Introduction to
 Linear and Combinatorial Optimization

4

Simplex Method

4.1 Basic Version

Rough Description of Simplex Algorithm

- Start from a basic feasible solution
- In each iteration, move to a better adjacent vertex
- ... until no further improvement can be found

Throughout this section, we consider the following standard form problem:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A \cdot x
\end{aligned}=b
$$

with $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$

- a basis is a vector $B=(B(1), \ldots, B(m))$ with

$$
\{B(1), \ldots, B(m)\} \subseteq\{1, \ldots, n\} \text { and } \operatorname{rank}\left(A_{B(1)}, \ldots, A_{B(m)}\right) \quad=\quad m
$$

- for a basis B, a corresponding non-basis is a vector

$$
N=(N(1), \ldots, N(n-m)) \text { with }
$$

$$
\{B(1), \ldots, B(m)\} \cup\{N(1), \ldots, N(n-m)\}=\{1, \ldots, n\}
$$

- we write $j \in B$ if $j=B(i)$ for some $i \in\{1, \ldots, m\}$ and $j \in N$ if $j=N(i)$ for some $j \in\{1, \ldots, n-m\}$
- for $x \in \mathbb{R}^{n}$, the basic vector is $x_{B}=\left(x_{B(1)}, \ldots, x_{B(m)}\right)$ and the non-basic vector is $x_{N}=\left(x_{N(1)}, \ldots, x_{N(n-m)}\right)$
- the basic matrix is $A_{B}=\left[A_{B(1)}, \ldots, A_{B(m)}\right]$ and
. the non-basic matrix is $A_{N}=\left[A_{N(1)}, \ldots, A_{N(n-m)}\right]$

$$
A x=b \quad \Leftrightarrow \quad \sum_{j=1}^{n} A_{j} x_{j}=b \quad \Leftrightarrow \quad A_{B} x_{B}+A_{N} x_{N}=b
$$

Observation 4.1 The values of the basic variables x_{B} in the system $A \cdot x=b$ are uniquely determined by the values x_{N} of the non-basic variables.

Proof:

$$
\begin{aligned}
A \cdot x=b & \Longleftrightarrow A_{B} \cdot x_{B}+A_{N} x_{N}=b \\
& \Longleftrightarrow x_{B}=A_{B}^{-1} b-\sum_{j \in N} A_{B}^{-1} A_{j} x_{j}
\end{aligned}
$$

- for fixed $j \in N$, let $d \in \mathbb{R}^{n}$ be given by

$$
d_{j}:=1, \quad d_{j^{\prime}}:=0 \text { for } j^{\prime} \in N \backslash\{j\} \text { and } d_{B}:=-A_{B}^{-1} \cdot A_{j} .
$$

- then $A \cdot(x+\theta d)=b$, for all $\theta \in \mathbb{R}$
- d is called the j th basic direction

Definition 4.2 Let $P \subseteq \mathbb{R}^{n}$ a polyhedron. For $x \in P$ the vector $d \in \mathbb{R}^{n} \backslash\{0\}$ is a feasible direction at x if there is a $\theta>0$ with $x+\theta d \in P$.

Example: Some feasible directions at several points of a polyhedron.

Consider a basic feasible solution x.
Question: Is the j th basic directions d a feasible direction?
Case 1: If x is a non-degenerate feasible solution, then $x_{B}>0$ and $x+\theta d \geq 0$ for $\theta>0$ small enough. $\longrightarrow \quad$ answer is yes!

Case 2: If x is degenerate, the answer might be no! E.g., if $x_{B(i)}=0$ and $d_{B(i)}<0$, then $x+\theta d \neq 0$, for all $\theta>0$.

Example: $n=5, m=3, n-m=2$

- 1st basic direction at y is feasible (basic variables x_{2}, x_{4}, x_{5})
- 3rd basic direction at z is infeasible (basic variables x_{1}, x_{2}, x_{4})

Consider a basic solution x.

Question:

How does the cost change when moving along the j th basic direction d ?

$$
c^{\top} \cdot(x+\theta d)=c^{\top} \cdot x+\theta c^{\top} \cdot d=c^{\top} \cdot x+\theta \underbrace{\left(c_{j}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A_{j}\right)}_{\bar{c}_{j}:=}
$$

Definition 4.3 For a given basis B and corresponding basic solution x, the reduced cost of variable $x_{j}, j=1, \ldots, n$, is

$$
\bar{c}_{j}:=c_{j}-c_{B}^{\top} A_{B}^{-1} \cdot A_{j} .
$$

Observation 4.4 The reduced cost of a basic variable $x_{B(i)}$ is zero.
Proof: $\bar{c}_{B(i)}=c_{B(i)}-c_{B}^{\top} \cdot \underbrace{A_{B}^{-1} \cdot A_{B(i)}}_{=e_{i}}=c_{B(i)}-c_{B(i)}=0$

Theorem 4.5 Let x be a basic feasible solution and \bar{c} the vector of reduced costs.
a If $\bar{c} \geq 0$, then x is an optimal solution.
b If x is an optimal solution and non-degenerate, then $\bar{c} \geq 0$.

