Introduction to
 Linear and Combinatorial Optimization

Duality Theory

7.1 Motivation and Definition

For $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$, consider the linear program

$$
\min c^{\top} \cdot x \quad \text { s.t. } \quad A \cdot x \geq b, x \geq 0
$$

Question: How to derive lower bounds on the optimal solution value?
Idea: For $p \in \mathbb{R}^{m}$ with $p \geq 0: A \cdot x \geq b \quad \Longrightarrow \quad\left(p^{\top} \cdot A\right) \cdot x \geq p^{\top} \cdot b$
Thus, if $c^{\top} \geq p^{\top} \cdot A$, then

$$
c^{\top} \cdot x \geq\left(p^{\top} \cdot A\right) \cdot x \geq p^{\top} \cdot b \quad \text { for all feasible solutions } x .
$$

Find the best (largest) lower bound in this way:

$$
\begin{array}{llll}
\max _{p} & p^{\top} \cdot b & \max _{p} & b^{\top} \cdot p \\
\text { s.t. } & p^{\top} \cdot A \leq c^{\top} \quad \longleftrightarrow & \text { s.t. } & A^{\top} \cdot p \leq c \\
& p \geq 0 & & p \geq 0
\end{array}
$$

This LP is the dual linear program of our initial LP.

Consider the general linear program:

$$
\begin{array}{cll}
\min _{x} & c^{\top} \cdot x & \\
\text { s.t. } & a_{i}^{\top} \cdot x \geq b_{i} & \text { for } i \in M_{1} \\
& a_{i}^{\top} \cdot x \leq b_{i} & \text { for } i \in M_{2} \\
& a_{i}^{\top} \cdot x=b_{i} & \text { for } i \in M_{3} \\
& x_{j} \geq 0 & \text { for } j \in N_{1} \\
& x_{j} \leq 0 & \text { for } j \in N_{2} \\
& x_{j} \text { free } & \text { for } j \in N_{3}
\end{array}
$$

Obtain a lower bound:

$$
\begin{array}{ccc}
\underset{p}{\max } & p^{\top} \cdot b & \\
\text { s.t. } & p_{i} \geq 0 & \text { for } i \in M_{1} \\
& p_{i} \leq 0 & \text { for } i \in M_{2} \\
& p_{i} \text { free } & \text { for } i \in M_{3} \\
& p^{\top} \cdot A_{j} \leq c_{j} & \text { for } j \in N_{1} \\
& p^{\top} \cdot A_{j} \geq c_{j} & \text { for } j \in N_{2} \\
& p^{\top} \cdot A_{j}=c_{j} & \text { for } j \in N_{3}
\end{array}
$$

The linear program on the right hand side is the dual linear program of the primal linear program on the left hand side.

primal LP (minimize)	dual LP (maximize)
	$\geq b_{i}$
constraints	$\leq b_{i}$
	≤ 0
	$\leq b_{i}$
	free
variables	≤ 0
	$\geq c_{i} \quad$ constraints
	free
	$=c_{i}$

primal LP dual LP

$$
\begin{array}{clll}
\min _{x} & c^{\top} \cdot x & \max _{p} & p^{\top} \cdot b \\
\text { s.t. } & A \cdot x \geq b & \text { s.t. } & p^{\top} \cdot A=c^{\top} \\
& & p \geq 0
\end{array}
$$

$\min _{x} c^{\top} \cdot x$
s.t. $A \cdot x=b$

$$
x \geq 0
$$

$$
\begin{array}{cl}
\max _{p} & p^{\top} \cdot b \\
\text { s.t. } & p^{\top} \cdot A \leq c^{\top}
\end{array}
$$

primal LP
dual LP

$$
\begin{array}{clll}
\min _{x} & c^{\top} \cdot x & \max _{p} & b^{\top} \cdot p \\
\text { s.t. } & A \cdot x \geq b & \text { s.t. } & A^{\top} \cdot p=c \\
& & p \geq 0
\end{array}
$$

$\min _{x} c^{\top} \cdot x$
s.t. $A \cdot x=b$

$$
x \geq 0
$$

$\max _{p} b^{\top} \cdot p$
s.t. $\quad A^{\top} \cdot p \leq c$

Introduction to

Linear and Combinatorial Optimization

Duality Theory

7.2 Basic Properties

| Theorem 7.1 The dual of the dual LP is the primal LP.

