
8

Introduction to

Linear and Combinatorial Optimization

Optimal Trees and Paths

8.1 Minimum Spanning Trees

Trees and Forests 8 | 2

an undirected graph without a cycle is a forest

a connected forest is a tree.

Theorem 8.1 Let G = (V ,E) be an undirected graph
on n = |V | nodes. Then, the following statements are
equivalent:

i G is a tree.

ii G has n − 1 edges and no cycle.

iii G has n − 1 edges and is connected.

iv G is connected, but (V ,E ⧵ {e}) is disconnected for
any e ∈ E.

v G has no cycle. Adding an arbitrary edge to G
creates a cyle.

vi G contains a unique path between any pair of
nodes.

Proof: See, e.g., CoMa I.
1

2

3

4 5

6

7 8

9

Kruskal’s Algorithm 8 | 3

Minimum Spanning Tree (MST) Problem

Given: connected graph G = (V ,E), cost function c ∶ E → ℝ.

Task: find spanning tree T = (V , F) of G with minimum cost ∑e∈F c(e).
Kruskal’s Algorithm for MST

1 sort the edges in E such that c(e1) ≤ c(e2) ≤ ⋯ ≤ c(em);
2 set T ∶= (V ,∅);
3 for i ∶= 1 to m do:

if adding ei to T does not create a cycle, then add ei to T ;

Example for Kruskal’s Algorithm 8 | 4

16

22

29

20

31

28

32

23

35
25

15

12

18

Example for Kruskal’s Algorithm 8 | 4

16

22

29

20

31

28

32

23

35
25

15

12

18

Example for Kruskal’s Algorithm 8 | 4

16

22

29

20

31

28

32

23

35
25

15

12

18

Example for Kruskal’s Algorithm 8 | 4

16

22

29

20

31

28

32

23

35
25

15

12

18

Example for Kruskal’s Algorithm 8 | 4

16

22

29

20

31

28

32

23

35
25

15

12

18

Example for Kruskal’s Algorithm 8 | 4

16

22

29

20

31

28

32

23

35
25

15

12

18

Prim’s Algorithm 8 | 5

recall that for a graph G = (V ,E) and A ⊆ V�(A) ∶= {
e = {v,w} ∈ E ∣ v ∈ A and w ∈ V ⧵ A}.

is the cut induced by A

Prim’s Algorithm for MST
1 set U ∶= {r} for some node r ∈ V and F ∶= ∅; set T ∶= (U , F);
2 while U ≠ V , determine a minimum cost edge e ∈ �(U);
3 set F ∶= F ∪ {e} and U ∶= U ∪ {w} with e = {v,w}, w ∈ V ⧵ U ;

Example for Prim’s Algorithm 8 | 6

r

16

22

29

20

31

28

32

23
35

25

15

12

1816

22

29

20

Example for Prim’s Algorithm 8 | 6

r

16

22

29

20

31

28

32

23
35

25

15

12

18

22

29

20

31

28

Example for Prim’s Algorithm 8 | 6

r

16

22

29

20

31

28

32

23
35

25

15

12

18

22

29

31

28

25

35

Example for Prim’s Algorithm 8 | 6

r

16

22

29

20

31

28

32

23
35

25

15

12

18

29

31

25

35

32

23

Example for Prim’s Algorithm 8 | 6

r

16

22

29

20

31

28

32

23
35

25

15

12

18
31

25

32

12

15

Example for Prim’s Algorithm 8 | 6

r

16

22

29

20

31

28

32

23
35

25

15

12

18
31

32

15 18

Example for Prim’s Algorithm 8 | 6

r

16

22

29

20

31

28

32

23
35

25

15

12

18

Correctness of the MST Algorithms 8 | 7

Lemma 8.2 A graph G = (V ,E) is connected if and only if there is no set A ⊆ V ,∅ ≠ A ≠ V , with �(A) = ∅.

Proof: See exercise.

call B ⊆ E extendible to an MST if B is contained in the edge-set of some MST of G

Theorem 8.3 Let B ⊆ E be extendible to an MST and ∅ ≠ A ⊊ V with
B ∩ �(A) = ∅.
If e is a min-cost edge in �(A), then B ∪ {e} is extendible to an MST.

