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Observation 5.1 To execute one iteration of the simplex method efficiently, it
suffices to know B, the current solution x, and the input data A, b, and c. It is then
easy to compute:

c̄⊤ = c⊤ − c⊤B ⋅ A
−1
B ⋅ A; u = A−1

B ⋅ Aj; �
∗
= min

i∶ui>0

xB(i)
ui

=

xB(�)
u�

The new basis matrix is then

AB̄ = [AB(1), … ,AB(�−1),Aj,AB(�+1), … ,AB(m)] .

and the new solution y is given by yj = �∗, yB = xB − �∗u

The above steps can be done (rather) efficiently if we know the inverse matrix A−1
B

We have not discussed initialization so far, but we will see later that we always start
with a identity-basis: AB = A−1

B = I

Critical question: How to obtain A−1
B̄ efficiently?
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notice that A−1
B ⋅ AB̄ = (e1, … , e�−1,u, e�+1, … , em)

Recall that the inverse of matrix M can be found by applying elementary row
operations that transform M to I :

(M | I ) ∼∼∼∼∼∼∼▷

row operations
( I |M−1

)

Row operations are equivalent to left multiplication by some invertible matrix.

So we start left-multiplying with A−1
B :

(AB̄ | I ) ∼∼∼∼∼∼∼▷

left mult. A−1
B

( (e1, … , e�−1,u, e�+1, … , em) |A−1
B )

It simply remains to bring u to the unit vector e� . This is done as follows:
multiply �th row with 1/u� ;
for i ≠ � , subtract ui times resulting �th row from ith row.

Obtaining A−1
B̄ from A−1

B
Apply elementary row operations to the matrix (A−1

B ∣ u) to make the last column
equal to the unit vector e� . The first m columns of the resulting matrix form the
inverse A−1

B̄ of the new basis matrix AB̄.
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Given: basis B, corresponding basic feasible solution x, and A−1
B .

1 Let p⊤ ∶= c⊤B ⋅ A
−1
B and c̄j ∶= cj − p⊤ ⋅ Aj , j ∈ N ;

if c̄ ≥ 0, then STOP; else choose j with c̄j < 0.

2 Let u ∶= A−1
B ⋅ Aj . If u ≤ 0, then STOP (optimal cost is −∞).

3 Let �∗ ∶= min
i∶ui>0

xB(i)
ui

=

xB(�)
u�

for some � ∈ {1, … ,m}.

4 Form new basis by replacing AB(�) with Aj ; corresponding basic feasible
solution y is given by

yj ∶= �∗, yB = xB − �∗ u, yN ⧵{j} = 0.

5 Apply elementary row operations to the matrix (A−1
B ∣ u) to make the last

column equal to the unit vector e� .

The first m columns of the resulting matrix yield A−1
B̄ .
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In practice, A is often sparse !

In real-worl problems, A typically has only a few non-zero entries: much more
efficient to store only non-zero coordinates.

But the inverse base matrix is not always sparse!

AB of size 363 × 363, density=2.5% A−1
B of size 363 × 363, density=61%

We do not need the matrix inverse. We just need to solve linear systems

u = A−1
B ⋅ Aj ⟺ AB ⋅ u = Aj

p⊤ = c⊤B ⋅ A
−1
B ⟺ A⊤B ⋅ p = cB
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So, in pratice, in every iteration we nee to solve two linear systems, one involving the
matrix AB and one involving the matrix A⊤B

Assume we have a LU factorization of the matrix AB, i.e. AB = L ⋅ U with
L lower triangular, U upper triangular.

Then, both systems are of the form L ⋅ U ⋅ z = h, and can be solved by:

finding a vector v sucht that L ⋅ v = h using forward substitutions
finding a vector z such that U ⋅ z = v using backward substitutions

The above operations are very fast if L and U are sparse: O(nz(L) + nz(U )).