Proof:

- for the special case of a primal LP in standard form

$$
\min _{p}-b^{\top} p
$$

$$
\text { s.t. } \quad A^{\top} p \leq c
$$

\downarrow dualize

Theorem 7.2 Let Π_{1} and Π_{2} be two LPs where Π_{2} has been obtained from Π_{1} by (several) transformations of the following type:
ii replace a free variable by the difference of two non-negative variables;
III replace an inequality by an equation introducing a slack variable;
田 eliminate a row that is a linear combination of other rows in a feasible equality system.

Then the dual of Π_{1} is equivalent to the dual of Π_{2}.

Proof: if replacing free variable by two positive variables

$\min _{x} c^{\top} \cdot x$

s.t. $A \cdot x \geq b$

$$
\begin{array}{ll}
\max _{p} & p^{\top} b \\
\text { s.t. } & p^{\top} A=c^{\top} \\
& p \geq 0
\end{array}
$$

$$
\begin{aligned}
\min _{x^{+}, x^{-}} & {\left[c^{\top},-c^{\top}\right]\left[\begin{array}{l}
x^{+} \\
x^{-}
\end{array}\right] } \\
\text {s.t. } & {[A,-A]\left[\begin{array}{l}
x^{+} \\
x^{-}
\end{array}\right] \geq b } \\
& x^{+}, x^{-} \geq 0
\end{aligned}
$$

$\downarrow^{\text {dualize }}$

$$
\max _{p} p^{\top} b
$$

$$
\Leftrightarrow \quad \text { s.t. } \quad p^{\top}[A,-A] \leq\left[c^{\top},-c^{\top}\right]
$$

$$
p \geq 0
$$

Proof: iil introducing a slack variable
$\min _{x} c^{\top} \cdot x$
s.t. $\quad A \cdot x \geq b$
\Longleftrightarrow
\downarrow dualize
$\max _{p} b^{\top} \cdot p$
s.t. $\quad A^{\top} \cdot p=c$

$$
p \geq 0
$$

$$
\begin{aligned}
& \min _{x, y} c^{\top} x+\mathbf{0}^{\top} y \\
& \text { s.t. } \quad A x-I y=b \\
& y \geq 0
\end{aligned}
$$

\downarrow dualize

$$
\begin{aligned}
& \max _{p} p^{\top} b \\
& \text { s.t. } \quad A^{\top} \cdot p=c \\
&(-I)^{\top} \cdot p \leq \mathbf{0}
\end{aligned}
$$

Proof: 囲 eliminating linear combination row

\downarrow dualize

$$
\begin{aligned}
\max _{p} & \sum_{i=1}^{m} p_{i} b_{i}=\sum_{i=1}^{m-1}\left(p_{i}+\gamma_{i} p_{m}\right) b_{i} \\
\text { s.t. } & \sum_{i=1}^{m} p_{i} a_{i}^{\top}=\sum_{i=1}^{m-1}\left(p_{i}+\gamma_{i} p_{m}\right) a_{i}^{\top} \leq c^{\top}
\end{aligned}
$$

Introduction to

 Linear and Combinatorial Optimization

 Linear and Combinatorial Optimization}

Duality Theory

7.3 Weak and Strong Duality

Theorem 7.3 If x is a feasible solution to the primal LP (minimization problem) and p a feasible solution to the dual LP (maximization problem), then

$$
c^{\top} \cdot x \geq p^{\top} \cdot b
$$

Proof:

- here only for special case

$\min _{x} c^{\top} \cdot x$		$\max _{p}$	$p^{\top} b$
s.t. $A x \geq b$	$\stackrel{\text { dualize }}{\longleftrightarrow}$		$p^{\top} A \leq c^{\top}$
$x \geq 0$			$p \geq 0$

- if x is feasible for primal LP and p feasible for dual LP, then

$$
c^{\top} x \geq\left(p^{\top} A\right) x=p^{\top}(A x) \geq p^{\top} b
$$

Corollary 7.4 Consider a primal-dual pair of linear programs as above.
a If the primal LP is unbounded (i.e., optimal cost $=-\infty$), then the dual LP is infeasible.
b If the dual LP is unbounded (i.e., optimal cost $=\infty$), then the primal LP is infeasible.
c. If x and p are feasible solutions to the primal and dual LP, resp., and if $c^{\top} \cdot x=p^{\top} \cdot b$, then x and p are optimal solutions.

