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Definition 3.1
Let x1, … , xk ∈ ℝn, � = (�1, … , �k) ∈ ℝk, and x ∶= ∑k

i=1 �ixi.
a x is a linear combination of x1, … , xk.

b If � ≥ 0, then x is a conic combination of x1, … , xk.

c If ∑k
i=1 �i = 1, then x is an affine combination of x1, … , xk.

d If � ≥ 0 and ∑k
i=1 �i = 1, x is a convex combination of x1, … , xk.

If � ∉ {0, e1, … , en}, then x is a proper linear/conic/affine/convex combination.

0
x1

x2
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Definition 3.2 Let ∅ ≠ S ⊆ ℝn.

a the linear hull lin(S) is the set of vectors that can be wri�en as a linear
combination of finitely many vectors from S; lin(∅) = {0}.

b the conic hull cone(S) is the set of vectors that can be wri�en as a conic
combination of finitely many vectors from S; cone(∅) = {0}

c the affine hull aff(S) is the set of vectors that can be wri�en as an affine
combination of finitely many vectors from S; aff(∅) = ∅

d the convex hull conv(S) is the set of vectors that can be wri�en as a convex
combination of finitely many vectors from S; conv(∅) = ∅
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Definition 3.3
a S ⊆ ℝn is a linear subspace of ℝn, if S = lin(S).
b S ⊆ ℝn is a (convex) cone, if S = cone(S).
c S ⊆ ℝn is an affine subspace of ℝn, if S = aff(S).
d S ⊆ ℝn is called convex, if S = conv(S).
Remark

in Definition 1.1, we defined a set S ⊆ ℝn to be convex if �x + (1 − �)y ∈ S for all
x,y ∈ S, � ∈ [0, 1]
both definitions are equivalent:

S convex wrt. Def. 3.3 ⇒ S convex wrt. Def. 1.1 is obvious
let S convex wrt. Def. 1.1, x1, … , xk ∈ S and x = ∑k

i=1 �ixi, ∑k
i=1 �i = 1, � ≥ 0.

We show by induction on k that x ∈ S; (This is trivial for k = 1).
So assume all convex combinations up to k − 1 elements of S lie in S. Then,
x = ∑k

i=1 �ixi = (1 − �k)y + �kxk , with y ∶= ∑k−1
i=1 �i

1−�k xi
y is a convex combination of k − 1 elements, so y ∈ S by induction.
Hence x ∈ S by Def. 1.1
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Lemma 3.4 Let S ⊆ ℝn.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lin(S)

cone(S)
aff(S)

conv(S)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ is the ⊆-smallest

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
linear subspace

cone
affine subspace

convex set

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ containing S.
Proof:

conv(S) is a convex set since conv(conv(S)) = conv(S)
for any convex set X ⊇ S, it holds that X = conv(X) ⊇ conv(S)
similar for lin(S), cone(S), and aff(S)
Lemma 3.5 Families of linear subspaces / cones / affine subspaces / convex sets inℝn are closed under taking intersections.

Proof: Let (Cj)j∈J be a family of cones, J arbitrary. We show cone(⋂j∈J Cj) = ⋂j∈J Cj .

“⊇” is obvious

for “⊆”: cone(⋂j∈J Cj) ⊆ ⋂j∈J cone(Cj) = ⋂j∈J Cj

similar for lin, aff, and conv
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Definition 3.6 A finite non-empty subset S ⊆ ℝn is linearly (affinely) independent,
if no element of S can be wri�en as a proper linear (affine) combination of elements
from S.

Definition 3.7 The dimension dim(S) of a subset S ⊆ ℝn is the largest cardinality
of an affinely independent subset of S minus 1.

Remarks
for a linear subspace S ⊆ ℝn, dim(S) according to Definition 3.7 is equal to the
maximal number of linearly independent vectors in S

“≥”: adding the zero-vector to a linearly independent set of vectors yields
an affinely independent set
“≤”: if v1, … , vk, vk+1 are affinely independent, then
v1 − vk+1, … , vk − vk+1 are linearly independent
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Definition 3.8 Let a ∈ ℝn ⧵ {0} and b ∈ ℝ.

a {x ∈ ℝn ∣ a⊤ ⋅ x = b} is called hyperplane

b {x ∈ ℝn ∣ a⊤ ⋅ x ≥ b} is called halfspace

Remarks
A hyperplane is an affine subspace of dimension n − 1.