Proof: See exercise.

Correctness of Prim’s Algorithm immediately follows.

Kruskal: Whenever an edge e = {v,w} is added, it is cheapest edge in cut induced by
subset of nodes currently reachable from v.

Efficiency of Prim’s Algorithm 8 | 8

Prim’s Algorithm for MST
1 set U ∶= {r} for some node r ∈ V and F ∶= ∅; set T ∶= (U , F);
2 while U ≠ V , determine a minimum cost edge e ∈ �(U);
3 set F ∶= F ∪ {e} and U ∶= U ∪ {w} with e = {v,w}, w ∈ V ⧵ U ;

Straightforward implementation achieves running time O(nm) where, as usual,
n ∶= |V | and m ∶= |E|:

the while-loop has n − 1 iterations;
a min-cost edge e ∈ �(U) can be found in O(m) time.

Idea for improved running time O(n2):
For each v ∈ V ⧵ U , always keep a minimum cost edge h(v) connecting v to
some node in U .
In each iteration, information about all h(v), v ∈ V ⧵ U , can be updated in O(n)
time.
Find min-cost edge e ∈ �(U) in O(n) time by only considering the edges h(v),
v ∈ V ⧵ U .

Best running time: O(m + n logn) (Fibonacci heaps, e.g., CoMa II).

Efficiency of Kruskal’s Algorithm 8 | 9

Kruskal’s Algorithm for MST
1 sort the edges in E such that c(e1) ≤ c(e2) ≤ ⋯ ≤ c(em);
2 set T ∶= (V ,∅);
3 for i ∶= 1 to m do:

If adding ei to T does not create a cycle, then add ei to T ;

Theorem 8.4 Step 3 of Kruskal’s Algorithm can be implemented to run in
O(m log∗m) time.

Proof: Use Union-Find datastructure; see, e.g., CoMa II.

Minimum Spanning Trees and LPs 8 | 10

for S ⊆ V let
 (S) ∶= {
e = {v,w} ∈ E ∣ v,w ∈ S

}
for a vector x ∈ ℝE and a subset B ⊆ E let x(B) ∶= ∑e∈B x(e)

Consider the following integer linear program:min c⊤ ⋅ x
s.t. x(
 (S)) ≤ |S| − 1 for all ∅ ≠ S ⊂ V (8.1)

x(E) = |V | − 1 (8.2)

x(e) ∈ {0, 1} for all e ∈ E

Observations
Feasible solutions x∈{0, 1}E are characteristic vectors of subset F ⊆E.

F does not contain a cycle due to (8.1) and n − 1 edges due to (8.2).

Thus, F forms a spanning tree of G.

Moreover, the edge set of an arbitrary spanning tree of G yields a feasible
solution x ∈ {0, 1}E.

Minimum Spanning Trees and LPs (Cont.) 8 | 11

Consider LP relaxation of the integer programming formulation:min c⊤ ⋅ x
s.t. x(
 (S)) ≤ |S| − 1 for all ∅ ≠ S ⊂ V

x(E) = |V | − 1
x(e) ≥ 0 for all e ∈ E

Theorem 8.5 Let x∗ ∈ {0, 1}E be the characteristic vector of an MST. Then x∗ is an
optimal solution to the LP above.

Corollary 8.6 The vertices of the polytope given by the set of feasible LP solutions
are exactly the characteristic vectors of spanning trees of G. The polytope is thus the
convex hull of the characteristic vectors of all spanning trees.

Ingredients for the Proof of Theorem 8.5 8 | 12

primal LP: dual LP:min c⊤ ⋅ x max ∑
S∶∅≠S⊆V(|S| − 1) ⋅ zS

s.t. x(
 (S)) ≤ |S| − 1 ∀∅ ≠ S ⊊ V s.t. ∑
S⊆V∶e∈
 (S) zS ≤ c(e) ∀ e ∈ E

x(E) = |V | − 1 zS ≤ 0 ∀∅ ≠ S ⊊ V

x(e) ≥ 0 ∀ e ∈ E zV free

Proof idea:

show that characteristic vector x of spanning tree T found by Kruskal’s Alg. is
optimal solution to LP relaxation;

to this end, construct also dual solution from Kruskal’s Alg. such that complementary
slackness conditions are fulfilled.

