Introduction to

Linear and Combinatorial Optimization

2.1 Forms of Linear Programs

Example of a Linear Program

2 2

minimize $2x_1 - x_2 + 4x_3$ subject to $x_1 + x_2 + x_4 \le 2$ $3x_2 - x_3 = 5$ $x_3 + x_4 \ge 3$ $x_1 \ge 0$ $x_3 \le 0$

Remarks

- objective function linear in variable vector $x = (x_1, x_2, x_3, x_4)^{\top}$
- · constraints are linear inequalities and linear equations
- in this example, the last two constraints are special: non-negativity and non-positivity constraint, respectively

General Linear Program

2 3

minimize	$c^{\top}x$	
subject to	$a_i^{\top} x \ge b_i$	for $i \in M_1$,
	$a_i^{\top}x = b_i$	for $i \in M_2$,
	$a_i^{\top} x \leq b_i$	for $i \in M_3$,
	$x_j \ge 0$	for $j \in N_1$,
	$x_j \leq 0$	for $j \in N_2$,

with $c \in \mathbb{R}^n$, $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ for $i \in M_1 \cup M_2 \cup M_3$ (finite index sets), and $N_1, N_2 \subseteq \{1, \dots, n\}$ given.

- $x \in \mathbb{R}^n$ satisfying all constraints is a feasible solution
- feasible solution *x*^{*} is optimal solution if

 $c^{\top}x^* \leq c^{\top}x$ for all feasible solutions x

- linear program is infeasible if there exists no feasible solution (feasible set X is empty)
- linear program is unbounded if, for all $k \in \mathbb{R}$, there is a feasible solution $x \in \mathbb{R}^n$ with $c^{\top}x \le k$

Special Forms of Linear Programs

2 4

- maximizing $c^{\top}x$ is equivalent to minimizing $-c^{\top}x$
- any linear program can be written in the form

minimize $c^{\top}x$ subject to $Ax \ge b$

for some $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$:

- rewrite $a_i^{\top} x = b_i$ as $a_i^{\top} x \ge b_i \land a_i^{\top} x \le b_i$
- rewrite $a_i^{\top} x \le b_i$ as $-a_i^{\top} x \ge -b_i$
- rewrite $x_j \ge 0$ as $e_j^\top x \ge 0$
- rewrite $x_j \leq 0$ as $-e_j^\top x \geq 0$

Reduction to Standard Form

Every linear program can be brought into standard form

minimize
$$c^{\top}x$$

subject to $Ax = b$ $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.
 $x \ge 0$

- elimination of free (unbounded) variables x_j : replace x_j with $x_j = x_j^+ - x_j^-, x_j^+, x_j^- \ge 0$
- elimination of non-positive variables x_j : replace $x_j \le 0$ with $(-x_j) \ge 0$
- iii elimination of inequality constraint $a_i^{\top} x \le b_i$: introduce slack variable $s_i \ge 0$ and rewrite: $a_i^{\top} \cdot x + s_i = b_i$
- elimination of inequality constraint $a_i^{\top} \cdot x \ge b_i$: introduce slack variable $s_i \ge 0$ and rewrite: $a_i^{\top} \cdot x - s_i = b_i$

Example

The linear program

min
$$2x_1 + 4x_2$$

s.t. $x_1 + x_2 \ge 3$
 $3x_1 + 2x_2 = 14$
 $x_1 \ge 0$

is equivalent to the following standard form problem:

min
$$2x_1 + 4x_2^+ - 4x_2^-$$

s.t. $x_1 + x_2^+ - x_2^- - x_3 = 3$
 $3x_1 + 2x_2^+ - 2x_2^- = 14$
 $x_1, x_2^+, x_2^-, x_3 \ge 0$

Introduction to

Linear and Combinatorial Optimization

2.2 Examples

Example: Diet Problem

Given: • *n* different foods, *m* different nutrients

- a_{ij} := amount of nutrient *i* in one unit of food *j*
- b_i := requirement of nutrient *i* in some ideal diet
- u_i := upper limit of nutrient *i* in some ideal diet
- c_j := cost of one unit of food j

Task: find a cheapest ideal diet consisting of foods 1, ..., n

Formulation as LP variables x_j , j = 1, ..., n with interpretation units of food j in the diet min $c^{\top}x$ s.t. $Ax \ge b$ $Ax \le u$ $x \ge 0$ with $A = (a_{ij}) \in \mathbb{R}^{m \times n}$, $b = (b_i) \in \mathbb{R}^m$, $c = (c_j) \in \mathbb{R}^n$.

