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Problem: If an LP is degenerate, the simplex method might end up in an infinite loop
(cycling).

Example:
x1 x2 x3 x4 x5 x6 x7

3 −3/4 20 −1/2 6 0 0 0
x5 = 0 1/4 −8 −1 9 1 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0
x7 = 1 0 0 1 0 0 0 1

Pivoting rules in this example

Column selection: steepest descent rule,
i.e., let non-basic variable with minimal reduced cost c̄j < 0 enter the basis

Row selection: smallest subscript rule,
i.e., among basic variables eligible to exit the basis, select the one with smallest
subscript
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x1 x2 x3 x4 x5 x6 x7
xB(i)
ui

3 −3/4 20 −1/2 6 0 0 0
x5 = 0 1/4 −8 −1 9 1 0 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0 0
x7 = 1 0 0 1 0 0 0 1 −

Basis change: x1 enters the basis, x5 leaves the basis.

Bases visited
(5, 6, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.



Iteration 1 6 | 3

x1 x2 x3 x4 x5 x6 x7

xB(i)
ui

3 −3/4 20 −1/2 6 0 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 1/2 −12 −1/2 3 0 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis, x5 leaves the basis.

Bases visited
(5, 6, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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x1 x2 x3 x4 x5 x6 x7

xB(i)
ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 1/2 −12 −1/2 3 0 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis, x5 leaves the basis.

Bases visited
(5, 6, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.



Iteration 1 6 | 3

x1 x2 x3 x4 x5 x6 x7

xB(i)
ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 1/2 −12 −1/2 3 0 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis, x5 leaves the basis.

Bases visited
(5, 6, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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x1 x2 x3 x4 x5 x6 x7

xB(i)
ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 0 4 3/2 −15 −2 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis, x5 leaves the basis.

Bases visited
(5, 6, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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x1 x2 x3 x4 x5 x6 x7

xB(i)
ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 0 4 3/2 −15 −2 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis, x5 leaves the basis.

Bases visited
(5, 6, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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x1 x2 x3 x4 x5 x6 x7

xB(i)
ui

3 0 −4 −7/2 33 3 0 0
x5 = 0 1/4 −8 −1 9 1 0 0

0

x6 = 0 0 4 3/2 −15 −2 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis, x5 leaves the basis.

Bases visited
(5, 6, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.



Iteration 1 6 | 3

x1 x2 x3 x4 x5 x6 x7

xB(i)
ui

3 0 −4 −7/2 33 3 0 0
x1 = 0 1 −32 −4 36 4 0 0

0

x6 = 0 0 4 3/2 −15 −2 1 0

0

x7 = 1 0 0 1 0 0 0 1

−

Basis change: x1 enters the basis, x5 leaves the basis.

Bases visited
(5, 6, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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x1 x2 x3 x4 x5 x6 x7
xB(i)
ui

3 0 −4 −7/2 33 3 0 0
x1 = 0 1 −32 −4 36 4 0 0 −

x6 = 0 0 4 3/2 −15 −2 1 0 0
x7 = 1 0 0 1 0 0 0 1 −

Basis change: x2 enters the basis, x6 leaves the basis.

Bases visited
(5, 6, 7) → (1, 6, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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x1 x2 x3 x4 x5 x6 x7
xB(i)
ui

3 0 0 −2 18 1 1 0
x1 = 0 1 0 8 −84 −12 8 0 0
x2 = 0 0 1 3/8 −15/4 −1/2 1/4 0 0
x7 = 1 0 0 1 0 0 0 1 1

Basis change: x3 enters the basis, x1 leaves the basis.

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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x1 x2 x3 x4 x5 x6 x7
xB(i)
ui

3 1/4 0 0 −3 −2 3 0
x3 = 0 1/8 0 1 −21/2 −3/2 1 0 −

x2 = 0 −3/64 1 0 3/16 1/16 −1/8 0 0
x7 = 1 −1/8 0 0 21/2 3/2 −1 1 2/21

Basis change: x4 enters the basis, x2 leaves the basis.

