Introduction to

Linear and Combinatorial Optimization

8.1 Minimum Spanning Trees

Trees and Forests

- an undirected graph without a cycle is a forest
- a connected forest is a tree.

Theorem 8.1 Let G = (V, E) be an undirected graph on n = |V| nodes. Then, the following statements are equivalent:

- 🚺 G is a tree.
- \blacksquare G has n 1 edges and no cycle.
- \blacksquare G has n 1 edges and is connected.
- $vice{M}$ G is connected, but (V, E \ {e}) is disconnected for any e ∈ E.
- ☑ G has no cycle. Adding an arbitrary edge to G creates a cyle.
- G contains a unique path between any pair of nodes.

Proof: See, e.g., CoMa I.

Kruskal's Algorithm

Minimum Spanning Tree (MST) Problem

Given: connected graph G = (V, E), cost function $c : E \to \mathbb{R}$.

Task: find spanning tree T = (V, F) of G with minimum cost $\sum_{e \in F} c(e)$.

Kruskal's Algorithm for MST

```
1 sort the edges in E such that c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m);
```

2 set
$$T := (V, \emptyset);$$

3 for i := 1 to m do:

if adding e_i to T does not create a cycle, then add e_i to T;

Prim's Algorithm

• recall that for a graph G = (V, E) and $A \subseteq V$

$$\delta(A) := \Big\{ e = \{v, w\} \in E \mid v \in A \text{ and } w \in V \setminus A \Big\}.$$

is the cut induced by A

Prim's Algorithm for MST set $U := \{r\}$ for some node $r \in V$ and $F := \emptyset$; set T := (U, F); while $U \neq V$, determine a minimum cost edge $e \in \delta(U)$; set $F := F \cup \{e\}$ and $U := U \cup \{w\}$ with $e = \{v, w\}, w \in V \setminus U$;

Correctness of the MST Algorithms

Lemma 8.2 A graph G = (V, E) is connected if and only if there is no set $A \subseteq V$, $\emptyset \neq A \neq V$, with $\delta(A) = \emptyset$.

Proof: See exercise.

• call $B \subseteq E$ extendible to an MST if B is contained in the edge-set of some MST of G

Theorem 8.3 Let $B \subseteq E$ be extendible to an MST and $\emptyset \neq A \subsetneq V$ with $B \cap \delta(A) = \emptyset$. If *e* is a min-cost edge in $\delta(A)$, then $B \cup \{e\}$ is extendible to an MST. **Proof:** See exercise.

- · Correctness of Prim's Algorithm immediately follows.
- Kruskal: Whenever an edge e = {v, w} is added, it is cheapest edge in cut induced by subset of nodes currently reachable from v.

Efficiency of Prim's Algorithm

8 8

Prim's Algorithm for MST

1 set $U := \{r\}$ for some node $r \in V$ and $F := \emptyset$; set T := (U, F);

2 while $U \neq V$, determine a minimum cost edge $e \in \delta(U)$;

set
$$F := F \cup \{e\}$$
 and $U := U \cup \{w\}$ with $e = \{v, w\}, w \in V \setminus U;$

- Straightforward implementation achieves running time O(nm) where, as usual, n := |V| and m := |E|:
 - the while-loop has n 1 iterations;
 - a min-cost edge $e \in \delta(U)$ can be found in O(m) time.
- Idea for improved running time $O(n^2)$:
 - For each v ∈ V \ U, always keep a minimum cost edge h(v) connecting v to some node in U.
 - In each iteration, information about all h(v), v ∈ V \ U, can be updated in O(n) time.
 - Find min-cost edge $e \in \delta(U)$ in O(n) time by only considering the edges h(v), $v \in V \setminus U$.
- Best running time: $O(m + n \log n)$ (Fibonacci heaps, e.g., CoMa II).

