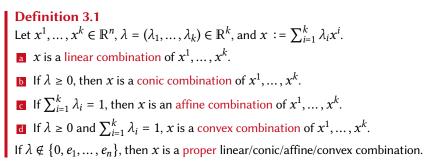
Introduction to

Linear and Combinatorial Optimization

3.1 Hulls and Subspaces

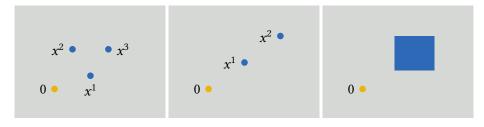
Linear and Further Combinations



Linear and Further Hulls

Definition 3.2 Let $\emptyset \neq S \subseteq \mathbb{R}^n$.

- a the linear hull lin(S) is the set of vectors that can be written as a linear combination of finitely many vectors from S; $lin(\emptyset) = \{0\}$.
- b the conic hull cone(S) is the set of vectors that can be written as a conic combination of finitely many vectors from S; cone(Ø) = {0}
- the affine hull aff(S) is the set of vectors that can be written as an affine combination of finitely many vectors from S; aff(Ø) = Ø
- the convex hull conv(S) is the set of vectors that can be written as a convex combination of finitely many vectors from S; conv(Ø) = Ø



Subspaces and Subsets

Definition 3.3

- **a** $S \subseteq \mathbb{R}^n$ is a linear subspace of \mathbb{R}^n , if S = lin(S).
- **b** $S \subseteq \mathbb{R}^n$ is a (convex) **cone**, if S = cone(S).
- **c** $S \subseteq \mathbb{R}^n$ is an affine subspace of \mathbb{R}^n , if S = aff(S).
- d $S \subseteq \mathbb{R}^n$ is called **convex**, if S = conv(S).

Remark

- in Definition 1.1, we defined a set $S \subseteq \mathbb{R}^n$ to be convex if $\lambda x + (1 \lambda)y \in S$ for all $x, y \in S, \lambda \in [0, 1]$
- both definitions are equivalent:
 - S convex wrt. Def. $3.3 \Rightarrow S$ convex wrt. Def. 1.1 is obvious
 - let S convex wrt. Def. 1.1, $x^1, \ldots, x^k \in S$ and $x = \sum_{i=1}^k \lambda_i x^i, \sum_{i=1}^k \lambda_i = 1, \lambda \ge 0$.
 - We show by induction on k that $x \in S$; (This is trivial for k = 1).
 - So assume all convex combinations up to k 1 elements of S lie in S. Then, $x = \sum_{i=1}^{k} \lambda_i x^i = (1 - \lambda_k)y + \lambda_k x^k$, with $y := \sum_{i=1}^{k-1} \frac{\lambda_i}{1 - \lambda_k} x^i$
 - *y* is a convex combination of k 1 elements, so $y \in S$ by induction.
 - Hence $x \in S$ by Def. 1.1

Subspaces and Subsets (cont.)

Lemma 3.4 Let $S \subseteq \mathbb{R}^n$.

$$\begin{cases} \mathsf{lin}(S) \\ \mathsf{cone}(S) \\ \mathsf{aff}(S) \\ \mathsf{conv}(S) \end{cases} \text{ is the } \subseteq \text{-smallest} \begin{cases} \mathsf{linear subspace} \\ \mathsf{cone} \\ \mathsf{affine subspace} \\ \mathsf{convex set} \end{cases} \text{ containing } S.$$

Proof:

- conv(S) is a convex set since conv(conv(S)) = conv(S)
- for any convex set $X \supseteq S$, it holds that $X = \operatorname{conv}(X) \supseteq \operatorname{conv}(S)$
- similar for lin(S), cone(S), and aff(S)

Lemma 3.5 Families of linear subspaces / cones / affine subspaces / convex sets in \mathbb{R}^n are closed under taking intersections.

Proof: Let $(C_j)_{j \in \mathcal{J}}$ be a family of cones, \mathcal{J} arbitrary. We show cone $\left(\bigcap_{j \in \mathcal{J}} C_j\right) = \bigcap_{j \in \mathcal{J}} C_j$.

- "⊇" is obvious
- for "⊆": cone $\left(\bigcap_{j \in \mathcal{J}} C_j\right) \subseteq \bigcap_{j \in \mathcal{J}} \operatorname{cone}\left(C_j\right) = \bigcap_{j \in \mathcal{J}} C_j$
- · similar for lin, aff, and conv

Independence and Dimension

Definition 3.6 A finite non-empty subset $S \subseteq \mathbb{R}^n$ is linearly (affinely) independent, if no element of *S* can be written as a proper linear (affine) combination of elements from *S*.

Definition 3.7 The dimension dim(*S*) of a subset $S \subseteq \mathbb{R}^n$ is the largest cardinality of an affinely independent subset of *S* minus 1.

