Introduction to

Linear and Combinatorial Optimization

Linear Programming Basics

2.1 Forms of Linear Programs

$$
\begin{array}{lrlrll}
\operatorname{minimize} & 2 x_{1} & -x_{2}+4 x_{3} & & \\
\text { subject to } & x_{1}+x_{2} & & +x_{4} & \leq 2 \\
& & & & & \\
& & x_{3} & & =5 \\
x_{3}+x_{4} & \geq 3 \\
& & & & & \geq 0 \\
x_{1} & & x_{3} & \leq 0
\end{array}
$$

Remarks

- objective function linear in variable vector $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}$
- constraints are linear inequalities and linear equations
- in this example, the last two constraints are special: non-negativity and non-positivity constraint, respectively

$$
\begin{array}{cll}
\operatorname{minimize} & c^{\top} x & \\
\text { subject to } & a_{i}^{\top} x \geq b_{i} & \text { for } i \in M_{1}, \\
& a_{i}^{\top} x=b_{i} & \text { for } i \in M_{2}, \\
& a_{i}^{\top} x \leq b_{i} & \text { for } i \in M_{3}, \\
& x_{j} \geq 0 & \text { for } j \in N_{1}, \\
& x_{j} \leq 0 & \text { for } j \in N_{2},
\end{array}
$$

with $c \in \mathbb{R}^{n}, a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$ for $i \in M_{1} \dot{\cup} M_{2} \dot{\cup} M_{3}$ (finite index sets), and $N_{1}, N_{2} \subseteq\{1, \ldots, n\}$ given.

- $x \in \mathbb{R}^{n}$ satisfying all constraints is a feasible solution
- feasible solution x^{*} is optimal solution if

$$
c^{\top} x^{*} \leq c^{\top} x \quad \text { for all feasible solutions } x
$$

- linear program is infeasible if there exists no feasible solution (feasible set X is empty)
- linear program is unbounded if, for all $k \in \mathbb{R}$, there is a feasible solution $x \in \mathbb{R}^{n}$ with $c^{\top} x \leq k$
- maximizing $c^{\top} x$ is equivalent to minimizing $-c^{\top} x$
- any linear program can be written in the form

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geq b
\end{aligned}
$$

for some $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$:

- rewrite $a_{i}^{\top} x=b_{i}$ as $a_{i}^{\top} x \geq b_{i} \wedge a_{i}^{\top} x \leq b_{i}$
- rewrite $a_{i}^{\top} x \leq b_{i}$ as $-a_{i}^{\top} x \geq-b_{i}$
- rewrite $x_{j} \geq 0$ as $e_{j}^{\top} x \geq 0$
- rewrite $x_{j} \leq 0$ as $-e_{j}^{\top} x \geq 0$

Every linear program can be brought into standard form

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned} \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}
$$

ii elimination of free (unbounded) variables x_{j} : replace x_{j} with $x_{j}=x_{j}^{+}-x_{j}^{-}, x_{j}^{+}, x_{j}^{-} \geq 0$
iii elimination of non-positive variables x_{j} : replace $x_{j} \leq 0$ with $\left(-x_{j}\right) \geq 0$

团 elimination of inequality constraint $a_{i}^{\top} x \leq b_{i}$: introduce slack variable $s_{i} \geq 0$ and rewrite: $a_{i}^{\top} \cdot x+s_{i}=b_{i}$
iv elimination of inequality constraint $a_{i}^{\top} \cdot x \geq b_{i}$: introduce slack variable $s_{i} \geq 0$ and rewrite: $a_{i}^{\top} \cdot x-s_{i}=b_{i}$

The linear program

$$
\begin{aligned}
\min \begin{aligned}
2 x_{1} & +4 x_{2} \\
\text { s.t. } \quad x_{1}+x_{2} & \geq 3 \\
3 x_{1}+2 x_{2} & =14 \\
x_{1} & \geq 0
\end{aligned} r l
\end{aligned}
$$

is equivalent to the following standard form problem:

$$
\begin{aligned}
& \min 2 x_{1}+4 x_{2}^{+}-4 x_{2}^{-} \\
& \text {s.t. } x_{1}+x_{2}^{+}-x_{2}^{-}-x_{3}=3 \\
& 3 x_{1}+2 x_{2}^{+}-2 x_{2}^{-}=14 \\
& x_{1}, x_{2}^{+}, x_{2}^{-}, x_{3} \geq 0
\end{aligned}
$$

