Introduction to
 Linear and Combinatorial Optimization

Optimal Trees and Paths

8.1 Minimum Spanning Trees

- an undirected graph without a cycle is a forest
- a connected forest is a tree.

Theorem 8.1 Let $G=(V, E)$ be an undirected graph on $n=|V|$ nodes. Then, the following statements are equivalent:
ii G is a tree.
Iii G has $n-1$ edges and no cycle.
囲 G has $n-1$ edges and is connected.
Ev G is connected, but $(V, E \backslash\{e\})$ is disconnected for
 any $e \in E$.
v G has no cycle. Adding an arbitrary edge to G creates a cyle.
vi G contains a unique path between any pair of nodes.
Proof: See, e.g., CoMa I.

Minimum Spanning Tree (MST) Problem

Given: connected graph $G=(V, E)$, cost function $c: E \rightarrow \mathbb{R}$.
Task: find spanning tree $T=(V, F)$ of G with minimum cost $\sum_{e \in F} c(e)$.

Kruskal's Algorithm for MST

11 sort the edges in E such that $c\left(e_{1}\right) \leq c\left(e_{2}\right) \leq \cdots \leq c\left(e_{m}\right)$;
2 set $T:=(V, \varnothing)$;
3 for $i:=1$ to m do:
if adding e_{i} to T does not create a cycle, then add e_{i} to T;

Example for Kruskal's Algorithm

- recall that for a graph $G=(V, E)$ and $A \subseteq V$

$$
\delta(A):=\{e=\{v, w\} \in E \mid v \in A \text { and } w \in V \backslash A\} .
$$

is the cut induced by A

Prim's Algorithm for MST

11 set $U:=\{r\}$ for some node $r \in V$ and $F:=\varnothing$; set $T:=(U, F)$;
$\boxed{2}$ while $U \neq V$, determine a minimum cost edge $e \in \delta(U)$;
3 $\operatorname{set} F:=F \cup\{e\}$ and $U:=U \cup\{w\}$ with $e=\{v, w\}, w \in V \backslash U$;

Example for Prim's Algorithm

Example for Prim's Algorithm

Example for Prim's Algorithm

Example for Prim's Algorithm

Example for Prim's Algorithm

Example for Prim's Algorithm

Lemma 8.2 A graph $G=(V, E)$ is connected if and only if there is no set $A \subseteq V$, $\varnothing \neq A \neq V$, with $\delta(A)=\varnothing$.
Proof: See exercise.

- call $B \subseteq E$ extendible to an MST if B is contained in the edge-set of some MST of G

Theorem 8.3 Let $B \subseteq E$ be extendible to an MST and $\varnothing \neq A \subsetneq V$ with $B \cap \delta(A)=\varnothing$.
If e is a min-cost edge in $\delta(A)$, then $B \cup\{e\}$ is extendible to an MST.
Proof: See exercise.

- Correctness of Prim's Algorithm immediately follows.
- Kruskal: Whenever an edge $e=\{v, w\}$ is added, it is cheapest edge in cut induced by subset of nodes currently reachable from v.

Prim's Algorithm for MST

11 set $U:=\{r\}$ for some node $r \in V$ and $F:=\varnothing$; set $T:=(U, F)$;
2 while $U \neq V$, determine a minimum cost edge $e \in \delta(U)$;
3 set $F:=F \cup\{e\}$ and $U:=U \cup\{w\}$ with $e=\{v, w\}, w \in V \backslash U$;

- Straightforward implementation achieves running time $O(n m)$ where, as usual, $n:=|V|$ and $m:=|E|:$
- the while-loop has $n-1$ iterations;
- a min-cost edge $e \in \delta(U)$ can be found in $O(m)$ time.
- Idea for improved running time $O\left(n^{2}\right)$:
- For each $v \in V \backslash U$, always keep a minimum cost edge $h(v)$ connecting v to some node in U.
- In each iteration, information about all $h(v), v \in V \backslash U$, can be updated in $O(n)$ time.
- Find min-cost edge $e \in \delta(U)$ in $O(n)$ time by only considering the edges $h(v)$, $v \in V \backslash U$.
- Best running time: $O(m+n \log n)$ (Fibonacci heaps, e.g., CoMa II).