Remarks

- for a linear subspace $S \subseteq \mathbb{R}^n$, dim(S) according to Definition 3.7 is equal to the maximal number of linearly independent vectors in S
 - "≥": adding the zero-vector to a linearly independent set of vectors yields an affinely independent set
 - " \leq ": if $v_1, \ldots, v_k, v_{k+1}$ are affinely independent, then $v_1 v_{k+1}, \ldots, v_k v_{k+1}$ are linearly independent

Introduction to

Linear and Combinatorial Optimization

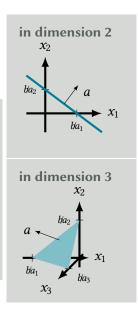
3.2 Hyperplanes and Halfspaces

Hyperplanes and Halfspaces

Definition 3.8 Let $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$. **a** $\{x \in \mathbb{R}^n \mid a^\top \cdot x = b\}$ is called hyperplane **b** $\{x \in \mathbb{R}^n \mid a^\top \cdot x \ge b\}$ is called halfspace

Remarks

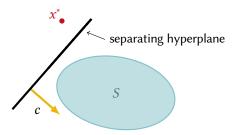
- A hyperplane is an affine subspace of dimension n 1.
- A hyperplane with right-hand side *b* = 0 is a linear subspace.
- Hyperplanes and halfspaces are cones if and only if *b* = 0.
- Hyperplanes and halfspaces are convex sets.



3|8

Separating Hyperplane Theorem for Convex Sets — 319

Theorem 3.9 Let $S \subseteq \mathbb{R}^n$ closed and convex, and let $x^* \in \mathbb{R}^n \setminus S$. There exists a vector $c \in \mathbb{R}^n$ such that $c^\top \cdot x^* < c^\top \cdot x$ for all $x \in S$.



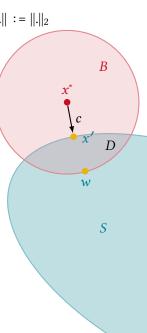
Corollary 3.10 Every closed and convex set is the intersection of a family of halfspaces.

Proof of Theorem 3.9

For arbitrary $w \in S$ let $B := \{ x \mid ||x - x^*|| \le ||w - x^*|| \}, ||.|| := ||.||_2$

- $\implies D := S \cap B$ closed, bounded, non-empty
- $\implies \exists x' \in D : \|x' x^*\| \le \|x x^*\| \quad \forall x \in D$

$$\implies ||x' - x^*|| \le ||x - x^*|| \quad \forall x \in S \qquad (*)$$



3 10

Proof of Theorem 3.9

For arbitrary $w \in S$ let $B := \{ x \mid ||x - x^*|| \le ||w - x^*|| \}, ||.|| := ||.||_2$

 $\implies D := S \cap B$ closed, bounded, non-empty

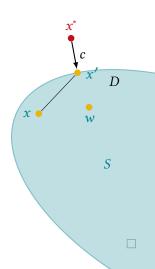
$$\implies \exists x' \in D : \|x' - x^*\| \le \|x - x^*\| \quad \forall x \in D$$

$$\implies ||x' - x^*|| \le ||x - x^*|| \quad \forall x \in S \qquad (*)$$

Claim: $c^{\top}x > c^{\top}x^*$ with $c := x' - x^* \neq 0 \forall x \in S$ Proof:

For all $x \in S$ and $\lambda \in (0, 1]$: $x' + \lambda (x - x') \in S$

$$\implies \|x' - x^*\|^2 \stackrel{(*)}{\leq} \|x' + \lambda(x - x') - x^*\|^2 \\ = \|x' - x^*\|^2 + 2\lambda(x' - x^*)^\top (x - x') + \lambda^2 \|x - x'\|^2 \\ \implies 0 \le (x' - x^*)^\top (x - x') + \frac{1}{2}\lambda \|x - x'\|^2 \\ \stackrel{\lambda \to 0}{\implies} 0 \le (x' - x^*)^\top (x - x') = c^\top (x - x') \\ \implies c^\top x \ge c^\top x' = c^\top x^* + c^\top (x' - x^*) = c^\top x^* + \|c\|^2 > c^\top x^*$$



Introduction to

Linear and Combinatorial Optimization

3.3 Polyhedra and Polytopes

Polyhedra and Polytopes

Definition 3.11 Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

- **a** $\{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ is called polyhedron **b** $\{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$ is a polyhedron in standard form representation
- a polyhedron is an intersection of finitely many halfspaces.

Definition 3.12 a Set $S \subseteq \mathbb{R}^n$ is bounded if there is $K \in \mathbb{R}$ such that

$$\|x\|_{\infty} \le K$$
 for all $x \in S$.

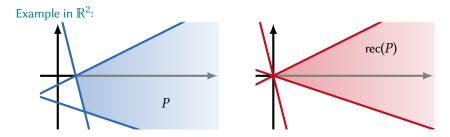
A bounded polyhedron is called **polytope**.

Polyhedral Cones and Recession Cones

Definition 3.13 For $A \in \mathbb{R}^{m \times n}$ the polyhedron $\{x \in \mathbb{R}^n \mid A \cdot x \ge 0\}$ is a polyhedral cone.

• cone $\{0\}$ is the only polyhedral cone in \mathbb{R}^n that is a polytope.

Definition 3.14 For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$, the recession cone rec(*P*) is the polyhedral cone $\{x \in \mathbb{R}^n \mid A \cdot x \ge 0\}$. The non-zero elements of the recession cone are the rays of *P*.