A hyperplane with right-hand side b = 0 is a linear
subspace.

Hyperplanes and halfspaces are cones if and only
if b = 0.

Hyperplanes and halfspaces are convex sets.

in dimension 2

x1

x2

b/a1
b/a2 a

in dimension 3
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x2
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b/a1
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Theorem 3.9 Let S ⊆ ℝn closed and convex, and let x∗ ∈ ℝn ⧵ S. There exists a
vector c ∈ ℝn such that c⊤ ⋅ x∗ < c⊤ ⋅ x for all x ∈ S.

S
c

separating hyperplane

x∗

Corollary 3.10 Every closed and convex set is the intersection of a family of
halfspaces.
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For arbitrary w ∈ S let B ∶= {
x ||| ‖x − x∗‖ ≤ ‖w − x∗‖}, ||.|| ∶= ||.||2⟹ D ∶= S ∩ B closed, bounded, non-empty⟹ ∃ x ′ ∈ D ∶ ‖x ′ − x∗‖ ≤ ‖x − x∗‖ ∀ x ∈ D⟹ ‖x ′ − x∗‖ ≤ ‖x − x∗‖ ∀ x ∈ S (∗)

Claim: c⊤x > c⊤x∗ with c ∶= x ′ − x∗ ≠ 0 ∀ x ∈ S
Proof:
For all x ∈ S and � ∈ (0, 1] ∶ x ′ + � (x − x ′) ∈ S⟹ ‖x ′−x∗‖2 (∗)≤ ‖x ′ + �(x − x ′) − x∗‖2=‖x ′−x∗‖2+2�(x ′−x∗)⊤(x−x ′)+�2‖x−x ′‖2⟹ 0 ≤ (x ′ − x∗)⊤(x − x ′) + 1

2�‖x − x ′‖2�→0⟹ 0 ≤ (x ′ − x∗)⊤(x − x ′) = c⊤(x − x ′)⟹ c⊤x ≥ c⊤x ′=c⊤x∗+c⊤(x ′−x∗)=c⊤x∗+‖c‖2>c⊤x∗

S

B
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Definition 3.11 Let A ∈ ℝm×n and b ∈ ℝm.

a
{
x ∈ ℝn ∣ A ⋅ x ≥ b

}
is called polyhedron

b
{
x ∈ ℝn ∣ A ⋅ x = b, x ≥ 0

}
is a polyhedron in standard form representation

a polyhedron is an intersection of finitely many halfspaces.

Definition 3.12
a Set S ⊆ ℝn is bounded if there is K ∈ ℝ such that‖x‖∞ ≤ K for all x ∈ S.

b A bounded polyhedron is called polytope.
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Definition 3.13 For A ∈ ℝm×n the polyhedron
{
x ∈ ℝn ∣ A ⋅ x ≥ 0

}
is a

polyhedral cone.

cone {0} is the only polyhedral cone in ℝn that is a polytope.

Definition 3.14 For a non-empty polyhedron P = {
x ∈ ℝn ∣ A ⋅ x ≥ b

}
, the

recession cone rec(P) is the polyhedral cone
{
x ∈ ℝn ∣ A ⋅ x ≥ 0

}
. The non-zero

elements of the recession cone are the rays of P.

Example in ℝ2:

P

rec(P)
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Lemma 3.15 For a non-empty polyhedron P = {x ∈ ℝn ∣ A ⋅ x ≥ b} and y ∈ P,

rec(P) = {
x ∈ ℝn ∣ y + � ⋅ x ∈ P for all � ≥ 0

}.
In particular, if P is a polytope, rec(P) = {0}.