Introduction to

Linear and Combinatorial Optimization

Linear Programming Basics

2.2 Examples

Example: Diet Problem

Given: • n different foods, m different nutrients

- $a_{i j}:=$ amount of nutrient i in one unit of food j
- $b_{i}:=$ requirement of nutrient i in some ideal diet
- $u_{i}:=$ upper limit of nutrient i in some ideal diet
- $c_{j}:=$ cost of one unit of food j

Task: find a cheapest ideal diet consisting of foods $1, \ldots, n$

Formulation as LP

variables $x_{j}, j=1, \ldots, n$ with interpretation units of food j in the diet

$$
\begin{aligned}
\min & c^{\top} x \\
\text { s.t. } & A x \geq b \\
& A x \leq u \\
& x \geq 0
\end{aligned}
$$

with $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}, b=\left(b_{i}\right) \in \mathbb{R}^{m}, c=\left(c_{j}\right) \in \mathbb{R}^{n}$.

Given: $\cdot \mu, \sigma, \alpha \in \mathbb{R}$

- a set $S=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}$, a function $f: \mathbb{R} \rightarrow \mathbb{R}$

Task: find the best possible upper bound for the probability that $f(X) \leq \alpha$, where X is a random variable taking values in S with expected value μ and variance at most σ^{2}.

Formulation as LP

variables $p_{i}, i=1, \ldots, n$ with interpretation $\mathbb{P}\left[X=x_{i}\right]=p_{i}$

$$
\begin{aligned}
\max & \sum_{i=1}^{n} p_{i} \chi_{\left\{i: f\left(x_{i}\right) \leq \alpha\right\}} \\
\text { s.t. } & \sum_{i=1}^{n} p_{i} x_{i}=\mu \\
& \sum_{i=1}^{n} p_{i}\left(x_{i}-\mu\right)^{2} \leq \sigma^{2} \\
& \sum_{i=1}^{n} p_{i}=1 \\
& p \geq 0
\end{aligned}
$$

Definition 2.1 Let $X \subseteq Y$ and $f: Y \rightarrow \mathbb{R}$ and consider the optimization problems

minimize	$f(x)$	subject to
minimize	$f(x)$	subject to
	$x \in X$.	

Then, (2.1) is called a relaxation of (2.2); (2.2) is called a tightening of (2.1).

- for a minimization problems, optimal value of a relaxation yields a lower bound on the optimum
- relaxing integrality conditions of a MIP yields its LP relaxation

MIP	
$\qquad$$\min$ $c^{\top} x$ s.t. $A x \geq b \quad$ $x_{i} \in \mathbb{Z} \quad \forall i \in N_{1}$	

LP relaxation

$$
\begin{aligned}
\min & c^{\top} x \\
\text { s.t. } & A x \geq b
\end{aligned}
$$

Node Cover IP

$$
\begin{array}{cl}
\min & \sum_{v \in V} w_{v} x_{v} \\
\text { s.t. } & x_{v}+x_{v^{\prime}} \geq 1 \quad \forall\left\{v, v^{\prime}\right\} \in E \\
& x_{v} \in\{0,1\} \quad \forall v \in V
\end{array}
$$

Node Cover LP relaxation

$$
\begin{aligned}
\min & \sum_{v \in V} w_{v} x_{v} \\
\text { s.t. } & x_{v}+x_{v^{\prime}} \geq 1 \quad \forall\left\{v, v^{\prime}\right\} \in E \\
& x_{v} \in[0,1] \quad \forall v \in V
\end{aligned}
$$

Example: 'integrality gap' between IP and LP relaxation (for unit weights)

optimal IP solution of value 5

optimal LP solution of value 3

Introduction to

Linear and Combinatorial Optimization

Linear Programming Basics

2.3 Graphical Representation

2D example:

$$
\begin{array}{rrl}
\min & -x_{1} & -x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} & \leq 3 \\
2 x_{1}+x_{2} & \leq 3 \\
x_{1}, x_{2} & \geq 0
\end{array}
$$

