcup_{e \in E^{\prime}}=V\right.$ and $G^{\prime}=\left(V, E^{\prime}\right)$ is connected $\}$
- $f: X \rightarrow \mathbb{R}$ is given by $f\left(E^{\prime}\right):=\sum_{e \in E^{\prime}} c_{e}$

Given: undirected graph $G=(V, E)$, edge costs $c_{e} \in \mathbb{R}_{\geq 0}, e \in E$
Task: find connected subgraph of G containing all nodes in V with minimum total cost

- $X=\left\{E^{\prime} \subseteq E \mid \bigcup_{e \in E^{\prime}}=V\right.$ and $G^{\prime}=\left(V, E^{\prime}\right)$ is connected $\}$
- $f: X \rightarrow \mathbb{R}$ is given by $f\left(E^{\prime}\right):=\sum_{e \in E^{\prime}} c_{e}$

Remarks

- X is given implicitly by G
- there is always an optimal solution without cycles
- a connected graph without cycles is called a tree
- a subgraph of G containing all nodes in V is called spanning

Theorem 1.6 (Cayley's formula) The number of spanning trees of a complete graph on n nodes is n^{n-2}.

Given: directed graph $D=(V, A)$, arc costs $c_{a} \in \mathbb{R}, a \in A$ start node $s \in V$, destination node $t \in V$

Task: find $s-t$-walk of minimum cost in D (if one exists)

- $X=\{P \subseteq A \mid P$ is $s-t$-walk in $D\}$
- $f: X \rightarrow \mathbb{R}$ is given by $f(P):=\sum_{a \in P} c(a)$

Remarks

- X is given implicitly by D
- X may be countably infinite
- digraph with $2 n+1$ nodes, $3 n$ arcs, and $2^{n} s$ - t-paths

Given: undirected graph $G=(V, E)$, edge weights $w_{e} \in \mathbb{R}, e \in E$.
Task: find matching $M \subseteq E$ with maximum total weight, i.e., every node is incident to at most one edge in M.

Given: undirected graph $G=(V, E)$, edge weights $w_{e} \in \mathbb{R}, e \in E$.
Task: find matching $M \subseteq E$ with maximum total weight, i.e., every node is incident to at most one edge in M.

Formulation as an integer linear program (IP)

 variables $x_{e} \in\{0,1\}$ for $e \in E$ with interpretation $x_{e}=1 \Longleftrightarrow e \in M$$$
\begin{array}{rlr}
\operatorname{maximize} & \sum_{e \in E} w_{e} x_{e} & \\
\text { subject to } & \sum_{e \in \delta(v)} x_{e} \leq 1 & \text { for all } v \in V \\
& x_{e} \in\{0,1\} & \text { for all } e \in E
\end{array}
$$

Given: undirected graph $G=(V, E)$
Task: color the nodes of G such that adjacent nodes get different colors; use a minimum number of colors

bipartite

Definition 1.7 A graph whose nodes can be colored with two colors is called bipartite.

Given: undirected graph $G=(V, E)$, node weights $w_{v} \in \mathbb{R}_{\geq 0}, v \in V$
Task: find $U \subseteq V$ of minimum weight such that $U \cap e \neq \varnothing$ for all $e \in E$

Formulation as integer linear program (IP)

 variables $x_{v} \in\{0,1\}$ for $v \in V$ with interpretation $x_{v}=1 \Longleftrightarrow v \in U$$$
\min \sum_{v \in V} w_{v} \cdot x_{v}
$$

s.t. $\quad x_{v}+x_{v^{\prime}} \geq 1$
for all $e=\left\{v, v^{\prime}\right\} \in E$, $x_{v} \in\{0,1\} \quad$ for all $v \in V$.

Given: complete graph $K_{n}=(V, E)$ on n nodes, edge costs $c_{e} \in \mathbb{R}_{\geq 0}, e \in E$
Task: find a Hamiltonian cycle of minimum total length (A Hamiltonian cycle is a cycle that visits every node exactly once.)

Formulation as an integer linear program? (later!)

