## Introduction to <br> Linear and Combinatorial Optimization



## Simplex Implementation

### 5.1 Revised Simplex Method

Observation 5.1 To execute one iteration of the simplex method efficiently, it suffices to know $B$, the current solution $x$, and the input data $A, b$, and $c$. It is then easy to compute:

$$
\bar{c}^{\top}=c^{\top}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A ; \quad u=A_{B}^{-1} \cdot A_{j} ; \quad \theta^{*}=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}
$$

The new basis matrix is then

$$
A_{\bar{B}}=\left[A_{B(1)}, \ldots, A_{B(\ell-1)}, A_{j}, A_{B(\ell+1)}, \ldots, A_{B(m)}\right] .
$$

and the new solution $y$ is given by $y_{j}=\theta^{*}, \quad y_{B}=x_{B}-\theta^{*} u$

- The above steps can be done (rather) efficiently if we know the inverse matrix $A_{B}^{-1}$
- We have not discussed initialization so far, but we will see later that we always start with a identity-basis: $A_{B}=A_{B}^{-1}=I$

Critical question: How to obtain $A_{\bar{B}}^{-1}$ efficiently?

## Computing the Inverse of the Basis Matrix

- notice that $A_{B}^{-1} \cdot A_{\bar{B}}=\left(e_{1}, \ldots, e_{\ell-1}, u, e_{\ell+1}, \ldots, e_{m}\right)$
- Recall that the inverse of matrix $M$ can be found by applying elementary row operations that transform $M$ to $I$ :

$$
(M \mid I) \xlongequal{\text { row operations }}\left(I \mid M^{-1}\right)
$$

- Row operations are equivalent to left multiplication by some invertible matrix.
- So we start left-multiplying with $A_{B}^{-1}$ :

$$
\left(A_{\bar{B}} \mid I\right) \stackrel{\text { left mult. } A_{B}^{-1}}{\sim}\left(\left(e_{1}, \ldots, e_{\ell-1}, u, e_{\ell+1}, \ldots, e_{m}\right) \mid A_{B}^{-1}\right)
$$

- It simply remains to bring $u$ to the unit vector $e_{\ell}$. This is done as follows:
- multiply $\ell$ th row with $1 / u_{\ell}$;
- for $i \neq \ell$, subtract $u_{i}$ times resulting $\ell$ th row from $i$ th row.

Obtaining $A_{\bar{B}}^{-1}$ from $A_{B}^{-1}$
Apply elementary row operations to the matrix $\left(A_{B}^{-1} \mid u\right)$ to make the last column equal to the unit vector $e_{\ell}$. The first $m$ columns of the resulting matrix form the inverse $A_{\bar{B}}^{-1}$ of the new basis matrix $A_{\bar{B}}$.

## An Iteration of the Revised Simplex Method

Given: basis $B$, corresponding basic feasible solution $x$, and $A_{B}^{-1}$.
1 Let $p^{\top}:=c_{B}^{\top} \cdot A_{B}^{-1}$ and $\bar{c}_{j}:=c_{j}-p^{\top} \cdot A_{j}, j \in N$;
if $\bar{c} \geq 0$, then STOP; else choose $j$ with $\bar{c}_{j}<0$.
2 Let $u:=A_{B}^{-1} \cdot A_{j}$. If $u \leq 0$, then STOP (optimal cost is $-\infty$ ).
3 Let $\theta^{*}:=\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}} \quad$ for some $\ell \in\{1, \ldots, m\}$.
4 Form new basis by replacing $A_{B(\ell)}$ with $A_{j}$; corresponding basic feasible solution $y$ is given by

$$
y_{j}:=\theta^{*}, \quad y_{B}=x_{B}-\theta^{*} u, \quad y_{M \backslash j\}}=0 .
$$

5 Apply elementary row operations to the matrix $\left(A_{B}^{-1} \mid u\right)$ to make the last column equal to the unit vector $e_{\ell}$.
The first $m$ columns of the resulting matrix yield $A_{\bar{B}}^{-1}$.

In practice, $A$ is often sparse !

