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Generic optimization problem
Given: feasible set X , objective function f ∶ X → ℝ
Task: find minimum x∗ ∈ X of f , i.e.,

f (x∗) ≤ f (x) for all x ∈ X .

a maximum of f is a minimum of −f
minima and maxima are called optima

short forms

maximize f (x)
subject to x ∈ X

max
{
f (x) ∣ x ∈ X

}

Problem: Too general to say anything meaningful!
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Examples of decision variables (x)

Size of some device
Model parameters
Amount invested in different assets
Input of a dynamical system

Examples of objective functions (f )

Minimize costs / Maximize profits
Minimize error / Maximize fit
Minimize energy / power consumption
Minimize risk
Maximize fairness between different agents

Example of constraints (X )

Prior knowledge
Physical limitations
Budget
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Definition 1.1 (Convexity)
Let X ⊆ ℝn and f ∶ X → ℝ.

a X is convex if

�x + (1 − �)y ∈ X

for all x,y ∈ X and � ∈ [0, 1].
b f is convex if X is convex and

�f (x) + (1 − �)f (y) ≥ f (�x + (1 − �)y)
for all x,y ∈ X and � ∈ [0, 1].

c min
{
f (x) ∣ x ∈ X

}
is a convex optimization

problem if f is convex.

f is called concave if −f is convex

x
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�x + (1 − �)y
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f (z)

x y



Local and Global Optimality 1 | 5

Definition 1.2 Let X ⊆ ℝn and f ∶ X → ℝ.
x ′ ∈ X is a local optimum of the optimization problem min{f (x) ∣ x ∈ X} if there is
an " > 0 such that

f (x ′) ≤ f (x) for all x ∈ X with ‖x ′ − x‖2 ≤ ".

Theorem 1.3 For a convex optimization problem, every local optimum x is a (global)
optimum.

Proof:

let x be local optimum, for a contradiction assume f (x∗) < f (x) for some x∗ ∈ X

for each � ∈ (0, 1] we have

f (�x∗ + (1 − �)x
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∈ X
) ≤ �f (x∗) + (1 − �)f (x) < f (x).

but �x∗ + (1 − �)x converges to x for �→ 0, a contradiction!
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maximize f (x)
subject to x ∈ X

X ⊆ ℝn polyhedron, f linear function
⟶ linear optimization problem (LP)

X ⊆ ℤn integer points of a polyhedron, f linear function
⟶ integer linear optimization problem (IP)

Y ⊆ ℝn polyhedron, X = Y ∩ (ℝn1 ×ℤn2), f linear function
⟶ mixed integer linear optimization problem (MIP)

X related to some combinatorial structure (e.g., graph)
⟶ combinatorial optimization problem

X finite (but usually huge) or countably infinite
⟶ discrete optimization problem
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Given: finite set X of feasible solutions, objective function f ∶ X → ℝ
Task: find x ∈ X minimizing f (x)

William R. Pulleyblank about the 1960’s
[From: M. Jünger et al.: Combinatorial Optimization (Edmonds Festschrift), 2003]

Problems were finite or infinite, and once a problem was known to
be finite there were no algorithmic questions to be asked because
it was all over.
I remember when I took my first combinatorics class from the
distinguished combinatorialist Eric Milner, and there was a point
where we were talking about a theorem, and I said “how would
you find one of these?”.
And he looked at me with a kind look, but the sort of look a parent
gives a child when he says something sort of stupid.

He simply said “But Bill, it’s finite”, and I said “Oh! of course, it’s
finite.”

Trivial solution strategy
1 choose some x0 ∈ X

2 for all x ∈ X : if f (x) < f (x0), then x0 ∶= x

3 output x0
Running time: O(|X | ⋅ F) where F is time to evaluate f at x ∈ X

Problem
Usually, X is not explicitly but only implicitly given.
⟹ |X | might be huge (exponential) compared to input size.
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Numbers, Vectors, Matrices 1 | 9

Numbers
set of integers ℤ, set of rational numbers ℚ, set of real numbers ℝ
set of non-negative numbers ℤ≥0, ℚ≥0, ℝ≥0
set of positive numbers ℕ ∶= ℤ>0, ℚ>0, ℝ>0
set of integers [n] ∶= {1,… ,n}

Vectors
all vectors x = (x1,… , xn)⊤ are column vectors
for a finite set V , we identify a function x ∶ V → ℝ with a vector x ∈ ℝV , x(v) and
xv are used interchangeably
for U ⊆ V , the incidence vector �U in ℝV is defined as