Efficiency of Kruskal's Algorithm

Kruskal's Algorithm for MST

- **1** sort the edges in *E* such that $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m)$;
- **2** set $T := (V, \emptyset)$;
- **3** for i := 1 to m do:

If adding e_i to T does not create a cycle, then add e_i to T;

Theorem 8.4 Step 3 of Kruskal's Algorithm can be implemented to run in $O(m \log^* m)$ time.

Proof: Use Union-Find datastructure; see, e.g., CoMa II.

Minimum Spanning Trees and LPs —

- for $S \subseteq V$ let $\gamma(S) := \left\{ e = \{v, w\} \in E \mid v, w \in S \right\}$
- for a vector $x \in \mathbb{R}^E$ and a subset $B \subseteq E$ let $x(B) := \sum_{e \in B} x(e)$

Consider the following integer linear program:

$$\begin{array}{ll} \min \quad c^{\top} \cdot x \\ \text{s.t.} \quad x(\gamma(S)) \leq |S| - 1 & \text{for all } \emptyset \neq S \subset V \\ x(E) = |V| - 1 & (8.2) \\ x(e) \in \{0, 1\} & \text{for all } e \in E \end{array}$$

Observations

- Feasible solutions $x \in \{0, 1\}^E$ are characteristic vectors of subset $F \subseteq E$.
- *F* does not contain a cycle due to (8.1) and n 1 edges due to (8.2).
- Thus, F forms a spanning tree of G.
- Moreover, the edge set of an arbitrary spanning tree of *G* yields a feasible solution $x \in \{0, 1\}^{E}$.

Minimum Spanning Trees and LPs (Cont.) —— 8111

Consider LP relaxation of the integer programming formulation:

$$\begin{array}{ll} \min & c^{\top} \cdot x \\ \text{s.t.} & x(\gamma(S)) \leq |S| - 1 \\ & x(E) = |V| - 1 \\ & x(e) \geq 0 \end{array} \quad \text{for all } \varphi \in E \end{array}$$

Theorem 8.5 Let $x^* \in \{0, 1\}^E$ be the characteristic vector of an MST. Then x^* is an optimal solution to the LP above.

Corollary 8.6 The vertices of the polytope given by the set of feasible LP solutions are exactly the characteristic vectors of spanning trees of *G*. The polytope is thus the convex hull of the characteristic vectors of all spanning trees.

Ingredients for the Proof of Theorem 8.5 —

8 12

primal LP:	dual LP:
min $c^{\top} \cdot x$	$\max \sum_{S: \mathcal{O} \neq S \subset V} (S - 1) \cdot z_S$
s.t. $x(\gamma(S)) \le S - 1 \forall \emptyset \ne S \subsetneq V$	s.t. $\sum_{S \subseteq V : e \in \gamma(S)} z_S \le c(e) \forall \ e \in E$
x(E) = V - 1	$z_S \le 0 \forall \emptyset \neq S \subsetneq V$
$x(e) \ge 0 \qquad \forall e \in E$	z_V free

Proof idea:

- show that characteristic vector *x* of spanning tree *T* found by Kruskal's Alg. is optimal solution to LP relaxation;
- to this end, construct also dual solution from Kruskal's Alg. such that complementary slackness conditions are fulfilled.

Ingredients for the Proof of Theorem 8.5 (Cont.) — 813

Construction of dual solution:

- $E(T) = \{f_1, ..., f_{n-1}\}$ with $c(f_1) \le \cdots \le c(f_{n-1});$
- $X_k \subseteq V$ new connected component formed by f_k in Kruskal's Alg.;
- in particular, $X_{n-1} = V$;
- for k = 1, ..., n 2, let $z_{X_k} := c(f_k) c(f_\ell) \le 0$, where f_ℓ is first edge after f_k (i.e., $\ell > k$) with $f_\ell \cap X_k \neq \emptyset$;
- $z_V := c(f_{n-1})$ and $z_X := 0$ for all $X \subseteq V, X \neq X_k, k = 1, ..., n 1$.

