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Example of a Linear Program 2 | 2

minimize 2x1 − x2 + 4x3

subject to x1 + x2 + x4 ≤ 2
3x2 − x3 = 5

x3 + x4 ≥ 3
x1 ≥ 0

x3 ≤ 0

Remarks
objective function linear in variable vector x = (x1, x2, x3, x4)⊤

constraints are linear inequalities and linear equations

in this example, the last two constraints are special:
non-negativity and non-positivity constraint, respectively
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minimize c⊤x

subject to ai⊤x ≥ bi for i ∈ M1,

ai⊤x = bi for i ∈ M2,

ai⊤x ≤ bi for i ∈ M3,

xj ≥ 0 for j ∈ N1,

xj ≤ 0 for j ∈ N2,

with c ∈ ℝ
n, ai ∈ ℝ

n and bi ∈ ℝ for i ∈ M1 ∪̇M2 ∪̇M3 (finite index sets), and
N1,N2 ⊆ {1,… ,n} given.

x ∈ ℝ
n satisfying all constraints is a feasible solution

feasible solution x∗ is optimal solution if

c⊤x∗ ≤ c⊤x for all feasible solutions x

linear program is infeasible if there exists no feasible solution (feasible set X is empty)
linear program is unbounded if, for all k ∈ ℝ, there is a feasible solution x ∈ ℝ

n with
c⊤x ≤ k
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maximizing c⊤x is equivalent to minimizing −c⊤x

any linear program can be wri�en in the form

minimize c⊤x

subject to Ax ≥ b

for some A ∈ ℝ
m×n and b ∈ ℝ

m:

rewrite ai⊤x = bi as ai⊤x ≥ bi ∧ ai⊤x ≤ bi
rewrite ai⊤x ≤ bi as −a⊤i x ≥ −bi
rewrite xj ≥ 0 as e⊤j x ≥ 0
rewrite xj ≤ 0 as −e⊤j x ≥ 0



Reduction to Standard Form 2 | 5

Every linear program can be brought into standard form

minimize c⊤x

subject to Ax = b A ∈ ℝ
m×n

, b ∈ ℝ
m
, c ∈ ℝ

n
.

x ≥ 0

i elimination of free (unbounded) variables xj :
replace xj with xj = x+j − x−j , x+j , x

−

j ≥ 0

ii elimination of non-positive variables xj :
replace xj ≤ 0 with (−xj) ≥ 0

iii elimination of inequality constraint ai⊤x ≤ bi:
introduce slack variable si ≥ 0 and rewrite: ai⊤ ⋅ x + si = bi

iv elimination of inequality constraint ai⊤ ⋅ x ≥ bi:
introduce slack variable si ≥ 0 and rewrite: ai⊤ ⋅ x − si = bi
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The linear program

min 2 x1 + 4 x2

s.t. x1 + x2 ≥ 3

3 x1 + 2 x2 = 14

x1 ≥ 0

is equivalent to the following standard form problem:

min 2 x1 + 4 x+2 − 4 x−2
s.t. x1 + x+2 − x−2 − x3 = 3

3 x1 + 2 x+2 − 2 x−2 = 14

x1, x+2 , x
−

2 , x3 ≥ 0
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Given: n different foods, m different nutrients
aij ∶= amount of nutrient i in one unit of food j
bi ∶= requirement of nutrient i in some ideal diet
ui ∶= upper limit of nutrient i in some ideal diet
cj ∶= cost of one unit of food j

Task: find a cheapest ideal diet consisting of foods 1,… ,n

Formulation as LP
variables xj , j = 1,… ,n with interpretation units of food j in the diet

min c⊤x

s.t. Ax ≥ b

Ax ≤ u

x ≥ 0

with A = (aij) ∈ ℝ
m×n, b = (bi) ∈ ℝ

m, c = (cj) ∈ ℝ
n.



The Moment Problem in probability 2 | 9

Given: �, �, � ∈ ℝ

a set S = {x1,… , xn} ⊂ ℝ, a function f ∶ ℝ→ ℝ

Task: find the best possible upper bound for the probability that f (X) ≤ � , where X
is a random variable taking values in S with expected value � and variance at most �2.