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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x1 x2 x3 x4 x5 x6 x7
xB(i)
ui

3 −1/2 16 0 0 −1 1 0
x3 = 0 −5/2 56 1 0 2 −6 0 0
x4 = 0 −1/4 16/3 0 1 1/3 −2/3 0 0
x7 = 1 5/2 −56 0 0 −2 6 1 −

Basis change: x5 enters the basis, x3 leaves the basis.

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7) → (3, 4, 7)

Observation
After 4 pivoting iterations our basic feasible solution still has not changed.
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x1 x2 x3 x4 x5 x6 x7
xB(i)
ui

3 −7/4 44 1/2 0 0 −2 0
x5 = 0 −5/4 28 1/2 0 1 −3 0 −

x4 = 0 1/6 −4 −1/6 1 0 1/3 0 0
x7 = 1 0 0 1 0 0 0 1 −

Basis change: x6 enters the basis, x4 leaves the basis.

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7) → (3, 4, 7)
→ (5, 4, 7)
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x1 x2 x3 x4 x5 x6 x7
3 −3/4 20 −1/2 6 0 0 0

x5 = 0 1/4 −8 −1 9 1 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0
x7 = 1 0 0 1 0 0 0 1

Bases visited
(5, 6, 7) → (1, 6, 7) → (1, 2, 7) → (3, 2, 7) → (3, 4, 7)
→ (5, 4, 7) → (5, 6, 7)

This is the same basis that we started with.

Conclusion
Continuing with the pivoting rules we agreed on at the beginning, the simplex
method will never terminate in this example.
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Definition 6.1
a A vector u ∈ ℝ

n is lexicographically positive (negative) if u ≠ 0 and the first
nonzero entry of u is positive (negative). Symbolically, we write u >L 0 (resp.
u <L 0).

b A vector u ∈ ℝ
n is lexicographically larger (smaller) than a vector v ∈ ℝ

n if
u − v >L 0 (resp. u − v <L 0).We write u >L v (resp. u <L v).

Examples:
(0, 2, 3, 0)⊤ >L (0, 2, 1, 4)⊤

(0, 4, 5, 0)⊤ <L (1, 2, 1, 2)⊤
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Lexicographic pivoting rule in the full tableau implementation
i Choose an arbitrary column Aj with c̄j < 0 to enter the basis. Let u ∶= A−1

B Aj
be the jth column of the tableau.

ii For each i with ui > 0, divide the ith row of the tableau by ui and choose the
lexicographically smallest row � . Then the �th basic variable xB(�) exits the
basis.

Remarks.

The lexicographic pivoting rule always leads to a unique choice for the exiting variable.
Otherwise two rows of A−1

B A would have to be linearly dependent which contradicts
our assumption on the matrix A.

The chosen � meets the requirement
xB(�)
u�

= min
i∶ui>0

xB(i)
ui

because after dividing the ith row by ui its zeroth entry is
xB(i)
ui

.
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Theorem 6.2 Suppose that the simplex method starts with lexicographically
positive rows 1, … ,m in the simplex tableau. Suppose that the lexicographic pivoting
rule is followed. Then:

a All rows remain lexicographically positive throughout the algorithm.

b The zeroth row strictly increases lexicographically at each iteration.

c The simplex method terminates after a finite number of iterations.

Corollary 6.3 Every bounded LP in standard form has an optimal basis matrix.
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Proof: a all rows remain lexicographically positive

let T = A−1
B [b,A] be the full tableau, assume all rows Ti,. >L 0

let B̄ = (B(1),… ,B(� − 1), j,B(�),B(m))

then u = A−1
B Aj , u� > 0, and T� ,.

u�
<L

Ti,.
ui

for all i with ui > 0

let T̄ = A−1
B̄ [b,A]

T̄� ,. = 1
u�
T� ,. >L 0

for i ≠ � , T̄i,. = Ti,. − ui
u�
T� ,.

if ui ≤ 0, then T̄i,. is the sum of of a lex. pos. row and a row that is lex. pos. or
zero, so it is lex. pos.
if ui > 0, then Ti,.