Proof: For a non-empty polyhedron P = {
x ∈ ℝn ∣ A ⋅ x ≥ b

}
and y ∈ P,{

x ∈ ℝn ∣ y + � ⋅ x ∈ P ∀� ≥ 0
} = {

x ∈ ℝn ∣ A ⋅ (y + � ⋅ x) ≥ b ∀� ≥ 0
}

= {
x ∈ ℝn ∣ A ⋅ x ≥ 0

}.
the recession cone of P = {

x ∈ ℝn ∣ A ⋅ x = b, x ≥ 0
}

is{
x ∈ ℝn ∣ A ⋅ x = 0, x ≥ 0

}
proof via {x ∈ ℝn ∣ Ax = b, x ≥ 0} = ⎧⎪⎪⎨⎪⎪⎩x ∈ ℝn

||||| ⎡⎢⎢⎣
A−A
I

⎤⎥⎥⎦ x ≥
⎡⎢⎢⎣
b−b
0

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
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In the following, let P ⊆ ℝn be a polyhedron defined by

a⊤i ⋅ x ≥ bi for i ∈ M,

a⊤i ⋅ x = bi for i ∈ N ,

with ai ∈ ℝn and bi ∈ ℝ, for all i.

Definition 3.16 If x∗ ∈ ℝn satisfies a⊤i ⋅ x∗ = bi for some i, then the corresponding
constraint is active (or binding) at x∗.
Lemma 3.17 (Dimension Lemma)
If P ≠ ∅ and none of the constraints a⊤i ⋅ x ≥ bi for i ∈ M is active for all x ∈ P,
then dim(P) = n − rank

{
ai ∣ i ∈ N

}
.

Proof:

let AN be the matrix consisting of the rows a⊤i , i ∈ N

rank-nullity theorem: n = rank(AN ) + dim(ker(AN ))
left to show: dim(P) = dim(ker(AN ))



Proof of Lemma 3.17 (Cont.) 3 | 16dim(ker(AN )) ≥ dim(P) =∶ k:

there are k + 1 affinely independent vectors x0, x1, … , xk ∈ P

x1 − x0, … , xk − x0 are linearly independent and satisfy AN (xi − x0) = 0 for all
i = 1, … , kdim(ker(AN )) ≥ dim(P)

l ∶= dim(ker(AN )) ≤ dim(P):
let xj ∈ ℝn, j = 1, … , l, linearly independent with ANxj = 0 ∀j
for i ∈ M, let yi ∈ P with a⊤i ⋅ yi > bi

let y ∶= 1|M| ∑i∈M yi ∈ P, then a⊤i ⋅ y > bi for all i ∈ M

for " > 0 small enough, a⊤i ⋅ (y + " xj) ≥ bi for all i ∈ M, j = 1, … , l.
y + " xj ∈ P for j = 1, … , l{y} ∪ {y + " xj ∣ j ∈ {1, … , l}} affinely independentdim(P) ≥ l.
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Definition 3.18 Let P ⊆ ℝn be a polyhedron.

a x ∈ P is an extreme point of P if

x ≠ � ⋅ y + (1 − �) ⋅ z for all y, z ∈ P ⧵ {x}, 0 ≤ � ≤ 1,

i.e., x is not a convex combination of two other points in P.

b x ∈ P is a vertex of P if there is some c ∈ ℝn such that

c⊤ ⋅ x < c⊤ ⋅ y for all y ∈ P ⧵ {x},

i.e., x is the unique optimal solution to the LP min{c⊤ ⋅ z ∣ z ∈ P}.

the only possible extreme point or vertex
of a polyhedral cone C is 0 ∈ C

P
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Theorem 3.19 Let x∗ ∈ ℝn and I = {i ∣ a⊤i ⋅ x∗ = bi}. The following are equivalent:

i There are n vectors in {ai ∣ i ∈ I} which are linearly independent.

ii The vectors in {ai ∣ i ∈ I} span ℝn, i.e. lin({ai ∣ i ∈ I}) = ℝn.

iii x∗ is the unique solution to the system of equations a⊤i ⋅ x = bi, i ∈ I .
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Definition 3.20
a x∗ ∈ ℝn is a basic solution of P if

all equality constraints are active and
there are n linearly independent constraints that are active.

b A basic solution satisfying all constraints is a basic feasible solution.