In practice, LU decomposition is done by Gaussian Elimination (GE), and does not
necessarily give sparse L and U . But, special GE algorithms can identify permutation
matrices P, Q and sparse triangular matrices L, U such that P ⋅AB ⋅Q = L ⋅ U . Then,

AB ⋅ z = h ⟺ ( L ⋅ v = P ⋅ h, U ⋅w = v, z = Q ⋅w )
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State-of-the art implementations update the LU factorization after an iteration,
similarly as we did for A−1

B .

In fact, if AB = L ⋅ U , it can be seen that AB̄ = L ⋅ R, where R is “nearly upper
triangular” (except for one column). Triangularity can be restored by decomposing
R = L̃ ⋅ Ũ ; Then, AB̄ = L ⋅ L̃ ⋅ Ũ .

Computing L̃ and Ũ only takes O(m), we only have to specify one row/column.

After k iterations, we have a factorization of the form A(k)
B = L ⋅ L1 ⋅ L2⋯Lk ⋅ Uk,

which can be used to solve the linear systems.

Numerical stability
The most critical issue when implementing the (revised) simplex method is numerical
stability. In order to deal with this, a number of additional ideas from numerical
linear algebra are needed.

Every update of A−1
B (or of the LU factorization) introduces roundoff or truncation

errors which accumulate and might eventually lead to highly inaccurate results.
Moreover the size of the LU factorization grows
Solution: Compute the matrix A−1

B (or AB = L ⋅ U ) from scratch once in a while.
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Main idea
Instead of maintaining and updating the matrix A−1

B , we maintain and update the
m × (n + 1)-matrix

A−1
B ⋅ (b ∣ A) = (A−1

B ⋅ b ∣ A−1
B ⋅ A)

which is called simplex tableau.

The zeroth column A−1
B ⋅ b contains xB.

For i = 1, … ,n, the ith column of the tableau is A−1
B ⋅ Ai.

The column u = A−1
B ⋅ Aj corresponding to the variable xj that is about to enter the

basis is the pivot column.

If the �th basic variable xB(�) exits the basis, the �th row of the tableau is the pivot
row.

The element u� > 0 is the pivot element.
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Notice: The simplex tableau A−1
B ⋅ (b ∣ A) represents the linear equation

A−1
B ⋅ b = A−1

B ⋅ A ⋅ x

which is equivalent to A ⋅ x = b.

Updating the simplex tableau
At the end of an iteration, the simplex tableau A−1

B ⋅ (b ∣ A) has to be updated to
A−1
B̄ ⋅ (b ∣ A).

A−1
B̄ can be obtained from A−1

B by elementary row operations,
i.e., A−1

B̄ = Q ⋅ A−1
B where Q is a product of elementary matrices.

Thus, A−1
B̄ ⋅ (b ∣ A) = Q ⋅ A−1

B ⋅ (b ∣ A), and new tableau A−1
B̄ ⋅ (b ∣ A) can be

obtained by applying the same elementary row operations.
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In order to keep track of the objective function value and the reduced costs, we consider
the following augmented simplex tableau:

−c⊤BA
−1
B b c⊤ − c⊤BA

−1
B A

A−1
B b A−1

B A

or in more detail

−c⊤BxB c̄1 ⋯ c̄n
xB(1) | |

⋮ A−1
B A1 ⋯ A−1

B An

xB(m) | |
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zeroth row is [−c⊤BA
−1
B b, c⊤ − c⊤BA

−1
B A] = [0, c⊤] − c⊤BA

−1
B [b,A]

let h⊤ be the �th row of A−1
B , then pivot row � is h⊤[b,A]

adding multiple � of pivot row to zeroth row yields new zeroth row

[−c⊤BxB + �h
⊤b, c̄⊤ + �h⊤A] = [0, c⊤] − (c⊤BA

−1
B − �h⊤)[b,A] =∶ [p0,p⊤],

for every i ∈ B ⧵ {�}, we have pi = 0 since c̄i = 0 and h⊤Ai = (ei)� = 0

choose � such that pj = 0

then pB̄ = c⊤B̄ − (c⊤BA
−1
B − �h⊤)AB̄ = 0, i.e., (c⊤BA

−1
B − �h⊤) = c⊤B̄A

−1
B̄

Update of zeroth row
The zeroth row is updated by adding a multiple of the pivot row to the zeroth row
to set the reduced cost of the entering variable to zero.
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Given: Simplex tableau corresp. to feasible basis B = (B(1),… ,B(m)).