- In real-worl problems, A typically has only a few non-zero entries: much more efficient to store only non-zero coordinates.
- But the inverse base matrix is not always sparse!

$A_{B}$ of size $363 \times 363$, density $=2.5 \%$

$A_{B}^{-1}$ of size $363 \times 363$, density $=61 \%$
- We do not need the matrix inverse. We just need to solve linear systems

$$
\begin{aligned}
u=A_{B}^{-1} \cdot A_{j} & \Longleftrightarrow A_{B} \cdot u=A_{j} \\
p^{\top}=c_{B}^{\top} \cdot A_{B}^{-1} & \Longleftrightarrow A_{B}^{\top} \cdot p=c_{B}
\end{aligned}
$$

- So, in pratice, in every iteration we nee to solve two linear systems, one involving the matrix $A_{B}$ and one involving the matrix $A_{B}^{\top}$
- Assume we have a $L U$ factorization of the matrix $A_{B}$, i.e. $A_{B}=L \cdot U$ with $L$ lower triangular, $U$ upper triangular.
- Then, both systems are of the form $L \cdot U \cdot z=h$, and can be solved by:
- finding a vector $v$ sucht that $L \cdot v=h$ using forward substitutions
- finding a vector $z$ such that $U \cdot z=v$ using backward substitutions
- The above operations are very fast if $L$ and $U$ are sparse: $O(\mathrm{nz}(L)+\mathrm{nz}(U))$.
- In practice, $L U$ decomposition is done by Gaussian Elimination (GE), and does not necessarily give sparse $L$ and $U$. But, special GE algorithms can identify permutation matrices $P, Q$ and sparse triangular matrices $L, U$ such that $P \cdot A_{B} \cdot Q=L \cdot U$. Then,

$$
A_{B} \cdot z=h \Longleftrightarrow(L \cdot v=P \cdot h, \quad U \cdot w=v, \quad z=Q \cdot w)
$$

## Practical Performance Enhancements

- State-of-the art implementations update the LU factorization after an iteration, similarly as we did for $A_{B}^{-1}$.
- In fact, if $A_{B}=L \cdot U$, it can be seen that $A_{\bar{B}}=L \cdot R$, where $R$ is "nearly upper triangular" (except for one column). Triangularity can be restored by decomposing $R=\tilde{L} \cdot \tilde{U}$; Then, $A_{\bar{B}}=L \cdot \tilde{L} \cdot \tilde{U}$.
- Computing $\tilde{L}$ and $\tilde{U}$ only takes $O(m)$, we only have to specify one row/column.
- After $k$ iterations, we have a factorization of the form $A_{B}^{(k)}=L \cdot L_{1} \cdot L_{2} \cdots L_{k} \cdot U_{k}$, which can be used to solve the linear systems.


## Numerical stability

The most critical issue when implementing the (revised) simplex method is numerical stability. In order to deal with this, a number of additional ideas from numerical linear algebra are needed.

- Every update of $A_{B}^{-1}$ (or of the LU factorization) introduces roundoff or truncation errors which accumulate and might eventually lead to highly inaccurate results. Moreover the size of the LU factorization grows Solution: Compute the matrix $A_{B}^{-1}$ (or $A_{B}=L \cdot U$ ) from scratch once in a while.


## Introduction to <br> Linear and Combinatorial Optimization

## Simplex Implementation

### 5.2 Full Tableau Implementation

## Main idea

Instead of maintaining and updating the matrix $A_{B}^{-1}$, we maintain and update the $m \times(n+1)$-matrix

$$
A_{B}^{-1} \cdot(b \mid A)=\left(A_{B}^{-1} \cdot b \mid A_{B}^{-1} \cdot A\right)
$$

which is called simplex tableau.

- The zeroth column $A_{B}^{-1} \cdot b$ contains $x_{B}$.
- For $i=1, \ldots, n$, the $i$ th column of the tableau is $A_{B}^{-1} \cdot A_{i}$.
- The column $u=A_{B}^{-1} \cdot A_{j}$ corresponding to the variable $x_{j}$ that is about to enter the basis is the pivot column.
- If the $\ell$ th basic variable $x_{B(\ell)}$ exits the basis, the $\ell$ th row of the tableau is the pivot row.
- The element $u_{\ell}>0$ is the pivot element.