Kruskal's Algorithm for MST

11 sort the edges in E such that $c\left(e_{1}\right) \leq c\left(e_{2}\right) \leq \cdots \leq c\left(e_{m}\right)$;
2 set $T:=(V, \varnothing)$;
3 for $i:=1$ to m do:
If adding e_{i} to T does not create a cycle, then add e_{i} to T;

Theorem 8.4 Step 3 of Kruskal's Algorithm can be implemented to run in $O\left(m \log ^{*} m\right)$ time.

Proof: Use Union-Find datastructure; see, e.g., CoMa II.

- for $S \subseteq V$ let $\gamma(S):=\{e=\{v, w\} \in E \mid v, w \in S\}$
- for a vector $x \in \mathbb{R}^{E}$ and a subset $B \subseteq E$ let $x(B):=\sum_{e \in B} x(e)$

Consider the following integer linear program:

$$
\begin{array}{rlrl}
\min & c^{\top} \cdot x & & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \\
& x(E) & =|V|-1 & \tag{8.2}\\
& x(e) & \in\{0,1\} & \\
& \text { for all } \varnothing \neq S \subset V \\
& & \in E
\end{array}
$$

Observations

- Feasible solutions $x \in\{0,1\}^{E}$ are characteristic vectors of subset $F \subseteq E$.
- F does not contain a cycle due to (8.1) and $n-1$ edges due to (8.2).
- Thus, F forms a spanning tree of G.
- Moreover, the edge set of an arbitrary spanning tree of G yields a feasible solution $x \in\{0,1\}^{E}$.

Consider LP relaxation of the integer programming formulation:

$$
\begin{array}{rlrl}
\min & c^{\top} \cdot x & & \\
\text { s.t. } & x(\gamma(S)) & \leq|S|-1 & \\
& & \text { for all } \varnothing \neq S \subset V \\
& x(E) & =|V|-1 & \\
& x(e) & \geq 0 & \text { for all } e \in E
\end{array}
$$

Theorem 8.5 Let $x^{*} \in\{0,1\}^{E}$ be the characteristic vector of an MST. Then x^{*} is an optimal solution to the LP above.

Corollary 8.6 The vertices of the polytope given by the set of feasible LP solutions are exactly the characteristic vectors of spanning trees of G. The polytope is thus the convex hull of the characteristic vectors of all spanning trees.

primal LP:

$$
\begin{aligned}
& \min c^{\top} \cdot x \\
& \text { s.t. } \begin{aligned}
x(\gamma(S)) & \leq|S|-1 \forall \varnothing \neq S \mp V \\
x(E) & =|V|-1 \\
x(e) & \geq 0 \quad \forall e \in E
\end{aligned}
\end{aligned}
$$

dual LP:

$$
\begin{aligned}
\max & \sum_{S: \varnothing \neq S \subseteq V}(|S|-1) \cdot z_{S} \\
\text { s.t. } & \sum_{S \subseteq V: e \in \gamma(S)} z_{S} \leq c(e) \quad \forall e \in E \\
& z_{S} \leq 0 \quad \forall \varnothing \neq S \varsubsetneqq V \\
& z_{V} \quad \text { free }
\end{aligned}
$$

Proof idea:

- show that characteristic vector x of spanning tree T found by Kruskal's Alg. is optimal solution to LP relaxation;
- to this end, construct also dual solution from Kruskal's Alg. such that complementary slackness conditions are fulfilled.

Construction of dual solution:

- $E(T)=\left\{f_{1}, \ldots, f_{n-1}\right\}$ with $c\left(f_{1}\right) \leq \cdots \leq c\left(f_{n-1}\right)$;
- $X_{k} \subseteq V$ new connected component formed by f_{k} in Kruskal's Alg.;
- in particular, $X_{n-1}=V$;
- for $k=1, \ldots, n-2$, let $z_{X_{k}}:=c\left(f_{k}\right)-c\left(f_{\ell}\right) \leq 0$, where f_{ℓ} is first edge after f_{k} (i.e., $\ell>k$) with $f_{\ell} \cap X_{k} \neq \varnothing$;
- $z_{V}:=c\left(f_{n-1}\right)$ and $z_{X}:=0$ for all $X \subseteq V, X \neq X_{k}, k=1, \ldots, n-1$.