1 If c̄ ≥ 0 (zeroth row), then STOP; else choose pivot column j with c̄j < 0.

2 If u = A−1
B Aj ≤ 0 (jth column), STOP (optimal cost is −∞).

3 Choose pivot row � with min
i∶ui>0

xB(i)
ui

=

xB(�)
u�

(compare columns 0 and j).

4 Apply elementary row operations to the simplex tableau so that u� (pivot
element) becomes one and all other entries of the pivot column become zero
(including zeroth row). The resulting tableau corresponds to new basis B̄ in which
AB(�) is replaced with Aj .
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A simple linear programming problem:

min −10 x1 − 12 x2 − 12 x3
s.t. x1 + 2 x2 + 2 x3 ≤ 20

2 x1 + x2 + 2 x3 ≤ 20
2 x1 + 2 x2 + x3 ≤ 20

x1, x2, x3 ≥ 0
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A = (0, 0, 0)⊤

B = (0, 0, 10)⊤

C = (0, 10, 0)⊤

D = (10, 0, 0)⊤

E = (4, 4, 4)⊤
x1

x2

x3

A

B

C

D

E
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min −10 x1 − 12 x2 − 12 x3
s.t. x1 + 2 x2 + 2 x3 ≤ 20

2 x1 + x2 + 2 x3 ≤ 20
2 x1 + 2 x2 + x3 ≤ 20

x1, x2, x3 ≥ 0

LP in standard form

min −10 x1 − 12 x2 − 12 x3
s.t. x1 + 2 x2 + 2 x3 + x4 = 20

2 x1 + x2 + 2 x3 + x5 = 20
2 x1 + 2 x2 + x3 + x6 = 20

x1, … , x6 ≥ 0

Observation
The right-hand side of the system is non-negative. Therefore the point
(0, 0, 0, 20, 20, 20)⊤ is a basic feasible solution and we can start the simplex method
with basis B(1) = 4,B(2) = 5,B(3) = 6.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

0 −10 −12 −12 0 0 0
x4 = 20 1 2 2 1 0 0

20

x5 = 20 2 1 2 0 1 0

10

x6 = 20 2 2 1 0 0 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6
xB(i)
ui

0 −10 −12 −12 0 0 0
x4 = 20 1 2 2 1 0 0 20
x5 = 20 2 1 2 0 1 0 10
x6 = 20 2 2 1 0 0 1 10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6
xB(i)
ui

0 −10 −12 −12 0 0 0
x4 = 20 1 2 2 1 0 0 20
x5 = 20 2 1 2 0 1 0 10
x6 = 20 2 2 1 0 0 1 10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

0 −10 −12 −12 0 0 0
x4 = 20 1 2 2 1 0 0

20

x5 = 20 2 1 2 0 1 0

10

x6 = 20 2 2 1 0 0 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 20 1 2 2 1 0 0

20

x5 = 20 2 1 2 0 1 0

10

x6 = 20 2 2 1 0 0 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 20 1 2 2 1 0 0

20

x5 = 20 2 1 2 0 1 0

10

x6 = 20 2 2 1 0 0 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0

20

x5 = 20 2 1 2 0 1 0

10

x6 = 20 2 2 1 0 0 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0

20

x5 = 20 2 1 2 0 1 0

10

x6 = 20 2 2 1 0 0 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0

20

x5 = 20 2 1 2 0 1 0

10

x6 = 0 0 1 −1 0 −1 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0

20

x5 = 20 2 1 2 0 1 0

10

x6 = 0 0 1 −1 0 −1 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0

20

x1 = 10 1 0.5 1 0 0.5 0

10

x6 = 0 0 1 −1 0 −1 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0

20

x1 = 10 1 0.5 1 0 0.5 0

10

x6 = 0 0 1 −1 0 −1 1

10

Determine pivot column (e.g., take smallest subscript rule).

c̄1 < 0 and x1 enters the basis.