Ingredients for the Proof of Theorem 8.5 (Cont.) 8 | 13

Construction of dual solution:

E(T) = {f1,… , fn−1} with c(f1) ≤ ⋯ ≤ c(fn−1);
Xk ⊆ V new connected component formed by fk in Kruskal’s Alg.;

in particular, Xn−1 = V ;

for k = 1,… ,n − 2, let zXk ∶= c(fk) − c(f�) ≤ 0,
where f� is first edge after fk (i.e., � > k) with f� ∩ Xk ≠ ∅;

zV ∶= c(fn−1) and zX ∶= 0 for all X ⊆ V , X ≠ Xk, k = 1,… ,n − 1.

Example:

X2

X1

X3

zX1 = −3

zX2 = −8
zX3 = −4

zV = zX6 = 23

16

22
29

20

31

28 32

23

35 25

15
12

18

f1
f 2f 3

f4

f 5 f6

Proof of Theorem 8.5 8 | 14

Proof:

for an arbitrary edge e∑
S⊆V∶e∈
 (S) zS = zXk1

+ zXk2
+⋯ + zXn−1= (c(fk1) − c(fk2)) + (c(fk2) − c(fk3)) +⋯ + c(fkn−1)= c(fk1)≤ c(e)

since the two endpoints of edge e are in Xk1 and Xk1 is formed by either adding e are
an edge that is not more expensive

thus, zS, ∅ ≠ S ⊆ V is a feasible dual solution

if xe > 0, then e = fk1 and the dual constraint is tight

if zS ≠ 0, then S = Xi for some i⇒ x(
 (S)) = |S| − 1
by dual slackness, (x, z) are optimal

8

Introduction to

Linear and Combinatorial Optimization

Optimal Trees and Paths

8.2 Shortest Paths

Shortest Path Problem (Reminder) 8 | 16

Given: digraph D = (V ,A), node r ∈ V , arc costs (lengths) ca, a ∈ A;

Task: for each v ∈ V , find dipath from r to v of least cost (if one exists)

Remarks:

Existence of r-v-dipath can be checked, e.g., by breadth-first search.

Ensure existence of r-v-dipaths: add arcs (r, v) of suffic. large cost.

Basic idea behind all algorithms for
solving shortest path problem:
If yv , v ∈ V , is the least cost of a diwalk from r
to v, then

yv + c(v,w) ≥ yw for all (v,w) ∈ A.
r

v w
c(v,w)

Elementary Facts for Shortest Paths (Reminder) 8 | 17

Subwalks of shortest walks are shortest walks!

If a shortest r-v-walk contains a closed subwalk (e.g., cycle), the closed subwalk has
cost 0.

A shortest r-v-walk always contains a shortest r-v-path of equal length.

If there is a shortest r-v-walk for all v ∈ V , then there is a shortest path tree, i.e., an
arborescence T rooted at r such that the unique r-v-path in T is a least-cost r-v-walk
in D.

Example: A shortest path tree.

r

a

b

c

d

e

2

4

6

−1

2

3
−1−2

−2
3

p(r) = None

p(a) = r

p(b) = r

p(c) = b

p(d) = b

p(e) = d

Feasible Potentials 8 | 18

Definition 8.7 A vector y ∈ ℝV is a feasible potential if

yv + c(v,w) ≥ yw for all (v,w) ∈ A.

Lemma 8.8 If y is feasible potential with yr = 0 and P an r-v-walk, then yv ≤ c(P).
Proof: Let P = v0, a1, v1,… , ak, vk, where v0 = r and vk = v. Then,

c(P) = k∑
i=1 cai ≥ k∑

i=1 (yvi − yvi−1) = yvk − yv0 = yv.
Corollary 8.9 If y is a feasible potential with yr = 0 and P an r-v-walk of cost yv ,
then P is a least-cost r-v-walk.