ui
>L

T� ,.
u�

⇒ T̄i,. = Ti,. − ui
u�
T� ,. >L 0

b zeroth row strictly increases lexicographically

T̄0,. = T0,. −
c̄j
u�
T� ,. ⇒ T̄0,. >L T0,. since

c̄j
u�

< 0 and T� ,. >L 0
c simplex method terminates

follows from b since zeroth row is uniquely determined by current basis
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Example:
x1 x2 x3 x4 x5 x6 x7

3 −3/4 20 −1/2 6 0 0 0
x5 = 0 1

4 −8 −1 9 1 0 0
x6 = 0 1

2 −12 −
1
2 3 0 1 0

x7 = 1 0 0 1 0 0 0 1

Pivoting rules in this example

Column selection: steppest descent rule,
i.e., let non-basic variable with minimal reduced cost c̄j < 0 enter the basis

Row selection: lexicographic rule,
i.e., among basic variables eligible to exit the basis, select the one lexicographically
minimizing Ti,./ui
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x1 x2 x3 x4 x5 x6 x7
3 −

3
4 20 −

1
2 6 0 0 0

x5 = 0 1
4 −8 −1 9 1 0 0

x6 = 0 1
2 −12 −

1
2 3 0 1 0

x7 = 1 0 0 1 0 0 0 1

Ti,./ui for i with ui > 0:

x1 x2 x3 x4 x5 x6 x7
0 1 −32 −4 36 4 0 0
0 1 −24 −1 6 0 2 0

Basis change: x1 enters the basis, x5 leaves the basis.
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x1 x2 x3 x4 x5 x6 x7
3 0 −4 −

7
2 33 3 0 0

x1 = 0 1 −32 −4 36 4 0 0
x6 = 0 0 4 3

2 −15 −2 1 0
x7 = 1 0 0 1 0 0 0 1

Ti,./ui for i with ui > 0:

x1
0
0
0

Basis change: x2 enters the basis, x6 leaves the basis.
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x1 x2 x3 x4 x5 x6 x7
3 0 0 −2 18 1 1 0

x1 = 0 1 0 8 −84 −12 8 0
x2 = 0 0 1 3

8 −
15
4 −

1
2

1
4 0

x7 = 1 0 0 1 0 0 0 1

Ti,./ui for i with ui > 0:

x1 x2 x3 x4 x5 x6 x7
0 1

8 0 1 −
21
2 −

3
2 1 0

0 0 8
3 1 −10 −

4
3

2
3 0

1 0 0 1 0 0 0 1

Basis change: x3 enters the basis, x2 leaves the basis.
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x1 x2 x3 x4 x5 x6 x7
3 0 16

3 0 −2 −
5
3

7
3 0

x1 = 0 1 −
64
3 0 −4 −

4
3

8
3 0

x3 = 0 0 8
3 1 −10 −

4
3

2
3 0

x7 = 1 0 −
8
3 0 10 4

3 −
2
3 1

Basis change: x4 enters the basis, x7 leaves the basis.
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x1 x2 x3 x4 x5 x6 x7
16
5 0 24

5 0 0 −
7
5

11
5

1
5

x1 = 2
5 1 −

112
5 0 0 −

4
5

12
5

2
5

x3 = 1 0 0 1 0 0 0 1
x4 = 1

10 0 −
4
15 0 1 2

15 −
1
15

1
10

Basis change: x5 enters the basis, x4 leaves the basis.
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x1 x2 x3 x4 x5 x6 x7
17
4 0 2 0 21

2 0 3
2

5
4

x1 = 1 1 −24 0 6 0 2 1
x3 = 1 0 0 1 0 0 0 1
x5 = 3

4 0 −2 0 15
2 1 −

1
2

3
4

(ith row)/ui for i with ui > 0:

x1
0
0
0

Thus (1, 0, 1, 0, 3/4, 0, 0) is an optimal solution with cost −17/4.
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Lexicographic rule can be derived by considering small perturbation of right hand
side b leading to non-degenerate problem (see exercises).