Definition 4.6 A basis B (or a basis matrix A_{B}) is optimal if
a $A_{B}^{-1} \cdot b \geq 0$ and
■ $\bar{c}^{\top}=c^{\top}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A \geq 0$.

Observation 4.7 If B is an optimal basis, the associated basic solution x is feasible and optimal.
a
Let B be the basis corresponding to x and let $y \in P$. Then,

$$
\begin{aligned}
c^{\top} \cdot y & =c_{B}^{\top} \cdot y_{B}+c_{N}^{\top} y_{N} \\
& =c_{B}^{\top} \cdot\left(A_{B}^{-1} \cdot b-A_{B}^{-1} A_{N} y_{N}\right)+c_{N}^{\top} y_{N} \\
& =c_{B}^{c^{\top} \cdot \underbrace{A_{B}^{-1} \cdot b}_{=x_{B}}+\sum_{j \in N}(\underbrace{c_{j}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A_{j}}_{=\bar{c}_{j}}) y_{j}} \\
& =\underbrace{c_{B}^{\top} \cdot x_{B}}_{=c^{\top} \cdot x}+\sum_{j \in N} \bar{c}_{j} y_{j} \geq c^{\top} \cdot x
\end{aligned}
$$

b
Assume by contradiction that $\bar{c}_{j}<0$ for some $j \in N$.
Since x is non-degenerate, the j th basic direction is a feasible direction and the cost can thus be decreased as $\bar{c}_{j}<0$.

Assumption (for now): only non-degenerate basic feasible solutions
Let x be a basic feasible solution with $\bar{c}_{j}<0$ for some $j \in N$.
Let d be the j th basic direction:

$$
0>\bar{c}_{j}=c^{\top} \cdot d
$$

It is desirable to go to $y:=x+\theta^{*} d$ with $\theta^{*}:=\max \{\theta \mid x+\theta d \in P\}$.
Question: How to determine θ^{*} ?
By construction of d, it holds that $A \cdot(x+\theta d)=b$ for all $\theta \in \mathbb{R}$, i.e.,

$$
x+\theta d \in P \quad \Longleftrightarrow \quad x+\theta d \geq 0
$$

Case 1: $d \geq 0 \Longrightarrow x+\theta d \geq 0$ for all $\theta \geq 0 \quad \Longrightarrow \quad \theta^{*}=\infty$
Thus, the LP is unbounded.
Case 2: $d_{k}<0$ for some $k \Longrightarrow \quad\left(x_{k}+\theta d_{k} \geq 0 \quad \Longleftrightarrow \quad \theta \leq \frac{-x_{k}}{d_{k}}\right)$
Thus, $\theta^{*}=\min _{k: d_{k}<0} \frac{-x_{k}}{d_{k}}=\min _{\substack{i=1, \ldots m \\ d_{B(i)}>0}} \frac{-x_{B(i)}}{d_{B(i)}}>0$.

Developement of the Simplex Method (Cont.)

Assumption (for now): only non-degenerate basic feasible solutions
Let x be a basic feasible solution with $\bar{c}_{j}<0$ for some $j \neq B(1), \ldots, B(m)$.
Let d be the j th basic direction:

$$
0>\bar{c}_{j}=c^{\top} \cdot d
$$

It is desirable to go to $y:=x+\theta^{*} \cdot d$ with $\theta^{*}:=\max \{\theta \mid x+\theta \cdot d \in P\}$.

$$
\theta^{*}=\min _{k: d_{k}<0} \frac{-x_{k}}{d_{k}}=\min _{\substack{i, 1, \ldots, m \\ d_{B(i)}<0}} \frac{-x_{B(i)}}{d_{B(i)}}
$$

Let $\ell \in\{1, \ldots, m\}$ with $\theta^{*}=\frac{-x_{B(\ell)}}{d_{B(\ell)}}$, then $y_{j}=\theta^{*}$ and $y_{B(\ell)}=0$.
$\Longrightarrow \quad x_{j}$ replaces $x_{B(\ell)}$ as a basic variable and we get a new basis matrix

$$
A_{\bar{B}}=\left[A_{B(1)}, \ldots, A_{B(f-1)}, A_{j}, A_{B(\ell+1)}, \ldots, A_{B(m)}\right]=\left[A_{\bar{B}(1)}, \ldots, A_{\bar{B}(m)}\right]
$$

with $\quad \bar{B}(i)= \begin{cases}B(i) & \text { if } i \neq \ell, \\ j & \text { if } i=\ell .\end{cases}$

