
7

Introduction to

Linear and Combinatorial Optimization

Duality Theory

7.1 Motivation and Definition



Motivation 7 | 2

For A ∈ ℝ
m×n, b ∈ ℝm, and c ∈ ℝn, consider the linear program

min c⊤ ⋅ x s.t. A ⋅ x ≥ b, x ≥ 0

�estion: How to derive lower bounds on the optimal solution value?

Idea: For p ∈ ℝm with p ≥ 0: A ⋅ x ≥ b ⟹ (p⊤ ⋅ A) ⋅ x ≥ p⊤ ⋅ b

Thus, if c⊤ ≥ p⊤ ⋅ A, then

c⊤ ⋅ x ≥ (p⊤ ⋅ A) ⋅ x ≥ p⊤ ⋅ b for all feasible solutions x.

Find the best (largest) lower bound in this way:

max
p

p⊤ ⋅ b max
p

b⊤ ⋅ p

s.t. p⊤ ⋅ A ≤ c⊤ ⟷ s.t. A⊤ ⋅ p ≤ c

p ≥ 0 p ≥ 0

This LP is the dual linear program of our initial LP.
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Consider the general linear program:

min
x

c⊤ ⋅ x

s.t. a⊤i ⋅ x ≥ bi for i ∈ M1

a⊤i ⋅ x ≤ bi for i ∈ M2

a⊤i ⋅ x = bi for i ∈ M3

xj ≥ 0 for j ∈ N1

xj ≤ 0 for j ∈ N2

xj free for j ∈ N3

Obtain a lower bound:

max
p

p⊤ ⋅ b

s.t. pi ≥ 0 for i ∈ M1

pi ≤ 0 for i ∈ M2

pi free for i ∈ M3

p⊤ ⋅ Aj ≤ cj for j ∈ N1

p⊤ ⋅ Aj ≥ cj for j ∈ N2

p⊤ ⋅ Aj = cj for j ∈ N3

The linear program on the right hand side is the dual linear program of the primal linear
program on the left hand side.
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primal LP (minimize) dual LP (maximize)

≥ bi ≥ 0

constraints ≤ bi ≤ 0 variables

= bi free

≥ 0 ≤ ci

variables ≤ 0 ≥ ci constraints

free = ci
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primal LP dual LP

min
x

c⊤ ⋅ x

s.t. A ⋅ x ≥ b

max
p

p⊤ ⋅ b

s.t. p⊤ ⋅ A = c⊤

p ≥ 0

min
x

c⊤ ⋅ x

s.t. A ⋅ x = b

x ≥ 0

max
p

p⊤ ⋅ b

s.t. p⊤ ⋅ A ≤ c⊤
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primal LP dual LP

min
x

c⊤ ⋅ x

s.t. A ⋅ x ≥ b

max
p

b⊤ ⋅ p

s.t. A⊤ ⋅ p = c

p ≥ 0

min
x

c⊤ ⋅ x

s.t. A ⋅ x = b

x ≥ 0

max
p

b⊤ ⋅ p

s.t. A⊤ ⋅ p ≤ c
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Theorem 7.1 The dual of the dual LP is the primal LP.

Proof:

for the special case of a primal LP in standard form

min
x

c⊤ ⋅ x

s.t. A ⋅ x = b

x ≥ 0

dualize
⟷

max
p

b⊤p

s.t. A⊤p ≤ c ⇔

min
p

− b⊤p

s.t. A⊤p ≤ c

↕dualize

min
x

c⊤ ⋅ x

s.t. A ⋅ x = b

x ≥ 0
⇔

max
x

− c⊤x

s.t. − Ax = −b

x ≥ 0

x∶=−y
⇔

max
y

c⊤y

s.t. Ay = −b

y ≤ 0
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Theorem 7.2 Let Π1 and Π2 be two LPs where Π2 has been obtained from Π1 by
(several) transformations of the following type:

i replace a free variable by the difference of two non-negative variables;

ii replace an inequality by an equation introducing a slack variable;

iii eliminate a row that is a linear combination of other rows in a feasible equality
system.