Example:

basic feasible
solutions

basic infeasible
solutions

Theorem 3.21 For x∗ ∈ P, the following are equivalent:

i x∗ is a vertex of P.

ii x∗ is an extreme point of P.

iii x∗ is a basic feasible solution of P.

We assume that P ⊆ ℝn is a polyhedron defined by

a⊤i ⋅ x ≥ bi with ai ∈ ℝn, bi ∈ ℝ for i ∈ M,

a⊤i ⋅ x = bi with ai ∈ ℝn, bi ∈ ℝ for i ∈ N .
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x∗ basic feasible solution, I ∶= {
i ∈ M ∪ N ∣ a⊤i ⋅ x∗ = bi

}
for c ∶= ∑i∈I ai, we have

c⊤ ⋅ x∗ = ∑
i∈I a⊤i ⋅ x∗ = ∑

i∈I bi
c⊤ ⋅ x = ∑

i∈I a⊤i ⋅ x ≥ ∑
i∈I bi for all x ∈ P

since there are n linearly independent vectors in {ai ∣ i ∈ I}:

x ∈ P, c⊤ ⋅ x = ∑
i∈I bi ⟺ a⊤i ⋅ x = bi ∀ i ∈ I ⟺ x = x∗

x∗
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x∗ vertex ⟹∃ c ∈ ℝn ∶ c⊤ ⋅ x∗ < c⊤ ⋅ y ∀y ∈ P ⧵ {x∗}
for a contradiction assume x∗ is not an extreme point, i.e.,

x∗ = �y + (1 − �)z with y, z ∈ P ⧵ {x∗}, � ∈ [0, 1].
then,

c⊤ ⋅ x∗ = � c⊤ ⋅ y⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟>c⊤⋅x∗ +(1 − �) c⊤ ⋅ z⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟>c⊤⋅x∗ > c⊤ ⋅ x∗ E

x∗
z

y
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x∗ extreme point, I ∶= {
i ∈ M ∪ N ∣ a⊤i ⋅ x∗ = bi

}
assume by contradiction that rank{ai ∣ i ∈ I} < n
there exists d ∈ ℝn ⧵ {0} with a⊤i ⋅ d = 0 for all i ∈ I
let x ∶= x∗ + "d and y ∶= x∗ − "d for some " > 0
we claim that x,y ∈ P for " > 0 small enough

for i ∈ I , a⊤i ⋅ x = a⊤i ⋅ x∗⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟=bi +" a⊤i ⋅ d⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟=0 = bi

for i ∉ I , a⊤i ⋅ x = a⊤i ⋅ x∗⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟>bi +" a⊤i ⋅ d ≥ bi for " > 0 small enough

the same holds for y instead of x
x∗ = x+y

2 E

a1

x∗
d x

y
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Definition 3.22 A polyhedron P is called pointed if it contains at least one vertex.

Definition 3.23 A polyhedron P ⊆ ℝn contains a line if there is x ∈ P and a
direction d ∈ ℝn ⧵ {0} such that

x + � ⋅ d ∈ P for all � ∈ ℝ.

Theorem 3.24 Consider non-empty P ⊆ ℝn. The following are equivalent:

i P is pointed.

ii P does not contain a line.

iii rank{ai ∣ i ∈ M ∪ N} = n.
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Thm 3.24: i P pointed ⇔ ii P contains no line ⇔ iii rank(AM∪N ) = n
i ⇒ iii : x∗ ∈ P vertex ⟹ x∗ basic feasible solution⟹ There are n linearly independent constraints that are active at x∗.⟹ There are n linearly independent vectors in {ai ∣ i ∈ M ∪ N}.

iii ⇒ ii : By contradiction assume that P contains a line.