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

∞

∞

∞

∞
∞

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

∞

4

∞

∞
∞

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

3

4

∞

∞
∞

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

3

4

9

∞
∞

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

3

4

9

8

∞

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

3

4

8

8

∞

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

3

4

8

8

6

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

3

4

8

7

6

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

2

4

8

7

6

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

2

4

8

7

5

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

2

4

8

6

5

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

2

4

8

6

4

Ford’s Algorithm 8 | 19

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
Example:

r

2

4

6

−1
2

4
−1−2

−2
3

0

2

4

7

6

4

Termination of Ford’s Algorithm 8 | 20

�estion: Does the algorithm always terminate?

Example:

r

2 1

−31

Observation:
The algorithm does not terminate because of the negative-cost dicycle.

Validity of Ford’s Algorithm 8 | 21

Lemma 8.10 If there is no negative-cost dicycle, then at any stage of the algorithm:

a if yv ≠ ∞, then yv is the cost of some r-v-path;

b if p(v) ≠ null, then p defines a r-v-path of cost at most yv .

Proof: See CoMa II.

Theorem 8.11 If there is no negative-cost dicycle, then Ford’s Algorithm terminates
after a finite number of iterations. At termination, y is a feasible potential with yr = 0
and, for each node v ∈ V , p defines a least-cost r-v-dipath.

Proof: See CoMa II.

Feasible Potentials & Negative-Cost Dicycles 8 | 22

Theorem 8.12 A digraph D = (V ,A) with arc costs c ∈ ℝA has a feasible potential
if and only if there is no negative-cost dicycle.

Proof: See CoMa II.

Remarks
If there is a dipath but no least-cost diwalk from r to v, it is because there are
arbitrarily cheap r-v-diwalks.

In this case, finding least-cost dipath from r to v is, however, difficult (i.e.,
NP-hard; see later).

Lemma 8.13 If c is integer-valued, C ∶= 2maxa∈A |ca| + 1, and there is no
negative-cost dicycle, then Ford’s Algorithm terminates after at most C n2 iterations.

Proof: See CoMa II.

Feasible Potentials and Linear Programming 8 | 23

As a consequence of Ford’s Algorithm we get:

Theorem 8.14 Let D = (V ,A) be a digraph, r, s ∈ V , and c ∈ ℝA. If, for every
v ∈ V , there exists a least-cost diwalk from r to v, thenmin{c(P) ∣ P an r-s-dipath} = max{ys − yr ∣ y a feasible potential}.

Formulate the right-hand side as a linear program and consider the dual:max ys − yr
s.t. yw − yv ≤ c(v,w)

for all (v,w) ∈ A

min c⊤ ⋅ x
s.t. ∑

a∈�−(v) xa − ∑
a∈�+(v) xa = bv ∀v ∈ V

xa ≥ 0 for all a ∈ A

with bs = 1, br = −1, and bv = 0 for all v ∉ {r, s}.

Notice: The dual is the LP relaxation of an ILP formulation of the shortest r-s-diwalk
problem (xa=̂ number of times a shortest r-s-diwalk uses arc a).

Bases of Shortest Path LP 8 | 24

Consider again the dual LP:min c⊤ ⋅ x
s.t. ∑

a∈�−(v) xa − ∑
a∈�+(v) xa = bv for all v ∈ V

xa ≥ 0 for all a ∈ A

The underlying matrix Q is the incidence matrix of D.

Lemma 8.15 Let D = (V ,A) be a connected digraph and Q its incidence matrix. A
subset of columns of Q indexed by a subset of arcs F ⊆ A forms a basis of the linear
subspace of ℝn spanned by the columns of Q if and only if F is the arc-set of a
spanning tree of D.

Proof: Exercise.

Refinement of Ford’s Algorithm 8 | 25

Ford’s Algorithm
i Set yr ∶= 0, p(r) ∶= r, yv ∶= ∞, and p(v) ∶= null, for all v ∈ V ⧵ {r}.

ii While there is an arc a = (v,w) ∈ A with yw > yv + c(v,w), set

yw ∶= yv + c(v,w) and p(w) ∶= v.
iterations crucially depends on order in which arcs are chosen.

Suppose that arcs are chosen in order  = f1, f2, f3,… , f� .
Diwalk P is embedded in  if P’s arc sequence is a subsequence of  .

Lemma 8.16 If an r-v-diwalk P is embedded in  , then yv ≤ c(P) after Ford’s
Algorithm has gone through the sequence  .