Formulation as LP
variables pi, i = 1,… ,n with interpretation ℙ[X = xi] = pi

max

n
∑

i=1
pi �{i∶f (xi)≤�}

s.t.
n
∑

i=1
pixi = �

n
∑

i=1
pi(xi − �)2 ≤ �2

n
∑

i=1
pi = 1

p ≥ 0.



Example: LP relaxations 2 | 10

Definition 2.1 Let X ⊆ Y and f ∶ Y → ℝ and consider the optimization problems

minimize f (x) subject to x ∈ Y , (2.1)

minimize f (x) subject to x ∈ X . (2.2)

Then, (2.1) is called a relaxation of (2.2); (2.2) is called a tightening of (2.1).

for a minimization problems, optimal value of a relaxation yields a lower bound on the
optimum

relaxing integrality conditions of a MIP yields its LP relaxation

MIP

min c⊤x

s.t. Ax ≥ b

xi ∈ ℤ ∀ i ∈ N1

LP relaxation

min c⊤x

s.t. Ax ≥ b



LP Relaxation of Node Cover Problem 2 | 11

Node Cover IP

min ∑

v∈V
wv xv

s.t. xv + xv ′ ≥ 1 ∀ {v, v ′
} ∈ E

xv ∈ {0, 1} ∀ v ∈ V

Node Cover LP relaxation

min ∑

v∈V
wv xv

s.t. xv + xv ′ ≥ 1 ∀ {v, v ′
} ∈ E

xv ∈ [0, 1] ∀ v ∈ V

Example: ‘integrality gap’ between IP and LP relaxation (for unit weights)
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Graphical Representation and Solution 2 | 13

2D example:

min −x1 − x2

s.t. x1 + 2 x2 ≤ 3

2 x1 + x2 ≤ 3

x1, x2 ≥ 0

0 x1
0

x2

1 2 3

1

2

3

xopt = (1, 1)T



Graphical Representation and Solution (Cont.) 2 | 14

3D example:

min −x1 − x2 − x3

s.t. x1 ≤ 1

x2 ≤ 1

x3 ≤ 1

x1, x2, x3 ≥ 0

x1
x2

0

x3

11

1

xopt = (1, 1, 1)T



Graphical Representation and Solution (Cont.) 2 | 15

another 2D example:

min c1 x1 + c2 x2

s.t. −x1 + x2 ≤ 1

x1, x2 ≥ 0 x1
0

x2

−1 1 2 3

1

2

for c = (1, 1)⊤, the unique optimal solution is x = (0, 0)⊤

for c = (1, 0)⊤, the optimal solutions are exactly the points

x = (0, x2)⊤ with 0 ≤ x2 ≤ 1

for c = (0, 1)⊤, the optimal solutions are exactly the points

x = (x1, 0)⊤ with x1 ≥ 0

for c = (−1,−1)⊤, the problem is unbounded, optimal cost is −∞

if we add the constraint x1 + x2 ≤ −1, the problem is infeasible



Properties of the Set of Optimal Solutions 2 | 16

In the last example, the following 5 cases occurred:

i there is a unique optimal solution

ii there exist infinitely many optimal solutions, but the set of optimal solutions is
bounded

iii there exist infinitely many optimal solutions and the set of optimal solutions is
unbounded

iv the problem is unbounded, i.e., the optimal cost is −∞ and no feasible solution is
optimal

v the problem is infeasible, i.e., the set of feasible solutions is empty

These are indeed all cases that can occur in general (see also later).



Visualizing LPs in Standard Form 2 | 17

Example:
Let A = (1, 1, 1) ∈ ℝ

1×3, b = (1) ∈ ℝ
1 and consider

the set of feasible solutions

P = {x ∈ ℝ
3
∣ Ax = b, x ≥ 0}.

x1 x2

x3

0
1 1

1

More general:

if A ∈ ℝ
m×n with m ≤ n and the rows of A are linearly independent, then

{x ∈ ℝ
n
∣ A ⋅ x = b}

is an (n −m)-dimensional affine subspace of ℝn.

set of feasible solutions lies in this affine subspace and is only constrained by
non-negativity constraints x ≥ 0.
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2.4 Piece-Wise Linear Objective



