Linear and Combinatorial Optimization

7.1 Motivation and Definition

Motivation

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$, consider the linear program

$$\min c^{\top} \cdot x \qquad \text{s.t.} \quad A \cdot x \ge b, \ x \ge 0$$

Question: How to derive lower bounds on the optimal solution value?

Idea: For $p \in \mathbb{R}^m$ with $p \ge 0$: $A \cdot x \ge b \implies (p^\top \cdot A) \cdot x \ge p^\top \cdot b$ Thus, if $c^\top \ge p^\top \cdot A$, then

 $c^{\top} \cdot x \ge (p^{\top} \cdot A) \cdot x \ge p^{\top} \cdot b$ for all feasible solutions x.

Find the best (largest) lower bound in this way:

$$\max_{p} p^{\top} \cdot b \qquad \max_{p} b^{\top} \cdot p$$
s.t. $p^{\top} \cdot A \le c^{\top} \qquad \longleftrightarrow \qquad \text{s.t.} \quad A^{\top} \cdot p \le c$
 $p \ge 0 \qquad p \ge 0$

This LP is the dual linear program of our initial LP.

Primal and Dual Linear Program

Consider the general linear program:

Obtain a lower bound:

\min_x	$c^{ op}\cdot x$		$\max_p p^\top \cdot b$	
s.t.	$a_i^\top \cdot x \ge b_i$	for $i \in M_1$	s.t. $p_i \ge 0$	for $i \in M_1$
	$a_i^{\top} \cdot x \leq b_i$	for $i \in M_2$	$p_i \leq 0$	for $i \in M_2$
	$a_i^{\top} \cdot x = b_i$	for $i \in M_3$	p_i free	for $i \in M_3$
	$x_j \ge 0$	for $j \in N_1$	$p^{\top} \cdot A_j \leq c_j$	for $j \in N_1$
	$x_j \leq 0$	for $j \in N_2$	$p^{\top} \cdot A_j \ge c_j$	for $j \in N_2$
	x_j free	for $j \in N_3$	$p^{ op} \cdot A_j = c_j$	for $j \in N_3$

The linear program on the right hand side is the dual linear program of the primal linear program on the left hand side.

Primal and Dual Variables and Constraints ------714

primal LP (minimize)		dual LP (maximize)		
	$\geq b_i$	≥ 0		
constraints	$\geq b_i$ $\leq b_i$	≤ 0	variables	
	$= b_i$	free		
	≥ 0	$\leq c_i$		
variables	≤ 0	$\geq c_i$	constraints	
	free	$= c_i$		

Examples of Primal and Dual LPs _____715

primal LP	dual LP
$ \min_{x} c^{\top} \cdot x $ s.t. $A \cdot x \ge b$	$\max_{p} p^{\top} \cdot b$ s.t. $p^{\top} \cdot A = c^{\top}$
	$p \ge 0$
$\min_{x} c^{\top} \cdot x$	$\max_p p^\top \cdot b$
s.t. $A \cdot x = b$	s.t. $p^{\top} \cdot A \leq c^{\top}$
$x \ge 0$	

Examples of Primal and Dual LPs _____715

primal LP	dual LP
$ \min_{x} c^{\top} \cdot x \\ \text{s.t.} A \cdot x \ge b $	$\max_{p} b^{\top} \cdot p$ s.t. $A^{\top} \cdot p = c$
	$p \ge 0$
$\min_{x} c^{\top} \cdot x$	$\max_p b^ op \cdot p$
s.t. $A \cdot x = b$	s.t. $A^{\top} \cdot p \leq c$
$x \ge 0$	

Linear and Combinatorial Optimization

7.2 Basic Properties

Basic Properties of the Dual

7 7

Theorem 7.1 The dual of the dual LP is the primal LP. **Proof:**

- · for the special case of a primal LP in standard form

Basic Properties of the Dual (Cont.)