3D example:

$$
\begin{array}{rlrl}
\min & -x_{1}-x_{2}-x_{3} & \\
\text { s.t. } & x_{1} & & \leq 1
\end{array}
$$

$$
x_{2} \quad \leq 1
$$

$$
x_{3} \leq 1
$$

$$
x_{\mathrm{opt}}=(1,1,1)^{T}
$$

Graphical Representation and Solution (Cont.)

another 2D example:

$$
\begin{aligned}
\min & c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. } & -x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- for $c=(1,1)^{\top}$, the unique optimal solution is $x=(0,0)^{\top}$
- for $c=(1,0)^{\top}$, the optimal solutions are exactly the points

$$
x=\left(0, x_{2}\right)^{\top} \quad \text { with } 0 \leq x_{2} \leq 1
$$

- for $c=(0,1)^{\top}$, the optimal solutions are exactly the points

$$
x=\left(x_{1}, 0\right)^{\top} \quad \text { with } x_{1} \geq 0
$$

- for $c=(-1,-1)^{\top}$, the problem is unbounded, optimal cost is $-\infty$
- if we add the constraint $x_{1}+x_{2} \leq-1$, the problem is infeasible

In the last example, the following 5 cases occurred:
ii there is a unique optimal solution
Iii there exist infinitely many optimal solutions, but the set of optimal solutions is bounded

困 there exist infinitely many optimal solutions and the set of optimal solutions is unbounded
iv the problem is unbounded, i.e., the optimal cost is $-\infty$ and no feasible solution is optimal
v the problem is infeasible, i.e., the set of feasible solutions is empty

These are indeed all cases that can occur in general (see also later).

Visualizing LPs in Standard Form ——|

Example:

Let $A=(1,1,1) \in \mathbb{R}^{1 \times 3}, b=(1) \in \mathbb{R}^{1}$ and consider the set of feasible solutions

$$
P=\left\{x \in \mathbb{R}^{3} \mid A x=b, x \geq 0\right\} .
$$

More general:

- if $A \in \mathbb{R}^{m \times n}$ with $m \leq n$ and the rows of A are linearly independent, then

$$
\left\{x \in \mathbb{R}^{n} \mid A \cdot x=b\right\}
$$

is an $(n-m)$-dimensional affine subspace of \mathbb{R}^{n}.

- set of feasible solutions lies in this affine subspace and is only constrained by non-negativity constraints $x \geq 0$.

Introduction to

Linear and Combinatorial Optimization

Linear Programming Basics

2.4 Piece-Wise Linear Objective

Linear Program

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geq b
\end{aligned}
$$

$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, $c \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \text { Linear Program } \\
& \text { with Piece-Wise Linear Objective } \\
& \quad \text { minimize } \max _{i=1, \ldots, k}\left\{c_{i}^{\top} x+d_{i}\right\} \\
& \text { subject to } A x \geq b \\
& A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m} \\
& c_{i} \in \mathbb{R}^{n}, d_{i} \in \mathbb{R}, i=1, \ldots, k
\end{aligned}
$$

Example: Diet Problem with Diseconomies of Scale

- food 1 has cheap supplier able to procure $u_{1} \in \mathbb{R}_{>0}$ units at price c_{1} and expensive supplier able to procure ∞ units at price $C_{1}>c_{1}$
- cost of purchasing x_{1} units of food 1 becomes

$$
\tilde{c}_{1}\left(x_{1}\right)=\max \left(c_{1} x_{1}, C_{1} x_{1}-\left(C_{1}-c_{1}\right) u_{1}\right)
$$

- Total costs of diet x :

$$
\tilde{c}(x)=\tilde{c}_{1}\left(x_{1}\right)+\sum_{i=2}^{n} c_{i} x_{i}=\max \left(c^{\top} x, c^{\top} x+\left(C_{1}-c_{1}\right)\left(x_{1}-u_{1}\right)\right)
$$

Lemma 2.2

a An affine linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=c^{\top} x+d$ with $c \in \mathbb{R}^{n}$, $d \in \mathbb{R}$, is both convex and concave.
b If $f_{1}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex functions, then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f(x):=\max _{i=1, \ldots, k} f_{i}(x)$ is also convex.

Example: The point-wise maximum of affine linear functions is convex.