Example:

Proof:

- for an arbitrary edge e

$$
\begin{aligned}
\sum_{S \subseteq V: e \in \gamma(S)} z_{S} & =z_{X_{k_{1}}}+z_{X_{k_{2}}}+\cdots+z_{X_{n-1}} \\
& =\left(c\left(f_{k_{1}}\right)-c\left(f_{k_{2}}\right)\right)+\left(c\left(f_{k_{2}}\right)-c\left(f_{k_{3}}\right)\right)+\cdots+c\left(f_{k_{n-1}}\right) \\
& =c\left(f_{k_{1}}\right) \\
& \leq c(e)
\end{aligned}
$$

since the two endpoints of edge e are in $X_{k_{1}}$ and $X_{k_{1}}$ is formed by either adding e are an edge that is not more expensive

- thus, $z_{S}, \varnothing \neq S \subseteq V$ is a feasible dual solution
- if $x_{e}>0$, then $e=f_{k_{1}}$ and the dual constraint is tight
- if $z_{S} \neq 0$, then $S=X_{i}$ for some i
$\Rightarrow x(\gamma(S))=|S|-1$
- by dual slackness, (x, z) are optimal

Introduction to

 Linear and Combinatorial Optimization

 Linear and Combinatorial Optimization}

Optimal Trees and Paths

8.2 Shortest Paths

Given: digraph $D=(V, A)$, node $r \in V$, arc costs (lengths) $c_{a}, a \in A$;
Task: for each $v \in V$, find dipath from r to v of least cost (if one exists)

Remarks:

- Existence of r - v-dipath can be checked, e.g., by breadth-first search.
- Ensure existence of r - v-dipaths: add $\operatorname{arcs}(r, v)$ of suffic. large cost.

Basic idea behind all algorithms for

 solving shortest path problem: If $y_{v}, v \in V$, is the least cost of a diwalk from r to v, then$$
y_{v}+c_{(v, w)} \geq y_{w} \quad \text { for all }(v, w) \in A .
$$

Elementary Facts for Shortest Paths (Reminder) — ${ }^{8 \mid 17}$

- Subwalks of shortest walks are shortest walks!
- If a shortest r - v-walk contains a closed subwalk (e.g., cycle), the closed subwalk has cost 0 .
- A shortest r - v-walk always contains a shortest r - v-path of equal length.
- If there is a shortest r - v-walk for all $v \in V$, then there is a shortest path tree, i.e., an arborescence T rooted at r such that the unique $r-v$-path in T is a least-cost r - v-walk in D.

Example: A shortest path tree.

$$
\begin{aligned}
& p(r)=\text { None } \\
& p(a)=r \\
& p(b)=r \\
& p(c)=b \\
& p(d)=b \\
& p(e)=d
\end{aligned}
$$

Definition 8.7 A vector $y \in \mathbb{R}^{V}$ is a feasible potential if

$$
y_{v}+c_{(v, w)} \geq y_{w} \quad \text { for all }(v, w) \in A
$$

| Lemma 8.8 If y is feasible potential with $y_{r}=0$ and P an $r-v$-walk, then $y_{v} \leq c(P)$. Proof: Let $P=v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}$, where $v_{0}=r$ and $v_{k}=v$. Then,

$$
c(P)=\sum_{i=1}^{k} c_{a_{i}} \geq \sum_{i=1}^{k}\left(y_{v_{i}}-y_{v_{i-1}}\right)=y_{v_{k}}-y_{v_{0}}=y_{v} .
$$

Corollary 8.9 If y is a feasible potential with $y_{r}=0$ and P an r - v-walk of cost y_{v}, then P is a least-cost $r-v$-walk.

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

i Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

Example:

Question: Does the algorithm always terminate?

Example:

Observation:
The algorithm does not terminate because of the negative-cost dicycle.