Theorem 7.2 Let Π_1 and Π_2 be two LPs where Π_2 has been obtained from Π_1 by (several) transformations of the following type:

- replace a free variable by the difference of two non-negative variables;
- replace an inequality by an equation introducing a slack variable;
- eliminate a row that is a linear combination of other rows in a feasible equality system.
- Then the dual of Π_1 is equivalent to the dual of Π_2 .

Proof of Theorem 7.2 (i)

Proof: replacing free variable by two positive variables

$$\begin{array}{ll}
\min_{x} c^{\top} \cdot x & \min_{x^{+}, x^{-}} \left[c^{\top}, -c^{\top}\right] \begin{bmatrix} x^{+} \\ x^{-} \end{bmatrix} \\
\text{s.t.} \quad A \cdot x \ge b & \Longleftrightarrow & \text{s.t.} \quad \left[A, -A\right] \begin{bmatrix} x^{+} \\ x^{-} \end{bmatrix} \ge b \\
& x^{+}, x^{-} \ge 0
\end{array}$$

↑dualize

‡dualize

 $\max_{p} p^{\top} b \qquad \max_{p} p^{\top} b \\ \text{s.t.} p^{\top} A = c^{\top} \qquad \Longleftrightarrow \qquad \text{s.t.} p^{\top} [A, -A] \leq [c^{\top}, -c^{\top}] \\ p \geq 0 \qquad \qquad p \geq 0$

Proof of Theorem 7.2 (ii)

Proof: iii introducing a slack variable

$$\begin{array}{lll}
\min_{x} & c^{\top} \cdot x & \min_{x,y} & c^{\top}x + \mathbf{0}^{\top}y \\
\text{s.t.} & A \cdot x \ge b & \Longleftrightarrow & \text{s.t.} & Ax - Iy = b \\
& & & & & & & & \\
& & & & & & & & y \ge 0
\end{array}$$

∱dualize

↓ dualize

7 | 10

 $\begin{array}{ll} \max_{p} & b^{\top} \cdot p & \max_{p} & p^{\top} b \\ \text{s.t.} & A^{\top} \cdot p = c & \Longleftrightarrow & \text{s.t.} & A^{\top} \cdot p = c \\ & p \ge 0 & (-I)^{\top} \cdot p \le \mathbf{0} \end{array}$

Proof of Theorem 7.2 (iii)

Proof: eliminating linear combination row

min $c^{\top} \cdot x$ min $c^{\top}x$ x x s.t. $A \cdot x = b$ s.t. $\begin{pmatrix} a_1^{\top} \\ \vdots \\ a^{\top} \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_{\tau-1} \end{pmatrix}$ $x \ge 0$ with $a_m^{\top} = \sum_{i=1}^{m-1} \gamma_i a_i^{\top}$, $b_m = \sum_{i=1}^{m-1} v_i b_i$ ↑dualize $\max_{p} \sum_{i=1}^{m} p_i b_i = \sum_{i=1}^{m-1} (p_i + \gamma_i p_m) b_i$ s.t. $\sum_{i=1}^{m} p_i a_i^\top = \sum_{i=1}^{m-1} (p_i + \gamma_i p_m) a_i^\top \le c^\top$

$$\max_{q} \sum_{i=1}^{m-1} q_{i} b_{i}$$

s.t.
$$\sum_{i=1}^{m-1} q_{i} a_{i}^{\top} \leq c^{\top}$$

 $x \ge 0$

 \leftarrow

Linear and Combinatorial Optimization

7.3 Weak and Strong Duality

Weak Duality Theorem

Theorem 7.3 If x is a feasible solution to the primal LP (minimization problem) and p a feasible solution to the dual LP (maximization problem), then

$$c^{\top} \cdot x \ge p^{\top} \cdot b.$$

Proof:

· here only for special case

• if *x* is feasible for primal LP and *p* feasible for dual LP, then

$$c^{\top}x \ge (p^{\top}A)x = p^{\top}(Ax) \ge p^{\top}b$$

A Corollary

Corollary 7.4 Consider a primal-dual pair of linear programs as above.