Proof of Theorem 8.5

8 14

Proof:

• for an arbitrary edge e

$$\sum_{S \subseteq V : e \in \gamma(S)} z_S = z_{X_{k_1}} + z_{X_{k_2}} + \dots + z_{X_{n-1}}$$

= $(c(f_{k_1}) - c(f_{k_2})) + (c(f_{k_2}) - c(f_{k_3})) + \dots + c(f_{k_{n-1}})$
= $c(f_{k_1})$
 $\leq c(e)$

since the two endpoints of edge e are in X_{k_1} and X_{k_1} is formed by either adding e are an edge that is not more expensive

- thus, $z_S, \emptyset \neq S \subseteq V$ is a feasible dual solution
- if $x_e > 0$, then $e = f_{k_1}$ and the dual constraint is tight
- if $z_S \neq 0$, then $S = X_i$ for some $i \implies x(\gamma(S)) = |S| 1$
- by dual slackness, (x, z) are optimal

Introduction to

Linear and Combinatorial Optimization

8.2 Shortest Paths

Shortest Path Problem (Reminder)

Given: digraph D = (V, A), node $r \in V$, arc costs (lengths) $c_a, a \in A$;

Task: for each $v \in V$, find dipath from *r* to *v* of least cost (if one exists)

Remarks:

- Existence of *r*-*v*-dipath can be checked, e.g., by breadth-first search.
- Ensure existence of r-v-dipaths: add arcs (r, v) of suffic. large cost.

Basic idea behind all algorithms for solving shortest path problem: If $y_v, v \in V$, is the least cost of a diwalk from rto v, then

 $y_{v} + c_{(v,w)} \ge y_{w}$ for all $(v, w) \in A$.

Elementary Facts for Shortest Paths (Reminder) - ⁸ 117

- Subwalks of shortest walks are shortest walks!
- If a shortest *r*-*v*-walk contains a closed subwalk (e.g., cycle), the closed subwalk has cost 0.
- A shortest *r*-*v*-walk always contains a shortest *r*-*v*-path of equal length.
- If there is a shortest r-v-walk for all $v \in V$, then there is a shortest path tree, i.e., an arborescence T rooted at r such that the unique r-v-path in T is a least-cost r-v-walk in D.

Feasible Potentials

8 18

Definition 8.7 A vector $y \in \mathbb{R}^V$ is a feasible potential if

$$y_{\nu} + c_{(\nu,w)} \ge y_{w}$$
 for all $(\nu, w) \in A$.

Lemma 8.8 If *y* is feasible potential with $y_r = 0$ and *P* an *r*-*v*-walk, then $y_v \le c(P)$. **Proof:** Let $P = v_0, a_1, v_1, ..., a_k, v_k$, where $v_0 = r$ and $v_k = v$. Then,

$$c(P) = \sum_{i=1}^{k} c_{a_i} \ge \sum_{i=1}^{k} (y_{\nu_i} - y_{\nu_{i-1}}) = y_{\nu_k} - y_{\nu_0} = y_{\nu}.$$

Corollary 8.9 If *y* is a feasible potential with $y_r = 0$ and *P* an *r*-*v*-walk of cost y_v , then *P* is a least-cost *r*-*v*-walk.

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

 $y_w := y_v + c_{(v,w)}$ and p(w) := v.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

 $y_w := y_v + c_{(v,w)}$ and p(w) := v.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

 $y_w := y_v + c_{(v,w)}$ and p(w) := v.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

 $y_w := y_v + c_{(v,w)}$ and p(w) := v.

Example:

8 19

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

 $y_w := y_v + c_{(v,w)}$ and p(w) := v.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

 $y_w := y_v + c_{(v,w)}$ and p(w) := v.

Example:

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

 $y_w := y_v + c_{(v,w)}$ and p(w) := v.

Example:

Termination of Ford's Algorithm

8 | 20

Question: Does the algorithm always terminate?

Example:

Observation:

The algorithm does not terminate because of the negative-cost dicycle.

Validity of Ford's Algorithm

Lemma 8.10 If there is no negative-cost dicycle, then at any stage of the algorithm:

- a if $y_v \neq \infty$, then y_v is the cost of some *r*-*v*-path; if $p(v) \neq$ null, then *p* defines a *r*-*v*-path of cost at most y_v .