�U (s) =

{
1 if s ∈ U ,
0 otherwise

ℝn ∶= ℝ{1,…,n}, ei ∶= �{i} ∶= � i, 0 = �∅

(m × n)-Matrix A ∈ ℝm×n

entry in row i and column j: aij
j-th column: Aj



Graphs and Digraphs 1 | 10

Definition 1.4 (Graph)
Tuple G = (V ,E) with

finite node set V

finite edge set E ⊆
{
e ⊆ V , |e| = 2

}

G = (V ,E) is a graph with V = {1, 2,… , 6},
E =

{
{1, 3}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {5, 6}

}

Definition 1.5 (Digraph)
Tuple G = (V ,A) with

finite node set V

finite arc set A ⊆ V × V

u and v are called tail and head of arc (u, v) ∈ A.

H = (V ,A) is a digraph with V = {1, 2,… , 6},
A =

{
(3, 1), (3, 4), (4, 3), (4, 5), (5, 3), (5, 6), (6, 3)

}
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set of incident edges for node v ∈ V

�(v) ∶=
{
e ∈ E ∣ v ∈ e

}

e.g., �(5) =
{
{4, 5}, {3, 5}, {5, 6}

}

cut induced by set of nodes S ⊆ V

�(S) ∶=
{
e ∈ E ∣ e ∩ S ≠ ∅ and e ∩ (V ⧵ S) ≠ ∅

}

e.g., �({3, 4, 5}) =
{
{1, 3}, {3, 6}, {5, 6}

}

set of outgoing/incoming arcs of node v ∈ V

�+(v) ∶= A ∩ ({v} × V ), �−(v) ∶= A ∩ (V × {v})
e.g., �+(3)=

{
(3, 1), (3, 4)

}
, �−(3)=

{
(4, 3), (5, 3), (6, 3)

}

directed cuts induced by set of nodes S ⊆ V

�+(S) ∶= A ∩ (S×(V ⧵ S)), �−(S) ∶= A ∩ ((V ⧵ S)×S)
e.g., �+({3, 4}) =

{
(3, 1), (4, 5)

}
, �−({3, 4}) =

{
(5, 3), (6, 3)

}
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Walks, Paths, Cycles 1 | 12

a walk P is a sequence

P = v0, e1, v1, e2,… , vk−1, ek, vk
with k ∈ ℕ and ei = {vi−1, vi}∈E for all i = 1,… , k
a directed walk (or diwalk) P is a sequence

Q = v0, a1, v1, a2,… , vk−1, ak, vk
with k ∈ ℕ and ai = (vi−1, vi)∈A for all i = 1,… , k
we also call P a v0-vk-walk and Q a v0-vk-diwalk

(di-)paths are (di-)walks with vi ≠ vj for all i ≠ j

closed (di-)walks are (di-)walks with v0 = vk
(di-)cycles are closed (di-)walks with k ≥ 1 and vi ≠ vj for all
0 ≤ i < j < k

we say walk, path, cycle instead of diwalk, dipath, dicycle, when
clear from context
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an undirected graph is connected if there is a v-w-walk for all
v,w ∈ V

e.g., G is not connected
e.g., G ′ is connected

a digraph is connected if the underlying undirected graph
obtained from ignoring the direction of each edge is connected

e.g., H is not connected
e.g., H ′ is connected

a digraph is strongly connected if there is a v-w-diwalk for all
v,w ∈ V

e.g. H ′ is not strongly connected
e.g. H ′′ is strongly connected
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Given: undirected graph G = (V ,E), edge costs ce ∈ ℝ≥0, e ∈ E

Task: find connected subgraph of G containing all nodes in V
with minimum total cost

X =
{
E ′ ⊆ E ∣ ⋃e∈E ′ = V and G ′ = (V ,E ′) is connected

}

f ∶ X → ℝ is given by f (E ′) ∶= ∑e∈E ′ ce
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Minimum Spanning Tree Problem 1 | 15

Given: undirected graph G = (V ,E), edge costs ce ∈ ℝ≥0, e ∈ E

Task: find connected subgraph of G containing all nodes in V
with minimum total cost

X =
{
E ′ ⊆ E ∣ ⋃e∈E ′ = V and G ′ = (V ,E ′) is connected

}

f ∶ X → ℝ is given by f (E ′) ∶= ∑e∈E ′ ce

Remarks
X is given implicitly by G

there is always an optimal solution without cycles

a connected graph without cycles is called a tree

a subgraph of G containing all nodes in V is called spanning

Theorem 1.6 (Cayley’s formula) The number of spanning trees of a complete
graph on n nodes is nn−2.