- If the primal LP is unbounded (i.e., optimal cost = $-\infty$), then the dual LP is infeasible.
- **b** If the dual LP is unbounded (i.e., optimal cost = ∞), then the primal LP is infeasible.
- c If x and p are feasible solutions to the primal and dual LP, resp., and if $c^{\top} \cdot x = p^{\top} \cdot b$, then x and p are optimal solutions.

Strong Duality Theorem

Theorem 7.5 If an LP has an optimal solution, so does its dual and the optimal costs are equal.

Proof:

· here only for an LP in standard form

- w.l.o.g., assume that rows of A are linearly independent
- Simplex algorithm finds optimal basis B, i.e.,

$$\bar{c}^{\top} = c^{\top} - c_B A_B^{-1} A \ge 0 \tag{7.1}$$

and corresponding optimal basic feasible solution $x = (x_B, x_N)$ with $x_B = A_B^{-1}b$, $x_N = 0$

• for $p^{\top} := c_B^{\top} A_B^{-1}$, we have $c^{\top} \stackrel{(7.1)}{\geq} p^{\top} A$, i.e. p is a feasible dual solution with cost $p^{\top} b = c_B^{\top} A_B^{-1} b = c_B^{\top} x_B = c^{\top} x$

Different Possibilities for Primal and Dual LP

primal \setminus dual	finite optimum	unbounded	infeasible
finite optimum	possible	impossible	impossible
unbounded	impossible	impossible	possible
infeasible	impossible	possible	possible

Corollary Let $p^* = \inf_x \{c^\top x : Ax \ge b\} \in \mathbb{R} \cup \{-\infty, \infty\}$ and $d^* = \sup_p \{b^\top p : A^\top p = c, \ p \ge 0\} \in \mathbb{R} \cup \{-\infty, \infty\}$. Then, it either holds $(p^* = d^*)$ or $(p^* = \infty, d^* = -\infty)$.

Example of infeasible primal and dual LP:

 $\begin{array}{ll} \min_{x} & x_1 + 2 \, x_2 & \max_{p} & p_1 + 3 \, p_2 \\ \text{s.t.} & x_1 + \, x_2 = 1 & \text{s.t.} & p_1 + 2 \, p_2 = 1 \\ & 2 \, x_1 + 2 \, x_2 = 3 & p_1 + 2 \, p_2 = 2 \end{array}$

Linear and Combinatorial Optimization

7.4 Complementary Slackness

Complementary Slackness

7 | 18

Consider the following pair of primal and dual LPs:

$$\min_{x} c^{\top} \cdot x \qquad \max_{p} p^{\top} \cdot b \\ \text{s.t.} A \cdot x \ge b \qquad \text{s.t.} p^{\top} \cdot A = c^{\top} \\ p \ge 0$$

If x and p are feasible solutions, then $c^{\top} \cdot x = p^{\top} \cdot A \cdot x \ge p^{\top} \cdot b$. Thus,

$$c^{\top} \cdot x = p^{\top} \cdot b \quad \Longleftrightarrow \quad \text{for all } i: p_i = 0 \text{ if } a_i^{\top} \cdot x > b_i.$$

Theorem 7.6 Consider an arbitrary pair of primal and dual LPs. Let x and p be feasible solutions to the primal and dual LP, respectively. Then x and p are both optimal if and only if

$$u_i := p_i (a_i^\top \cdot x - b_i) = 0 \quad \text{for all } i,$$

$$v_j := (c_j - p^\top \cdot A_j) x_j = 0 \quad \text{for all } j.$$

Proof of Theorem 7.6

Proof: $u_i := p_i(a_i^\top x - b_i)$ $v_j := (c_j - p^\top A_j)x_j$

- for any primal-dual pair, we have $u_i \ge 0$ for all i and $v_j \ge 0$ for all j
- we have

$$\sum_{i} u_{i} = \sum_{i} p_{i}(a_{i}^{\top}x - b_{i}) = p^{\top}Ax - p^{\top}b$$
$$\sum_{j} v_{j} = \sum_{j} (c_{j} - p^{\top}A_{j})x_{j} = c^{\top}x - p^{\top}Ax,$$

in particular $c^{\top}x - p^{\top}b = \sum_{i} u_i + \sum_{j} v_j$

- by strong duality, if x and p are optimal, then $c^{\top}x p^{\top}b = 0$ and, hence $u_i = 0$ for all i and $v_j = 0$ for all j
- on the other hand, if $u_i = 0$ for all i and $v_j = 0$ for all j, then $c^{\top}x = p^{\top}b$ and x and p are optimal by weak duality

