Introduction to

Linear and Combinatorial Optimization

4.1 Basic Version

Basic Idea

Rough Description of Simplex Algorithm

- Start from a basic feasible solution
- In each iteration, move to a better adjacent vertex
- ... until no further improvement can be found

Linear Program in Standard Form

4 3

Throughout this section, we consider the following standard form problem:

minimize $c^{\top}x$ subject to $A \cdot x = b$ $x \ge 0$

with $A \in \mathbb{R}^{m \times n}$, rank $(A) = m, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$

Some Notation

• a basis is a vector $B = (B(1), \dots, B(m))$ with

 $\{B(1), \dots, B(m)\} \subseteq \{1, \dots, n\}$ and $\operatorname{rank}(A_{B(1)}, \dots, A_{B(m)}) = m$

• for a basis *B*, a corresponding non-basis is a vector

$$N = (N(1), \dots, N(n - m)) \text{ with}$$

{B(1), \dots, B(m)} \cup {N(1), \dots, N(n - m)} = {1, \dots, n}

- we write $j \in B$ if j = B(i) for some $i \in \{1, ..., m\}$ and $j \in N$ if j = N(i) for some $j \in \{1, ..., n m\}$
- for $x \in \mathbb{R}^n$, the basic vector is $x_B = (x_{B(1)}, \dots, x_{B(m)})$ and the non-basic vector is $x_N = (x_{N(1)}, \dots, x_{N(n-m)})$
- the basic matrix is $A_B = [A_{B(1)}, \dots, A_{B(m)}]$ and
- the non-basic matrix is $A_N = [A_{N(1)}, \dots, A_{N(n-m)}]$

$$Ax = b \iff \sum_{j=1}^{n} A_j x_j = b \iff A_B x_B + A_N x_N = b$$

Basic Directions

Observation 4.1 The values of the basic variables x_B in the system $A \cdot x = b$ are uniquely determined by the values x_N of the non-basic variables.

Proof:

$$A \cdot x = b \iff A_B \cdot x_B + A_N x_N = b$$
$$\iff x_B = A_B^{-1} b - \sum_{j \in N} A_B^{-1} A_j x_j \square$$

• for fixed $j \in N$, let $d \in \mathbb{R}^n$ be given by

 d_j := 1, $d_{j'}$:= 0 for $j' \in N \setminus \{j\}$ and d_B := $-A_B^{-1} \cdot A_j$.

- then $A \cdot (x + \theta d) = b$, for all $\theta \in \mathbb{R}$
- *d* is called the *j*th basic direction

4 5

Feasible Directions

4 6

Definition 4.2 Let $P \subseteq \mathbb{R}^n$ a polyhedron. For $x \in P$ the vector $d \in \mathbb{R}^n \setminus \{0\}$ is a feasible direction at x if there is a $\theta > 0$ with $x + \theta d \in P$.

Example: Some feasible directions at several points of a polyhedron.

Basic Directions and Feasible Directions

Consider a basic feasible solution x.

Question: Is the jth basic directions d a feasible direction?

Case 1: If x is a non-degenerate feasible solution, then $x_B > 0$ and $x + \theta d \ge 0$ for $\theta > 0$ small enough. \longrightarrow answer is yes!

Case 2: If x is degenerate, the answer might be no! E.g., if $x_{B(i)} = 0$ and $d_{B(i)} < 0$, then $x + \theta d \ge 0$, for all $\theta > 0$.

- 1st basic direction at y is feasible
 (basic variables x₂, x₄, x₅)
- 3rd basic direction at z is infeasible
 (hosis variables the state of the state)

(basic variables x_1 , x_2 , x_4)

Reduced Cost Coefficients

Consider a basic solution x.

Question:

How does the cost change when moving along the jth basic direction d?

$$c^{\top} \cdot (x + \theta d) = c^{\top} \cdot x + \theta c^{\top} \cdot d = c^{\top} \cdot x + \theta \underbrace{(c_j - c_B^{\top} \cdot A_B^{-1} \cdot A_j)}_{\bar{c}_j}$$

Definition 4.3 For a given basis *B* and corresponding basic solution *x*, the reduced cost of variable x_j , j = 1, ..., n, is

$$\bar{c}_j := c_j - c_B^\top A_B^{-1} \cdot A_j.$$

Observation 4.4 The reduced cost of a basic variable $x_{B(i)}$ is zero.

Proof:
$$\bar{c}_{B(i)} = c_{B(i)} - c_B^\top \cdot \underbrace{A_B^{-1} \cdot A_{B(i)}}_{= e_i} = c_{B(i)} - c_{B(i)} = 0$$

Optimality Criterion

Theorem 4.5 Let x be a basic feasible solution and \overline{c} the vector of reduced costs.