Lemma 2.2

a An affine linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=c^{\top} x+d$ with $c \in \mathbb{R}^{n}$, $d \in \mathbb{R}$, is both convex and concave.
b If $f_{1}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex functions, then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f(x):=\max _{i=1, \ldots, k} f_{i}(x)$ is also convex.

Proof: a For $x, y \in \mathbb{R}^{n}$ and $0 \leq \lambda \leq 1$:

$$
\begin{aligned}
& \lambda \cdot f(x)+(1-\lambda) \cdot f(y)=\left(\lambda \cdot c^{\top} x+\lambda \cdot d\right)+\left((1-\lambda) \cdot c^{\top} y+(1-\lambda) \cdot d\right) \\
& \quad=c^{\top}(\lambda \cdot x+(1-\lambda) \cdot y)+(\lambda+(1-\lambda)) \cdot d=f(\lambda \cdot x+(1-\lambda) \cdot y)
\end{aligned}
$$

b For $x, y \in \mathbb{R}^{n}$ and $0 \leq \lambda \leq 1$:

$$
\begin{align*}
\lambda \cdot f(x)+ & (1-\lambda) \cdot f(y)=\lambda \cdot \max _{i=1, \ldots, k} f_{i}(x)+(1-\lambda) \cdot \max _{i=1, \ldots, k} f_{i}(y) \\
& \geq \max _{i=1, \ldots, k}\left\{\lambda \cdot f_{i}(x)+(1-\lambda) \cdot f_{i}(y)\right\} \\
& \geq \max _{i=1, \ldots, k} f_{i}(\lambda \cdot x+(1-\lambda) \cdot y)=f(\lambda \cdot x+(1-\lambda) \cdot y)
\end{align*}
$$

Let $c_{1}, \ldots, c_{k} \in \mathbb{R}^{n}$ and $d_{1}, \ldots, d_{k} \in \mathbb{R}$.
Consider piecewise linear convex function: $x \mapsto \max _{i=1, \ldots, k} c_{i}^{\top} \cdot x+d_{i}$:
$\min \max _{i=1, \ldots, k} c_{i}^{\top} \cdot x+d_{i} \quad \min z$

$$
\begin{array}{lll}
\text { s.t. } A \cdot x \geq b \quad \longleftrightarrow \quad \text { s.t. } & z \geq c_{i}^{\top} \cdot x+d_{i} \quad \text { for all } i \\
& & A \cdot x \geq b
\end{array}
$$

$$
\begin{array}{lll}
\min & \sum_{i=1}^{n} c_{i} \cdot\left|x_{i}\right| \\
\text { s.t. } & A \cdot x \geq b & \min \\
& \sum_{i=1}^{n} c_{i} \cdot z_{i} \\
& \text { s.t. } & z_{i} \geq x_{i} \\
& z_{i} \geq-x_{i} \\
& A \cdot x \geq b
\end{array}
$$

Let $c_{1}, \ldots, c_{k} \in \mathbb{R}^{n}$ and $d_{1}, \ldots, d_{k} \in \mathbb{R}$.
Consider piecewise linear convex function: $x \mapsto \max _{i=1, \ldots, k} c_{i}^{\top} \cdot x+d_{i}$:

$$
\begin{array}{rlrl}
\min & \max _{i=1, \ldots, k} c_{i}^{\top} \cdot x+d_{i} & \min & z \\
\text { s.t. } & A \cdot x \geq b & \longleftrightarrow \quad \text { s.t. } & z \geq c_{i}^{\top} \cdot x+d_{i} \\
& & \text { for all } i \\
& & A \cdot x \geq b
\end{array}
$$

$$
\begin{array}{rlrll}
\min & \sum_{i=1}^{n} c_{i} \cdot\left|x_{i}\right| \\
\text { s.t. } A \cdot x \geq b & & \min & \sum_{i=1}^{n} c_{i} \cdot z_{i} \\
& & \text { s.t. } & z_{i} \geq x_{i} & \min \\
& & \sum_{i=1}^{n} c_{i} \cdot\left(x_{i}^{+}+x_{i}^{-}\right) \\
& & & & \text {s.t. } \\
& A \cdot\left(x^{+}-x_{i}^{-}\right) \geq b \\
& & & x^{+}, x^{-} \geq 0
\end{array}
$$