Proof: See CoMa II.

Goal: Find short sequence  such that a least-cost r-v-diwalk is embedded in  for all
v ∈ V .

Ford-Bellman Algorithm 8 | 26

Basic idea:

Every dipath is embedded in 1,2,… ,n−1 where, for all i, i is an ordering of A.

This yields a shortest path algorithm with running time O(nm).
Ford-Bellman Algorithm

i initialize y, p (see Ford’s Algorithm);

ii for i = 1 to n − 1 do

iii for all a = (v,w) ∈ A do

iv if yw > yv + c(v,w), then set yw ∶= yv + c(v,w) and p(w) ∶= v;

Theorem 8.17 The algorithm runs in O(nm) time. If, at termination, y is a feasible
potential, then p yields a least-cost r-v-dipath for each v ∈ V . Otherwise, the given
digraph contains a negative-cost dicycle.

Acyclic Digraphs and Topological Orderings 8 | 27

Definition 8.18 Consider a digraph D = (V ,A).
a An ordering v1, v2,… , vn of V so that i < j for each (vi, vj) ∈ A is called a

topological ordering of D.

b If D has a topological ordering, then D is called acyclic.

Observations:

Digraph D is acyclic if and only if it does not contain a dicycle.

Topological ordering of D can be found in time O(n +m) (if it exists).

Let D be acyclic and  an ordering of A such that (vi, vj) precedes (vk, v�) if i < k.
Then every dipath of D is embedded in  .

Theorem 8.19 Shortest path problem on acyclic digraphs can be solved in time
O(n +m).

Proof: See CoMa II.

Dijkstra’s Algorithm 8 | 28

Consider the special case of nonnegative costs, i.e., ca ≥ 0, for each a ∈ A.

Dijkstra’s Algorithm
i initialize y, p (see Ford’s Algorithm); set S ∶= V ;

ii while S ≠ ∅ do

iii choose v ∈ S with yv minimum and delete v from S;

iv for each w ∈ V with (v,w) ∈ A do

v if yw > yv+c(v,w), then set yw ∶= yv+c(v,w) and p(w) ∶= v;

Example:

r

2

4

1

3

2

2 4

3

r

2 ∞
0

∞

∞

∞

∞

Dijkstra’s Algorithm 8 | 28

Consider the special case of nonnegative costs, i.e., ca ≥ 0, for each a ∈ A.

Dijkstra’s Algorithm
i initialize y, p (see Ford’s Algorithm); set S ∶= V ;

ii while S ≠ ∅ do

iii choose v ∈ S with yv minimum and delete v from S;

iv for each w ∈ V with (v,w) ∈ A do

v if yw > yv+c(v,w), then set yw ∶= yv+c(v,w) and p(w) ∶= v;

Example:

r

2

4

1

3

2

2 4

3

r

2 ∞
0

2

∞

∞

∞

Dijkstra’s Algorithm 8 | 28

Consider the special case of nonnegative costs, i.e., ca ≥ 0, for each a ∈ A.

Dijkstra’s Algorithm
i initialize y, p (see Ford’s Algorithm); set S ∶= V ;

ii while S ≠ ∅ do

iii choose v ∈ S with yv minimum and delete v from S;

iv for each w ∈ V with (v,w) ∈ A do

v if yw > yv+c(v,w), then set yw ∶= yv+c(v,w) and p(w) ∶= v;

Example:

r

2

4

1

3

2

2 4

3

r

2 ∞
0

2

4

∞

∞

Dijkstra’s Algorithm 8 | 28

Consider the special case of nonnegative costs, i.e., ca ≥ 0, for each a ∈ A.

Dijkstra’s Algorithm
i initialize y, p (see Ford’s Algorithm); set S ∶= V ;

ii while S ≠ ∅ do

iii choose v ∈ S with yv minimum and delete v from S;

iv for each w ∈ V with (v,w) ∈ A do

v if yw > yv+c(v,w), then set yw ∶= yv+c(v,w) and p(w) ∶= v;

Example:

r

2

4

1

3

2

2 4

3

r

a
2 ∞

0

2

4

3

∞

Dijkstra’s Algorithm 8 | 28

Consider the special case of nonnegative costs, i.e., ca ≥ 0, for each a ∈ A.