Lexicographic pivoting rule can also be used in conjunction with revised simplex
method, provided that A−1

B is computed explicitly
(not the case in sophisticated implementations).

Assumption in theorem on lexicographically positive rows in tableau can be made
without loss of generality:

Rearrange columns of A such that basic columns (forming identity matrix in
tableau) come first.
Since zeroth column is nonnegative for basic feasible solution, all rows are
lexicographically positive.
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Smallest subscript pivoting rule (Bland’s rule)
i Choose the column Aj with c̄j < 0 and j minimal to enter the basis.

ii Among all basic variables xi that could exit the basis, select the one with
smallest i.

Theorem 6.4 Simplex method with Bland’s rule terminates after finitely many
iterations.

Proof: see exercise

Remark
Bland’s rule is compatible with an implementation of the revised simplex method in
which the reduced costs of the nonbasic variables are computed one at a time, in the
natural order, until a negative one is discovered.
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how do we obtain an initial feasible solution?
Example: min x1 + x2 + x3

s.t. x1 + 2 x2 + 3 x3 = 3
−x1 + 2 x2 + 6 x3 = 2

4 x2 + 9 x3 = 5
3 x3 + x4 = 1

x1, … , x4 ≥ 0

Auxiliary problem with artificial variables:
min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

−x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, … , x4, x5, … , x8 ≥ 0
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Auxiliary problem with artificial variables:
min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

−x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, … , x4, x5, … , x8 ≥ 0

Observation
x = (0, 0, 0, 0, 3, 2, 5, 1) is a basic feasible solution for this problem with basic variables
(x5, x6, x7, x8). We can thus form the initial tableau.
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x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 1 1 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables, this
works since c̄ = c − cBA−1

B A = −1A

Now we can proceed as seen before...



Initial Tableau 6 | 27

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 1 1 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables, this
works since c̄ = c − cBA−1

B A = −1A

Now we can proceed as seen before...



Initial Tableau 6 | 27

x1 x2 x3 x4 x5 x6 x7 x8
−3 −1 −2 −3 0 0 1 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables, this
works since c̄ = c − cBA−1

B A = −1A

Now we can proceed as seen before...
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x1 x2 x3 x4 x5 x6 x7 x8
−5 0 −4 −9 0 0 0 1 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables, this
works since c̄ = c − cBA−1

B A = −1A

Now we can proceed as seen before...
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x1 x2 x3 x4 x5 x6 x7 x8
−10 0 −8 −18 0 0 0 0 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables, this
works since c̄ = c − cBA−1

B A = −1A

Now we can proceed as seen before...
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x1 x2 x3 x4 x5 x6 x7 x8
−11 0 −8 −21 −1 0 0 0 0

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Calculate reduced costs by eliminating the nonzero-entries for the basis-variables, this
works since c̄ = c − cBA−1

B A = −1A

Now we can proceed as seen before...
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x1 x2 x3 x4 x5 x6 x7 x8
−11 0 −8 −21 −1 0 0 0 0

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x8 = 1 0 0 3 1 0 0 0 1

Basis change: x4 enters the basis, x8 exits.
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x1 x2 x3 x4 x5 x6 x7 x8
−10 0 −8 −18 0 0 0 0 1

x5 = 3 1 2 3 0 1 0 0 0
x6 = 2 −1 2 6 0 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
x4 = 1 0 0 3 1 0 0 0 1

Basis change: x3 enters the basis, x4 exits.
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x1 x2 x3 x4 x5 x6 x7 x8
−4 0 −8 0 6 0 0 0 7

x5 = 2 1 2 0 −1 1 0 0 −1
x6 = 0 −1 2 0 −2 0 1 0 −2
x7 = 2 0 4 0 −3 0 0 1 −3
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x2 enters the basis, x6 exits.