Notice: The simplex tableau $A_{B}^{-1} \cdot(b \mid A)$ represents the linear equation

$$
A_{B}^{-1} \cdot b=A_{B}^{-1} \cdot A \cdot x
$$

which is equivalent to $A \cdot x=b$.

## Updating the simplex tableau

- At the end of an iteration, the simplex tableau $A_{B}^{-1} \cdot(b \mid A)$ has to be updated to $A_{\bar{B}}^{-1} \cdot(b \mid A)$.
- $A_{\bar{B}}^{-1}$ can be obtained from $A_{B}^{-1}$ by elementary row operations, i.e., $A_{\bar{B}}^{-1}=Q \cdot A_{B}^{-1}$ where $Q$ is a product of elementary matrices.
- Thus, $A_{\bar{B}}^{-1} \cdot(b \mid A)=Q \cdot A_{B}^{-1} \cdot(b \mid A)$, and new tableau $A_{\bar{B}}^{-1} \cdot(b \mid A)$ can be obtained by applying the same elementary row operations.

In order to keep track of the objective function value and the reduced costs, we consider the following augmented simplex tableau:

$$
\begin{array}{|c|c|}
\hline-c_{B}^{\top} A_{B}^{-1} b & c^{\top}-c_{B}^{\top} A_{B}^{-1} A \\
\hline A_{B}^{-1} b & A_{B}^{-1} A \\
\hline
\end{array}
$$

or in more detail

| $-c_{B}^{\top} x_{B}$ | $\bar{c}_{1}$ | $\cdots$ | $\bar{c}_{n}$ |
| :---: | :---: | :---: | :---: |
| $x_{B(1)}$ | $\mid$ |  | $\mid$ |
| $\vdots$ | $A_{B}^{-1} A_{1}$ | $\cdots$ | $A_{B}^{-1} A_{n}$ |
| $x_{B(m)}$ | $\mid$ |  | $\mid$ |

- zeroth row is $\left[-c_{B}^{\top} A_{B}^{-1} b, c^{\top}-c_{B}^{\top} A_{B}^{-1} A\right]=\left[0, c^{\top}\right]-c_{B}^{\top} A_{B}^{-1}[b, A]$
- let $h^{\top}$ be the $\ell$ th row of $A_{B}^{-1}$, then pivot row $\ell$ is $h^{\top}[b, A]$
- adding multiple $\lambda$ of pivot row to zeroth row yields new zeroth row

$$
\left[-c_{B}^{\top} x_{B}+\lambda h^{\top} b, \bar{c}^{\top}+\lambda h^{\top} A\right]=\left[0, c^{\top}\right]-\left(c_{B}^{\top} A_{B}^{-1}-\lambda h^{\top}\right)[b, A]=:\left[p_{0}, p^{\top}\right],
$$

- for every $i \in B \backslash\{\ell\}$, we have $p_{i}=0$ since $\bar{c}_{i}=0$ and $h^{\top} A_{i}=\left(e_{i}\right)_{\ell}=0$
- choose $\lambda$ such that $p_{j}=0$
- then $p_{\bar{B}}=c_{\bar{B}}^{\top}-\left(c_{B}^{\top} A_{B}^{-1}-\lambda h^{\top}\right) A_{\bar{B}}=0$, i.e., $\left(c_{B}^{\top} A_{B}^{-1}-\lambda h^{\top}\right)=c_{\bar{B}}^{\top} A_{\bar{B}}^{-1}$


## Update of zeroth row

The zeroth row is updated by adding a multiple of the pivot row to the zeroth row to set the reduced cost of the entering variable to zero.