Dijkstra’s Algorithm
i initialize y, p (see Ford’s Algorithm); set S ∶= V ;

ii while S ≠ ∅ do

iii choose v ∈ S with yv minimum and delete v from S;

iv for each w ∈ V with (v,w) ∈ A do

v if yw > yv+c(v,w), then set yw ∶= yv+c(v,w) and p(w) ∶= v;

Example:

r

2

4

1

3

2

2 4

3

r

a p
2 ∞

0

2

4

3

7

Dijkstra’s Algorithm 8 | 28

Consider the special case of nonnegative costs, i.e., ca ≥ 0, for each a ∈ A.

Dijkstra’s Algorithm
i initialize y, p (see Ford’s Algorithm); set S ∶= V ;

ii while S ≠ ∅ do

iii choose v ∈ S with yv minimum and delete v from S;

iv for each w ∈ V with (v,w) ∈ A do

v if yw > yv+c(v,w), then set yw ∶= yv+c(v,w) and p(w) ∶= v;

Example:

r

2

4

1

3

2

2 4

3

r

a p

b

2 ∞
0

2

4

3

6

Dijkstra’s Algorithm 8 | 28

Consider the special case of nonnegative costs, i.e., ca ≥ 0, for each a ∈ A.

Dijkstra’s Algorithm
i initialize y, p (see Ford’s Algorithm); set S ∶= V ;

ii while S ≠ ∅ do

iii choose v ∈ S with yv minimum and delete v from S;

iv for each w ∈ V with (v,w) ∈ A do

v if yw > yv+c(v,w), then set yw ∶= yv+c(v,w) and p(w) ∶= v;

Example:

r

2

4

1

3

2

2 4

3

r

a p

b q

2 ∞
0

2

4

3

6

Correctness of Dijkstra’s Algorithm 8 | 29

Lemma 8.20 For each w ∈ V , let y ′
w be the value of yw when w is removed from S.

If u is deleted from S before v, then y ′
u ≤ y ′

v .

Proof: See CoMa II.

Theorem 8.21 If c ≥ 0, then Dijkstra’s Algorithm solves the shortest paths problem
correctly in time O(n2). A heap-based implementation yields running
time O(m logn) or even O(m + n logn) (Fibonacci-Heap).

Proof: See CoMa II.

Remark: The for-loop in Dijkstra’s Algorithm (step iv) can be modified such that only
arcs (v,w) with w ∈ S are considered.

Feasible Potentials and Nonnegative Costs 8 | 30

Observation 8.22 For given arc costs c ∈ ℝA and node potential y ∈ ℝV , define
arc costs c ′ ∈ ℝA by c ′(v,w) ∶= c(v,w) + yv − yw . Then, for all v,w ∈ V , a least-cost

v-w-diwalk w.r.t. c is a least-cost v-w-diwalk w.r.t. c ′, and vice versa.

Proof: Notice that for any v-w-diwalk P it holds that

c ′(P) = c(P) + yv − yw.
Corollary 8.23 For given arc costs c ∈ ℝA (not necessarily nonnegative) and a
given feasible potential y ∈ ℝV , one can use Dijkstra’s Algorithm to solve the shortest
paths problem.

Definition 8.24 For a digraph D = (V ,A), arc costs c ∈ ℝA are called conservative
if there is no negative-cost dicycle in D, i.e., if there is feasible potential y ∈ ℝV .

All Pairs Shortest Paths Problem 8 | 31

Given: digraph D = (V ,A), conservative arc costs (lengths) ca, a ∈ A;

Task: for all r, v ∈ V with r ≠ v, find r-v-dipath of least cost (if it exists)

Simple algorithm: Call Ford-Bellman Algorithm for each start node r ∈ V .⟹ running time O(mn2)
Be�er algorithm:

Theorem 8.25 All Pairs Shortest Paths Problem can be solved in O(mn + n2 logn)
time.

Proof:
Use Ford-Bellman Algorithm to compute feasible potential in O(mn) time.
Call Dijkstra’s Algo. (O(m + n logn) time) for each start node r ∈ V .

Alternative approach: Floyd-Warshall Algorithm (see exercise session)