Linear and Combinatorial Optimization

7.5 Geometry of Duality

Geometric View on Duality

Consider pair of primal and dual LPs with $A \in \mathbb{R}^{m \times n}$ and rank(A) = n:

$$\min_{x} c^{\top} \cdot x \qquad \max_{p} p^{\top} \cdot b \\ \text{s.t.} \quad A \cdot x \ge b \qquad \text{s.t.} \quad p^{\top} \cdot A = c^{\top} \\ p \ge 0 \\ \end{aligned}$$

Let $I \subseteq \{1, ..., m\}$ with |I| = n and $a_i, i \in I$, linearly independent. $\implies a_i^{\top} \cdot x = b_i, i \in I$, has unique solution x^I (basic solution) Assume that x^I is nondegenerate, i.e., $a_i^{\top} \cdot x \neq b_i$ for $i \notin I$.

Let $p \in \mathbb{R}^m$ (dual vector). Then x, p are optimal solutions if

i $a_i^{\top} \cdot x \ge b_i$ for all *i* (primal feasibility)

- iii $p_i = 0$ for all $i \notin I$ (complementary slackness)
- $\blacksquare \sum_{i=1}^{m} p_i \cdot a_i = c \text{ (dual feasibility)}$
- iv $p \ge 0$ (dual feasibility)

note that \mathbf{m} and \mathbf{m} imply $\sum_{i \in I} p_i \cdot a_i = c$ which has a unique solution p^I .

The a_i , $i \in I$, form basis for dual LP and p^I is corresponding basic solution.

Geometric View on Duality (Cont.)

7 | 22

Outer Normal Cone

Definition 7.7 Let x^* be a boundary point of the polyhedron $P = \{x \mid A \cdot x \le b\}$ and let *I* denote the (non-empty) set of indices of rows a_i^{\top} of *A* with $a_i^{\top}x^* = b_i$. The conic hull

$$\operatorname{cone}\{a_i \mid i \in I\} := \left\{ \sum_{i \in I} \lambda_i a_i \mid \lambda_i \ge 0 \; \forall i \in I \right\}$$

is the outer normal cone of P in x^* .

Example.

Properties of Outer Normal Cones

Observation 7.8 Consider a polyhedron $P \subseteq \mathbb{R}^n$.

- For some $c \in \mathbb{R}^n \setminus \{0\}$ a point $x \in P$ maximizes $c^{\top}x$ over P if and only if c is in the outer normal cone of P in x.
- If x is a boundary point of P, the polyhedral cone consisting of the feasible directions at x is polar to the outer normal cone of P in x; that is, inner products are non-positive.
- c If $P \subseteq \mathbb{R}^n$ is a polytope, every point in \mathbb{R}^n is in the outer normal cone of some vertex. The interiors of these cones do not intersect.

Linear and Combinatorial Optimization

7.6 Marginal Costs

Dual Variables as Marginal Costs

7 26

Consider the primal dual pair:

$$\min_{x} c^{\top} \cdot x \qquad \max_{p} p^{\top} \cdot b \\ \text{s.t.} \quad A \cdot x = b \qquad \text{s.t.} \quad p^{\top} \cdot A \le c^{\top} \\ \quad x \ge 0$$

Let x^* be optimal basic feasible solution to primal LP with basis B, i.e., $x_B^* = A_B^{-1} \cdot b$ and assume that $x_B^* > 0$ (i.e., x^* non-degenerate).

