Introduction to

Linear and Combinatorial Optimization

Efficient Algorithms

9.1 Basic Definitions

| Efficient Algorithms

What is an efficient algorithm?

- efficient: running time bounded by a polynomial of the input size

« algorithm: Turing Machine or other formal model of computation

Simplified Definition

An algorithm consists of

. “elementary steps” like, e.g., variable assignments
. simple arithmetic operations

which only take a constant amount of time. The running time of the algorithm on a
given input is the number of such steps and operations.

2

— Bit Model and Arithmetic Model

Two ways of measuring the running time and the size of the input I of A:

Bit Model
« count bit operations
- e.g., adding two n-bit numbers takes n + 1 steps
« e.g., multiplying two n-bit numbers takes O(n?) steps

« size of input I is the total number of bits needed to encode “structure” and
numbers

Arithmetic Model

« simple arithmetic operations on arbitrary numbers can be performed in constant
time
- e.g., adding two numbers takes 1 step
- e.g., multiplying two numbers takes 1 step
- size of input [is total number of bits needed to encode “structure” plus #
numbers in the input

— Polynomial vs. Strongly Polynomial Running Time =

Definition 9.1
H An algorithm runs in polynomial time if, in the bit model, its (worst-case) running
time is polynomially bounded in the input size.

H An algorithm runs in strongly polynomial time if, in the bit model as well as in the
arithmetic model, its (worst-case) running time is polynomially bounded in the
input size.

Examples:

« Prim’s and Kruskal’s Algorithm as well as the Ford-Bellman Algorithm and Dijkstra’s
Algorithm run in strongly polynomial time
- Euclidean Algorithm runs in polynomial time but not in strongly polynomial time:
a ifb=0
. gcd(a, b) = fora=b
gcd(b,amod b) otherwise
« after two iterations gcd(a, b) = gcd(amod b, bmod (amod b))

—_— oo
<al2 <b/2
« O(log a) iterations suffice

— Example: Arithmetic Model vs. Bit Model ———

Consider the following algorithm:

Given: n numbers dy, ..., a, € Z.
fori=1ton:
a ‘= ar-q

output @;

Arithmetic Model:

« Input size is n; running time is O(n) (polynomial, even linear).

Bit Model:
« Input size is Y11 (|log a;] + 1)
- Encoding size of the computed output a;" is | 2" log a;] + 1.

- Output size can thus be exponential in the input size
(eg,ifa; = a;foralli=1,...,n).

« Notice that the output size is a lower bound on the running time.

EE— Pseudopolynomial Running Time =

- In the bit model, we assume that numbers are binary encoded, i.e., the encoding of the
number n € IN needs |log n| + 1 bits.

- Thus, the running time bound O(C n?) of Ford’s Algorithm where
C :=2maXgea |Cq| + 1 is not polynomial in the input size.

« If we assume, however, that numbers are unary encoded, then C n? is polynomially

bounded in the input size.

Definition 9.2 An algorithm runs in pseudopolynomial time if, in the bit model
with unary encoding of numbers, its (worst-case) running time is polynomially
bounded in the input size.

Example:
Checking whether a given number a € Z.; is prime by testing forall 1 < b < a
whether b divides a is a pseudopolynomial time algorithm.