- a If c̄ ≥ 0, then x is an optimal solution.
 b If x is an optimal solution and non-degenerate, then c̄ ≥ 0.

Definition 4.6 A basis B (or a basis matrix A_B) is optimal if **a** $A_B^{-1} \cdot b \ge 0$ and **b** $\bar{c}^\top = c^\top - c_B^\top \cdot A_B^{-1} \cdot A \ge 0.$

Observation 4.7 If *B* is an optimal basis, the associated basic solution *x* is feasible and optimal.

Proof of Theorem 4.5

а

Let *B* be the basis corresponding to *x* and let $y \in P$. Then,

$$c^{\top} \cdot y = c_B^{\top} \cdot y_B + c_N^{\top} y_N$$

= $c_B^{\top} \cdot \left(A_B^{-1} \cdot b - A_B^{-1}A_N y_N\right) + c_N^{\top} y_N$
= $c_B^{\top} \cdot \underline{A_B^{-1}} \cdot b + \sum_{j \in N} \left(\underbrace{c_j - c_B^{\top} \cdot A_B^{-1} \cdot A_j}_{= \widehat{c}_j}\right) y_j$
= $\underbrace{c_B^{\top} \cdot x_B}_{=c^{\top} \cdot x} + \sum_{j \in N} \widehat{c}_j y_j \ge c^{\top} \cdot x$

b

Assume by contradiction that $\bar{c}_j < 0$ for some $j \in N$.

Since x is non-degenerate, the *j*th basic direction is a feasible direction

and the cost can thus be decreased as $\bar{c}_i < 0$.

Development of the Simplex Method -

4 11

Assumption (for now): only non-degenerate basic feasible solutions

Let x be a basic feasible solution with $\bar{c}_j < 0$ for some $j \in N$.

Let d be the *j*th basic direction:

$$0 > \bar{c}_j = c^\top \cdot d$$

It is desirable to go to $y := x + \theta^* d$ with $\theta^* := \max\{\theta \mid x + \theta d \in P\}$. Question: How to determine θ^* ?

By construction of *d*, it holds that $A \cdot (x + \theta d) = b$ for all $\theta \in \mathbb{R}$, i.e.,

$$x + \theta d \in P \quad \iff \quad x + \theta d \ge 0.$$

Case 1: $d \ge 0 \implies x + \theta d \ge 0$ for all $\theta \ge 0 \implies \theta^* = \infty$

Thus, the LP is unbounded.

Case 2:
$$d_k < 0$$
 for some $k \implies \left(x_k + \theta \, d_k \ge 0 \iff \theta \le \frac{-x_k}{d_k} \right)$
Thus, $\theta^* = \min_{k: d_k < 0} \frac{-x_k}{d_k} = \min_{\substack{i=1,\dots,m \\ d_{B(i)} < 0}} \frac{-x_{B(i)}}{d_{B(i)}} > 0.$

Developement of the Simplex Method (Cont.) — 4112

Assumption (for now): only *non-degenerate* basic feasible solutions Let x be a basic feasible solution with $\bar{c}_j < 0$ for some $j \neq B(1), \dots, B(m)$. Let d be the jth basic direction:

$$0 > \bar{c}_j = c^\top \cdot d$$

It is desirable to go to $y := x + \theta^* \cdot d$ with $\theta^* := \max\{\theta \mid x + \theta \cdot d \in P\}$.

$$\theta^* = \min_{k: \ d_k < 0} \frac{-x_k}{d_k} = \min_{d = 1, \dots, m \atop d_{B(i)} < 0} \frac{-x_{B(i)}}{d_{B(i)}}$$

Let
$$\ell \in \{1, \dots, m\}$$
 with $\theta^* = \frac{-x_{B(\ell)}}{d_{B(\ell)}}$, then $y_j = \theta^*$ and $y_{B(\ell)} = 0$.