Characterization of Recession Cones

Lemma 3.15 For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ and $y \in P$, rec $(P) = \{x \in \mathbb{R}^n \mid y + \lambda \cdot x \in P \text{ for all } \lambda \ge 0\}.$

In particular, if P is a polytope, $rec(P) = \{0\}$.

Proof: For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ and $y \in P$, $\{x \in \mathbb{R}^n \mid y + \lambda \cdot x \in P \ \forall \lambda \ge 0\} = \{x \in \mathbb{R}^n \mid A \cdot (y + \lambda \cdot x) \ge b \ \forall \lambda \ge 0\}$

$$= \Big\{ x \in \mathbb{R}^n \mid A \cdot x \ge 0 \Big\}.$$

• the recession cone of $P = \left\{ x \in \mathbb{R}^n \mid A \cdot x = b, \ x \ge 0 \right\}$ is

$$\left\{ x \in \mathbb{R}^n \mid A \cdot x = 0, \ x \ge 0 \right\}$$

• proof via
$$\{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\} = \left\{x \in \mathbb{R}^n \mid \begin{bmatrix} A \\ -A \\ I \end{bmatrix} x \ge \begin{bmatrix} b \\ -b \\ 0 \end{bmatrix}\right\}$$

Active and Binding Constraints

3 | 15

In the following, let $P \subseteq \mathbb{R}^n$ be a polyhedron defined by

$a_i^{\top} \cdot x \ge b_i$	for $i \in M$,
$a_i^{\top} \cdot x = b_i$	for $i \in N$,

with $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$, for all *i*.

Definition 3.16 If $x^* \in \mathbb{R}^n$ satisfies $a_i^\top \cdot x^* = b_i$ for some *i*, then the corresponding constraint is active (or binding) at x^* .

Lemma 3.17 (Dimension Lemma) If $P \neq \emptyset$ and none of the constraints $a_i^\top \cdot x \ge b_i$ for $i \in M$ is active for all $x \in P$, then dim $(P) = n - \operatorname{rank} \{ a_i \mid i \in N \}$.

Proof:

- let A_N be the matrix consisting of the rows a_i^{\top} , $i \in N$
- rank-nullity theorem: $n = \operatorname{rank}(A_N) + \dim(\ker(A_N))$
- left to show: $\dim(P) = \dim(\ker(A_N))$

Proof of Lemma 3.17 (Cont.)

3 | 16

 $\dim(\ker(A_N)) \ge \dim(P) =: k:$

- there are k + 1 affinely independent vectors $x_0, x_1, \dots, x_k \in P$
- $x_1 x_0, ..., x_k x_0$ are linearly independent and satisfy $A_N(x_i x_0) = 0$ for all i = 1, ..., k
- $\dim(\ker(A_N)) \ge \dim(P)$
- $l := \dim(\ker(A_N)) \le \dim(P)$:
- let $x_j \in \mathbb{R}^n, j = 1, ..., l$, linearly independent with $A_N x_j = 0 \forall j$
- for $i \in M$, let $y^i \in P$ with $a_i^\top \cdot y^i > b_i$
- let $y := \frac{1}{|M|} \sum_{i \in M} y^i \in P$, then $a_i^\top \cdot y > b_i$ for all $i \in M$
- for $\varepsilon > 0$ small enough, $a_i^{\top} \cdot (y + \varepsilon x_j) \ge b_i$ for all $i \in M, j = 1, ..., l$.
- $y + \varepsilon x_j \in P$ for j = 1, ..., l
- $\{y\} \cup \{y + \varepsilon x_j \mid j \in \{1, ..., l\}\}$ affinely independent
- $\dim(P) \ge l$.

Introduction to

Linear and Combinatorial Optimization

3.4 Vertices and Extreme Points

Extreme Points and Vertices of Polyhedra -

Definition 3.18 Let $P \subseteq \mathbb{R}^n$ be a polyhedron.

a $x \in P$ is an **extreme point** of *P* if

 $x \neq \lambda \cdot y + (1 - \lambda) \cdot z$ for all $y, z \in P \setminus \{x\}, 0 \le \lambda \le 1$,

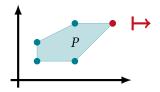
i.e., x is not a convex combination of two other points in P.

b $x \in P$ is a vertex of *P* if there is some $c \in \mathbb{R}^n$ such that

 $c^{\top} \cdot x < c^{\top} \cdot y$ for all $y \in P \setminus \{x\}$,

i.e., *x* is the unique optimal solution to the LP min{ $c^{\top} \cdot z \mid z \in P$ }.

 the only possible extreme point or vertex of a polyhedral cone *C* is 0 ∈ *C*



Basic Facts from Linear Algebra

Theorem 3.19 Let $x^* \in \mathbb{R}^n$ and $I = \{i \mid a_i^\top \cdot x^* = b_i\}$. The following are equivalent:

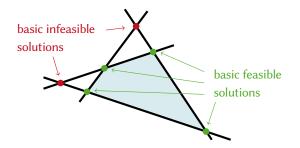
- **1** There are *n* vectors in $\{a_i \mid i \in I\}$ which are linearly independent.
- The vectors in $\{a_i \mid i \in I\}$ span \mathbb{R}^n , i.e. $lin(\{a_i \mid i \in I\}) = \mathbb{R}^n$.
- **m** x^* is the unique solution to the system of equations $a_i^{\top} \cdot x = b_i$, $i \in I$.