## An Iteration of the Full Tableau Implementation - ${ }^{5 \mid 3}$

Given: Simplex tableau corresp. to feasible basis $B=(B(1), \ldots, B(m))$.
1 If $\bar{c} \geq 0$ (zeroth row), then STOP; else choose pivot column $j$ with $\bar{c}_{j}<0$.
2 If $u=A_{B}^{-1} A_{j} \leq 0$ (jth column), STOP (optimal cost is $-\infty$ ).
3 Choose pivot row $\ell$ with $\min _{i: u_{i}>0} \frac{x_{B(i)}}{u_{i}}=\frac{x_{B(\ell)}}{u_{\ell}}$ (compare columns 0 and $j$ ).

4 Apply elementary row operations to the simplex tableau so that $u_{\ell}$ (pivot element) becomes one and all other entries of the pivot column become zero (including zeroth row). The resulting tableau corresponds to new basis $\bar{B}$ in which $A_{B(\ell)}$ is replaced with $A_{j}$.

A simple linear programming problem:

$$
\begin{array}{rr}
\min & -10 x_{1}-12 x_{2}-12 x_{3} \\
\mathrm{s.t.} & x_{1}+2 x_{2}+2 x_{3} \leq 20 \\
& 2 x_{1}+2 x_{2}+2 x_{3} \leq 20 \\
& 2 x_{1}+2 x_{2}+x_{3} \leq 20 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

$$
\begin{aligned}
& A=(0,0,0)^{\top} \\
& B=(0,0,10)^{\top} \\
& C=(0,10,0)^{\top} \\
& D=(10,0,0)^{\top} \\
& E=(4,4,4)^{\top}
\end{aligned}
$$



$$
\begin{array}{rr}
\min & -10 x_{1}-12 x_{2}-12 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+2 x_{3} \leq 20 \\
& 2 x_{1}+2 x_{2}+2 x_{3} \leq 20 \\
& 2 x_{1}+2 x_{2}+x_{3} \leq 20 \\
&
\end{array}
$$

## LP in standard form

$$
\begin{array}{rlrl}
\min -10 x_{1} & -12 x_{2}-12 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+2 x_{3}+x_{4} & & \\
2 x_{1}+ & x_{2}+2 x_{3} & +x_{5} & =20 \\
2 x_{1}+2 x_{2}+x_{3} & & =20 \\
& & x_{1}, \ldots, x_{6} & \geq 0
\end{array}
$$

## Observation

The right-hand side of the system is non-negative. Therefore the point $(0,0,0,20,20,20)^{\top}$ is a basic feasible solution and we can start the simplex method with basis $B(1)=4, B(2)=5, B(3)=6$.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$ | 0 | -10 | -12 | -12 | 0 | 0 | 0 |
| $x_{5}=$ | 20 | 1 | 2 | 2 | 1 | 0 | 0 |
| $x_{6}=$ | 20 | 2 | 1 | 2 | 0 | 1 | 0 |
| 20 | 2 | 2 | 1 | 0 | 0 | 1 |  |

- Determine pivot column (e.g., take smallest subscript rule).

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$ | 0 | -10 | -12 | -12 | 0 | 0 | 0 |
| $x_{5}=$ | 20 | 1 | 2 | 2 | 1 | 0 | 0 |
| $x_{6}=$ | 20 | 2 | 1 | 2 | 0 | 1 | 0 |
| 20 | 2 | 2 | 1 | 0 | 0 | 1 | 10 |
| 20 |  |  |  |  |  |  |  |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | -10 | -12 | -12 | 0 | 0 | 0 |  |
| $x_{4}=$ | 20 | 1 | 2 | 2 | 1 | 0 | 0 | 20 |
| $x_{5}=$ | 20 | 2 | 1 | 2 | 0 | 1 | 0 | 10 |
| $x_{6}=$ | 20 | 2 | 2 | 1 | 0 | 0 | 1 | 10 |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.