Given: directed graph $D=(V, A)$

- arc capacities $u_{a} \in \mathbb{R}_{\geq 0}, a \in A$
- arc costs $c_{a} \in \mathbb{R}, a \in A$
- node balances $b_{v} \in \mathbb{R}, v \in V$

Interpretation

- single commodity (water, gas, electricity) is shipped in the network
- nodes $v \in V$ with $b_{v}>0$ have demand and are called sinks nodes with $b_{v}<0$ have supply and are called sources
- capacity u_{a} of arc $a \in A$ limits the amount of flow through a
- $\operatorname{cost} c_{a}$ is per-unit cost for shipping through a

Task: find a flow $x=\left(x_{a}\right)_{a \in A}, x_{a} \in \mathbb{R}_{\geq 0}$, i.e.,

- $0 \leq x_{a} \leq u_{a}$ for all $a \in A$
- $\sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=b_{v}$ for all $v \in V$
such that x has minimum cost $c(x):=\sum_{a \in A} c_{a} x_{a}$

Example: flow satisfying given supplies and demands

Formulation as a linear program (LP)

$$
\begin{align*}
\operatorname{minimize} & \sum_{a \in A} c_{a} x_{a} \tag{1.1}\\
\text { subject to } \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=b_{v} & \text { for all } v \in V, \tag{1.2}\\
x_{a} \leq u_{a} & \text { for all } a \in A, \tag{1.3}\\
x_{a} \geq 0 & \text { for all } a \in A . \tag{1.4}
\end{align*}
$$

- objective function given by (1.1).
- set of feasible solutions $X=\left\{x \in \mathbb{R}^{A} \mid x\right.$ satisfies (1.2), (1.3), and (1.4) $\}$
- objective (1.1) is linear in x and (1.2) - (1.4) are linear equations and linear inequalities, respectively \longrightarrow linear program
- assume arcs have fixed costs $w_{a} \in \mathbb{R}_{\geq 0}, a \in A$
- if arc $a \in A$ is used (i.e., $x_{a}>0$), it must be bought at cost w_{a}

Formulation as mixed-integer linear program (MIP)

 add variables $y_{a} \in\{0,1\}$ with interpretation $y_{a}=1 \Longleftrightarrow a$ is used$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{a \in A} c_{a} x_{a}+\sum_{a \in A} w_{a} y_{a} & \\
\text { subject to } & \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=b_{v} & \text { for all } v \in V \\
& x_{a} \leq u_{a} y_{a} & \\
& x_{a} \geq 0 & \text { for all } a \in A \\
& y(a) \in\{0,1\} & \text { for all } a \in A \\
& \text { for all } a \in A
\end{array}
$$

Given: n items with positive sizes $s_{1}, \ldots, s_{n} \leq 1$
Task: pack the items into a minimum number of unit-size bins, i.e., minimize k such that

- $\{1, \ldots, n\}=\bigcup_{j=1}^{k} I_{j}, I_{i} \cap I_{j}=\varnothing$ for all $i \neq j$
- $\sum_{i \in I_{j}} s_{i} \leq 1$ for all j

Given: n items with positive sizes $s_{1}, \ldots, s_{n} \leq 1$
Task: pack the items into a minimum number of unit-size bins, i.e., minimize k such that

- $\{1, \ldots, n\}=\bigcup_{j=1}^{k} I_{j}, I_{i} \cap I_{j}=\varnothing$ for all $i \neq j$
- $\sum_{i \in I_{j}} s_{i} \leq 1$ for all j

Formulation as an integer linear program (IP)

variables $x_{i j} \in\{0,1\}$ with interpretation $x_{i j}=1 \Longleftrightarrow$ item i in bin j variables $y_{j} \in\{0,1\}$ with interpretation $y_{j}=1 \Longleftrightarrow$ bin j non-empty