Lemma 8.10 If there is no negative-cost dicycle, then at any stage of the algorithm:
a if $y_{v} \neq \infty$, then y_{v} is the cost of some r - v-path;
b if $p(v) \neq$ null, then p defines a r - v-path of cost at most y_{v}.
Proof: See CoMa II.

Theorem 8.11 If there is no negative-cost dicycle, then Ford's Algorithm terminates after a finite number of iterations. At termination, y is a feasible potential with $y_{r}=0$ and, for each node $v \in V, p$ defines a least-cost r - v-dipath.

Proof: See CoMa II.

Theorem 8.12 A digraph $D=(V, A)$ with arc costs $c \in \mathbb{R}^{A}$ has a feasible potential if and only if there is no negative-cost dicycle.

Proof: See CoMa II.

Remarks

- If there is a dipath but no least-cost diwalk from r to v, it is because there are arbitrarily cheap r - v-diwalks.
- In this case, finding least-cost dipath from r to v is, however, difficult (i.e., NP-hard; see later).

Lemma 8.13 If c is integer-valued, $C:=2 \max _{a \in A}\left|c_{a}\right|+1$, and there is no negative-cost dicycle, then Ford's Algorithm terminates after at most $C n^{2}$ iterations.

Proof: See CoMa II.

Feasible Potentials and Linear Programming

As a consequence of Ford's Algorithm we get:
Theorem 8.14 Let $D=(V, A)$ be a digraph, $r, s \in V$, and $c \in \mathbb{R}^{A}$. If, for every $v \in V$, there exists a least-cost diwalk from r to v, then
$\min \{c(P) \mid P$ an r-s-dipath $\}=\max \left\{y_{s}-y_{r} \mid y\right.$ a feasible potential $\}$.
Formulate the right-hand side as a linear program and consider the dual:

$$
\begin{aligned}
\max & y_{s}-y_{r} & \min & c^{\top} \cdot x \\
\text { s.t. } & y_{w}-y_{v} \leq c_{(v, w)} & \text { s.t. } & \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=b_{v} \quad \forall v \in V \\
& \text { for all }(v, w) \in A & & x_{a} \geq 0 \quad \text { for all } a \in A
\end{aligned}
$$

with $b_{s}=1, b_{r}=-1$, and $b_{v}=0$ for all $v \notin\{r, s\}$.

Notice: The dual is the LP relaxation of an ILP formulation of the shortest r - s-diwalk problem ($x_{a} \hat{=}$ number of times a shortest r-s-diwalk uses arc a).

Consider again the dual LP:

$$
\begin{array}{cl}
\min & c^{\top} \cdot x \\
\text { s.t. } & \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=b_{v} \quad \text { for all } v \in V \\
& x_{a} \geq 0 \quad \text { for all } a \in A
\end{array}
$$

The underlying matrix Q is the incidence matrix of D.

Lemma 8.15 Let $D=(V, A)$ be a connected digraph and Q its incidence matrix. A subset of columns of Q indexed by a subset of arcs $F \subseteq A$ forms a basis of the linear subspace of \mathbb{R}^{n} spanned by the columns of Q if and only if F is the arc-set of a spanning tree of D.

Proof: Exercise.

Ford's Algorithm

ii Set $y_{r}:=0, p(r):=r, y_{v}:=\infty$, and $p(v):=$ null, for all $v \in V \backslash\{r\}$.
Iii While there is an arc $a=(v, w) \in A$ with $y_{w}>y_{v}+c_{(v, w)}$, set

$$
y_{w}:=y_{v}+c_{(v, w)} \quad \text { and } \quad p(w):=v .
$$

- \# iterations crucially depends on order in which arcs are chosen.
- Suppose that arcs are chosen in order $S=f_{1}, f_{2}, f_{3}, \ldots, f_{l}$.
- Diwalk P is embedded in S if P 's arc sequence is a subsequence of S.

Lemma 8.16 If an r - v-diwalk P is embedded in S, then $y_{v} \leq c(P)$ after Ford's Algorithm has gone through the sequence S.
Proof: See CoMa II.
Goal: Find short sequence S such that a least-cost r - v-diwalk is embedded in S for all $v \in V$.