Proof: See CoMa II.

Theorem 8.11 If there is no negative-cost dicycle, then Ford's Algorithm terminates after a finite number of iterations. At termination, y is a feasible potential with $y_r = 0$ and, for each node $v \in V$, p defines a least-cost r-v-dipath.

Proof: See CoMa II.

Feasible Potentials & Negative-Cost Dicycles —— 8122

Theorem 8.12 A digraph D = (V, A) with arc costs $c \in \mathbb{R}^A$ has a feasible potential if and only if there is no negative-cost dicycle.

Proof: See CoMa II.

Remarks

- If there is a dipath but no least-cost diwalk from *r* to *v*, it is because there are arbitrarily cheap *r*-*v*-diwalks.
- In this case, finding least-cost dipath from r to v is, however, difficult (i.e., NP-hard; see later).

Lemma 8.13 If *c* is integer-valued, $C := 2 \max_{a \in A} |c_a| + 1$, and there is no negative-cost dicycle, then Ford's Algorithm terminates after at most $C n^2$ iterations. **Proof:** See CoMa II.

Feasible Potentials and Linear Programming —— 8123

As a consequence of Ford's Algorithm we get:

Theorem 8.14 Let D = (V, A) be a digraph, $r, s \in V$, and $c \in \mathbb{R}^A$. If, for every $v \in V$, there exists a least-cost diwalk from r to v, then $\min\{c(P) \mid P \text{ an } r\text{-}s\text{-}dipath\} = \max\{y_s - y_r \mid y \text{ a feasible potential}\}.$

Formulate the right-hand side as a linear program and consider the dual:

$$\begin{array}{ll} \max & y_s - y_r \\ \text{s.t.} & y_w - y_v \le c_{(v,w)} \\ & \text{for all } (v,w) \in A \end{array} \qquad \begin{array}{ll} \min & c^{\top} \cdot x \\ \text{s.t.} & \sum_{a \in \delta^-(v)} x_a - \sum_{a \in \delta^+(v)} x_a = b_v \quad \forall v \in V \\ & x_a \ge 0 \qquad \text{for all } a \in A \end{array}$$

with $b_s = 1$, $b_r = -1$, and $b_v = 0$ for all $v \notin \{r, s\}$.

Notice: The dual is the LP relaxation of an ILP formulation of the shortest *r*-*s*-diwalk problem ($x_a =$ number of times a shortest *r*-*s*-diwalk uses arc *a*).

Bases of Shortest Path LP

8 24

Consider again the dual LP:

$$\begin{array}{ll} \min & c^{\top} \cdot x \\ \text{s.t.} & \sum_{a \in \delta^{-}(v)} x_a - \sum_{a \in \delta^{+}(v)} x_a = b_v \quad \text{for all } v \in V \\ & x_a \ge 0 \qquad \text{for all } a \in A \end{array}$$

The underlying matrix Q is the incidence matrix of D.

Lemma 8.15 Let D = (V, A) be a connected digraph and Q its incidence matrix. A subset of columns of Q indexed by a subset of arcs $F \subseteq A$ forms a basis of the linear subspace of \mathbb{R}^n spanned by the columns of Q if and only if F is the arc-set of a spanning tree of D.

Proof: Exercise.

Refinement of Ford's Algorithm

Ford's Algorithm

Set
$$y_r := 0$$
, $p(r) := r$, $y_v := \infty$, and $p(v) :=$ null, for all $v \in V \setminus \{r\}$.

While there is an arc $a = (v, w) \in A$ with $y_w > y_v + c_{(v,w)}$, set

$$y_w := y_v + c_{(v,w)}$$
 and $p(w) := v$.

- # iterations crucially depends on order in which arcs are chosen.
- Suppose that arcs are chosen in order $S = f_1, f_2, f_3, \dots, f_\ell$.
- Diwalk P is embedded in S if P's arc sequence is a subsequence of S.