Characterization of Vertices and Extreme Points - 3|20

Definition 3.20

- **a** $x^* \in \mathbb{R}^n$ is a basic solution of *P* if
 - · all equality constraints are active and
 - there are *n* linearly independent constraints that are active.
- **B** A basic solution satisfying all constraints is a basic feasible solution.

Example:



Characterization of Vertices and Extreme Points - 3|20

Definition 3.20

- a $x^* \in \mathbb{R}^n$ is a basic solution of *P* if
 - · all equality constraints are active and
 - there are *n* linearly independent constraints that are active.
- **D** A basic solution satisfying all constraints is a basic feasible solution.

Theorem 3.21 For $x^* \in P$, the following are equivalent:

- x^* is a vertex of *P*.
- x^* is an extreme point of *P*.
- $\mathbf{m} \mathbf{x}^*$ is a basic feasible solution of *P*.

We assume that $P \subseteq \mathbb{R}^n$ is a polyhedron defined by

 $\begin{aligned} a_i^\top \cdot x &\geq b_i & \text{with } a_i \in \mathbb{R}^n, \, b_i \in \mathbb{R} \text{ for } i \in M, \\ a_i^\top \cdot x &= b_i & \text{with } a_i \in \mathbb{R}^n, \, b_i \in \mathbb{R} \text{ for } i \in N. \end{aligned}$

Proof of Theorem 3.21: (iii) \Rightarrow (i) —

3 21

- x^* basic feasible solution, $I := \left\{ i \in M \cup N \mid a_i^\top \cdot x^* = b_i \right\}$
- for $c := \sum_{i \in I} a_i$, we have

$$c^{\top} \cdot x^* = \sum_{i \in I} a_i^{\top} \cdot x^* = \sum_{i \in I} b_i$$
$$c^{\top} \cdot x = \sum_{i \in I} a_i^{\top} \cdot x \ge \sum_{i \in I} b_i \quad \text{ for all } x \in P$$

• since there are *n* linearly independent vectors in $\{a_i \mid i \in I\}$:

$$x \in P, c^{\top} \cdot x = \sum_{i \in I} b_i \iff a_i^{\top} \cdot x = b_i \forall i \in I \iff x = x^*$$

Proof of Theorem 3.21: (i) \Rightarrow (ii) —

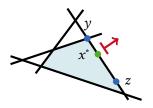
3 22

- x^* vertex $\Longrightarrow \exists c \in \mathbb{R}^n : c^\top \cdot x^* < c^\top \cdot y \quad \forall y \in P \setminus \{x^*\}$
- for a contradiction assume x^* is *not* an extreme point, i.e.,

$$x^* = \lambda y + (1 - \lambda)z$$
 with $y, z \in P \setminus \{x^*\}, \lambda \in [0, 1].$

• then,

$$c^{\top} \cdot x^{*} = \lambda \underbrace{c^{\top} \cdot y}_{>c^{\top} \cdot x^{*}} + (1 - \lambda) \underbrace{c^{\top} \cdot z}_{>c^{\top} \cdot x^{*}} > c^{\top} \cdot x^{*}$$



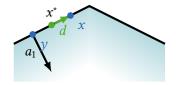
Proof of Theorem 3.21: (ii) \Rightarrow (iii) \rightarrow

- x^* extreme point, $I := \left\{ i \in M \cup N \mid a_i^\top \cdot x^* = b_i \right\}$
- assume by contradiction that $rank{a_i | i \in I} < n$
- there exists $d \in \mathbb{R}^n \setminus \{0\}$ with $a_i^\top \cdot d = 0$ for all $i \in I$
- let $x := x^* + \varepsilon d$ and $y := x^* \varepsilon d$ for some $\varepsilon > 0$
- we claim that $x, y \in P$ for $\varepsilon > 0$ small enough

• for
$$i \in I$$
, $a_i^{\top} \cdot x = \underbrace{a_i^{\top} \cdot x^*}_{=b_i} + \varepsilon \underbrace{a_i^{\top} \cdot d}_{=0} = b_i$
• for $i \notin I$, $a_i^{\top} \cdot x = \underbrace{a_i^{\top} \cdot x^*}_{>b_i} + \varepsilon a_i^{\top} \cdot d \ge b_i$ for $\varepsilon > 0$ small enough

the same holds for y instead of x

• $x^* = \frac{x+y}{2}$



Existence of Extreme Points

3 24

Definition 3.22 A polyhedron *P* is called pointed if it contains at least one vertex.

Definition 3.23 A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

 $x + \lambda \cdot d \in P$ for all $\lambda \in \mathbb{R}$.