Basic idea:

- Every dipath is embedded in $S_{1}, S_{2}, \ldots, S_{n-1}$ where, for all i, S_{i} is an ordering of A.
- This yields a shortest path algorithm with running time $O(n m)$.

Ford-Bellman Algorithm

ii initialize y, p (see Ford's Algorithm);
Iii for $i=1$ to $n-1$ do
团 for all $a=(v, w) \in A$ do
iv

$$
\text { if } y_{w}>y_{v}+c_{(v, w)} \text {, then set } y_{w}:=y_{v}+c_{(v, w)} \text { and } p(w):=v \text {; }
$$

Theorem 8.17 The algorithm runs in $O(n m)$ time. If, at termination, y is a feasible potential, then p yields a least-cost r - v-dipath for each $v \in V$. Otherwise, the given digraph contains a negative-cost dicycle.

Definition 8.18 Consider a digraph $D=(V, A)$.
a An ordering $v_{1}, v_{2}, \ldots, v_{n}$ of V so that $i<j$ for each $\left(v_{i}, v_{j}\right) \in A$ is called a topological ordering of D.
b If D has a topological ordering, then D is called acyclic.

Observations:

- Digraph D is acyclic if and only if it does not contain a dicycle.
- Topological ordering of D can be found in time $O(n+m)$ (if it exists).
- Let D be acyclic and S an ordering of A such that $\left(v_{i}, v_{j}\right)$ precedes $\left(v_{k}, v_{\ell}\right)$ if $i<k$. Then every dipath of D is embedded in S.

Theorem 8.19 Shortest path problem on acyclic digraphs can be solved in time $O(n+m)$.
Proof: See CoMa II.

Consider the special case of nonnegative costs, i.e., $c_{a} \geq 0$, for each $a \in A$.

Dijkstra's Algorithm

ii initialize y, p (see Ford's Algorithm); set $S:=V$;
Iii while $S \neq \varnothing$ do
囲 choose $v \in S$ with y_{v} minimum and delete v from S;
iv for each $w \in V$ with $(v, w) \in A$ do
v if $y_{w}>y_{v}+c_{(v, w)}$, then set $y_{w}:=y_{v}+c_{(v, w)}$ and $p(w):=v$;

Example:

Consider the special case of nonnegative costs, i.e., $c_{a} \geq 0$, for each $a \in A$.

Dijkstra's Algorithm

ii initialize y, p (see Ford's Algorithm); set $S:=V$;
Iii while $S \neq \varnothing$ do
囲 choose $v \in S$ with y_{v} minimum and delete v from S;
iv for each $w \in V$ with $(v, w) \in A$ do
v if $y_{w}>y_{v}+c_{(v, w)}$, then set $y_{w}:=y_{v}+c_{(v, w)}$ and $p(w):=v$;
Example:

Consider the special case of nonnegative costs, i.e., $c_{a} \geq 0$, for each $a \in A$.

Dijkstra's Algorithm

ii initialize y, p (see Ford's Algorithm); set $S:=V$;
Iii while $S \neq \varnothing$ do
囲 choose $v \in S$ with y_{v} minimum and delete v from S;
iv for each $w \in V$ with $(v, w) \in A$ do
v if $y_{w}>y_{v}+c_{(v, w)}$, then set $y_{w}:=y_{v}+c_{(v, w)}$ and $p(w):=v$;

Example:

Consider the special case of nonnegative costs, i.e., $c_{a} \geq 0$, for each $a \in A$.

Dijkstra's Algorithm

ii initialize y, p (see Ford's Algorithm); set $S:=V$;
Iii while $S \neq \varnothing$ do
囲 choose $v \in S$ with y_{v} minimum and delete v from S;
iv for each $w \in V$ with $(v, w) \in A$ do
v if $y_{w}>y_{v}+c_{(v, w)}$, then set $y_{w}:=y_{v}+c_{(v, w)}$ and $p(w):=v$;

Example:

Consider the special case of nonnegative costs, i.e., $c_{a} \geq 0$, for each $a \in A$.