Then the dual of Π1 is equivalent to the dual of Π2.
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Proof: i replacing free variable by two positive variables

min
x

c⊤ ⋅ x

s.t. A ⋅ x ≥ b ⇔

min
x+,x−

[c⊤,−c⊤]
[

x+

x−]

s.t. [A,−A]
[

x+

x−]
≥ b

x+, x− ≥ 0

↕dualize ↕dualize

max
p

p⊤b

s.t. p⊤A = c⊤

p ≥ 0

⇔

max
p

p⊤b

s.t. p⊤[A,−A] ≤ [c⊤,−c⊤]

p ≥ 0
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Proof: ii introducing a slack variable

min
x

c⊤ ⋅ x

s.t. A ⋅ x ≥ b ⇔

min
x,y

c⊤x + 0⊤y

s.t. Ax − Iy = b

y ≥ 0

↕dualize ↕dualize

max
p

b⊤ ⋅ p

s.t. A⊤ ⋅ p = c

p ≥ 0

⇔

max
p

p⊤b

s.t. A⊤ ⋅ p = c

(−I)⊤ ⋅ p ≤ 0
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Proof: iii eliminating linear combination row

min
x

c⊤ ⋅ x

s.t. A ⋅ x = b

x ≥ 0

with a⊤m = ∑
m−1
i=1 
ia⊤i ,

bm = ∑
m−1
i=1 
ibi

⇔

min
x

c⊤x

s.t.
⎛

⎜

⎜

⎝

a⊤1
⋮

a⊤m−1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

b1
⋮

bm−1

⎞

⎟

⎟

⎠

x ≥ 0

↕dualize ↕dualize

max
p

m

∑

i=1
pibi=

m−1
∑

i=1
(pi+
ipm)bi

s.t.
m

∑

i=1
pia⊤i =

m−1
∑

i=1
(pi+
ipm)a⊤i ≤ c⊤

⇔

max
q

m−1
∑

i=1
qibi

s.t.
m−1
∑

i=1
qia⊤i ≤ c⊤
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Theorem 7.3 If x is a feasible solution to the primal LP (minimization problem) and
p a feasible solution to the dual LP (maximization problem), then

c⊤ ⋅ x ≥ p⊤ ⋅ b.

Proof:

here only for special case

min
x

c⊤ ⋅ x

s.t. Ax ≥ b

x ≥ 0

dualize
⟷

max
p

p⊤b

s.t. p⊤A ≤ c⊤

p ≥ 0
if x is feasible for primal LP and p feasible for dual LP, then

c⊤x ≥ (p⊤A)x = p⊤(Ax) ≥ p⊤b
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Corollary 7.4 Consider a primal-dual pair of linear programs as above.

a If the primal LP is unbounded (i.e., optimal cost = −∞), then the dual LP is
infeasible.

b If the dual LP is unbounded (i.e., optimal cost = ∞), then the primal LP is
infeasible.

c If x and p are feasible solutions to the primal and dual LP, resp., and if
c⊤ ⋅ x = p⊤ ⋅ b, then x and p are optimal solutions.
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Theorem 7.5 If an LP has an optimal solution, so does its dual and the optimal costs
are equal.

Proof:

here only for an LP in standard form

min
x

c⊤ ⋅ x

s.t. Ax = b

x ≥ 0

dualize
⟷

max
p

p⊤b

s.t. p⊤A ≤ c⊤

w.l.o.g., assume that rows of A are linearly independent

Simplex algorithm finds optimal basis B, i.e.,

c̄⊤ = c⊤ − cBA−1B A ≥ 0 (7.1)

and corresponding optimal basic feasible solution x = (xB, xN ) with xB = A−1B b,
xN = 0

for p⊤ ∶= c⊤BA
−1
B , we have c⊤

(7.1)
≥ p⊤A, i.e. p is a feasible dual solution with cost

p⊤b = c⊤BA
−1
B b = c⊤BxB = c⊤x
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Different Possibilities for Primal and Dual LP

primal ⧵ dual finite optimum unbounded infeasible

finite optimum possible impossible impossible

unbounded impossible impossible possible

infeasible impossible possible possible

Corollary Let p∗ = infx{c⊤x ∶ Ax ≥ b} ∈ ℝ ∪ {−∞,∞} and
d∗ = supp{b

⊤p ∶ A⊤p = c, p ≥ 0} ∈ ℝ ∪ {−∞,∞}. Then, it either holds

(p∗ = d∗) or (p∗ = ∞,d∗ = −∞).