Theorem 7.5 If an LP has an optimal solution, so does its dual and the optimal costs are equal.

Proof:

- here only for an LP in standard form
$\min _{x} c^{\top} \cdot x$

$$
\begin{aligned}
\text { s.t. } \quad A x & =b \\
x & \geq 0
\end{aligned}
$$

- w.l.o.g., assume that rows of A are linearly independent
- Simplex algorithm finds optimal basis B, i.e.,

$$
\begin{equation*}
\bar{c}^{\top}=c^{\top}-c_{B} A_{B}^{-1} A \geq 0 \tag{7.1}
\end{equation*}
$$

and corresponding optimal basic feasible solution $x=\left(x_{B}, x_{N}\right)$ with $x_{B}=A_{B}^{-1} b$, $x_{N}=0$

- for $p^{\top}:=c_{B}^{\top} A_{B}^{-1}$, we have $c^{\top} \stackrel{(7.1)}{\geq} p^{\top} A$, i.e. p is a feasible dual solution with cost $p^{\top} b=c_{B}^{\top} A_{B}^{-1} b=c_{B}^{\top} x_{B}=c^{\top} x$

Different Possibilities for Primal and Dual LP

primal \backslash dual	finite optimum	unbounded	infeasible
finite optimum	possible	impossible	impossible
unbounded	impossible	impossible	possible
infeasible	impossible	possible	possible

Corollary Let $p^{*}=\inf _{x}\left\{c^{\top} x: A x \geq b\right\} \in \mathbb{R} \cup\{-\infty, \infty\}$ and $d^{*}=\sup _{p}\left\{b^{\top} p: A^{\top} p=c, p \geq 0\right\} \in \mathbb{R} \cup\{-\infty, \infty\}$. Then, it either holds

$$
\left(p^{*}=d^{*}\right) \quad \text { or } \quad\left(p^{*}=\infty, d^{*}=-\infty\right) .
$$

Example of infeasible primal and dual LP:

$$
\begin{array}{llll}
\min _{x} & x_{1}+2 x_{2} & \max _{p} & p_{1}+3 p_{2} \\
\text { s.t. } & x_{1}+x_{2}=1 & \text { s.t. } & p_{1}+2 p_{2}=1 \\
& 2 x_{1}+2 x_{2}=3 & & p_{1}+2 p_{2}=2
\end{array}
$$

Introduction to

Linear and Combinatorial Optimization

Duality Theory

7.4 Complementary Slackness

Complementary Slackness

Consider the following pair of primal and dual LPs:

If x and p are feasible solutions, then $c^{\top} \cdot x=p^{\top} \cdot A \cdot x \geq p^{\top} \cdot b$.Thus,

$$
c^{\top} \cdot x=p^{\top} \cdot b \quad \Longleftrightarrow \quad \text { for all } i: p_{i}=0 \text { if } a_{i}^{\top} \cdot x>b_{i} .
$$

Theorem 7.6 Consider an arbitrary pair of primal and dual LPs. Let x and p be feasible solutions to the primal and dual LP, respectively. Then x and p are both optimal if and only if

$$
\begin{array}{rll}
u_{i}:=p_{i}\left(a_{i}^{\top} \cdot x-b_{i}\right)=0 & \text { for all } i, \\
v_{j}:=\left(c_{j}-p^{\top} \cdot A_{j}\right) x_{j}=0 & \text { for all } j .
\end{array}
$$

Proof:

$$
\begin{aligned}
& u_{i}:=p_{i}\left(a_{i}^{\top} x-b_{i}\right) \\
& v_{j}:=\left(c_{j}-p^{\top} A_{j}\right) x_{j}
\end{aligned}
$$