Theorem 3.24 Consider non-empty $P \subseteq \mathbb{R}^n$. The following are equivalent:

- P is pointed. P does not contain a line. rank $\{a_i \mid i \in M \cup N\} = n.$

Proof of Theorem 3.24

Thm 3.24: If *P* pointed \Leftrightarrow If *P* contains no line \Leftrightarrow If rank $(A_{M\cup N}) = n$ If \Rightarrow If $x^* \in P$ vertex $\implies x^*$ basic feasible solution

 \implies There are *n* linearly independent constraints that are active at x^* .

 \implies There are *n* linearly independent vectors in $\{a_i \mid i \in M \cup N\}$.

 $\blacksquare \Rightarrow \blacksquare$: By contradiction assume that *P* contains a line.

That is, there are $x \in P$, $d \in \mathbb{R}^n \setminus \{0\}$ with

 $x + \lambda d \in P \quad \text{for all } \lambda \in \mathbb{R}.$ $\implies a_i^\top \cdot (x + \lambda d) = a_i^\top \cdot x + \lambda a_i^\top \cdot d \ge b_i \quad \forall i \in M \cup N, \ \lambda \in \mathbb{R}$ $\implies a_i^\top \cdot d = 0 \quad \forall i \in M \cup N.$ $\implies \text{rank}\{a_i \mid i \in M \cup N\} < n.$

3 | 25

Proof of Theorem 3.24 (Cont.)

3 | 26

Thm 3.24: P pointed $\Leftrightarrow \square P$ contains no line $\Leftrightarrow \square rank(A_{M \cup N}) = n$ $\blacksquare \Longrightarrow \blacksquare: \text{ Choose } x \in P \text{ maximizing } |I| \text{ with } N \subseteq I := \{ i \in M \cup N \mid a_i^\top \cdot x = b_i \}.$ If rank $\{a_i \mid i \in I\} = n$, then x is a vertex and we are done. Otherwise, there is $d \in \mathbb{R}^n \setminus \{0\}$ with $a_i^\top \cdot d = 0$ for all $i \in I$. $\implies a_i^\top \cdot (x + \lambda d) = a_i^\top \cdot x = b_i$ for all $i \in I, \lambda \in \mathbb{R}$. Since *P* does not contain a line, $x + \lambda' d \notin P$ for some $\lambda' \in \mathbb{R}$. $\implies a_i^{\top} \cdot (x + \lambda' d) < b_i \text{ for some } i \in M \setminus I.$ Assume w.l.o.g. $\lambda' > 0$ (otherwise replace *d* with -d) and let $\lambda_0 := \max \{ \lambda \mid a_i^\top \cdot (x + \lambda \, d) \ge b_i \,\forall \, i \in M \cup N \} < \lambda'.$ But then, there is an $i \in M \setminus I$ with $a_i^{\top} \cdot (x + \lambda_0 d) = b_i$. \implies At least |I| + 1 constraints active at $x + \lambda_0 d \in P$.

Existence of Extreme Points (Cont.)

Corollary 3.25

- **a** A non-empty polytope contains an extreme point.
- A non-empty polyhedron in standard form contains an extreme point.
- Polyhedron $P \neq \emptyset$ is pointed if and only if rec(P) is pointed.

Proof: of **D**: *P* cannot contain a line because of the constraint $x \ge 0$: $x + \lambda d \ge 0, \forall \lambda \in \mathbb{R} \implies d = 0.$

Proof: of **c**: *P* has a line of direction $d \neq 0 \iff d \in \operatorname{rec}(P), -d \in \operatorname{rec}(P)$ $\iff \{\lambda d : \lambda \in \mathbb{R}\}$ is a line of $\operatorname{rec}(P)$ $\iff \operatorname{rec}(P)$ has a line of dir. $d \neq 0$

Example:

$$P = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \middle| \begin{array}{c} x_1 + x_2 \ge 1 \\ x_1 + 2x_2 \ge 0 \end{array} \right\}$$

ince $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in P$ for all $\lambda \in \mathbb{R}$.

contains a line since

Characterization of Polytopes

Theorem 3.26 A polytope is equal to the convex hull of its vertices.

Proof: Follows from the equivalence of vertices, extreme points and basic feasible solutions (Theorem 3.21); see exercise.

Theorem 3.27 A set $P \subseteq \mathbb{R}^n$ is a polytope if and only if there exists a finite set $V \subseteq \mathbb{R}^n$ such that *P* is the convex hull of *V*.

Proof: '===>': Follows from Theorem 3.26 since a polytope has only finitely many basic feasible solutions (vertices).

'⇐━': See exercise session.

Introduction to

Linear and Combinatorial Optimization

3.5 Faces and Facets

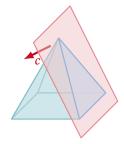
Faces and Facets

Definition 3.28 Let $P \subseteq \mathbb{R}^n$ be a polyhedron, $c \in \mathbb{R}^n \setminus \{0\}$ and $\gamma \in \mathbb{R}$.

- **a** The linear inequality $c^{\top} \cdot x \ge \gamma$ is valid for P if $P \subseteq \{x \mid c^{\top} \cdot x \ge \gamma\}$.
- **b** The hyperplane $H = \{x \in \mathbb{R}^n \mid c^\top \cdot x = \gamma\}$ is a supporting hyperplane of P if $c^\top \cdot x \ge \gamma$ is valid for P and $P \cap H \ne \emptyset$.
- The intersection of P with a supporting hyperplane is a face of P. Also P and Ø are faces of P; the others are called proper faces.
- d The inclusion-wise maximal proper faces are called facets.

Remarks

- Every face of *P* is itself a polyhedron.
- Every vertex of *P* is a 0-dimensional face of *P*.
- The optimal LP solutions form a face of the underlying polyhedron.



Characterization of Faces

Theorem 3.29 Consider a polyhedron $P \subseteq \mathbb{R}^n$ be defined by

$$\begin{aligned} a_i^\top \cdot x &\geq b_i & \text{for } i \in M, \\ a_i^\top \cdot x &= b_i & \text{for } i \in N, \end{aligned}$$

and let $F \neq \emptyset$ be a face of P.

- **a** There exists $K \subseteq M$ with $F = \{x \in P \mid a_i^\top \cdot x = b_i \text{ for all } i \in K\}$.
- **b** For $K \subseteq M$, the subset $\{x \in P \mid a_i^\top \cdot x = b_i \text{ for all } i \in K\}$ is a face of P.

C $G \subseteq F$ is a face of *F* if and only if it is a face of *P*.

d There is a chain of faces $F = F_0 \subset F_1 \subset \cdots \subset F_q = P$ such that $\dim(F_{i+1}) = \dim(F_i) + 1$, for $i = 0, \dots, q-1$.

3 | 31

Proof of Theorem 3.29 (a)

3 32

$$\exists K \subseteq M : F = \{ x \in P \mid a_i^\top x = b_i \; \forall i \in K \}$$

Let
$$K := \{ i \in M \mid a_i^{\top} \cdot x = b_i \text{ for all } x \in F \}$$
.
Claim: $F = \{ x \in P \mid a_i^{\top} \cdot x = b_i \text{ for all } i \in K \}$
' \subseteq ': Clear by definition of K .
' \supseteq ': Assume by contradiction that $y \in P \setminus F$ with $a_i^{\top} \cdot y = b_i \forall i \in K$.
Let $c^{\top} \cdot x \ge \gamma$ valid for P such that $F = \{ x \in P \mid c^{\top} \cdot x = \gamma \}$.
In particular, $c^{\top} \cdot y > \gamma$ as $y \in P \setminus F$.
For each $i \in M \setminus K$ there is an $x^i \in F$ with $a_i^{\top} \cdot x^i > b_i$.
Let $x_0 := \frac{1}{|M \setminus K|} \sum_{i \in M \setminus K} x^i \in F$ (convex), thus $c^{\top} \cdot x_0 = \gamma$.
Notice that $a_i^{\top} \cdot x_0 = b_i \forall i \in K$ and $a_i^{\top} \cdot x_0 > b_i \forall i \in M \setminus K$.
For $\varepsilon > 0$ small enough, $z := x_0 + \varepsilon(x_0 - y) \in P$ because:

$$a_i^{\top} \cdot z = (1 + \varepsilon) a_i^{\top} \cdot x_0 - \varepsilon a_i^{\top} \cdot y \begin{cases} = b_i & \text{for } i \in N \cup K \\ \ge b_i & \text{for } i \in M \setminus K \end{cases}$$

But $c^{\top} \cdot z = (1 + \varepsilon) c^{\top} \cdot x_0 - \varepsilon c^{\top} \cdot y < \gamma$.

Proof of Theorem 3.29 (b)-(d)

b
$$\{x \in P \mid a_i^\top x = b_i \ \forall i \in K\}$$
 is a face $\forall K \subseteq M$

Let $c := \sum_{i \in K} a_i$ and $\gamma := \sum_{i \in K} b_i$.

Then, $c^{\top} \cdot x \ge \gamma$ is a valid inequality for *P* and for $x \in P$

$$c^{\top} \cdot x = \gamma \qquad \Longleftrightarrow \qquad a_i^{\top} \cdot x = b_i \text{ for all } i \in K.$$

c *G* face of $F \Leftrightarrow G$ face of $P \quad \forall G \subseteq F$ ' \Leftarrow ': If $G = \{x \in P \mid c^{\top} \cdot x = \gamma\} \subseteq F$ with $c^{\top} \cdot x \ge \gamma$ valid for *P*, then $G = \{x \in F \mid c^{\top} \cdot x = \gamma\}$ and $c^{\top} \cdot x \ge \gamma$ valid for *F*. ' \Longrightarrow ': $F = \{x \mid a_i^{\top} \cdot x \ge b_i \forall i \in M \setminus K, a_i^{\top} \cdot x = b_i \forall i \in K \cup N\}$ for some $K \subseteq M$ due to **a**. Since *G* is a face of *F*, again due to **a**. $G = \{x \mid a_i^{\top} \cdot x \ge b_i \forall i \in M \setminus L, a_i^{\top} \cdot x = b_i \forall i \in L \cup N\}$ for some $K \subseteq L \subseteq M$. Thus, due to **b**. *G* is a face of *P*.

d $F_0 ⊂ F_1 ⊂ ... F_q = P$ with dim $(F_{i+1}) = \text{dim}(F_i) + 1, i = 0, ..., q-1$ Follows from **a**–**c** and the Dimension Lemma (Lemma 3.17)

Characterization of Faces (Cont.)

Corollary 3.30 Consider a polyhedron $P \subseteq \mathbb{R}^n$ be defined by $a_i^{\top} \cdot x \ge b_i$ for $i \in M$, $a_i^{\top} \cdot x = b_i$ for $i \in N$.

- **a** *P* has finitely many distinct faces.
- **b** If *F* is a facet of *P*, then $\dim(F) = \dim(P) 1$.
- \mathbf{c} An inclusion-wise minimal proper face F of P can be written as

$$F = \left\{ x \in \mathbb{R}^n \mid a_i^\top \cdot x = b_i \text{ for all } i \in K \cup N \right\}$$

for some $K \subseteq M$ with rank $\{a_i \mid i \in K \cup N\}$ = rank $\{a_i \mid i \in M \cup N\}$.

d If *P* is pointed, every minimal nonempty face of *P* is a vertex.

Proof: Exercise.

Number of Vertices

Corollary 3.31

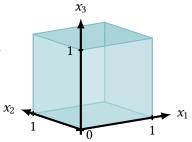
- A polyhedron has a finite number of vertices and basic solutions.
- **b** For a polyhedron in \mathbb{R}^n given by *m* linear inequalities, this number is at most $\binom{m}{n}$.

Example:

$$P := \{x \in \mathbb{R}^n \mid 0 \le x_i \le 1, i = 1, ..., n\} (n-1)$$

dimensional unit cube)

- number of constraints: m = 2n
- number of vertices: 2^n note that $\binom{2n}{n} = \frac{(n+1)}{1} \frac{n+2}{2} \cdots \frac{2n}{n} \ge 2^n$



Optimality of Extreme Points

Theorem 3.32 Let $P \subseteq \mathbb{R}^n$ a pointed polyhedron and $c \in \mathbb{R}^n$. If min $\{c^T \cdot x \mid x \in P\}$ is bounded, there is a vertex that is optimal.

Corollary 3.33 Every linear programming problem is either infeasible or unbounded or there exists an optimal solution.

Proof:

- · every linear program is equivalent to an LP in standard form
- every polyhedron in standard form is pointed (Corollary 3.25)
- Theorem 3.32 implies the result

Edges, Extreme Rays, Extreme Lines -----

Definition 3.34 A one-dimensional face F of polyhedron P is

- a an edge if F has two vertices, i.e., $F = \operatorname{conv}(\{x, y\})$ with $x, y \in \mathbb{R}^n, x \neq y$;
- **b** an extreme ray if *F* has one vertex, i.e., $F = x + \operatorname{cone}(\{z\})$ with $x \in \mathbb{R}^n, z \in \mathbb{R}^n \setminus \{0\}$;
- **c** an extreme line if *F* has no vertex, i.e., $F = x + lin(\{z\})$ with $x \in \mathbb{R}^n, z \in \mathbb{R}^n \setminus \{0\}$.

Adjacent Basic Solutions and Edges

Definition 3.35 Let $P \subseteq \mathbb{R}^n$ be a polyhedron. Two distinct basic solutions are adjacent if there are n - 1 linearly independent constraints that are active at both of them.

Observation 3.36 Let $x, y \in P$ with $x \neq y$ be two adjacent basic feasible solutions, then the line segment conv($\{x, y\}$) that joins them is an edge of *P*.

Proof:

- for $z \in \{x, y\}$, let $I(z) := \{i \in M \cup N \mid a_i^\top z = b_i\}$
- let $I := I(x) \cap I(y)$, then |I| = n 1
- by dimension Lemma 3.17, $F = \{x \in P \mid a_i^T x = b_i \forall i \in I\}$ is a face of dimension 1
- again by Theorem 3.29, *x* and *y* are vertices of *F*, thus, by Theorem 3.26,
 F = conv({*x*, *y*})

Introduction to

Linear and Combinatorial Optimization

3.6 Polyhedra in Standard Form

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$ a polyhedron in standard form representation.

Observation.

One can assume without loss of generality that rank(A) = m.

Proof: Let $a_1^{\top}, ..., a_m^{\top} \in \mathbb{R}^n$ rows of *A*. Assume that $a_i = \sum_{j \neq i} \lambda_j \cdot a_j$. **Case 1:** $b_i = \sum_{j \neq i} \lambda_j b_j$. Then, $a_j^{\top} \cdot x = b_j \quad \forall j \neq i \implies a_i^{\top} \cdot x = \sum_{j \neq i} \lambda_j \cdot (a_j^{\top} \cdot x) = \sum_{j \neq i} \lambda_j b_j = b_i$.

Thus the *i*th constraint is redundant and can be deleted.

Case 2: $b_i \neq \sum_{j \neq i} \lambda_j b_j \implies A \cdot x = b$ has no solution.

3 40

Basic Solutions of Polyhedra in Standard Form — 3141

Let $A \in \mathbb{R}^{m \times n}$ with rank $(A) = m, b \in \mathbb{R}^{m}$, and

$$P = \left\{ x \in \mathbb{R}^n \mid A \cdot x = b, \ x \ge 0 \right\}$$

Theorem 3.37 A point $x \in \mathbb{R}^n$ is a basic solution of P if and only if $A \cdot x = b$ and there are indices $B(1), \ldots, B(m) \in \{1, \ldots, n\}$ such that • columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent, and • $x_i = 0$ for all $i \notin \{B(1), \ldots, B(m)\}$.

Remarks

- $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic
- the vector of basic variables is denoted by $x_B := (x_{B(1)}, \dots, x_{B(m)})^{\top}$
- $A_{B(1)}, \ldots, A_{B(m)}$ are basic columns of A and form a basis of \mathbb{R}^m
- matrix $A_B := (A_{B(1)}, \dots, A_{B(m)}) \in \mathbb{R}^{m \times m}$ is called basis matrix

Proof of Theorem 3.37

"⇒"

- let $x \in \mathbb{R}^n$ be a basic solution of P, Ax = b is clear by definition.
- there are n linearly independent constraints active at x, i.e., Ax=b and $x_i=0$ for some $N\subset\{1,\ldots,n\}$ with |N|=n-m
- w.l.o.g., $N = \{m + 1, ..., n\}$

(3.1)

3 42

- block diagonal matrix has determinant $det([A_{B(1)}, \dots, A_{B(m)}]) det(I_{n-m}) = det([A_{B(1)}, \dots, A_{B(m)}])$
- implies A_{B(1)},..., A_{B(m)} linearly independent
 "⇐"
- active constraints yield matrix as in (3.1)

Corollary: Carathéodory's Theorem -

3 43

Theorem 3.38 (Carathéodory, 1911) For $S \subseteq \mathbb{R}^n$, every element of conv(*S*) can be written as a convex combination of at most n + 1 points in *S*.

Proof: Consider $x \in \text{conv}(S)$. Then x can be written as

$$x = \sum_{i=1}^{k} \lambda'_i y_i$$
 with $y_1, \dots, y_k \in S$ and $\sum_{i=1}^{k} \lambda'_i = 1, \lambda' \ge 0$.

Consider the following polyhedron in standard form:

$$P = \left\{ \lambda \in \mathbb{R}^k \, \middle| \, \underbrace{\sum_{i=1}^k \lambda_i \, y_i = x, \sum_{i=1}^k \lambda_i = 1, \lambda \ge 0}_{n+1 \text{ equality constraints}} \right\}.$$

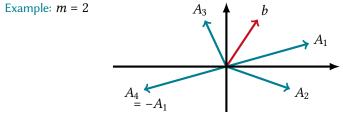
A basic feasible solution $\lambda^* \in P$ yields the desired representation of *x*.

Basic Columns and Basic Solutions

3 44

Observation 3.39 Let $x \in \mathbb{R}^n$ be a basic solution, then:

- A_B · x_B = b and thus x_B = A_B⁻¹ · b;
 x is a basic feasible solution if and only if x_B = A_B⁻¹ · b ≥ 0.



- A_1, A_3 or A_2, A_3 form bases with corresp. basic feasible solutions.
- A_1, A_4 do not form a basis.
- A₁, A₂ and A₂, A₄ and A₃, A₄ form bases with infeasible basic solution.

Bases and Basic Solutions

Corollary 3.40

- Every basis *B*(1), ..., *B*(*m*) determines a unique basic solution.
- Thus, different basic solutions correspond to different bases.
- But: two different bases might yield the same basic solution.

Example: If b = 0, then x = 0 is the only basic solution.

Adjacent Bases

Definition 3.41 Two bases B(1), ..., B(m) and B'(1), ..., B'(m) are adjacent if $|\{B(1), ..., B(m)\} \cap \{B'(1), ..., B'(m)\}| = m - 1.$

Observation 3.42

a Two adjacent basic solutions can always be obtained from two adjacent bases.

b If two adjacent bases lead to distinct basic solutions, then the latter are adjacent.

Introduction to

Linear and Combinatorial Optimization

3.7 Degeneracy

Degeneracy

3 48

Definition 3.43 A basic solution x of a polyhedron $P \subseteq \mathbb{R}^n$ is degenerate if more than n constraints are active at x.

Observation 3.44 Let $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$ be a polyhedron in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and $b \in \mathbb{R}^m$.

- A basic solution $x \in P$ is degenerate if and only if more than n m components of x are zero.
- **b** For a non-degenerate basic solution $x \in P$, there is a unique basis.

Three Different Reasons for Degeneracy —

i redundant variables

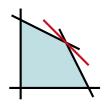
Example: $x_1 + x_2 = 1$ $x_3 = 0 \iff A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $x_1, x_2, x_3 \ge 0$

ii redundant constraints

Example: $x_1 + 2 x_2 \le 3$ $2 x_1 + x_2 \le 3$ $x_1 + x_2 \le 2$ $x_1, x_2 \ge 0$

geometric reasons (non-simple polyhedra)

Example: Octahedron



3 49