Minimizing the Auxiliary Problem 6 | 31

x1 x2 x3 x4 x5 x6 x7 x8
−4 −4 0 0 −2 0 4 0 −1

x5 = 2 2 0 0 1 1 −1 0 1
x2 = 0 −1/2 1 0 −1 0 1/2 0 −1
x7 = 2 2 0 0 1 0 −2 1 1
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basis change: x1 enters the basis, x5 exits.
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x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 2 2 0 1

x1 = 1 1 0 0 1/2 1/2 −1/2 0 1/2
x2 = 1/2 0 1 0 −3/4 1/4 1/4 0 −3/4
x7 = 0 0 0 0 0 −1 −1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Basic feasible solution for auxiliary problem with (auxiliary) cost value 0

⇒ Also feasible for the original problem - but not (yet) basic.
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x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 0 0 2 2 0 1

x1 = 1 1 0 0 1/2 1/2 −1/2 0 1/2
x2 = 1/2 0 1 0 −3/4 1/4 1/4 0 −3/4
x7 = 0 0 0 0 0 −1 −1 1 0
x3 = 1/3 0 0 1 1/3 0 0 0 1/3

Observation
Restricting the tableau to the original variables, we get a zero-row.
Thus the original equations are linearily dependent.
→ We can remove the third row.
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x1 x2 x3 x4
−11/6 0 0 0 −1/12

x1 = 1 1 0 0 1/2
x2 = 1/2 0 1 0 −3/4
x3 = 1/3 0 0 1 1/3

We finally obtain a basic feasible solution for the original problem.

After computing the reduced costs for this basis (as seen in the beginning), the simplex
method can start with its typical iterations.
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Auxiliary problem

min x5 +x6 +x7 +x8
s.t. x1 +2 x2 +3 x3 +x5 = 3

−x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 +x8 = 1
x1, … , x8 ≥ 0

Artificial variable x8 could have been omi�ed by se�ing x4 to 1 in the initial basis. This
is possible as x4 does only appear in one constraint.

Generally, this can be done, e.g., with all slack variables that have nonnegative right
hand sides.
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Given: LP in standard form: min{c⊤ ⋅ x ∣ A ⋅ x = b, x ≥ 0}

i Transform problem such that b ≥ 0 (multiply constraints by −1).

ii Introduce artificial variables y1, … ,ym and solve auxiliary problem

min

m

∑

i=1
yi s.t. A ⋅ x + Im ⋅ y = b, x,y ≥ 0.

iii If optimal cost is positive, then STOP (original LP is infeasible).

iv If no artificial variable is in final basis, eliminate artificial variables and columns
and STOP (feasible basis for original LP has been found).

v If �th basic variable is artificial, find j ∈ {1, … ,n} with �th entry in A−1
B ⋅ Aj

nonzero. Use this entry as pivot element and replace �th basic variable with xj .

vi If no such j ∈ {1, … ,n} exists, eliminate �th row (constraint).
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Two-phase simplex method
1 Given an LP in standard from, first run phase I.

2 If phase I yields a basic feasible solution for the original LP, enter “phase II” (see
above).

Possible outcomes of the two-phase simplex method
i Problem is infeasible (detected in phase I).

ii Problem is feasible but rows of A are linearly dependent (detected and
corrected at the end of phase I by eliminating redundant constraints.)

iii Optimal cost is −∞ (detected in phase II).

iv Problem has optimal basic feasible solution (found in phase II).

Remark: ii is not an outcome but only an intermediate result leading to outcome iii or iv .
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Alternative idea: Combine the two phases into one by introducing sufficiently large
penalty costs for artificial variables.

This way, the LP

min ∑
n
i=1 ci xi

s.t. A ⋅ x = b

x ≥ 0
becomes:

min ∑
n
i=1 ci xi + M ⋅ ∑

m
j=1 yj

s.t. A ⋅ x + Im ⋅ y = b

x,y ≥ 0

Remark: If M is sufficiently large and the original program has a feasible solution, all
artificial variables will be driven to zero by the simplex method.
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Observation
Initially, M only occurs in the zeroth row. As the zeroth row never becomes pivot
row, this property is maintained while the simplex method is running.

All we need to have is an order on all values that can appear as reduced cost coefficients.