Piece-Wise Linear Objective 2 | 19

Linear Program

minimize c⊤x

subject to Ax ≥ b

A ∈ ℝ
m×n, b ∈ ℝ

m,
c ∈ ℝ

n

Linear Program
with Piece-Wise Linear Objective

minimize max

i=1,…,k

{

c⊤i x + di
}

subject to Ax ≥ b

A ∈ ℝ
m×n, b ∈ ℝ

m,
ci ∈ ℝ

n, di ∈ ℝ, i = 1,… , k

Example: Diet Problem with Diseconomies of Scale
food 1 has cheap supplier able to procure u1 ∈ ℝ>0 units at price c1
and expensive supplier able to procure ∞ units at price C1 > c1
cost of purchasing x1 units of food 1 becomes

c̃1(x1) = max
(
c1x1, C1x1 − (C1 − c1)u1)

Total costs of diet x:

c̃(x) = c̃1(x1) +
n

∑

i=2
cixi = max

(
c⊤x, c⊤x + (C1 − c1)(x1 − u1))



Affine Linear Functions 2 | 20

Lemma 2.2
a An affine linear function f ∶ ℝ

n
→ ℝ given by f (x) = c⊤x + d with c ∈ ℝ

n,
d ∈ ℝ, is both convex and concave.

b If f1,… , fk ∶ ℝ
n
→ ℝ are convex functions, then f ∶ ℝ

n
→ ℝ defined by

f (x) ∶= maxi=1,…,k fi(x) is also convex.

Example: The point-wise maximum of affine linear functions is convex.

x

f (x)
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Lemma 2.2
a An affine linear function f ∶ ℝ

n
→ ℝ given by f (x) = c⊤x + d with c ∈ ℝ

n,
d ∈ ℝ, is both convex and concave.

b If f1,… , fk ∶ ℝ
n
→ ℝ are convex functions, then f ∶ ℝ

n
→ ℝ defined by

f (x) ∶= maxi=1,…,k fi(x) is also convex.

Proof: a For x,y ∈ ℝ
n and 0 ≤ � ≤ 1:

�⋅f (x) + (1 − �) ⋅ f (y) = (� ⋅ c⊤x + � ⋅ d) + ((1 − �) ⋅ c⊤y + (1 − �) ⋅ d)

= c⊤(� ⋅ x + (1 − �) ⋅ y) + (� + (1 − �)) ⋅ d = f (� ⋅ x + (1 − �) ⋅ y)
b For x,y ∈ ℝ

n and 0 ≤ � ≤ 1:

� ⋅ f (x)+(1 − �) ⋅ f (y) = � ⋅ max

i=1,…,k
fi(x) + (1 − �) ⋅ max

i=1,…,k
fi(y)

≥ max

i=1,…,k

{

� ⋅ fi(x) + (1 − �) ⋅ fi(y)
}

≥ max

i=1,…,k
fi(� ⋅ x + (1 − �) ⋅ y) = f (� ⋅ x + (1 − �) ⋅ y)
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Let c1,… , ck ∈ ℝ
n and d1,… ,dk ∈ ℝ.

Consider piecewise linear convex function: x ↦ maxi=1,…,k c⊤i ⋅ x + di:

min max

i=1,…,k
c⊤i ⋅ x + di min z

s.t. A ⋅ x ≥ b ⟷ s.t. z ≥ c⊤i ⋅ x + di for all i

A ⋅ x ≥ b

min

n

∑

i=1
ci ⋅ |xi|

s.t. A ⋅ x ≥ b
↔

min

n

∑

i=1
ci ⋅ zi

s.t. zi ≥ xi
zi ≥ −xi
A ⋅ x ≥ b y

|y|
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Let c1,… , ck ∈ ℝ
n and d1,… ,dk ∈ ℝ.

Consider piecewise linear convex function: x ↦ maxi=1,…,k c⊤i ⋅ x + di:

min max

i=1,…,k
c⊤i ⋅ x + di min z

s.t. A ⋅ x ≥ b ⟷ s.t. z ≥ c⊤i ⋅ x + di for all i

A ⋅ x ≥ b

min

n

∑

i=1
ci ⋅ |xi|

s.t. A ⋅ x ≥ b
↔

min

n

∑

i=1
ci ⋅ zi

s.t. zi ≥ xi
zi ≥ −xi
A ⋅ x ≥ b

↔

min

n

∑

i=1
ci ⋅ (x+i + x−i )

s.t. A ⋅ (x+ − x−) ≥ b

x+, x− ≥ 0