That is, there are x ∈ P, d ∈ ℝn ⧵ {0} with

x + � d ∈ P for all � ∈ ℝ.⟹ a⊤i ⋅ (x + � d) = a⊤i ⋅ x + � a⊤i ⋅ d ≥ bi ∀ i ∈ M ∪ N , � ∈ ℝ⟹ a⊤i ⋅ d = 0 ∀ i ∈ M ∪ N .⟹ rank{ai ∣ i ∈ M ∪ N} < n. E
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Thm 3.24: i P pointed ⇔ ii P contains no line ⇔ iii rank(AM∪N ) = n

ii ⇒ i : Choose x∈P maximizing |I | with N ⊆ I ∶= {
i∈M∪N ∣ a⊤i ⋅ x=bi}.

If rank{ai ∣ i ∈ I} = n, then x is a vertex and we are done.

Otherwise, there is d ∈ ℝn ⧵ {0} with a⊤i ⋅ d = 0 for all i ∈ I .⟹ a⊤i ⋅ (x + � d) = a⊤i ⋅ x = bi for all i ∈ I , � ∈ ℝ.

Since P does not contain a line, x + � ′ d ∉ P for some � ′ ∈ ℝ.⟹ a⊤i ⋅ (x + � ′ d) < bi for some i ∈ M ⧵ I .
Assume w.l.o.g. � ′ > 0 (otherwise replace d with −d) and let�0 ∶= max{� ∣ a⊤i ⋅ (x + � d) ≥ bi ∀ i ∈ M ∪ N} < � ′.
But then, there is an i ∈ M ⧵ I with a⊤i ⋅ (x + �0 d) = bi.⟹ At least |I | + 1 constraints active at x + �0 d ∈ P. E



Existence of Extreme Points (Cont.) 3 | 27

Corollary 3.25
a A non-empty polytope contains an extreme point.

b A non-empty polyhedron in standard form contains an extreme point.

c Polyhedron P ≠ ∅ is pointed if and only if rec(P) is pointed.

Proof: of b : P cannot contain a line because of the constraint x ≥ 0:

x + �d ≥ 0, ∀� ∈ ℝ ⟹ d = 0.
Proof: of c : P has a line of direction d ≠ 0 ⟺ d ∈ rec(P), −d ∈ rec(P)⟺ {�d ∶ � ∈ ℝ} is a line of rec(P)⟺ rec(P) has a line of dir. d ≠ 0
Example:

P = ⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
x1
x2
x3

⎞⎟⎟⎠ ∈ ℝ3
||||| x1 + x2 ≥ 1
x1 + 2 x2 ≥ 0

⎫⎪⎪⎬⎪⎪⎭
contains a line since

⎛⎜⎜⎝
1
1
0

⎞⎟⎟⎠ + � ⋅
⎛⎜⎜⎝
0
0
1

⎞⎟⎟⎠ ∈ P for all � ∈ ℝ.
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Theorem 3.26 A polytope is equal to the convex hull of its vertices.

Proof: Follows from the equivalence of vertices, extreme points and basic feasible
solutions (Theorem 3.21); see exercise.

Theorem 3.27 A set P ⊆ ℝn is a polytope if and only if there exists a finite set
V ⊆ ℝn such that P is the convex hull of V .

Proof: ‘⟹’: Follows from Theorem 3.26 since a polytope has only finitely many basic
feasible solutions (vertices).

‘⟸’: See exercise session.
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Definition 3.28 Let P ⊆ ℝn be a polyhedron, c ∈ ℝn ⧵ {0} and 
 ∈ ℝ.

a The linear inequality c⊤ ⋅ x ≥ 
 is valid for P if P ⊆ {
x ∣ c⊤ ⋅ x ≥ 
}.

b The hyperplane H = {
x ∈ ℝn ∣ c⊤ ⋅ x = 
} is a supporting hyperplane of P

if c⊤ ⋅ x ≥ 
 is valid for P and P ∩ H ≠ ∅.

c The intersection of P with a supporting hyperplane is a face of P.
Also P and ∅ are faces of P; the others are called proper faces.

d The inclusion-wise maximal proper faces are called facets.

Remarks
Every face of P is itself a polyhedron.

Every vertex of P is a 0-dimensional face of P.