Shortest Path Problem 1 | 16

Given: directed graph D = (V ,A), arc costs ca ∈ ℝ, a ∈ A
start node s ∈ V , destination node t ∈ V

Task: find s-t-walk of minimum cost in D (if one exists)

X =
{
P ⊆ A ∣ P is s-t-walk in D

}

f ∶ X → ℝ is given by f (P) ∶= ∑a∈P c(a)

Remarks
X is given implicitly by D

X may be countably infinite

digraph with 2n + 1 nodes, 3n arcs, and 2n s-t-paths

s t



Maximum Weighted Matching Problem 1 | 17

Given: undirected graph G = (V ,E), edge weights we ∈ ℝ, e ∈ E.

Task: find matching M ⊆ E with maximum total weight, i.e.,
every node is incident to at most one edge in M.



Maximum Weighted Matching Problem 1 | 17

Given: undirected graph G = (V ,E), edge weights we ∈ ℝ, e ∈ E.

Task: find matching M ⊆ E with maximum total weight, i.e.,
every node is incident to at most one edge in M.

Formulation as an integer linear program (IP)
variables xe ∈ {0, 1} for e ∈ E with interpretation xe = 1⟺ e ∈ M

maximize ∑
e∈E

we xe

subject to ∑
e∈�(v)

xe ≤ 1 for all v ∈ V ,

xe ∈ {0, 1} for all e ∈ E.



Minimum Node Coloring Problem 1 | 18

Given: undirected graph G = (V ,E)

Task: color the nodes of G such that adjacent nodes get different colors;
use a minimum number of colors

bipartite

Definition 1.7 A graph whose nodes can be colored with two colors is called
bipartite.



Minimum Weighted Node Cover Problem 1 | 19

Given: undirected graph G = (V ,E), node weights wv ∈ ℝ≥0, v ∈ V

Task: find U ⊆ V of minimum weight such that U ∩ e ≠ ∅ for all e ∈ E

Formulation as integer linear program (IP)
variables xv ∈ {0, 1} for v ∈ V with interpretation
xv = 1⟺ v ∈ U

min ∑
v∈V

wv ⋅ xv

s.t. xv + xv ′ ≥ 1 for all e = {v, v ′} ∈ E,

xv ∈ {0, 1} for all v ∈ V .



Traveling Salesperson Problem (TSP) 1 | 20

Given: complete graph Kn=(V ,E) on n nodes, edge costs ce ∈ℝ≥0, e ∈ E

Task: find a Hamiltonian cycle of minimum total length
(A Hamiltonian cycle is a cycle that visits every node exactly once.)
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Formulation as an integer linear program? (later!)
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Given: directed graph D = (V ,A)
arc capacities ua ∈ ℝ≥0, a ∈ A
arc costs ca ∈ ℝ, a ∈ A
node balances bv ∈ ℝ, v ∈ V

Interpretation
single commodity (water, gas, electricity) is shipped in the network

nodes v ∈ V with bv > 0 have demand and are called sinks
nodes with bv < 0 have supply and are called sources

capacity ua of arc a ∈ A limits the amount of flow through a

cost ca is per-unit cost for shipping through a

Task: find a flow x = (xa)a∈A, xa ∈ ℝ≥0, i.e.,
0 ≤ xa ≤ ua for all a ∈ A
∑a∈�−(v) xa −∑a∈�+(v) xa = bv for all v ∈ V

such that x has minimum cost c(x) ∶= ∑a∈A ca xa



Minimum Cost Flow Problem (Cont.) 1 | 22

Example: flow satisfying given supplies and demands
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Formulation as a linear program (LP)

minimize ∑
a∈A

caxa (1.1)

subject to ∑
a∈�−(v)

xa − ∑
a∈�+(v)

xa = bv for all v ∈ V , (1.2)

xa ≤ ua for all a ∈ A, (1.3)

xa ≥ 0 for all a ∈ A. (1.4)

objective function given by (1.1).

set of feasible solutions X =
{
x ∈ ℝA ∣ x satisfies (1.2), (1.3), and (1.4)

}

objective (1.1) is linear in x and (1.2) – (1.4) are linear equations and linear inequalities,
respectively ⟶ linear program



Minimum Cost Flow with Fixed Cost 1 | 24

assume arcs have fixed costs wa ∈ ℝ≥0, a ∈ A

if arc a ∈ A is used (i.e., xa > 0), it must be bought at cost wa

Formulation as mixed-integer linear program (MIP)
add variables ya ∈ {0, 1} with interpretation ya = 1⟺ a is used

minimize ∑
a∈A

ca xa +∑
a∈A

wa ya

subject to ∑
a∈�−(v)

xa − ∑
a∈�+(v)

xa = bv for all v ∈ V ,

xa ≤ ua ya for all a ∈ A,

xa ≥ 0 for all a ∈ A.

y(a) ∈ {0, 1} for all a ∈ A.