The Moment Problem in probability

29

Given: • $\mu, \sigma, \alpha \in \mathbb{R}$

• a set
$$S = \{x_1, \dots, x_n\} \subset \mathbb{R}$$
, a function $f : \mathbb{R} \longrightarrow \mathbb{R}$

Task: find the best possible upper bound for the probability that $f(X) \le \alpha$, where X is a random variable taking values in S with expected value μ and variance at most σ^2 .

Formulation as LP variables p_i , i = 1, ..., n with interpretation $\mathbb{P}[X = x_i] = p_i$

$$\max \sum_{i=1}^{n} p_i \chi_{\{i:f(x_i) \le \alpha\}}$$

s.t.
$$\sum_{i=1}^{n} p_i x_i = \mu$$
$$\sum_{i=1}^{n} p_i (x_i - \mu)^2 \le \sigma^2$$
$$\sum_{i=1}^{n} p_i = 1$$
$$p \ge 0.$$

Example: LP relaxations

Definition 2.1 Let $X \subseteq Y$ and $f : Y \rightarrow \mathbb{R}$ and consider the optimization problems

minimizef(x)subject to $x \in Y$,(2.1)minimizef(x)subject to $x \in X$.(2.2)

Then, (2.1) is called a relaxation of (2.2); (2.2) is called a tightening of (2.1).

- for a minimization problems, optimal value of a relaxation yields a lower bound on the optimum
- relaxing integrality conditions of a MIP yields its LP relaxation

MIP

 $\begin{array}{ll} \min & c^{\top} x \\ \text{s.t.} & Ax \ge b \\ & x_i \in \mathbb{Z} \quad \forall \, i \in N_1 \end{array}$

LP relaxation				
min s.t.	$c^{\top}x$ $Ax \ge b$			

2 10

LP Relaxation of Node Cover Problem

Node Cover IP

min
$$\sum_{v \in V} w_v x_v$$

s.t. $x_v + x_{v'} \ge 1 \quad \forall \{v, v'\} \in E$
 $x_v \in \{0, 1\} \quad \forall v \in V$

Node Cover LP relaxation

$$\min \sum_{v \in V} w_v x_v$$
s.t. $x_v + x_{v'} \ge 1 \quad \forall \{v, v'\} \in E$
 $x_v \in [0, 1] \quad \forall v \in V$

2 11

Example: 'integrality gap' between IP and LP relaxation (for unit weights)

optimal IP solution of value 5

optimal LP solution of value 3

Introduction to

Linear and Combinatorial Optimization

2.3 Graphical Representation

Graphical Representation and Solution -

2 13

2D example:

Graphical Representation and Solution (Cont.) — 2114

3D example:

Graphical Representation and Solution (Cont.) - 21 15

- for $c = (1, 1)^{\top}$, the unique optimal solution is $x = (0, 0)^{\top}$
- for $c = (1, 0)^{\top}$, the optimal solutions are exactly the points

 $x = (0, x_2)^{\top}$ with $0 \le x_2 \le 1$

• for $c = (0, 1)^{T}$, the optimal solutions are exactly the points

$$x = (x_1, 0)^\top$$
 with $x_1 \ge 0$

- for $c = (-1, -1)^{T}$, the problem is unbounded, optimal cost is $-\infty$
- if we add the constraint $x_1 + x_2 \le -1$, the problem is infeasible

Properties of the Set of Optimal Solutions —— 2116

In the last example, the following 5 cases occurred:

- i there is a unique optimal solution
- there exist infinitely many optimal solutions, but the set of optimal solutions is bounded
- there exist infinitely many optimal solutions and the set of optimal solutions is unbounded
- the problem is unbounded, i.e., the optimal cost is $-\infty$ and no feasible solution is optimal
- **v** the problem is infeasible, i.e., the set of feasible solutions is empty

These are indeed all cases that can occur in general (see also later).