The optimal LP solutions form a face of the
underlying polyhedron.

c



Characterization of Faces 3 | 31

Theorem 3.29 Consider a polyhedron P ⊆ ℝn be defined by

a⊤i ⋅ x ≥ bi for i ∈ M,

a⊤i ⋅ x = bi for i ∈ N ,

and let F ≠ ∅ be a face of P.

a There exists K ⊆ M with F = {
x ∈ P ∣ a⊤i ⋅ x = bi for all i ∈ K

}
.

b For K ⊆ M, the subset
{
x ∈ P ∣ a⊤i ⋅ x = bi for all i ∈ K

}
is a face of P.

c G ⊆ F is a face of F if and only if it is a face of P.

d There is a chain of faces F = F0 ⊂ F1 ⊂ ⋯ ⊂ Fq = P such
that dim(Fi+1) = dim(Fi) + 1, for i = 0, … ,q − 1.
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a ∃K ⊆ M ∶ F = {x ∈ P ∣ a⊤i x = bi ∀i ∈ K}
Let K ∶= {

i ∈ M ∣ a⊤i ⋅ x = bi for all x ∈ F
}

.

Claim: F = {
x ∈ P ∣ a⊤i ⋅ x = bi for all i ∈ K

}
‘⊆’: Clear by definition of K .
‘⊇’: Assume by contradiction that y ∈ P ⧵ F with a⊤i ⋅ y = bi ∀ i ∈ K .

Let c⊤ ⋅ x ≥ 
 valid for P such that F = {
x ∈ P ∣ c⊤ ⋅ x = 
}.

In particular, c⊤ ⋅ y > 
 as y ∈ P ⧵ F .
For each i ∈ M ⧵ K there is an xi ∈ F with a⊤i ⋅ xi > bi.
Let x0 ∶= 1|M⧵K | ∑i∈M⧵K xi ∈ F (convex), thus c⊤ ⋅ x0 = 
 .

Notice that a⊤i ⋅ x0 = bi ∀ i ∈ K and a⊤i ⋅ x0 > bi ∀ i ∈ M ⧵ K .
For " > 0 small enough, z ∶= x0 + "(x0 − y) ∈ P because:

a⊤i ⋅ z = (1 + ") a⊤i ⋅ x0 − " a⊤i ⋅ y{= bi for i ∈ N ∪ K ,≥ bi for i ∈ M ⧵ K
But c⊤ ⋅ z = (1 + ") c⊤ ⋅ x0 − " c⊤ ⋅ y < 
 . E
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b {x ∈ P ∣ a⊤i x = bi ∀i ∈ K} is a face ∀K ⊆ M
Let c ∶= ∑i∈K ai and 
 ∶= ∑i∈K bi.

Then, c⊤ ⋅ x ≥ 
 is a valid inequality for P and for x ∈ P

c⊤ ⋅ x = 
 ⟺ ai⊤ ⋅ x = bi for all i ∈ K .

c G face of F ⇔ G face of P ∀G ⊆ F
‘⟸’: If G = {

x ∈ P ∣ c⊤ ⋅ x = 
} ⊆ F with c⊤ ⋅ x ≥ 
 valid for P,

then G = {
x ∈ F ∣ c⊤ ⋅ x = 
} and c⊤ ⋅ x ≥ 
 valid for F .

‘⟹’: F = {
x ∣ a⊤i ⋅ x ≥ bi ∀ i ∈ M ⧵ K, a⊤i ⋅ x = bi ∀ i ∈ K ∪ N}

for some K ⊆ M due to a . Since G is a face of F , again due to a ,

G = {
x ∣ a⊤i ⋅ x ≥ bi ∀ i ∈ M ⧵ L, a⊤i ⋅ x = bi ∀ i ∈ L ∪ N}

for some K ⊆ L ⊆ M. Thus, due to b , G is a face of P.

d F0 ⊂ F1 ⊂ … Fq = P with dim(Fi+1) = dim(Fi)+1, i=0, … ,q−1
Follows from a – c and the Dimension Lemma (Lemma 3.17)
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Corollary 3.30 Consider a polyhedron P ⊆ ℝn be defined by

a⊤i ⋅ x ≥ bi for i ∈ M,

a⊤i ⋅ x = bi for i ∈ N .
a P has finitely many distinct faces.

b If F is a facet of P, then dim(F) = dim(P) − 1.

c An inclusion-wise minimal proper face F of P can be wri�en as

F = {
x ∈ ℝn ∣ a⊤i ⋅ x = bi for all i ∈ K ∪ N}

for some K ⊆ M with rank{ai ∣ i ∈ K ∪ N} = rank{ai ∣ i ∈ M ∪ N}.

d If P is pointed, every minimal nonempty face of P is a vertex.