Example of infeasible primal and dual LP:

min
x

x1 + 2 x2 max
p

p1 + 3p2

s.t. x1 + x2 = 1 s.t. p1 + 2p2 = 1
2 x1 + 2 x2 = 3 p1 + 2p2 = 2
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Consider the following pair of primal and dual LPs:

min
x

c⊤ ⋅ x max
p

p⊤ ⋅ b

s.t. A ⋅ x ≥ b s.t. p⊤ ⋅ A = c⊤

p ≥ 0

If x and p are feasible solutions, then c⊤ ⋅ x = p⊤ ⋅ A ⋅ x ≥ p⊤ ⋅ b.Thus,

c⊤ ⋅ x = p⊤ ⋅ b ⟺ for all i: pi = 0 if a⊤i ⋅ x > bi.

Theorem 7.6 Consider an arbitrary pair of primal and dual LPs. Let x and p be
feasible solutions to the primal and dual LP, respectively. Then x and p are both
optimal if and only if

ui ∶= pi (a⊤i ⋅ x − bi) = 0 for all i,

vj ∶= (cj − p⊤ ⋅ Aj) xj = 0 for all j.
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Proof: ui ∶= pi(a⊤i x − bi)

vj ∶= (cj − p⊤Aj)xj

for any primal-dual pair, we have ui ≥ 0 for all i and vj ≥ 0 for all j

we have

∑

i
ui =∑

i
pi(a⊤i x − bi) = p⊤Ax − p⊤b

∑

j
vj =∑

j
(cj − p⊤Aj)xj = c⊤x − p⊤Ax,

in particular c⊤x − p⊤b = ∑i ui +∑j vj
by strong duality, if x and p are optimal, then c⊤x − p⊤b = 0 and, hence ui = 0 for all
i and vj = 0 for all j

on the other hand, if ui = 0 for all i and vj = 0 for all j, then c⊤x = p⊤b and x and p
are optimal by weak duality
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Consider pair of primal and dual LPs with A ∈ ℝ
m×n and rank(A) = n:

min
x

c⊤ ⋅ x max
p

p⊤ ⋅ b

s.t. A ⋅ x ≥ b s.t. p⊤ ⋅ A = c⊤

p ≥ 0

Let I ⊆ {1,… ,m} with |I | = n and ai, i ∈ I , linearly independent.

⟹ a⊤i ⋅ x = bi, i ∈ I , has unique solution xI (basic solution)

Assume that xI is nondegenerate, i.e., a⊤i ⋅ x ≠ bi for i ∉ I .

Let p ∈ ℝm (dual vector). Then x,p are optimal solutions if

i a⊤i ⋅ x ≥ bi for all i (primal feasibility)

ii pi = 0 for all i ∉ I (complementary slackness)

iii ∑
m
i=1 pi ⋅ ai = c (dual feasibility)

iv p ≥ 0 (dual feasibility)

note that ii and iii imply ∑i∈I pi ⋅ ai = c which has a unique solution pI .

The ai, i ∈ I , form basis for dual LP and pI is corresponding basic solution.
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c

a1

a2
a1

a3

a1
a4

a1
a5

a2

a1

a3

a4

a5A

B

C

D
A is infeasible for primal and dual
B is feasible for primal and infeasible for dual
C is feasible for primal and dual
D is infeasible for primal and feasible for dual
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Definition 7.7 Let x∗ be a boundary point of the polyhedron P = {x ∣ A ⋅ x ≤ b}
and let I denote the (non-empty) set of indices of rows a⊤i of A with a⊤i x

∗
= bi. The

conic hull
cone{ai ∣ i ∈ I} ∶=

{

∑
i∈I
�iai ∣ �i ≥ 0 ∀i ∈ I

}

is the outer normal cone of P in x∗.

Example.