| $x_{4}=$ |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | -10 | -12 | -12 | 0 | 0 | 0 |
|  | 20 | 1 | 2 | 2 | 1 | 0 | 0 |
| $x_{5}=$ | 20 | 2 | 1 | 2 | 0 | 1 | 0 |
| $x_{6}=$ | 20 | 2 | 2 | 1 | 0 | 0 | 1 |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 0 | -7 | -2 | 0 | 5 | 0 |
| $x_{4}=$ | 20 | 1 | 2 | 2 | 1 | 0 | 0 |
| $x_{5}=$ | 20 | 2 | 1 | 2 | 0 | 1 | 0 |
| $x_{6}=$ | 20 | 2 | 2 | 1 | 0 | 0 | 1 |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

| $x_{4}=$ |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 0 | -7 | -2 | 0 | 5 | 0 |
|  | 20 | 1 | 2 | 2 | 1 | 0 | 0 |
| $x_{5}=$ | 20 | 2 | 1 | 2 | 0 | 1 | 0 |
| $x_{6}=$ | 20 | 2 | 2 | 1 | 0 | 0 | 1 |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$100 0 -7 -2 0 5 <br> $x_{5}=$ 10 0 1.5 1 1 <br> $x_{6}=$ -0.5 0    <br> 20 2 1 2 0 1 <br> 0      <br> 20 2 2 1 0 0 <br> 1      |  |  |  |  |  |  |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$100 0 -7 -2 0 5 <br> $x_{5}=$ 10 0 1.5 1 1$x_{6}=0.5$ | 0 |  |  |  |  |  |
| 20 | 2 | 1 | 2 | 0 | 1 | 0 |
| 20 | 2 | 2 | 1 | 0 | 0 | 1 |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

| $x_{4}=$ |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 0 | -7 | -2 | 0 | 5 | 0 |
|  | 10 | 0 | 1.5 | 1 | 1 | -0.5 | 0 |
| $x_{5}=$ | 20 | 2 | 1 | 2 | 0 | 1 | 0 |
| $x_{6}=$ | 0 | 0 | 1 | -1 | 0 | -1 | 1 |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.x_{4}=\begin{array}{\|c\|ccccc\|}\hline 100 & 0 & -7 & -2 & 0 & 5 \\ x_{5}= & 10 & 0 & 1.5 & 1 & 1 \\ \hline & -0.5 & 0 \\ x_{6}= & 0 & 2 & 1 & 2 & 0 \\ 1 & 0 \\ 0 & 0 & 1 & -1 & 0 & -1\end{array}\right] 1$ |  |  |  |  |  |  |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$100 0 -7 -2 0 5 <br> $x_{1}=$ 10 0 1.5 1 1$x_{6}=0.5$ | 0 |  |  |  |  |  |
| 10 | 1 | 0.5 | 1 | 0 | 0.5 | 0 |
| 0 | 0 | 1 | -1 | 0 | -1 | 1 |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$100 0 -7 -2 0 5 <br> $x_{1}=$ 10 0 1.5 1 1 <br> -0.5 0     <br> $x_{6}=$ 10 1 0.5 1 0 <br> 0 0 1 -1 0 -1 |  |  |  |  |  |  |

- Determine pivot column (e.g., take smallest subscript rule).
- $\bar{c}_{1}<0$ and $x_{1}$ enters the basis.
- Find pivot row with $u_{i}>0$ minimizing $\frac{x_{B(i)}}{u_{i}}$.
- Rows 2 and 3 both attain the minimum.
- Choose $i=2$ with $B(i)=5 . \Longrightarrow x_{5}$ leaves the basis.
- Perform basis change: Eliminate other entries in the pivot column.
- Obtain new basic feasible solution $(10,0,0,10,0,0)^{\top}$ with cost -100 .

$$
\begin{aligned}
A & =(0,0,0)^{\top} \\
B & =(0,0,10)^{\top} \\
C & =(0,10,0)^{\top} \\
D & =(10,0,0)^{\top} \\
E & =(4,4,4)^{\top}
\end{aligned}
$$



|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$100 0 -7 -2 0 5 <br> $x_{1}=$ 10 0 1.5 1 1$x_{6}=0.5$ | 0 |  |  |  |  |  |
| 10 | 1 | 0.5 | 1 | 0 | 0.5 | 0 |
| 0 | 0 | 1 | -1 | 0 | -1 | 1 |