Find pivot row with ui > 0 minimizing
xB(i)
ui

.

Rows 2 and 3 both a�ain the minimum.

Choose i = 2 with B(i) = 5. ⟹ x5 leaves the basis.

Perform basis change: Eliminate other entries in the pivot column.

Obtain new basic feasible solution (10, 0, 0, 10, 0, 0)⊤ with cost -100.
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A = (0, 0, 0)⊤

B = (0, 0, 10)⊤

C = (0, 10, 0)⊤

D = (10, 0, 0)⊤

E = (4, 4, 4)⊤

x1

x2

x3

A

B

C

D

E

B

C

D

D

E
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0

10

x1 = 10 1 0.5 1 0 0.5 0

10

x6 = 0 0 1 −1 0 −1 1

−

c̄2, c̄3 < 0 ⟹ two possible choices for pivot column.

Choose x3 to enter the new basis.

u3 < 0 ⟹ third row cannot be chosen as pivot row.

Choose x4 to leave basis.

New basic feasible solution (0, 0, 10, 0, 0, 10)⊤ with cost -120,

corresponding to point B in the original polyhedron.
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x1 x2 x3 x4 x5 x6
xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0 10
x1 = 10 1 0.5 1 0 0.5 0 10
x6 = 0 0 1 −1 0 −1 1 −

c̄2, c̄3 < 0 ⟹ two possible choices for pivot column.

Choose x3 to enter the new basis.

u3 < 0 ⟹ third row cannot be chosen as pivot row.

Choose x4 to leave basis.

New basic feasible solution (0, 0, 10, 0, 0, 10)⊤ with cost -120,

corresponding to point B in the original polyhedron.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

100 0 −7 −2 0 5 0
x4 = 10 0 1.5 1 1 −0.5 0

10

x1 = 10 1 0.5 1 0 0.5 0

10

x6 = 0 0 1 −1 0 −1 1

−

c̄2, c̄3 < 0 ⟹ two possible choices for pivot column.

Choose x3 to enter the new basis.

u3 < 0 ⟹ third row cannot be chosen as pivot row.

Choose x4 to leave basis.

New basic feasible solution (0, 0, 10, 0, 0, 10)⊤ with cost -120,

corresponding to point B in the original polyhedron.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

120 0 −4 0 2 4 0
x4 = 10 0 1.5 1 1 −0.5 0

10

x1 = 10 1 0.5 1 0 0.5 0

10

x6 = 0 0 1 −1 0 −1 1

−

c̄2, c̄3 < 0 ⟹ two possible choices for pivot column.

Choose x3 to enter the new basis.

u3 < 0 ⟹ third row cannot be chosen as pivot row.

Choose x4 to leave basis.

New basic feasible solution (0, 0, 10, 0, 0, 10)⊤ with cost -120,

corresponding to point B in the original polyhedron.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

120 0 −4 0 2 4 0
x4 = 10 0 1.5 1 1 −0.5 0

10

x1 = 10 1 0.5 1 0 0.5 0

10

x6 = 0 0 1 −1 0 −1 1

−

c̄2, c̄3 < 0 ⟹ two possible choices for pivot column.

Choose x3 to enter the new basis.

u3 < 0 ⟹ third row cannot be chosen as pivot row.

Choose x4 to leave basis.

New basic feasible solution (0, 0, 10, 0, 0, 10)⊤ with cost -120,

corresponding to point B in the original polyhedron.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

120 0 −4 0 2 4 0
x4 = 10 0 1.5 1 1 −0.5 0

10

x1 = 0 1 −1 0 −1 1 0

10

x6 = 0 0 1 −1 0 −1 1

−

c̄2, c̄3 < 0 ⟹ two possible choices for pivot column.