Visualizing LPs in Standard Form

Example:

Let $A = (1, 1, 1) \in \mathbb{R}^{1 \times 3}$, $b = (1) \in \mathbb{R}^1$ and consider the set of feasible solutions

$$P = \{ x \in \mathbb{R}^3 \mid Ax = b, \ x \ge 0 \}.$$

2 17

More general:

• if $A \in \mathbb{R}^{m \times n}$ with $m \le n$ and the rows of A are linearly independent, then

$$\{x \in \mathbb{R}^n \mid A \cdot x = b\}$$

is an (n - m)-dimensional affine subspace of \mathbb{R}^n .

 set of feasible solutions lies in this affine subspace and is only constrained by non-negativity constraints x ≥ 0. Introduction to

Linear and Combinatorial Optimization

2.4 Piece-Wise Linear Objective

Piece-Wise Linear Objective

Linear Program	Linear Program with Piece-Wise Linear Objective
minimize $c^{\top}x$	minimize $\max_{i=1,\ldots,k} \left\{ c_i^\top x + d_i \right\}$
subject to $Ax \ge b$	subject to $Ax \ge b$
$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, \\ c \in \mathbb{R}^{n}$	$\begin{split} &A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, \\ &c_i \in \mathbb{R}^n, d_i \in \mathbb{R}, i=1, \dots, k \end{split}$

Example: Diet Problem with Diseconomies of Scale

- food 1 has cheap supplier able to procure u₁ ∈ ℝ_{>0} units at price c₁ and expensive supplier able to procure ∞ units at price C₁ > c₁
- cost of purchasing x_1 units of food 1 becomes

$$\tilde{c}_1(x_1) = \max\left(c_1x_1, C_1x_1 - (C_1 - c_1)u_1\right)$$

• Total costs of diet *x*:

$$\tilde{c}(x) = \tilde{c}_1(x_1) + \sum_{i=2}^n c_i x_i = \max\left(c^\top x, c^\top x + (C_1 - c_1)(x_1 - u_1)\right)$$

2 | 19

Affine Linear Functions

Lemma 2.2

- a An affine linear function $f : \mathbb{R}^n \to \mathbb{R}$ given by $f(x) = c^T x + d$ with $c \in \mathbb{R}^n$, $d \in \mathbb{R}$, is both convex and concave.
- **b** If $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ are convex functions, then $f : \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) := \max_{i=1,\ldots,k} f_i(x)$ is also convex.

Example: The point-wise maximum of affine linear functions is convex.

Affine Linear Functions

Lemma 2.2

- a An affine linear function $f : \mathbb{R}^n \to \mathbb{R}$ given by $f(x) = c^T x + d$ with $c \in \mathbb{R}^n$, $d \in \mathbb{R}$, is both convex and concave.
- **b** If $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ are convex functions, then $f : \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) := \max_{i=1,\ldots,k} f_i(x)$ is also convex.

Proof: a For $x, y \in \mathbb{R}^n$ and $0 \le \lambda \le 1$:

$$\lambda \cdot f(x) + (1 - \lambda) \cdot f(y) = (\lambda \cdot c^{\top} x + \lambda \cdot d) + ((1 - \lambda) \cdot c^{\top} y + (1 - \lambda) \cdot d)$$
$$= c^{\top} (\lambda \cdot x + (1 - \lambda) \cdot y) + (\lambda + (1 - \lambda)) \cdot d = f (\lambda \cdot x + (1 - \lambda) \cdot y)$$

b For $x, y \in \mathbb{R}^n$ and $0 \le \lambda \le 1$:

$$\begin{split} \lambda \cdot f(x) + (1 - \lambda) \cdot f(y) &= \lambda \cdot \max_{i=1,\dots,k} f_i(x) + (1 - \lambda) \cdot \max_{i=1,\dots,k} f_i(y) \\ &\geq \max_{i=1,\dots,k} \left\{ \lambda \cdot f_i(x) + (1 - \lambda) \cdot f_i(y) \right\} \\ &\geq \max_{i=1,\dots,k} f_i(\lambda \cdot x + (1 - \lambda) \cdot y) = f(\lambda \cdot x + (1 - \lambda) \cdot y) \quad \Box \end{split}$$

Piecewise Linear Convex Objective Functions — 2121

Let $c_1, \ldots, c_k \in \mathbb{R}^n$ and $d_1, \ldots, d_k \in \mathbb{R}$.

Consider piecewise linear convex function: $x \mapsto \max_{i=1,...,k} c_i^\top \cdot x + d_i$:

Piecewise Linear Convex Objective Functions — 2121

Let $c_1, \ldots, c_k \in \mathbb{R}^n$ and $d_1, \ldots, d_k \in \mathbb{R}$.

Consider piecewise linear convex function: $x \mapsto \max_{i=1,...,k} c_i^\top \cdot x + d_i$: