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 E— Linear and Further Combinations

Definition 3.1
Let x,...,xK € R A = (Ay,..., &) € RN, and x := TF Aixl.

X is a linear combination of xl, ey xk.

If A = 0, then x is a conic combination of xl, ey xk.

If Zle A; = 1, then x is an affine combination of xl, ey xk.

B IfA=0and Z{;l A; = 1, x is a convex combination of x, ..., x*.

If A ¢ {0,e,...,e,}, then x is a proper linear/conic/affine/convex combination.
[ ] xz



Linear and Further Hulls

Definition 3.2 Let @ # S < R™.

the linear hull [in(S) is the set of vectors that can be written as a linear
combination of finitely many vectors from S; lin(@) = {0}.

the conic hull cone(S) is the set of vectors that can be written as a conic
combination of finitely many vectors from S; cone(®) = {0}
the affine hull aff(S) is the set of vectors that can be written as an affine

combination of finitely many vectors from S; aff(®) = @

the convex hull conv(S) is the set of vectors that can be written as a convex
combination of finitely many vectors from S; conv(®) = @



Subspaces and Subsets

Definition 3.3

B Sc R"is alinear subspace of R”, if S = lin(S).
B Sc R"is a(convex) cone, if S = cone(S).

S c R" is an affine subspace of R”, if S = aff(S).
Bl S c R"is called convex, if S = conv(S).

Remark

- in Definition 1.1, we defined a set S € R" to be convex if Ax + (1 —A)y € S for all
x,y€S A€[0,1]

« both definitions are equivalent:

« S convex wrt. Def. 3.3 = S convex wrt. Def. 1.1 is obvious
« let S convex wrt. Def. 1.1, x, ..., xK € Sand x = z;c:l Aixt, 25;:1 Ai=1,1=0.
< We show by induction on k that x € S; (This is trivial for k = 1).
- So assume all convex combinations up to k — 1 elements of S lie in S. Then,
x= YK dixt = (1- )y + xK with y = T ljl—ikx"
- Y is a convex combination of k — 1 elements, so y € S by induction.
 Hence x € S by Def. 1.1
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I Subspaces and Subsets (cont.) ————:is

Lemma 3.4 Let S ¢ R".
lin(S) linear subspace
cone(S) cone
is the c-smallest taining S.
aff(S) 15 the =smallest ) - frine subspace containing
conv(S) convex set

Proof:

« conv(S) is a convex set since conv(conv(S)) = conv(S)

« for any convex set X 2 §, it holds that X = conv(X) 2 conv(S)

« similar for lin(S), cone(S), and aff(S) O

Lemma 3.5 Families of linear subspaces / cones / affine subspaces / convex sets in

R™ are closed under taking intersections.

Proof: Let (Gj)je7 be a family of cones, J arbitrary. We show cone(ﬂje] C]) =Mjey G-

«€_ 9

2” is obvious

. for “c™ cone(ﬂjej C]) ﬂ]ejcone( ) mﬁ]

« similar for lin, aff, and conv O



Independence and Dimension ——:s

Definition 3.6 A finite non-empty subset S ¢ R" is linearly (affinely) independent,
if no element of S can be written as a proper linear (affine) combination of elements

from S.

Definition 3.7 The dimension dim(S) of a subset S < R" is the largest cardinality
of an affinely independent subset of S minus 1.

Remarks
- for a linear subspace S ¢ R", dim(S) according to Definition 3.7 is equal to the
maximal number of linearly independent vectors in S

« “2”: adding the zero-vector to a linearly independent set of vectors yields

an affinely independent set
o “<”if vy, ..., Vi, Vis are affinely independent, then

V] = Vi1, --- s Vk — Vi1 are linearly independent
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Definition 3.8 Let a € R"\ {0} and b € R.
B {x€R"|a"-x=b}iscalled hyperplane
{x€R"| a - x = b} is called halfspace

Remarks

- A hyperplane is an affine subspace of dimension n — 1.

« A hyperplane with right-hand side b = 0 is a linear
subspace.

« Hyperplanes and halfspaces are cones if and only
if b=0.

- Hyperplanes and halfspaces are convex sets.

Hyperplanes and Halfspaces

in dimension 2
X2

X1

in dimension 3

X2
l/tlz
a —_
-t X1
lial b/a'_’,
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— Separating Hyperplane Theorem for Convex Sets —:/»

Theorem 3.9 Let S < R” closed and convex, and let x* € R™ \ S. There exists a
vector ¢ € R" such that ¢' - x* < ¢ - x forall x € S.

*

Xeo

" separating hyperplane

Corollary 3.10 Every closed and convex set is the intersection of a family of
halfspaces.



I Proof of Theorem 3.9

For arbitrary w € Slet B := {x| Jx—x"

<|w-x
= D := Sn Bclosed, bounded, non-empty

— 3Ix’e€D: |x' -x|=|x-x

Vx€D

= |x'-x

< Jx-x

Vx€eS (%)

b I =1



I Proof of Theorem 3.9 310
b IH = e

<|w-x

For arbitrary w € Slet B := {x| Jx—x"
= D := Sn Bclosed, bounded, non-empty

— 3Ix’e€D: |x'-x|=|x-x| Vx€D

= |x'-x

< Jx-x

Vx€eS (%)

Claim:¢'x > ¢'x" withc :=x"-x"#0Vx€S

¥
Proof: ' p
Forallx € Sand 1€ (0,1] : x"+A(x-x")€S /

2Q 1’ 4 20— 1) - X w

220" = x") (=) + A2 x" |2

& ||x/—x*

-

= 0= -x)(x-x)+ -

A—0
= 0=<(x' -x)'(x-x)=c"(x-x)

— cxzc'x=c'x+c(x'-x)=c"x#|*> "%
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I Polyhedra and Polytopes :

Definition 3.11 Let A € R™" and b € R™
{x ER"|A-x= b} is called polyhedron

{x ER"|A-x=b, x> 0} is a polyhedron in standard form representation

« a polyhedron is an intersection of finitely many halfspaces.

Definition 3.12
B Set S ¢ R"is bounded if there is K € R such that

|xlc = K forall x € S.

@ A bounded polyhedron is called polytope.
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— Polyhedral Cones and Recession Cones

Definition 3.13 For A € R™" the polyhedron {x ER"|A-x= 0} is a

polyhedral cone.

. cone {0} is the only polyhedral cone in R that is a polytope.

Definition 3.14 For a non-empty polyhedron P = {x €ER"|A-x2= b}, the

recession cone rec(P) is the polyhedral cone {x ER"|A-x= 0}. The non-zero
elements of the recession cone are the rays of P.

Example in R?:
A

id
~J




— Characterization of Recession Cones =

Lemma 3.15 For a non-empty polyhedron P = {x € R" | A- x = b} and y € P,
rec(P) = {xelR" | y+A-x€Pforall A 20}.

In particular, if P is a polytope, rec(P) = {0}.
Proof: For a non-empty polyhedron P = {x ER"|A-x= b} and y € P,
{xEJR” | y+)[-x€PV/120} = {xEJR"|A-(y+/1-x)z bVAzO}

={x€]R"|A-sz}. 0O

« the recession cone of P = {xE]R” |A-x=b x= 0} is

{xEJR"|A-x=0,sz}

. proofvia{x ER" | Ax = b,x =20} ={x€R"| |-A|lx=|-b



Active and Binding Constraints —————:s

In the following, let P < R” be a polyhedron defined by
al - x=b for i € M,
a -x=b fori € N,

1
with a; € R" and b; € R, for all i.

Definition 3.16 If x € R" satisfies a] - x* = b; for some i, then the corresponding

constraint is active (or binding) at x".

Lemma 3.17 (Dimension Lemma)
If P # @ and none of the constraints aiT - x = b;for i € Mis active for all x € P,

then dim(P) = n - rank{ ai|ie€ N}.

Proof:

- let AN be the matrix consisting of the rows a—ir, ieEN
« rank-nullity theorem: n = rank(Ay) + dim(ker(Ay))
« left to show: dim(P) = dim(ker(Ay))



Proof of Lemma 3.17 (Cont.)
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|
dim(ker(Ay)) = dim(P) =: k:
- there are k + 1 affinely independent vectors xy, X1, ..., Xk € P

« X1 — Xp, ..., Xk — Xp are linearly independent and satisfy An(x; — Xo) = O for all
i=1,...,k

. dim(ker(Ay)) = dim(P)

[ := dim(ker(Ay)) < dim(P):
- let xj € R", j = 1,..., | linearly independent with Axx; = 0Vj

. fori€ M,let y' € Pwitha] - y' > b;

clety := ﬁzieMyiEP,then al -y >biforallie M

. for ¢ > 0 small enough, af - (y + £xj) = b forallie M, j=1,..., 1
«y+exi€Pforj=1,..,1

< {ytu {y+ exjlje€ {1,...,1}} affinely independent

o dim(P) = L. O
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— Extreme Points and Vertices of Polyhedra

Definition 3.18 Let P ¢ R" be a polyhedron.
B x € Pis an extreme point of P if
x#A-y+(1-A1)-z forally,ze€ P\ {x},0=<A=1,
i.e., X is not a convex combination of two other points in P.
@ x € Pis avertex of P if there is some ¢ € R" such that

c'-x<c'-y forally€eP\{x},

i.e., X is the unique optimal solution to the LP min{c" - z | z € P}.

« the only possible extreme point or vertex

of a polyhedral cone Cis 0 € C ° o -




Basic Facts from Linear Algebra
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Theorem 3.19 Let x" € R"and I = {i| a] - x" = b;}. The following are equivalent:
H There are n vectors in {a; | i € I} which are linearly independent.
H The vectorsin {a; | i € I} span R", i.e. lin({a; | i € [}) = R™

B x" is the unique solution to the system of equations a; - x = b;, i € L.



— Characterization of Vertices and Extreme Points = :i»

Definition 3.20
B x € R"is a basic solution of P if

- all equality constraints are active and
« there are n linearly independent constraints that are active.

A basic solution satisfying all constraints is a basic feasible solution.

Example:

basic infeasible —

solutions

\

basic feasible

solutions

/



— Characterization of Vertices and Extreme Points = :i»

Definition 3.20
B x" € R"is a basic solution of P if

- all equality constraints are active and

« there are n linearly independent constraints that are active.

[ A basic solution satisfying all constraints is a basic feasible solution.

Theorem 3.21 For x* € P, the following are equivalent:
H x"is avertex of P.

H x" is an extreme point of P.

M x" is a basic feasible solution of P.

We assume that P ¢ R" is a polyhedron defined by

aiT-xzbi with a; € R", b; € R for i € M,
al - x=1b with a; € R®, b; € R for i € N.



— Proof of Theorem 3.21: (iii) = (i)

« X" basic feasible solution, I := {ie MuN | a;r -x" = bi}

o for ¢ 1= Yy a;, we have

cT-x*=ZaiT~x*=Zb,-

i€l i€l
ch-x =ZaiT~x 2Zbl~ forallx € P
i€l iel

« since there are n linearly independent vectors in {g; | i € I}:

xEP,cT-x:Zbi = a x=bviel = x=x

i€l

Z
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I Proof of Theorem 3.21: (i) = (ii)
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- x'vertex=>3c€R": ¢'-x"<c'-y VyeP\{x'}

« for a contradiction assume x" is not an extreme point, i.e.,

X =Ay+(1-A)z withy,ze P\{x"}, A€[0,1].

. then,
ch-x=Ac-y+1-N)cz>c X 7
—— N———r
scTox >cl.x*



— Proof of Theorem 3.21: (ii) = (iii) =———————

- x" extreme point, I := {iEMuN |a] -x" = b,'}
. assume by contradiction that rank{a; | i€ I} < n

- there exists d € R"\ {0} with @ - d = Oforall i€ ]
cletx :=x"+edand y := x" — ed for some € > 0

- we claim that x, y € P for £ > 0 small enough

cfori€lal ~x=a -x'+eal -d=b
— ———

=b; =0

. fori&],a—ir-x= a?-x*+£a;r-d2 b; for € > 0 small enough
——
>bi
« the same holds for y instead of x
* = XY
Y
e
d X

a
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I Existence of Extreme Points
| Definition 3.22 A polyhedron P is called pointed if it contains at least one vertex.
Definition 3.23 A polyhedron P ¢ R" contains a line if there is x € P and a
direction d € R™\ {0} such that

x+A-d€eP forall A € R.

Theorem 3.24 Consider non-empty P ¢ R". The following are equivalent:
H Pis pointed.
H P does not contain a line.

@ rank{a;| i€ MuN} =n.




I Proof of Theorem 3.24
Thm 3.24: H P pointed <= H P contains no line < M rank(ApuN) = 1
H=H: x" € Pvertex == x" basic feasible solution
== There are n linearly independent constraints that are active at x".

== There are n linearly independent vectorsin {a; | i € M u N}.

[ = H: By contradiction assume that P contains a line.
That is, there are x € P, d € R™\ {0} with
x+AdeP forall A € R.
= a -(x+Ad)=al x+Aa] -d=b;YiEMuN, LeR
— a/-d=0VieMuN.
- rank{ai|i€MuN}<n.f



Proof of Theorem 3.24 (Cont.)

Thm 3.24: H P pointed <= H P contains no line < M rank(ApuN) = 1
H = H: Choose x€ P maximizing |I| with NcI := {iEMuN | al - x= bi}.

If rank{a; | i € I} = n, then x is a vertex and we are done.
Otherwise, there is d € R"\ {0} with a] - d = 0 forall i € I.

= a] -(x+Ad)=al -x=b forallie[1€eR.

Since P does not contain a line, x + 1’ d ¢ P for some 1’ € R.

= a] -(x+A"d)< biforsomei€ M\L

Assume w.l.o.g. A7 > 0 (otherwise replace d with —d) and let

Ao :=max{)t|aiT'(x+/1d)zb,~Vi€MuN} <M.

But then, there is an i € M\ I with a] - (x + Ao d) = b;.

= At least |I| + 1 constraints active at x + Ay d € P. 7
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— Existence of Extreme Points (Cont.)

Corollary 3.25
A A non-empty polytope contains an extreme point.
@ A non-empty polyhedron in standard form contains an extreme point.
Polyhedron P # @ is pointed if and only if rec(P) is pointed.
Proof: of [¥: P cannot contain a line because of the constraint x > 0:
x+Ad=0YA€eR = d=0.
Proof: of @: P has a line of direction d # 0 <= d € rec(P), -d € rec(P)

< {Ad : 1 € R} isaline of rec(P)
< rec(P) has a line of dir. d # 0 0

Example:
“ X + x =1
P={|x|er?} ™ 2=
x + 2x =0
X3
1 0

contains a linesince [1|+A-|0]€ P forallA€R.
0 1
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I Characterization of Polytopes
| Theorem 3.26 A polytope is equal to the convex hull of its vertices.
Proof: Follows from the equivalence of vertices, extreme points and basic feasible

solutions (Theorem 3.21); see exercise. O

Theorem 3.27 A set P ¢ R" is a polytope if and only if there exists a finite set
V < R" such that P is the convex hull of V.

Proof: ‘==": Follows from Theorem 3.26 since a polytope has only finitely many basic
feasible solutions (vertices).

‘——": See exercise session. O
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Faces and Facets

Definition 3.28 Let P ¢ R" be a polyhedron, c € R"\ {0} and y € R.

B The linear inequality ¢' - x > y is valid for Pif P ¢ {x el x> y}.

The hyperplane H = {x €ER"|c'-x= y} is a supporting hyperplane of P
ifc" - x = yisvalid for Pand Pn H # @.

The intersection of P with a supporting hyperplane is a face of P.
Also P and @ are faces of P; the others are called proper faces.

El The inclusion-wise maximal proper faces are called facets.

Remarks
- Every face of P is itself a polyhedron. _
- Every vertex of P is a 0-dimensional face of P.

- The optimal LP solutions form a face of the
underlying polyhedron.
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Characterization of Faces

Theorem 3.29 Consider a polyhedron P ¢ R" be defined by

aiT-xzbi fori € M,
a;r-x=bi fori € N,
and let F # @ be a face of P.

B There exists K € M with F = {x€P| al -x= biforalliGK}.

B For K c M, the subset {x€P|aiT-x: biforalliEK} is a face of P.

G c Fis aface of F if and only if it is a face of P.

Bl There is a chain of faces F = Fy < F; < - c F; = P such
that dim(Fj.;) = dim(F;) + 1,fori=0,...,q - 1.



I Proof of Theorem 3.29 (a)

B IKcM:F={x€P|a/x=bVieK}
LetK := {i€M| al -x= biforallxéF}.
Claim: F = {x€P| a] - x = b for all iGK}
‘c’: Clear by definition of K.
‘2’: Assume by contradiction that y € P\ F witha] -y = b; Vi€ K.
Let ¢" - x = y valid for P such that F = {xEP |t x= y}.
In particular, ¢’ - y > yasy € P\F.
For each i € M\ K there is an x' € F with a] - x' > b;.
Let xp := Wlm DMK x' € F (convex), thus ¢! - xy = Y-
Notice that a] - %y = b; Vi€ Kand a] - xy > b;Vi€e M\ K.
For & > 0 small enough, z := xy + &(xp — y) € P because:

=b forie Nuk,

T T T
a, rz=(1+¢a;, - xo—-¢€a; -
l A+oa-x-ca y[zbi forie M\K

Butc' -z=(1+e)c -x-ec -y<y.?



Proof of Theorem 3.29 (b)—(d)

B {x€P|a/x=bVieK}isafaceVK <M
Letc := Y g aiand y 1= Y icp bi
Then, ¢' - x = y is a valid inequality for P and for x € P

cT-x=y — a;" -x=DbiforalieK.

A G face of F < Gfaceof P VGc F
“—=:1fG={x€P|c"-x=y} cFwithc -x = yvalidfor P,
then G = {x€F| CT-x=y} and ¢ - x = y valid for F.

‘— F={x|a x2bVieM\K, a -x=bVvVieKuN}
for some K c M due to B. Since G is a face of F, again due to B,
G={x|a -x=bvieM\L a] -x=bVvieLuN}

for some K < L ¢ M. Thus, due to B, G is a face of P.

BFcFc Fq = P with dim(Fi+1) = M(Fi)-i-l, i=0,...,q—1

Follows from B-f and the Dimension Lemma (Lemma 3.17)



EE— Characterization of Faces (Cont.)

Corollary 3.30 Consider a polyhedron P ¢ R" be defined by
a,T-xzbi fori € M,
al - x=b fori € N.

B P has finitely many distinct faces.

B If Fis a facet of P, then dim(F) = dim(P) - 1.

An inclusion-wise minimal proper face F of P can be written as

F={x€eR"|a] -x=bforallieKuN}

B If Pis pointed, every minimal nonempty face of P is a vertex.

Proof: Exercise.

for some K ¢ M with rank{a; | i € Ku N} =rank{a; | i€ Mu N}.
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I Number of Vertices 335

Corollary 3.31
B A polyhedron has a finite number of vertices and basic solutions.

For a polyhedron in R" given by m linear inequalities, this number is at most (':)

X3

Example: A
P:={xeR'"|0=<sx=<1,i=1,.,n}(n 1
dimensional unit cube)

« number of constraints: m = 2n

« number of vertices: 2" X2 \/ X
note that (2;) = (m)ne2 2, on 1 1

1 2 n = 0
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I Optimality of Extreme Points
| Theorem 3.32 Let P ¢ R" a pointed polyhedron and ¢ € R™.

If min{ ¢ -x|x€ P} is bounded, there is a vertex that is optimal.

Corollary 3.33 Every linear programming problem is either infeasible or unbounded
or there exists an optimal solution.

Proof:

« every linear program is equivalent to an LP in standard form

- every polyhedron in standard form is pointed (Corollary 3.25)

« Theorem 3.32 implies the result O
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 — Edges, Extreme Rays, Extreme Lines

Definition 3.34 A one-dimensional face F of polyhedron P is
B an edge if F has two vertices,
ie,F = conv({x, y}) with x,y € R", x # y;

an extreme ray if F has one vertex,

ie,F=x+ cone({z}) with x € R", z€ R"\ {0};

an extreme line if F has no vertex,

ie,F=x+ lin({z}) with x € R", z € R"\ {0}.

L~




— Adjacent Basic Solutions and Edges —— 1

Definition 3.35 Let P < R" be a polyhedron. Two distinct basic solutions are
adjacent if there are n — 1 linearly independent constraints that are active at both of
them.

Observation 3.36 Let x, y € P with x # y be two adjacent basic feasible solutions,

then the line segment conv({x, y}) that joins them is an edge of P.

Proof:

. forz € {x,y},letl(z) :={i€e MuN | a/z= b;}

o let] :=I(x)nI(y), then |[I|=n-1

« by dimension Lemma 3.17, F = {x € P | a/ x = b; Vi € I} is a face of dimension 1

« again by Theorem 3.29, x and y are vertices of F, thus, by Theorem 3.26,
F = conv({x, y}) O



Introduction to

Linear and Combinatorial Optimization

3 Geometry of Linear Programming

3.6 Polyhedra in Standard Form



3|40

I Polyhedra in Standard Form

Let AER™™", beR™ and P={x€R"| A-x = b, x =0} apolyhedron in

standard form representation.

Observation.

One can assume without loss of generality that rank(A) = m.
Proof: Let aj ..., a;, € R" rows of A. Assume that a; = D - aj.
Case 1: b; = Z#i/lj bj. Then,

a x=b Vjti = a -x=) X-(a-x)=) Ab=b
J#i J#i
Thus the ith constraint is redundant and can be deleted.

Case 2: b; # Z#i Aibj == A-x = bhas no solution. O



— Basic Solutions of Polyhedra in Standard Form —:«
Let A € R™" with rank(A) = m, b € R™, and

P={x€]R”|A-x=b,sz}

Theorem 3.37 A point x € R" is a basic solution of P if and only if A- x = b and
there are indices B(1), ..., B(m) € {1,..., n} such that

« columns Ag), ... , Ap(m) of matrix A are linearly independent, and

« x;=0forall i ¢ {B(1),..., B(m)}.

Remarks

* XB(1)s -+ » XB(m) are basic variables, the remaining variables non-basic
- the vector of basic variables is denoted by xp : = (xp(1), ..., Xp(m) "
« AR1)s - » Ap(m) are basic columns of A and form a basis of R™

« matrix A := (Agq), ..., Ap(m)) € R™™ is called basis matrix



Proof of Theorem 3.37 3142

« »

p—g

. let x € R" be a basic solution of P, Ax = b is clear by definition.

- there are n linearly independent constraints active at x, i.e., Ax = band x; = 0 for
some N c {1,...,n} with|[N|=n-m

- wlog,N={m+1,...,n}

| |
AB(I) AB(m) *

a8
b

| | x=: (3.1)
0
L[]

« block diagonal matrix has determinant
det([Apq), .., Ap(m)]) det(l,-m) = det([Apg), .., Apim)])
- implies Ap(y), ..., Ap(m) linearly independent

<

« active constraints yield matrix as in (3.1)
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— Corollary: Carathéodory’s Theorem

Theorem 3.38 (Carathéodory, 1911) For S ¢ R", every element of conv(S) can
be written as a convex combination of at most n + 1 points in S.

Proof: Consider x € conv(S). Then x can be written as

k k
x=Z)Li’yi withyl,...,ykESandZ/li/=1,/1’20.
i=1

i=1

Consider the following polyhedron in standard form:

k k
P={)L€]Rk|z/1,~y,-=x, ZA,'=1,/120}.
i=1 i=1

n+1 equality constraints

A basic feasible solution A" € P yields the desired representation of x. O
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E— Basic Columns and Basic Solutions
Observation 3.39 Let x € R" be a basic solution, then:
« Ag-xg = bandthus xg = A]_31 A
« X is a basic feasible solution if and only if xg = Aél -b=0.
Example: m = 2 A; A b

Ay

A 4

Ay A
= _Al 2

« Ay, As or Ay, A3 form bases with corresp. basic feasible solutions.
« Aj, A4 do not form a basis.
. A1, Ay and Ay, A4 and A3, A4 form bases with infeasible basic solution.




I Bases and Basic Solutions

Corollary 3.40
. Every basis B(1),..., B(m) determines a unique basic solution.
« Thus, different basic solutions correspond to different bases.

- But: two different bases might yield the same basic solution.

Example: If b = 0, then x = 0 is the only basic solution.



Adjacent Bases 346

Definition 3.41 Two bases B(1), ..., B(m) and B’(1), ..., B’(m) are adjacent if
[{BQ),...,B(m)} n {B’(1),...,B’(m)}| = m - 1.

Observation 3.42

B Two adjacent basic solutions can always be obtained from two adjacent bases.

[ If two adjacent bases lead to distinct basic solutions, then the latter are adjacent.
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Definition 3.43 A basic solution x of a polyhedron P ¢ R" is degenerate if more

than n constraints are active at x.

Observation 3.44 Let P = {x € R" | A- x = b, x = 0} be a polyhedron in
standard form with A € R™", rank(A) = m, and b € R™.

A basic solution x € P is degenerate if and only if more than n — m components

of x are zero.

[@ For a non-degenerate basic solution x € P, there is a unique basis.



— Three Different Reasons for Degeneracy

redundant variables

Example: X+ X
X3
X1, X2, X3
redundant constraints
Example: x1 + 2x <3

2x; + X, =<3
x o+ Xy <2

X1, X2 >0

geometric reasons (non-simple polyhedra)

Example: Octahedron

1 10
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