Proof: Exercise.



Number of Vertices 3 | 35

Corollary 3.31
a A polyhedron has a finite number of vertices and basic solutions.

b For a polyhedron in ℝn given by m linear inequalities, this number is at most (mn).

Example:

P ∶= {x ∈ ℝn ∣ 0 ≤ xi ≤ 1, i = 1, … ,n} (n-
dimensional unit cube)

number of constraints: m = 2n
number of vertices: 2n
note that (2nn ) = (n+1)

1
n+2
2 ⋯ 2n

n ≥ 2n
x1x2

0

x3

11

1
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Theorem 3.32 Let P ⊆ ℝn a pointed polyhedron and c ∈ ℝn.
If min{c⊤ ⋅ x ∣ x ∈ P

}
is bounded, there is a vertex that is optimal.

Corollary 3.33 Every linear programming problem is either infeasible or unbounded
or there exists an optimal solution.

Proof:

every linear program is equivalent to an LP in standard form

every polyhedron in standard form is pointed (Corollary 3.25)

Theorem 3.32 implies the result
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Definition 3.34 A one-dimensional face F of polyhedron P is

a an edge if F has two vertices,
i.e., F = conv({x,y}) with x,y ∈ ℝn, x ≠ y;

b an extreme ray if F has one vertex,
i.e., F = x + cone({z}) with x ∈ ℝn, z ∈ ℝn ⧵ {0};

c an extreme line if F has no vertex,
i.e., F = x + lin({z}) with x ∈ ℝn, z ∈ ℝn ⧵ {0}.
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Definition 3.35 Let P ⊆ ℝn be a polyhedron. Two distinct basic solutions are
adjacent if there are n − 1 linearly independent constraints that are active at both of
them.

Observation 3.36 Let x,y ∈ P with x ≠ y be two adjacent basic feasible solutions,
then the line segment conv({x,y}) that joins them is an edge of P.

Proof:

for z ∈ {x,y}, let I(z) ∶= {i ∈ M ∪ N ∣ a⊤i z = bi}
let I ∶= I(x) ∩ I(y), then |I | = n − 1
by dimension Lemma 3.17, F = {x ∈ P ∣ a⊤i x = bi ∀i ∈ I} is a face of dimension 1
again by Theorem 3.29, x and y are vertices of F , thus, by Theorem 3.26,
F = conv({x,y})
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Let A ∈ ℝm×n, b ∈ ℝm, and P = {x ∈ ℝn ∣ A ⋅ x = b, x ≥ 0} a polyhedron in
standard form representation.

Observation.
One can assume without loss of generality that rank(A) = m.

Proof: Let a⊤1 , … , a⊤m ∈ ℝn rows of A. Assume that ai = ∑j≠i �j ⋅ aj .
Case 1: bi = ∑j≠i �j bj . Then,

a⊤j ⋅ x = bj ∀ j ≠ i ⟹ a⊤i ⋅ x = ∑
j≠i �j ⋅ (a⊤j ⋅ x) = ∑

j≠i �j bj = bi.
Thus the ith constraint is redundant and can be deleted.

Case 2: bi ≠ ∑j≠i �j bj ⟹ A ⋅ x = b has no solution.
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Let A ∈ ℝm×n with rank(A) = m, b ∈ ℝm, and

P = {
x ∈ ℝn ∣ A ⋅ x = b, x ≥ 0

}
Theorem 3.37 A point x ∈ ℝn is a basic solution of P if and only if A ⋅ x = b and
there are indices B(1),… ,B(m) ∈ {1, … ,n} such that

columns AB(1), … ,AB(m) of matrix A are linearly independent, and

xi = 0 for all i ∉ {B(1),… ,B(m)}.