Replace b by b + d. For small d, the basis B remains feasible and optimal:

$$A_B^{-1} \cdot (b+d) = A_B^{-1} \cdot b + A_B^{-1} \cdot d \ge 0$$
 (feasibility)
$$\bar{c}^{\top} = c^{\top} - c_B^{\top} \cdot A_B^{-1} \cdot A \ge 0$$
 (optimality)

Optimal cost of perturbed problem is

$$c_B^{\top} \cdot A_B^{-1} \cdot (b+d) = c_B^{\top} \cdot x_B^* + \underbrace{(c_B^{\top} \cdot A_B^{-1})}_{=p^{\top}} \cdot d$$

Thus, p_i is the marginal cost per unit increase of b_i .

Dual Variables as Shadow Prices

7 27

Diet problem:

- *a_{ij}* := amount of nutrient *i* in one unit of food *j*
- b_i := requirement of nutrient i in some ideal diet
- c_j := cost of one unit of food j on the food market

LP duality: Let x_j := number of units of food j in the diet:

 $\min_{x} c^{\top} \cdot x \qquad \max_{p} p^{\top} \cdot b \\ \text{s.t.} \quad A \cdot x = b \qquad \text{s.t.} \quad p^{\top} \cdot A \le c^{\top} \\ \quad x \ge 0$

Dual interpretation:

- p_i is "fair" price per unit of nutrient i
- $p^{\top} \cdot A_j$ is value of one unit of food j on the nutrient market
- food j used in ideal diet (x_j^{*} > 0) is consistently priced at the two markets (by complementary slackness)
- ideal diet has the same cost on both markets (by strong duality)

Linear and Combinatorial Optimization

7.7 Dual Simplex

Dual Basic Solutions

Consider LP in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and dual LP:

 $\min_{x} c^{\top} \cdot x \qquad \max_{p} p^{\top} \cdot b \\ \text{s.t.} \quad A \cdot x = b \qquad \text{s.t.} \quad p^{\top} \cdot A \leq c^{\top} \\ x \geq 0$

Observation 7.9 A basis *B* yields

- a primal basic solution given by $x_B := A_B^{-1} \cdot b$ and
- a dual basic solution $p^{\top} := c_B^{\top} \cdot A_B^{-1}$.

Moreover,

a the values of the primal and the dual basic solutions are equal:

$$c_B^{\top} \cdot x_B = c_B^{\top} \cdot A_B^{-1} \cdot b = p^{\top} \cdot b;$$

- **b** p is feasible if and only if $\bar{c} = c p^{\top}A \ge 0$;
- **c** reduced cost $\bar{c}_i = 0$ corresponds to active dual constraint;
- **d** p is degenerate if and only if $\bar{c}_i = 0$ for some non-basic variable x_i .

Dual Simplex Method

- Let B be a basis whose corresponding dual basic solution p is feasible.
- If also the primal basic solution *x* is feasible, then *x*, *p* are optimal.
- Assume that $x_{B(\ell)} < 0$ and consider the ℓ th row of the simplex tableau

 $(x_{B(\ell)}, v_1, \dots, v_n)$ (pivot row)

Let
$$j \in \{1, \dots, n\}$$
 with $v_j < 0$ and

$$\frac{\bar{c}_j}{|v_j|} = \min_{i: v_i < 0} \frac{\bar{c}_i}{|v_i|}$$

Performing an iteration of the simplex method with pivot element v_j yields new basis B' and corresponding dual basic solution p' with

$$c_{B'}^{\top} \cdot A_{B'}^{-1} \cdot A \leq c^{\top}$$
 and $p'^{\top} \cdot b \geq p^{\top} \cdot b$ (with > if $\bar{c}_j > 0$).

II If $v_i \ge 0$ for all $i \in \{1, ..., n\}$, then the dual LP is unbounded and the primal LP is infeasible.

Remarks on the Dual Simplex Method

7 31

- Dual simplex method terminates if lexicographic pivoting rule is used:
 - Choose any row ℓ with $x_{B(\ell)} < 0$ to be the pivot row.
 - Among all columns j with v_j < 0 choose the one which is lexicographically minimal when divided by |v_j|.
- Dual simplex method is useful if, e.g., dual basic solution is readily available.
- Example: Resolve LP after right-hand-side b has changed.