Lemma 8.16 If an *r*-*v*-diwalk *P* is embedded in *S*, then $y_v \le c(P)$ after Ford's Algorithm has gone through the sequence *S*.

Proof: See CoMa II.

Goal: Find short sequence S such that a least-cost r-v-diwalk is embedded in S for all $v \in V$.

Ford-Bellman Algorithm

8 26

Basic idea:

- Every dipath is embedded in S_1, S_2, \dots, S_{n-1} where, for all *i*, S_i is an ordering of *A*.
- This yields a shortest path algorithm with running time O(nm).

```
Ford-Bellman Algorithm

i initialize y, p (see Ford's Algorithm);

i for i = 1 to n - 1 do

i for all a = (v, w) \in A do

i f y_w > y_v + c_{(v,w)}, then set y_w := y_v + c_{(v,w)} and p(w) := v;
```

Theorem 8.17 The algorithm runs in O(nm) time. If, at termination, *y* is a feasible potential, then *p* yields a least-cost *r*-*v*-dipath for each $v \in V$. Otherwise, the given digraph contains a negative-cost dicycle.

Acyclic Digraphs and Topological Orderings —— 8|27

Definition 8.18 Consider a digraph D = (V, A).

- An ordering $v_1, v_2, ..., v_n$ of V so that i < j for each $(v_i, v_j) \in A$ is called a topological ordering of D.
- If D has a topological ordering, then D is called acyclic.

Observations:

- Digraph D is acyclic if and only if it does not contain a dicycle.
- Topological ordering of D can be found in time O(n + m) (if it exists).
- Let *D* be acyclic and *S* an ordering of *A* such that (v_i, v_j) precedes (v_k, v_ℓ) if i < k. Then every dipath of *D* is embedded in *S*.

Theorem 8.19 Shortest path problem on acyclic digraphs can be solved in time O(n + m).

Proof: See CoMa II.

8 28

Consider the special case of nonnegative costs, i.e., $c_a \ge 0$, for each $a \in A$.

- initialize y, p (see Ford's Algorithm); set S := V;
- iii while $S \neq \emptyset$ do
- iii choose $v \in S$ with y_v minimum and delete v from S;

iv for each
$$w \in V$$
 with $(v, w) \in A$ do

v if
$$y_w > y_v + c_{(v,w)}$$
, then set $y_w := y_v + c_{(v,w)}$ and $p(w) := v_v$

Consider the special case of nonnegative costs, i.e., $c_a \ge 0$, for each $a \in A$.

Dijkstra's Algorithm

- initialize y, p (see Ford's Algorithm); set S := V;
- iii while $S \neq \emptyset$ do
- iii choose $v \in S$ with y_v minimum and delete v from S;

iv for each
$$w \in V$$
 with $(v, w) \in A$ do

v if
$$y_w > y_v + c_{(v,w)}$$
, then set $y_w := y_v + c_{(v,w)}$ and $p(w) := v_v$

Consider the special case of nonnegative costs, i.e., $c_a \ge 0$, for each $a \in A$.

- initialize y, p (see Ford's Algorithm); set S := V;
- iii while $S \neq \emptyset$ do
- iii choose $v \in S$ with y_v minimum and delete v from S;
- for each $w \in V$ with $(v, w) \in A$ do

if
$$y_w > y_v + c_{(v,w)}$$
, then set $y_w := y_v + c_{(v,w)}$ and $p(w) := v$

Consider the special case of nonnegative costs, i.e., $c_a \ge 0$, for each $a \in A$.

- initialize y, p (see Ford's Algorithm); set S := V;
- iii while $S \neq \emptyset$ do
- iii choose $v \in S$ with y_v minimum and delete v from S;
- for each $w \in V$ with $(v, w) \in A$ do

if
$$y_w > y_v + c_{(v,w)}$$
, then set $y_w := y_v + c_{(v,w)}$ and $p(w) := v$

Consider the special case of nonnegative costs, i.e., $c_a \ge 0$, for each $a \in A$.