Remarks
xB(1), … , xB(m) are basic variables, the remaining variables non-basic

the vector of basic variables is denoted by xB ∶= (xB(1), … , xB(m))⊤
AB(1), … ,AB(m) are basic columns of A and form a basis of ℝm

matrix AB ∶= (AB(1), … ,AB(m)) ∈ ℝm×m is called basis matrix
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“⇒”

let x ∈ ℝn be a basic solution of P, Ax = b is clear by definition.
there are n linearly independent constraints active at x, i.e., Ax = b and xi = 0 for
some N ⊂ {1, … ,n} with |N | = n −m
w.l.o.g., N = {m + 1, … ,n}⎡⎢⎢⎢⎢⎢⎢⎣

| |
AB(1) … AB(m) ∗| |

0 In−m

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

|||||
x|||||

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

|
b||
0|

⎤⎥⎥⎥⎥⎥⎥⎦
(3.1)

block diagonal matrix has determinantdet([AB(1), … ,AB(m)]) det(In−m) = det([AB(1), … ,AB(m)])
implies AB(1), … ,AB(m) linearly independent

“⇐”

active constraints yield matrix as in (3.1)
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Theorem 3.38 (Carathéodory, 1911) For S ⊆ ℝn, every element of conv(S) can
be wri�en as a convex combination of at most n + 1 points in S.

Proof: Consider x ∈ conv(S). Then x can be wri�en as

x = k∑
i=1 � ′i yi with y1, … ,yk ∈ S and

k∑
i=1 � ′i = 1, � ′ ≥ 0.

Consider the following polyhedron in standard form:

P = {� ∈ ℝk ||| k∑
i=1 �i yi = x, k∑

i=1 �i = 1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
n+1 equality constraints

, � ≥ 0
}.

A basic feasible solution �∗ ∈ P yields the desired representation of x.
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Observation 3.39 Let x ∈ ℝn be a basic solution, then:

AB ⋅ xB = b and thus xB = A−1
B ⋅ b;

x is a basic feasible solution if and only if xB = A−1
B ⋅ b ≥ 0.

Example: m = 2

A1

A2

A3

A4= −A1

b

A1,A3 or A2,A3 form bases with corresp. basic feasible solutions.

A1,A4 do not form a basis.

A1,A2 and A2,A4 and A3,A4 form bases with infeasible basic solution.
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Corollary 3.40
Every basis B(1),… ,B(m) determines a unique basic solution.

Thus, different basic solutions correspond to different bases.

But: two different bases might yield the same basic solution.

Example: If b = 0, then x = 0 is the only basic solution.
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Definition 3.41 Two bases B(1),… ,B(m) and B′(1),… ,B′(m) are adjacent if|{B(1),… ,B(m)} ∩ {B′(1),… ,B′(m)}| = m − 1.

Observation 3.42
a Two adjacent basic solutions can always be obtained from two adjacent bases.

b If two adjacent bases lead to distinct basic solutions, then the la�er are adjacent.
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Definition 3.43 A basic solution x of a polyhedron P ⊆ ℝn is degenerate if more
than n constraints are active at x.

Observation 3.44 Let P = {x ∈ ℝn ∣ A ⋅ x = b, x ≥ 0} be a polyhedron in
standard form with A ∈ ℝm×n, rank(A) = m, and b ∈ ℝm.

a A basic solution x ∈ P is degenerate if and only if more than n −m components
of x are zero.

b For a non-degenerate basic solution x ∈ P, there is a unique basis.
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i redundant variables
Example: x1 + x2 = 1

x3 = 0
x1, x2, x3 ≥ 0

⟷ A = (1 1 0
0 0 1)

ii redundant constraints
Example: x1 + 2 x2 ≤ 3

2 x1 + x2 ≤ 3
x1 + x2 ≤ 2

x1, x2 ≥ 0

iii geometric reasons (non-simple polyhedra)

Example: Octahedron