Core of the Simplex Method

Theorem 4.8 Let x be a non-degenerate basic feasible solution, $j \in N$ with $\bar{c}_{j}<0, d$ the j th basic direction, and $\theta^{*}:=\max \{\theta \mid x+\theta d \in P\}<\infty$.
a $\theta^{*}=\min _{\substack{\left.i, 1, m \\ d_{B(i)}\right)^{0}}} \frac{-x_{B(i)}}{d_{B(i)}}=\frac{-x_{B(\ell)}}{d_{B(\ell)}} \quad$ for some $\ell \in\{1, \ldots, m\}$.
Let $\bar{B}(i):=B(i)$ for $i \neq \ell$ and $\bar{B}(\ell):=j$.
b $A_{\bar{B}(1)}, \ldots, A_{\bar{B}(m)}$ are linearly independent and $A_{\bar{B}}$ is a basis matrix.
c $y:=x+\theta^{*} d$ is a basic feasible solution associated with \bar{B} and $c^{\top} \cdot y<c^{\top} \cdot x$.
Proof: a we just calculated
b $\quad A_{B}^{-1} A_{\bar{B}}=A_{B}^{-1}\left[A_{B(1)}, \ldots, A_{B(\ell-1)}, A_{j}, A_{B(\ell+1)}, \ldots, A_{B(m)}\right]$ $=\left[e_{1}, \ldots, e_{\ell-1},-d_{B}, e_{\ell+1}, \ldots, e_{m}\right]$
Since $-d_{B(\ell)}>0, A_{\bar{B}}$ has full rank, and \bar{B} is a basis
c clear since $y_{\ell}=0, y_{j}=\theta^{*}, \theta^{*}>0$, and $\bar{c}_{j}<0$

Given: basis B corresponding to basic feasible solution x
ii Let $\bar{c}^{\top}:=c^{\top}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A$. If $\bar{c} \geq 0$, then STOP; else choose j with $\bar{c}_{j}<0$.

Iii Let $u:=A_{B}^{-1} \cdot A_{j}$. If $u \leq 0$, then STOP (optimal cost is $-\infty$).
四 Let $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}} \quad$ for some $\ell \in\{1, \ldots, m\}$.
iv Form new basis by replacing $A_{B(\ell)}$ with A_{j}; corresponding basic feasible solution y is given by

$$
y_{j}:=\theta^{*} \quad \text { and } \quad y_{B(i)}=x_{B(i)}-\theta^{*} u_{i} \quad \text { for } i \neq \ell .
$$

Remark: We say that the nonbasic variable x_{j} enters the basis and the basic variable $x_{B(e)}$ leaves the basis.

Theorem 4.9 If every basic feasible solution is non-degenerate, the simplex method terminates after finitely many iterations in one of the following two states:
a we have an optimal basis B and an associated basic feasible solution x which is optimal;
b we have a vector d satisfying $A \cdot d=0, d \geq 0$, and $c^{\top} \cdot d<0$; the optimal cost is $-\infty$.

Proof sketch: The simplex method makes progress in every iteration.
Since there are only finitely many different basic feasible solutions, it stops after a finite number of iterations.

Introduction to

Linear and Combinatorial Optimization

4

Simplex Method

4.2 Degenerate Problems

- An iteration of the simplex method can also be applied if x is a degenerate basic feasible solution.
- In this case it might happen that $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}=0$ if some basic variable $x_{B(\ell)}$ is zero and $d_{B(\ell)}=-u_{\ell}<0$.
- Thus, $y=x+\theta^{*} d=x$ and the current basic feasible solution does not change.
- But replacing $A_{B(\ell)}$ with A_{j} still yields a new basis with associated basic feasible solution $y=x$.

Remark: Even if θ^{*} is positive, more than one of the original basic variables may become zero at the new point $x+\theta^{*} d$. Since only one of them leaves the basis, the new basic feasible solution y may be degenerate.

Question: How to choose j with $\bar{c}_{j}<0$ and ℓ with $\frac{x_{B(\ell)}}{u_{\ell}}=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}$ if several possible choices exist?

Attention: Choice of j is critical for overall behavior of simplex method.
Three popular choices are:

- smallest subscript rule: choose smallest j with $\bar{c}_{j}<0$. (very simple; no need to compute entire vector \bar{c}; usually leads to many iterations)
- steepest descent rule: choose j such that $\bar{c}_{j}<0$ is minimal. (relatively simple; commonly used for mid-size problems; does not necessarily yield the best neighboring solution)
- best improvement rule: choose j such that $\theta^{*} \bar{c}_{j}$ is minimal. (computationally expensive; used for large problems; usually leads to very few iterations)