- initialize y, p (see Ford's Algorithm); set S := V;
- iii while $S \neq \emptyset$ do
- iii choose $v \in S$ with y_v minimum and delete v from S;
- for each $w \in V$ with $(v, w) \in A$ do

if
$$y_w > y_v + c_{(v,w)}$$
, then set $y_w := y_v + c_{(v,w)}$ and $p(w) := v$

Consider the special case of nonnegative costs, i.e., $c_a \ge 0$, for each $a \in A$.

- initialize y, p (see Ford's Algorithm); set S := V;
- iii while $S \neq \emptyset$ do
- choose $v \in S$ with y_v minimum and delete v from S;
- for each $w \in V$ with $(v, w) \in A$ do

if
$$y_w > y_v + c_{(v,w)}$$
, then set $y_w := y_v + c_{(v,w)}$ and $p(w) := v$

Consider the special case of nonnegative costs, i.e., $c_a \ge 0$, for each $a \in A$.

- initialize y, p (see Ford's Algorithm); set S := V;
- iii while $S \neq \emptyset$ do
- iii choose $v \in S$ with y_v minimum and delete v from S;
- for each $w \in V$ with $(v, w) \in A$ do

if
$$y_w > y_v + c_{(v,w)}$$
, then set $y_w := y_v + c_{(v,w)}$ and $p(w) := v$

Correctness of Dijkstra's Algorithm

Lemma 8.20 For each $w \in V$, let y'_w be the value of y_w when w is removed from S. If u is deleted from S before v, then $y'_u \leq y'_v$. **Proof:** See CoMa II.

Theorem 8.21 If $c \ge 0$, then Dijkstra's Algorithm solves the shortest paths problem correctly in time $O(n^2)$. A heap-based implementation yields running time $O(m \log n)$ or even $O(m + n \log n)$ (Fibonacci-Heap). **Proof:** See CoMa II.

Remark: The for-loop in Dijkstra's Algorithm (step iv) can be modified such that only arcs (v, w) with $w \in S$ are considered.

Feasible Potentials and Nonnegative Costs —— 8130

Observation 8.22 For given arc costs $c \in \mathbb{R}^A$ and node potential $y \in \mathbb{R}^V$, define arc costs $c' \in \mathbb{R}^A$ by $c'_{(v,w)} := c_{(v,w)} + y_v - y_w$. Then, for all $v, w \in V$, a least-cost *v*-*w*-diwalk w.r.t. *c* is a least-cost *v*-*w*-diwalk w.r.t. *c'*, and vice versa.

Proof: Notice that for any v-w-diwalk P it holds that

$$c'(P) = c(P) + y_{\nu} - y_{w}.$$

Corollary 8.23 For given arc costs $c \in \mathbb{R}^A$ (not necessarily nonnegative) and a given feasible potential $y \in \mathbb{R}^V$, one can use Dijkstra's Algorithm to solve the shortest paths problem.

Definition 8.24 For a digraph D = (V, A), arc costs $c \in \mathbb{R}^A$ are called conservative if there is no negative-cost dicycle in D, i.e., if there is feasible potential $y \in \mathbb{R}^V$.

All Pairs Shortest Paths Problem

8 31

Given: digraph D = (V, A), conservative arc costs (lengths) $c_a, a \in A$;

Task: for all $r, v \in V$ with $r \neq v$, find *r*-*v*-dipath of least cost (if it exists)

Simple algorithm: Call Ford-Bellman Algorithm for each start node $r \in V$. \implies running time $O(mn^2)$

Better algorithm:

Theorem 8.25 All Pairs Shortest Paths Problem can be solved in $O(mn + n^2 \log n)$ time.

Proof:

Use Ford-Bellman Algorithm to compute feasible potential in O(mn) time. Call Dijkstra's Algo. ($O(m + n \log n)$ time) for each start node $r \in V$.

Alternative approach: Floyd-Warshall Algorithm (see exercise session)