
9

Introduction to

Linear and Combinatorial Optimization

Efficient Algorithms

9.1 Basic Definitions

Efficient Algorithms 9 | 2

What is an efficient algorithm?

efficient: running time bounded by a polynomial of the input size

algorithm: Turing Machine or other formal model of computation

Simplified Definition
An algorithm consists of

“elementary steps” like, e.g., variable assignments

simple arithmetic operations

which only take a constant amount of time. The running time of the algorithm on a
given input is the number of such steps and operations.

Bit Model and Arithmetic Model 9 | 3

Two ways of measuring the running time and the size of the input I of A:

Bit Model
count bit operations

e.g., adding two n-bit numbers takes n + 1 steps
e.g., multiplying two n-bit numbers takes O(n2) steps

size of input I is the total number of bits needed to encode “structure” and
numbers

Arithmetic Model
simple arithmetic operations on arbitrary numbers can be performed in constant
time

e.g., adding two numbers takes 1 step
e.g., multiplying two numbers takes 1 step

size of input I is total number of bits needed to encode “structure” plus #
numbers in the input

Polynomial vs. Strongly Polynomial Running Time 9 | 4

Definition 9.1
i An algorithm runs in polynomial time if, in the bit model, its (worst-case) running

time is polynomially bounded in the input size.

ii An algorithm runs in strongly polynomial time if, in the bit model as well as in the
arithmetic model, its (worst-case) running time is polynomially bounded in the
input size.

Examples:

Prim’s and Kruskal’s Algorithm as well as the Ford-Bellman Algorithm and Dijkstra’s
Algorithm run in strongly polynomial time

Euclidean Algorithm runs in polynomial time but not in strongly polynomial time:

gcd(a, b) =

{
a if b = 0
gcd(b, amod b) otherwise

for a ≥ b

after two iterations gcd(a, b) = gcd(amod b
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

<a/2

, bmod (amod b)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<b/2

)

O(log a) iterations suffice

Example: Arithmetic Model vs. Bit Model 9 | 5

Consider the following algorithm:

Given: n numbers a1,… , an ∈ ℤ>0

1 for i = 1 to n:

2 a1 ∶= a1 ⋅ a1
3 output a1

Arithmetic Model:

Input size is n; running time is O(n) (polynomial, even linear).

Bit Model:

Input size is ∑n
i=1(⌊log ai⌋ + 1)

Encoding size of the computed output a12
n

is ⌊2n log a1⌋ + 1.

Output size can thus be exponential in the input size
(e.g., if a1 ≥ ai for all i = 1,… ,n).

Notice that the output size is a lower bound on the running time.

Pseudopolynomial Running Time 9 | 6

In the bit model, we assume that numbers are binary encoded, i.e., the encoding of the
number n ∈ ℕ needs ⌊logn⌋ + 1 bits.

Thus, the running time bound O(C n2) of Ford’s Algorithm where
C ∶= 2maxa∈A |ca| + 1 is not polynomial in the input size.

If we assume, however, that numbers are unary encoded, then C n2 is polynomially
bounded in the input size.

Definition 9.2 An algorithm runs in pseudopolynomial time if, in the bit model
with unary encoding of numbers, its (worst-case) running time is polynomially
bounded in the input size.

Example:
Checking whether a given number a ∈ ℤ≥2 is prime by testing for all 1 < b < a
whether b divides a is a pseudopolynomial time algorithm.