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{B(i)}$ <br> $u_{i}$ <br> $x_{4}=$ <br> $x_{1}=$ <br> $x_{6}=$ <br> 100$\| 0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.
- Choose $x_{3}$ to enter the new basis.
- $u_{3}<0 \Longrightarrow$ third row cannot be chosen as pivot row.
- Choose $x_{4}$ to leave basis.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$100 0 -7 -2 0 5 <br> $x_{1}=$ 10 0 1.5 1 1 <br>  -0.5 0    <br> $x_{6}=$ 10 0.5 1 0 0.5 <br> 0 0 1 -1 0 -1 |  |  |  |  |  |  |

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.
- Choose $x_{3}$ to enter the new basis.
- $u_{3}<0 \Longrightarrow$ third row cannot be chosen as pivot row.
- Choose $x_{4}$ to leave basis.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$120 0 -4 0 2 4 <br> $x_{1}=$ 10 0 1.5 1 1 <br>  -0.5 0    <br> $x_{6}=$ 10 0.5 1 0 0.5 <br> 0 0 1 -1 0 -1 |  |  |  |  |  |  |

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.
- Choose $x_{3}$ to enter the new basis.
- $u_{3}<0 \Longrightarrow$ third row cannot be chosen as pivot row.
- Choose $x_{4}$ to leave basis.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4}=$120 0 -4 0 2 4 <br> $x_{1}=$ 10 0 1.5 1 1$x_{6}=0.5$ | 0 |  |  |  |  |  |
| 10 | 1 | 0.5 | 1 | 0 | 0.5 | 0 |
| 0 | 0 | 1 | -1 | 0 | -1 | 1 |

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.
- Choose $x_{3}$ to enter the new basis.
- $u_{3}<0 \Longrightarrow$ third row cannot be chosen as pivot row.
- Choose $x_{4}$ to leave basis.

| $x_{4}=$ |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 120 | 0 | -4 | 0 | 2 | 4 | 0 |
|  | 10 | 0 | 1.5 | 1 | 1 | -0.5 | 0 |
| $x_{1}=$ | 0 | 1 | -1 | 0 | -1 | 1 | 0 |
| $x_{6}=$ | 0 | 0 | 1 | -1 | 0 | -1 | 1 |

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.
- Choose $x_{3}$ to enter the new basis.
- $u_{3}<0 \Longrightarrow$ third row cannot be chosen as pivot row.
- Choose $x_{4}$ to leave basis.

| $x_{4}=$ |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 120 | 0 | -4 | 0 | 2 | 4 | 0 |
|  | 10 | 0 | 1.5 | 1 | 1 | -0.5 | 0 |
| $x_{1}=$ | 0 | 1 | -1 | 0 | -1 | 1 | 0 |
| $x_{6}=$ | 0 | 0 | 1 | -1 | 0 | -1 | 1 |

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.
- Choose $x_{3}$ to enter the new basis.
- $u_{3}<0 \Longrightarrow$ third row cannot be chosen as pivot row.
- Choose $x_{4}$ to leave basis.

| $x_{4}=$ |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 120 | 0 | -4 | 0 | 2 | 4 | 0 |
|  | 10 | 0 | 1.5 | 1 | 1 | -0.5 | 0 |
| $x_{1}=$ | 0 | 1 | -1 | 0 | -1 | 1 | 0 |
| $x_{6}=$ | 10 | 0 | 2.5 | 0 | 1 | -1.5 | 1 |

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.
- Choose $x_{3}$ to enter the new basis.
- $u_{3}<0 \Longrightarrow$ third row cannot be chosen as pivot row.
- Choose $x_{4}$ to leave basis.

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{3}=$120 0 -4 0 2 4 <br> $x_{1}=$ 10 0 1.5 1 1 <br> 0 -0.5 0    <br> $x_{6}=$ 1 -1 0 -1 1 <br> 0      <br> 10 0 2.5 0 1 -1.5 |  |  |  |  |  |  |

- $\bar{c}_{2}, \bar{c}_{3}<0 \Longrightarrow$ two possible choices for pivot column.
- Choose $x_{3}$ to enter the new basis.
- $u_{3}<0 \Longrightarrow$ third row cannot be chosen as pivot row.
- Choose $x_{4}$ to leave basis.
- New basic feasible solution $(0,0,10,0,0,10)^{\top}$ with cost -120 , corresponding to point $B$ in the original polyhedron.