0
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Observation 7.8 Consider a polyhedron P ⊆ ℝ
n.

a For some c ∈ ℝn
⧵ {0} a point x ∈ P maximizes c⊤x over P if and only if c is in

the outer normal cone of P in x.

b If x is a boundary point of P, the polyhedral cone consisting of the feasible
directions at x is polar to the outer normal cone of P in x; that is, inner products
are non-positive.

c If P ⊆ ℝ
n is a polytope, every point in ℝ

n is in the outer normal cone of some
vertex. The interiors of these cones do not intersect.
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Consider the primal dual pair:

min
x

c⊤ ⋅ x max
p

p⊤ ⋅ b

s.t. A ⋅ x = b s.t. p⊤ ⋅ A ≤ c⊤

x ≥ 0

Let x∗ be optimal basic feasible solution to primal LP with basis B, i.e., x∗B = A−1B ⋅ b and
assume that x∗B > 0 (i.e., x∗ non-degenerate).

Replace b by b + d. For small d, the basis B remains feasible and optimal:

A−1B ⋅ (b + d) = A−1B ⋅ b + A−1B ⋅ d ≥ 0 (feasibility)

c̄⊤ = c⊤ − c⊤B ⋅ A
−1
B ⋅ A ≥ 0 (optimality)

Optimal cost of perturbed problem is

cB⊤ ⋅ A−1B ⋅ (b + d) = cB⊤ ⋅ x∗B + (c
⊤

B ⋅ A
−1
B )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=p⊤

⋅d

Thus, pi is the marginal cost per unit increase of bi.
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Diet problem:

aij ∶= amount of nutrient i in one unit of food j
bi ∶= requirement of nutrient i in some ideal diet
cj ∶= cost of one unit of food j on the food market

LP duality: Let xj ∶= number of units of food j in the diet:

min
x

c⊤ ⋅ x max
p

p⊤ ⋅ b

s.t. A ⋅ x = b s.t. p⊤ ⋅ A ≤ c⊤

x ≥ 0

Dual interpretation:

pi is “fair” price per unit of nutrient i

p⊤ ⋅ Aj is value of one unit of food j on the nutrient market

food j used in ideal diet (x∗j > 0) is consistently priced at the two markets (by
complementary slackness)

ideal diet has the same cost on both markets (by strong duality)
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Consider LP in standard form with A ∈ ℝ
m×n, rank(A) = m, and dual LP:

min
x

c⊤ ⋅ x max
p

p⊤ ⋅ b

s.t. A ⋅ x = b s.t. p⊤ ⋅ A ≤ c⊤

x ≥ 0
Observation 7.9 A basis B yields

a primal basic solution given by xB ∶= A−1B ⋅ b and

a dual basic solution p⊤ ∶= c⊤B ⋅ A
−1
B .

Moreover,

a the values of the primal and the dual basic solutions are equal:

c⊤B ⋅ xB = c⊤B ⋅ A
−1
B ⋅ b = p⊤ ⋅ b;

b p is feasible if and only if c̄ = c − p⊤A ≥ 0;

c reduced cost c̄i = 0 corresponds to active dual constraint;

d p is degenerate if and only if c̄i = 0 for some non-basic variable xi.
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Let B be a basis whose corresponding dual basic solution p is feasible.

If also the primal basic solution x is feasible, then x,p are optimal.

Assume that xB(�) < 0 and consider the �th row of the simplex tableau

(xB(�), v1,… , vn) (pivot row)

I Let j ∈ {1,… ,n} with vj < 0 and
c̄j
|vj|

= min
i∶vi<0

c̄i
|vi|

Performing an iteration of the simplex method with pivot element vj yields new
basis B′ and corresponding dual basic solution p ′ with

c⊤B′ ⋅ A
−1
B′ ⋅ A ≤ c⊤ and p ′⊤ ⋅ b ≥ p⊤ ⋅ b (with > if c̄j > 0).

II If vi ≥ 0 for all i ∈ {1,… ,n}, then the dual LP is unbounded and the primal LP
is infeasible.
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Dual simplex method terminates if lexicographic pivoting rule is used:

Choose any row � with xB(�) < 0 to be the pivot row.
Among all columns j with vj < 0 choose the one which is lexicographically
minimal when divided by |vj|.

Dual simplex method is useful if, e.g., dual basic solution is readily available.

Example: Resolve LP after right-hand-side b has changed.