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{j=1}^{n} y_{j} & \\
\text { subject to } & \sum_{j=1}^{n} x_{i j}=1 & \text { for all } i=1, \ldots, n \\
& \sum_{i=1}^{n} s_{i} x_{i j} \leq y_{j} & \text { for all } j=1, \ldots, n \\
& x_{i j}, y_{j} \in\{0,1\} & \text { for all } i, j=1, \ldots, n
\end{array}
$$

Given: n items with positive values v_{1}, \ldots, v_{n} and weights w_{1}, \ldots, w_{n}, knapsack of capacity W
Task: find subset $I \subseteq\{1, \ldots, n\}$ with $\sum_{i \in I} w_{i} \leq W$ and $\sum_{i \in I} v_{i}$ maximum

Formulation as an integer linear program (IP)

variables $x_{i} \in\{0,1\}$ for $i=1, \ldots, n$ with interpretation $x_{i}=1 \Longleftrightarrow i \in I$

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{i=1}^{n} v_{i} x_{i} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} x_{i} \leq W & \\
& x_{i} \in\{0,1\} & \text { for } 1=1, \ldots, n .
\end{array}
$$

Given: n jobs $j=1, \ldots, n$, processing times $p_{j}>0$, weights $w_{j}>0$
Task: schedule jobs on m parallel machines; minimize $\sum_{j} w_{j} C_{j}$
Example: scheduling on 3 parallel machines

Formulation as an integer linear program (IP)?

For a given optimization problem:

- How to find an optimal solution?
- How to find a feasible solution?
- Does there exist an optimal/feasible solution?
- How to prove that a computed solution is optimal?
- How difficult is the problem?
- Is there an efficient algorithm with "small" worst-case running time?
- How to formulate the problem as a (mixed integer) linear program?
- Is there a useful special structure of the problem?

Introduction to

 Linear and Combinatorial Optimization

 Linear and Combinatorial Optimization}

Introduction

1.4 Outline and Literature

- Linear Programming and the Simplex Algorithm
- Geometric interpretation of the Simplex Algorithm
- LP duality, complementary slackness
- Sensitivity analysis
- Basic theory of polyhedra
- Efficient Algorithms for minimum spanning trees, shortest paths
- Efficient algorithms for Maximum Flows, Minimum cost Flows, and weighted bipartite matchings
- Complexity of Linear Programming and the Ellipsoid Method
- Large-scale Linear Programming

ADM I: Intro to Linear Programming \& Combinatorial Optimization

ADM II: Discrete Optimization

- Maximum Weight Branchings
- Matchings
- Weighted Matchings
- T-Joins and the Postman Problem
- Matroids
- Complexity Theory and NP-hardness
- Integer Linear Programming
- Traveling Salesperson Problem

ADM3: Advanced topics

- Approximation Algorithms ?
- Algorithmic Game Theory ?
- Convex Optimization?

Mixed-Integer Linear Program (MIP) variables $x \in \mathbb{R}^{n}$, parameters $c \in \mathbb{Q}^{n}, b \in \mathbb{Q}^{m}, A \in \mathbb{Q}^{m \times n}$

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geq b \\
& x_{j} \in \mathbb{Z} \quad \text { for certain } j
\end{aligned}
$$

Bob Bixby's question (2015): Which option is faster?
 Option 1: Solve a MIP with 2015 software on a 1991 computer
 Option 2: Solve a MIP with 1991 software on a 2015 computer

Info: computer speed increased by factor ≈ 3500
But: Option 1 is another ≈ 300 times faster!

- D. Bertsimas, J. N. Tsitsiklis, Introduction to Linear Optimization, Athena, 1997.
- V. Chvatal, Linear Programming, Freeman, 1983.
- G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1998 (1963).
- M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer, 1988.
- J. Matoušek, B. Gärtner, Using and Understanding Linear Programming, Springer, 2006.
- M. Padberg, Linear Optimization and Extensions, Springer, 1995.
- A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.
- R. J. Vanderbei, Linear Programming, Springer, 2001.
- R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, 1993.
- W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver, Combinatorial Optimization, Wiley, 1998.
- L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962.
- M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, 1979.
- B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer, 2002.
- C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover Publications, reprint 1998.
- A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.