Bin Packing Problem 1 | 25

Given: n items with positive sizes s1,… , sn ≤ 1

Task: pack the items into a minimum number of unit-size bins, i.e.,
minimize k such that
{1,… ,n} = ⋃k

j=1 Ij , Ii ∩ Ij = ∅ for all i ≠ j
∑i∈Ij si ≤ 1 for all j
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Given: n items with positive sizes s1,… , sn ≤ 1

Task: pack the items into a minimum number of unit-size bins, i.e.,
minimize k such that
{1,… ,n} = ⋃k

j=1 Ij , Ii ∩ Ij = ∅ for all i ≠ j
∑i∈Ij si ≤ 1 for all j

Formulation as an integer linear program (IP)
variables xij ∈ {0, 1} with interpretation xij = 1⟺ item i in bin j
variables yj ∈ {0, 1} with interpretation yj = 1⟺ bin j non-empty

minimize ∑n
j=1 yj

subject to ∑n
j=1 xij = 1 for all i = 1,… ,n,

∑n
i=1 si xij ≤ yj for all j = 1,… ,n,

xij,yj ∈ {0, 1} for all i, j = 1,… ,n.



Knapsack Problem 1 | 26

Given: n items with positive values v1,… , vn and weights w1,… ,wn,
knapsack of capacity W

Task: find subset I ⊆ {1,… ,n} with ∑
i∈I

wi ≤W and ∑
i∈I

vi maximum

Formulation as an integer linear program (IP)
variables xi ∈ {0, 1} for i = 1,… ,n with interpretation xi = 1⟺ i ∈ I

maximize
n

∑
i=1

vi xi

subject to
n

∑
i=1

wi xi ≤W

xi ∈ {0, 1} for 1 = 1,… ,n.



Parallel Machine Scheduling 1 | 27

Given: n jobs j = 1,… ,n, processing times pj > 0, weights wj > 0

Task: schedule jobs on m parallel machines; minimize ∑j wjCj

Example: scheduling on 3 parallel machines
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Formulation as an integer linear program (IP)?
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For a given optimization problem:

How to find an optimal solution?

How to find a feasible solution?

Does there exist an optimal/feasible solution?

How to prove that a computed solution is optimal?

How difficult is the problem?

Is there an efficient algorithm with “small” worst-case running time?

How to formulate the problem as a (mixed integer) linear program?

Is there a useful special structure of the problem?
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Linear Programming and the Simplex Algorithm

Geometric interpretation of the Simplex Algorithm

LP duality, complementary slackness

Sensitivity analysis

Basic theory of polyhedra

Efficient Algorithms for minimum spanning trees, shortest paths

Efficient algorithms for Maximum Flows, Minimum cost Flows, and weighted
bipartite matchings

Complexity of Linear Programming and the Ellipsoid Method

Large-scale Linear Programming



Rough Outline of This Course 1 | 31

ADM I: Intro to Linear Programming & Combinatorial Optimization

ADM II: Discrete Optimization

Maximum Weight Branchings

Matchings

Weighted Matchings

T -Joins and the Postman Problem

Matroids

Complexity Theory and NP-hardness

Integer Linear Programming

Traveling Salesperson Problem

ADM3: Advanced topics

Approximation Algorithms ?

Algorithmic Game Theory ?

Convex Optimization ?



Mathematical Progress vs. Faster Hardware 1 | 32

Mixed-Integer Linear Program (MIP)
variables x ∈ ℝn, parameters c ∈ ℚn, b ∈ ℚm, A ∈ ℚm×n

minimize c⊤x

subject to Ax ≥ b

xj ∈ ℤ for certain j

Bob Bixby’s question (2015): Which option is faster?
Option 1: Solve a MIP with 2015 software on a 1991 computer

Option 2: Solve a MIP with 1991 software on a 2015 computer

Info: computer speed increased by factor ≈ 3500

But: Option 1 is another ≈ 300 times faster!
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