- for any primal-dual pair, we have $u_{i} \geq 0$ for all i and $v_{j} \geq 0$ for all j
- we have

$$
\begin{aligned}
& \sum_{i} u_{i}=\sum_{i} p_{i}\left(a_{i}^{\top} x-b_{i}\right)=p^{\top} A x-p^{\top} b \\
& \sum_{j} v_{j}=\sum_{j}\left(c_{j}-p^{\top} A_{j}\right) x_{j}=c^{\top} x-p^{\top} A x,
\end{aligned}
$$

in particular $c^{\top} x-p^{\top} b=\sum_{i} u_{i}+\sum_{j} v_{j}$

- by strong duality, if x and p are optimal, then $c^{\top} x-p^{\top} b=0$ and, hence $u_{i}=0$ for all i and $v_{j}=0$ for all j
- on the other hand, if $u_{i}=0$ for all i and $v_{j}=0$ for all j, then $c^{\top} x=p^{\top} b$ and x and p are optimal by weak duality

Introduction to

 Linear and Combinatorial Optimization

 Linear and Combinatorial Optimization}

Duality Theory

7.5 Geometry of Duality

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=n$ ：

$\min _{x}$	$c^{\top} \cdot x$	$\max _{p}$	$p^{\top} \cdot b$
s．t．	$A \cdot x \geq b$	s．t．	$p^{\top} \cdot A=c^{\top}$
		$p \geq 0$	

Let $I \subseteq\{1, \ldots, m\}$ with $|I|=n$ and $a_{i}, i \in I$ ，linearly independent．
$\Longrightarrow a_{i}^{\top} \cdot x=b_{i}, i \in I$ ，has unique solution x^{I}（basic solution）
Assume that x^{I} is nondegenerate，i．e．，$a_{i}^{\top} \cdot x \neq b_{i}$ for $i \notin I$ ．
Let $p \in \mathbb{R}^{m}$（dual vector）．Then x, p are optimal solutions if
ii $a_{i}^{\top} \cdot x \geq b_{i}$ for all i（primal feasibility）
团 $p_{i}=0$ for all $i \notin I$（complementary slackness）
囲 $\sum_{i=1}^{m} p_{i} \cdot a_{i}=c$（dual feasibility）
iv $p \geq 0$（dual feasibility）
note that 目 and 囲imply $\sum_{i \in I} p_{i} \cdot a_{i}=c$ which has a unique solution p^{I} ．
The $a_{i}, i \in I$ ，form basis for dual LP and p^{I} is corresponding basic solution．

C is feasible for primal and dual
D is infeasible for primal and feasible for dual

Definition 7.7 Let x^{*} be a boundary point of the polyhedron $P=\{x \mid A \cdot x \leq b\}$ and let I denote the (non-empty) set of indices of rows a_{i}^{\top} of A with $a_{i}^{\top} x^{*}=b_{i}$. The conic hull

$$
\operatorname{cone}\left\{a_{i} \mid i \in I\right\}:=\left\{\sum_{i \in I} \lambda_{i} a_{i} \mid \lambda_{i} \geq 0 \forall i \in I\right\}
$$

is the outer normal cone of P in x^{*}.

Example.

Observation 7.8 Consider a polyhedron $P \subseteq \mathbb{R}^{n}$.
a For some $c \in \mathbb{R}^{n} \backslash\{0\}$ a point $x \in P$ maximizes $c^{\top} x$ over P if and only if c is in the outer normal cone of P in x.
b If x is a boundary point of P, the polyhedral cone consisting of the feasible directions at x is polar to the outer normal cone of P in x; that is, inner products are non-positive.
c. If $P \subseteq \mathbb{R}^{n}$ is a polytope, every point in \mathbb{R}^{n} is in the outer normal cone of some vertex. The interiors of these cones do not intersect.

Introduction to

 Linear and Combinatorial Optimization

 Linear and Combinatorial Optimization}

Duality Theory

7.6 Marginal Costs

Dual Variables as Marginal Costs

Consider the primal dual pair:

$$
\begin{aligned}
& \min _{x} c^{\top} \cdot x \\
& \text { s.t. } \quad A \cdot x=b \\
& x \geq 0 \\
& \max _{p} p^{\top} \cdot b \\
& \text { s.t. } \quad p^{\top} \cdot A \leq c^{\top}
\end{aligned}
$$

Let x^{*} be optimal basic feasible solution to primal LP with basis B, i.e., $x_{B}^{*}=A_{B}^{-1} \cdot b$ and assume that $x_{B}^{*}>0$ (i.e., x^{*} non-degenerate).