Order on cost coefficients
aM + b < c M + d ∶⟺ (a < c) ∨ (a = c ∧ b < d)

In particular, −aM + b < 0 < aM + b for any positive a and arbitrary b, and we can
decide whether a cost coefficient is negative or not.

→ There is no need to give M a fixed numerical value.
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Example: min x1 + x2 + x3
s.t. x1 + 2 x2 + 3 x3 = 3

−x1 + 2 x2 + 6 x3 = 2
4 x2 + 9 x3 = 5

3 x3 + x4 = 1
x1, … , x4 ≥ 0
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Auxiliary problem:
min x1 +x2 +x3 +M x5 +M x6 +M x7
s.t. x1 +2 x2 +3 x3 x5 = 3

−x1 +2 x2 +6 x3 +x6 = 2
4 x2 +9 x3 +x7 = 5

3 x3 +x4 = 1
x1, … , x4, x5, x6, x7 ≥ 0

Note that this time the unnecessary artificial variable x8 has been omi�ed.

We start off with (x5, x6, x7, x4) = (3, 2, 5, 1).
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x1 x2 x3 x4 x5 x6 x7
0 1 1 1 0 M M M

3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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x1 x2 x3 x4 x5 x6 x7
0 1 1 1 0 M M M

3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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x1 x2 x3 x4 x5 x6 x7
−3M −M + 1 −2M + 1 −3M + 1 0 0 M M

3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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x1 x2 x3 x4 x5 x6 x7
−5M 1 −4M + 1 −9M + 1 0 0 0 M

3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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x1 x2 x3 x4 x5 x6 x7
−10M 1 −8M + 1 −18M + 1 0 0 0 0
3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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x1 x2 x3 x4 x5 x6 x7
−10M 1 −8M + 1 −18M + 1 0 0 0 0
3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Compute reduced costs by eliminating the nonzero entries for the basic variables.
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x1 x2 x3 x4 x5 x6 x7
−10M 1 −8M + 1 −18M + 1 0 0 0 0
3 1 2 3 0 1 0 0
2 −1 2 6 0 0 1 0
5 0 4 9 0 0 0 1
1 0 0 3 1 0 0 0

Reduced costs for x2 and x3 are negative.

Basis change: x3 enters the basis, x4 leaves.
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x1 x2 x3 x4 x5 x6 x7
−4M − 1/3 1 −8M + 1 0 6M − 1/3 0 0 0

2 1 2 0 −1 1 0 0
0 −1 2 0 −2 0 1 0
2 0 4 0 −3 0 0 1
1/3 0 0 1 1/3 0 0 0

Basis change: x2 enters the basis, x6 leaves.
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x1 x2 x3 x4 x5 x6 x7
−4M − 1/3 −4M + 3/2 0 0 −2M + 2/3 0 4M − 1/2 0

2 2 0 0 1 1 −1 0
0 −1/2 1 0 −1 0 1/2 0
2 2 0 0 1 0 −2 1
1/3 0 0 1 1/3 0 0 0

Basis change: x1 enters the basis, x5 leaves.



Fourth Iteration 6 | 46

x1 x2 x3 x4 x5 x6 x7
−11/6 0 0 0 −1/12 2M − 3/4 2M + 1/4 0
1 1 0 0 1/2 1/2 −1/2 0
1/2 0 1 0 −3/4 1/4 1/4 0
0 0 0 0 0 −1 −1 1
1/3 0 0 1 1/3 0 0 0

Note that all artificial variables have already been driven to 0.

Basis change: x4 enters the basis, x3 leaves.
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x1 x2 x3 x4 x5 x6 x7
−7/4 0 0 1/4 0 2M − 3/4 2M + 1/4 0
1/2 1 0 −3/2 0 1/2 −1/2 0
5/4 0 1 9/4 0 1/4 1/4 0
0 0 0 0 0 −1 −1 1
1 0 0 3 1 0 0 0

We now have an optimal solution to the auxiliary problem, as all costs are nonnegative
(M presumed large enough).

By elimiating the third row as in the previous example, we get a basic feasible and also
optimal solution to the original problem.