Dijkstra's Algorithm

ii initialize y, p (see Ford's Algorithm); set $S:=V$;
Iii while $S \neq \varnothing$ do
囲 choose $v \in S$ with y_{v} minimum and delete v from S;
iv for each $w \in V$ with $(v, w) \in A$ do
v if $y_{w}>y_{v}+c_{(v, w)}$, then set $y_{w}:=y_{v}+c_{(v, w)}$ and $p(w):=v$;

Example:

Consider the special case of nonnegative costs, i.e., $c_{a} \geq 0$, for each $a \in A$.

Dijkstra's Algorithm

ii initialize y, p (see Ford's Algorithm); set $S:=V$;
Iii while $S \neq \varnothing$ do
囲 choose $v \in S$ with y_{v} minimum and delete v from S;
iv for each $w \in V$ with $(v, w) \in A$ do
v if $y_{w}>y_{v}+c_{(v, w)}$, then set $y_{w}:=y_{v}+c_{(v, w)}$ and $p(w):=v$;

Example:

Consider the special case of nonnegative costs, i.e., $c_{a} \geq 0$, for each $a \in A$.

Dijkstra's Algorithm

ii initialize y, p (see Ford's Algorithm); set $S:=V$;
Iif while $S \neq \varnothing$ do
囲 choose $v \in S$ with y_{v} minimum and delete v from S;
iv for each $w \in V$ with $(v, w) \in A$ do
v if $y_{w}>y_{v}+c_{(v, w)}$, then set $y_{w}:=y_{v}+c_{(v, w)}$ and $p(w):=v$;

Example:

Correctness of Dijkstra's Algorithm

Lemma 8.20 For each $w \in V$, let y_{w}^{\prime} be the value of y_{w} when w is removed from S. If u is deleted from S before v, then $y_{u}^{\prime} \leq y_{v}^{\prime}$.
Proof: See CoMa II.

Theorem 8.21 If $c \geq 0$, then Dijkstra's Algorithm solves the shortest paths problem correctly in time $O\left(n^{2}\right)$. A heap-based implementation yields running time $O(m \log n)$ or even $O(m+n \log n)$ (Fibonacci-Heap).
Proof: See CoMa II.

Remark: The for-loop in Dijkstra's Algorithm (step iv) can be modified such that only $\operatorname{arcs}(v, w)$ with $w \in S$ are considered.

Observation 8.22 For given arc costs $c \in \mathbb{R}^{A}$ and node potential $y \in \mathbb{R}^{V}$, define arc costs $c^{\prime} \in \mathbb{R}^{A}$ by $c_{(v, w)}^{\prime}:=c_{(v, w)}+y_{v}-y_{w}$. Then, for all $v, w \in V$, a least-cost v - w-diwalk w.r.t. c is a least-cost v - w-diwalk w.r.t. c^{\prime}, and vice versa.
Proof: Notice that for any v - w-diwalk P it holds that

$$
c^{\prime}(P)=c(P)+y_{v}-y_{w} .
$$

Corollary 8.23 For given arc costs $c \in \mathbb{R}^{A}$ (not necessarily nonnegative) and a given feasible potential $y \in \mathbb{R}^{V}$, one can use Dijkstra's Algorithm to solve the shortest paths problem.

Definition 8.24 For a digraph $D=(V, A)$, arc costs $c \in \mathbb{R}^{A}$ are called conservative if there is no negative-cost dicycle in D, i.e., if there is feasible potential $y \in \mathbb{R}^{V}$.

Given: digraph $D=(V, A)$, conservative arc costs (lengths) $c_{a}, a \in A$;
Task: for all $r, v \in V$ with $r \neq v$, find r - v-dipath of least cost (if it exists)
Simple algorithm: Call Ford-Bellman Algorithm for each start node $r \in V$.
\Longrightarrow running time $O\left(m n^{2}\right)$

Better algorithm:

Theorem 8.25 All Pairs Shortest Paths Problem can be solved in $O\left(m n+n^{2} \log n\right)$ time.

Proof:
Use Ford-Bellman Algorithm to compute feasible potential in $O(m n)$ time.
Call Dijkstra's Algo. ($O(m+n \log n)$ time) for each start node $r \in V$.
Alternative approach: Floyd-Warshall Algorithm (see exercise session)