Replace b by $b+d$. For small d, the basis B remains feasible and optimal:

$$
\begin{align*}
A_{B}^{-1} \cdot(b+d) & =A_{B}^{-1} \cdot b+A_{B}^{-1} \cdot d \geq 0 \tag{feasibility}\\
\bar{c}^{\top} & =c^{\top}-c_{B}^{\top} \cdot A_{B}^{-1} \cdot A \geq 0 \tag{optimality}
\end{align*}
$$

Optimal cost of perturbed problem is

$$
c_{B}^{\top} \cdot A_{B}^{-1} \cdot(b+d)=c_{B}^{\top} \cdot x_{B}^{*}+\underbrace{\left(c_{B}^{\top} \cdot A_{B}^{-1}\right)}_{=p^{\top}} \cdot d
$$

Thus, p_{i} is the marginal cost per unit increase of b_{i}.

Diet problem:

- $a_{i j}:=$ amount of nutrient i in one unit of food j
- $b_{i}:=$ requirement of nutrient i in some ideal diet
- $c_{j}:=$ cost of one unit of food j on the food market

LP duality: Let $x_{j}:=$ number of units of food j in the diet:

\[

\]

Dual interpretation:

- p_{i} is "fair" price per unit of nutrient i
- $p^{\top} \cdot A_{j}$ is value of one unit of food j on the nutrient market
- food j used in ideal $\operatorname{diet}\left(x_{j}^{*}>0\right)$ is consistently priced at the two markets (by complementary slackness)
- ideal diet has the same cost on both markets (by strong duality)

Introduction to

 Linear and Combinatorial Optimization

 Linear and Combinatorial Optimization}

Duality Theory

7.7 Dual Simplex

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$, and dual LP:

$\min _{x}$	$c^{\top} \cdot x$	$\max _{p}$	$p^{\top} \cdot b$
s.t.	$A \cdot x=b$	s.t.	$p^{\top} \cdot A \leq c^{\top}$
	$x \geq 0$		

Observation 7.9 A basis B yields

- a primal basic solution given by $x_{B}:=A_{B}^{-1} \cdot b$ and
- a dual basic solution $p^{\top}:=c_{B}^{\top} \cdot A_{B}^{-1}$.

Moreover,
a the values of the primal and the dual basic solutions are equal:

$$
c_{B}^{\top} \cdot x_{B}=c_{B}^{\top} \cdot A_{B}^{-1} \cdot b=p^{\top} \cdot b ;
$$

b p is feasible if and only if $\bar{c}=c-p^{\top} A \geq 0$;
c. reduced cost $\bar{c}_{i}=0$ corresponds to active dual constraint;
d p is degenerate if and only if $\bar{c}_{i}=0$ for some non-basic variable x_{i}.

Dual Simplex Method

- Let B be a basis whose corresponding dual basic solution p is feasible.
- If also the primal basic solution x is feasible, then x, p are optimal.
- Assume that $x_{B(\ell)}<0$ and consider the ℓ th row of the simplex tableau

$$
\left(x_{B(l)}, v_{1}, \ldots, v_{n}\right) \quad \text { (pivot row) }
$$

II Let $j \in\{1, \ldots, n\}$ with $v_{j}<0$ and

$$
\frac{\bar{c}_{j}}{\left|v_{j}\right|}=\min _{i: v_{i}<0} \frac{\bar{c}_{i}}{\left|v_{i}\right|}
$$

Performing an iteration of the simplex method with pivot element v_{j} yields new basis B^{\prime} and corresponding dual basic solution p^{\prime} with

$$
c_{B^{\prime}}^{\top} \cdot A_{B^{\prime}}^{-1} \cdot A \leq c^{\top} \quad \text { and } \quad p^{\prime \top} \cdot b \geq p^{\top} \cdot b \quad\left(\text { with }>\text { if } \bar{c}_{j}>0\right) .
$$

III If $v_{i} \geq 0$ for all $i \in\{1, \ldots, n\}$, then the dual LP is unbounded and the primal LP is infeasible.

- Dual simplex method terminates if lexicographic pivoting rule is used:
- Choose any row ℓ with $x_{B(\ell)}<0$ to be the pivot row.
- Among all columns j with $v_{j}<0$ choose the one which is lexicographically minimal when divided by $\left|v_{j}\right|$.
- Dual simplex method is useful if, e.g., dual basic solution is readily available.
- Example: Resolve LP after right-hand-side b has changed.