Choose x3 to enter the new basis.

u3 < 0 ⟹ third row cannot be chosen as pivot row.

Choose x4 to leave basis.

New basic feasible solution (0, 0, 10, 0, 0, 10)⊤ with cost -120,

corresponding to point B in the original polyhedron.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

120 0 −4 0 2 4 0
x4 = 10 0 1.5 1 1 −0.5 0

10

x1 = 0 1 −1 0 −1 1 0

10

x6 = 0 0 1 −1 0 −1 1

−

c̄2, c̄3 < 0 ⟹ two possible choices for pivot column.

Choose x3 to enter the new basis.

u3 < 0 ⟹ third row cannot be chosen as pivot row.

Choose x4 to leave basis.

New basic feasible solution (0, 0, 10, 0, 0, 10)⊤ with cost -120,

corresponding to point B in the original polyhedron.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

120 0 −4 0 2 4 0
x4 = 10 0 1.5 1 1 −0.5 0

10

x1 = 0 1 −1 0 −1 1 0

10

x6 = 10 0 2.5 0 1 −1.5 1

−

c̄2, c̄3 < 0 ⟹ two possible choices for pivot column.

Choose x3 to enter the new basis.

u3 < 0 ⟹ third row cannot be chosen as pivot row.

Choose x4 to leave basis.

New basic feasible solution (0, 0, 10, 0, 0, 10)⊤ with cost -120,

corresponding to point B in the original polyhedron.
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x1 x2 x3 x4 x5 x6

xB(i)
ui

120 0 −4 0 2 4 0
x3 = 10 0 1.5 1 1 −0.5 0

10

x1 = 0 1 −1 0 −1 1 0

10

x6 = 10 0 2.5 0 1 −1.5 1

−

c̄2, c̄3 < 0 ⟹ two possible choices for pivot column.

Choose x3 to enter the new basis.

u3 < 0 ⟹ third row cannot be chosen as pivot row.

Choose x4 to leave basis.

New basic feasible solution (0, 0, 10, 0, 0, 10)⊤ with cost -120,

corresponding to point B in the original polyhedron.
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A = (0, 0, 0)⊤

B = (0, 0, 10)⊤

C = (0, 10, 0)⊤

D = (10, 0, 0)⊤

E = (4, 4, 4)⊤
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x1 x2 x3 x4 x5 x6
xB(i)
ui

120 0 −4 0 2 4 0
x3 = 10 0 1.5 1 1 −0.5 0 20

3
x1 = 0 1 −1 0 −1 1 0 −

x6 = 10 0 2.5 0 1 −1.5 1 4

<
20
3

x2 enters the basis, x6 leaves it. We get

x1 x2 x3 x4 x5 x6
136 0 0 0 3.6 1.6 1.6

x3 = 4 0 0 1 0.4 0.4 −0.6
x1 = 4 1 0 0 −0.6 0.4 0.4
x2 = 4 0 1 0 0.4 −0.6 0.4

and the reduced costs are all non-negative.

Thus (4, 4, 4, 0, 0, 0) is an optimal solution with cost -136, corresponding to point
E = (4, 4, 4) in the original polyhedron.
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A = (0, 0, 0)⊤

B = (0, 0, 10)⊤

C = (0, 10, 0)⊤

D = (10, 0, 0)⊤

E = (4, 4, 4)⊤
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The following table gives the computational cost of one iteration of the simplex method
for the two variants introduced above.

full revised revised simplex revised simplex
tableau simplex sparse A LU factorization

memory O(mn) O(mn) O(m2
+ nz(A)) O(m2

+ nz(A))
worst-case time O(mn) O(mn) O(m2

+ nz(A)) O(m2
+ nz(A))

best-case time O(mn) O(m2
) O(m2

) O(nz(L) + nz(U ))

Conclusion
For implementation purposes, the revised simplex method is preferable due to its
smaller memory requirement and average running time.

The full tableau method is convenient for solving small LP instances by hand
since all necessary information is readily available.