$$
\begin{aligned}
A & =(0,0,0)^{\top} \\
B & =(0,0,10)^{\top} \\
C & =(0,10,0)^{\top} \\
D & =(10,0,0)^{\top} \\
E & =(4,4,4)^{\top}
\end{aligned}
$$



$$
\begin{aligned}
A & =(0,0,0)^{\top} \\
B & =(0,0,10)^{\top} \\
C & =(0,10,0)^{\top} \\
D & =(10,0,0)^{\top} \\
E & =(4,4,4)^{\top}
\end{aligned}
$$



|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $\frac{x_{B(i)}}{u_{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{3}=$ |        <br> $x_{1}$ $=$ 0 -4 0 2 4 <br> 0 0      <br> $x_{6}=$ 0 1.5 1 1 -0.5 0 <br> $\frac{20}{3}$       <br> 10 1 -1 0 -1 1 0 <br> -       <br> 4       |  |  |  |  |  |  |


|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $\frac{x_{B(i)}}{u_{i}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 120 | 0 | -4 | 0 | 2 | 4 | 0 |  |  |
| $x_{3}=$ | 10 | 0 | 1.5 | 1 | 1 | -0.5 | 0 | $\frac{20}{3}$ |  |
| $x_{1}=$ | 0 | 1 | -1 | 0 | -1 | 1 | 0 | - |  |
| $x_{6}=$ | 10 | 0 | 2.5 | 0 | 1 | -1.5 | 1 | 4 | $<\frac{20}{3}$ |


$x_{3}=$|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}=$ | 120 | 0 | -4 | 0 | 2 | 4 |
| $x_{6}=$ | 0 | 0 | 1.5 | 1 | 1 | -0.5 |
| 0 | 1 | -1 | 0 | -1 | 1 | 0 |
| 10 | 0 | 2.5 | 0 | 1 | -1.5 | 1 |

$x_{2}$ enters the basis, $x_{6}$ leaves it. We get

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 136 | 0 | 0 | 0 | 3.6 | 1.6 | 1.6 |
| $x_{3}=$ | 4 | 0 | 0 | 1 | 0.4 | 0.4 | -0.6 |
| $x_{1}=$ | 4 | 1 | 0 | 0 | -0.6 | 0.4 | 0.4 |
| $x_{2}=$ | 4 | 0 | 1 | 0 | 0.4 | -0.6 | 0.4 |

and the reduced costs are all non-negative.
Thus ( $4,4,4,0,0,0$ ) is an optimal solution with cost -136 , corresponding to point $E=(4,4,4)$ in the original polyhedron.

$$
\begin{aligned}
A & =(0,0,0)^{\top} \\
B & =(0,0,10)^{\top} \\
C & =(0,10,0)^{\top} \\
D & =(10,0,0)^{\top} \\
E & =(4,4,4)^{\top}
\end{aligned}
$$



## Comparison

The following table gives the computational cost of one iteration of the simplex method for the two variants introduced above.

|  | full | revised |  |  |
| :--- | :---: | :---: | :---: | :---: |
| tableau | rimplex | revised simplex <br> sparse $A$ | revised simplex <br> LU factorization |  |
| memory | $O(m n)$ | $O(m n)$ | $O\left(m^{2}+\mathrm{nz}(A)\right)$ | $O\left(m^{2}+\mathrm{nz}(A)\right)$ |
| worst-case time | $O(m n)$ | $O(m n)$ | $O\left(m^{2}+\mathrm{nz}(A)\right)$ | $O\left(m^{2}+\mathrm{nz}(A)\right)$ |
| best-case time | $O(m n)$ | $O\left(m^{2}\right)$ | $O\left(m^{2}\right)$ | $O(\mathrm{nz}(L)+\mathrm{nz}(U))$ |

## Conclusion

- For implementation purposes, the revised simplex method is preferable due to its smaller memory requirement and average running time.
- The full tableau method is convenient for solving small LP instances by hand since all necessary information is readily available.