 \implies x_j replaces $x_{B(\ell)}$ as a basic variable and we get a new basis matrix

$$\begin{aligned} A_{\bar{B}} &= \left[A_{B(1)}, \dots, A_{B(\ell-1)}, A_j, A_{B(\ell+1)}, \dots, A_{B(m)} \right] = \left[A_{\bar{B}(1)}, \dots, A_{\bar{B}(m)} \right] \\ \text{with} \qquad \bar{B}(i) &= \begin{cases} B(i) & \text{if } i \neq \ell, \\ j & \text{if } i = \ell. \end{cases} \end{aligned}$$

Core of the Simplex Method

4 | 13

Theorem 4.8 Let *x* be a non-degenerate basic feasible solution, $j \in N$ with $\bar{c}_j < 0$, *d* the *j*th basic direction, and $\theta^* := \max\{\theta \mid x + \theta d \in P\} < \infty$.

a
$$\theta^* = \min_{\substack{i=1,\dots,m\\d_{\bar{B}(i)}=0}} \frac{-x_{\bar{B}(i)}}{d_{\bar{B}(i)}} = \frac{-x_{\bar{B}(\ell)}}{d_{\bar{B}(\ell)}}$$
 for some $\ell \in \{1,\dots,m\}$.
Let $\bar{B}(i) := B(i)$ for $i \neq \ell$ and $\bar{B}(\ell) := j$.
b $A_{\bar{B}(1)}, \dots, A_{\bar{B}(m)}$ are linearly independent and $A_{\bar{B}}$ is a basis matrix.
c $y := x + \theta^* d$ is a basic feasible solution associated with \bar{B} and $c^{\top} \cdot y < c^{\top} \cdot x$.

Proof: a we just calculated $A_B^{-1}A_{\bar{B}} = A_B^{-1}[A_{B(1)}, \dots, A_{B(\ell-1)}, A_j, A_{B(\ell+1)}, \dots, A_{B(m)}]$ $= [e_1, \dots, e_{\ell-1}, -d_B, e_{\ell+1}, \dots, e_m]$

Since $-d_{B(\ell)} > 0$, $A_{\bar{B}}$ has full rank, and \bar{B} is a basis **c** clear since $y_{\ell} = 0$, $y_j = \theta^*$, $\theta^* > 0$, and $\bar{c}_j < 0$

An Iteration of the Simplex Method

Given: basis B corresponding to basic feasible solution x

Let
$$\bar{c}^{\top}$$
 := $c^{\top} - c^{\top}_B \cdot A^{-1}_B \cdot A$. If $\bar{c} \ge 0$, then STOP;
else choose *j* with $\bar{c}_j < 0$.

iii Let $u := A_B^{-1} \cdot A_j$. If $u \le 0$, then STOP (optimal cost is $-\infty$).

$$III \text{ Let } \theta^* := \min_{i: u_i > 0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell} \quad \text{ for some } \ell \in \{1, \dots, m\}.$$

■ Form new basis by replacing $A_{B(\ell)}$ with A_j ; corresponding basic feasible solution *y* is given by $y_j := θ^*$ and $y_{B(i)} = x_{B(i)} - θ^* u_i$ for $i \neq \ell$.

Remark: We say that the nonbasic variable x_j enters the basis and the basic variable $x_{B(\ell)}$ leaves the basis.

Correctness of the Simplex Method

Theorem 4.9 If every basic feasible solution is non-degenerate, the simplex method terminates after finitely many iterations in one of the following two states:

- we have an optimal basis B and an associated basic feasible solution x which is optimal;
- **b** we have a vector d satisfying $A \cdot d = 0$, $d \ge 0$, and $c^{\top} \cdot d < 0$; the optimal cost is $-\infty$.

Proof sketch: The simplex method makes progress in every iteration. Since there are only finitely many different basic feasible solutions, it stops after a finite number of iterations. Introduction to

Linear and Combinatorial Optimization

4.2 Degenerate Problems

Simplex Method for Degenerate Problems —— 4117

- An iteration of the simplex method can also be applied if *x* is a degenerate basic feasible solution.
- In this case it might happen that $\theta^* := \min_{i:u_i>0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell} = 0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)} = -u_\ell < 0$.
- Thus, $y = x + \theta^* d = x$ and the current basic feasible solution does not change.
- But replacing A_{B(l)} with A_j still yields a new basis with associated basic feasible solution y = x.

Remark: Even if θ^* is positive, more than one of the original basic variables may become zero at the new point $x + \theta^* d$. Since only one of them leaves the basis, the new basic feasible solution y may be degenerate.

Pivot Selection

4 19

Question: How to choose *j* with $\bar{c}_j < 0$ and ℓ with $\frac{x_{B(\ell)}}{u_\ell} = \min_{i: u_i > 0} \frac{x_{B(i)}}{u_i}$ if several possible choices exist?

Attention: Choice of *j* is critical for overall behavior of simplex method.

Three popular choices are:

- smallest subscript rule: choose smallest j with c
 _j < 0.
 (very simple; no need to compute entire vector c
 _i; usually leads to many iterations)
- steepest descent rule: choose *j* such that *c*_j < 0 is minimal.
 (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose *j* such that θ^{*} *c*_j is minimal.
 (computationally expensive; used for large problems; usually leads to very few iterations)