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Organization

Short Videos on ISIS

Weekly Zoom-Slot
Wednesday 12:00 (noon) ?
FAQ-sessions
Addional material
Exercises

Set of problems as homework once in a while
Final oral exam in spring during the semester break
(details t.b.a.)
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How to Tackle NP-Hard Optimization Problems?
Most interesting discrete optimization problems are NP-hard.

Thus, unless P = NP , we cannot find algorithms that
simultaneously

1 find optimal solutions,
2 in polynomial time,
3 for any instance.

Therefore, we need to relax at least one of the three requirements.

We study approximation algorithms, i.e., we relax the first
requirement and search for algorithms that produce solutions that
are “good enough”.

What is “good enough”?
We would like to have some sort of a priori performance
guarantee.
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Approximation Algorithms

Definition 1.1
An α-approximation algorithm for an optimization problem is a
polynomial-time algorithm that for all instances of the problem
produces a solution whose value is within a factor of α of the
optimum value.

For an α-approximation algorithm, we call α the performance
guarantee (or approximation ratio/factor) of the algorithm.
Convention:

α > 1 for minimization problems, and
α < 1 for maximization problems.

Thus, a 1

2
-approximation algorithm for a maximization problem is a

polynomial-time algorithm that always returns a solution whose
value is at least half the value of the optimum value.
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Approximation Algorithms

Given an optimization problem, we’ll often use the notation ALG to
denote the value returned by a given algorithm for this problem,
and OPT to denote the optimum value of the problem.

Example 1.2
For a maximization problem, an α-approximation algorithm
satisfies

ALG ≥ α OPT

for all instances of the problem.

Example:
Constructing an inclusion-wise maximal matching is a 1

2
-approx.

algorithm for the maximum cardinality matching problem.
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Approximation factors

Remarks:
The worst-case bounds are often due to pathological cases
that hardly arise in practice.

Often, approximation algorithms are much better in practice
than indicated by their performance guarantee.
Nevertheless, the study of worst-case bounds provides a
mathematically rigourous basis to analyse heuristics, and to
undersand what can go wrong.
Approximation factors and inapproximability results give a
kind of metric to compare the hardness of discrete
optimization problems.
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Overview of lecture
Learn techniques to design approximation algorithms

Greedy algorithms
Dynamic Programming & Data rounding
Linear Programming based techniques (dual fitting,
primal-dual algos)
Deterministic & Randomized Rounding
Reductions to show hardness of approximation

Approximation results for many standard discrete problems, e.g.
Set cover
Scheduling
Facility location
Traveling Salesperson Problem
Clustering
...
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Polynomial-Time Approximation Schemes

Definition 1.3 (PTAS)
A polynomial-time approximation scheme (PTAS) is a family of
algorithms {Aε}, where there is an algorithm for each ε > 0, such
that Aε is a

(1+ ε)-approximation algorithm (for minimization problems),
or a
(1− ε)-approximation algorithm (for maximization problems).

Examples: PTASes exist for the Euclidean TSP and the planar
MAXIMUM INDEPENDENT SET.
Remark: The running time of Aε may depend badly on ε, e.g. {Aε}
is a PTAS if Aε runs in O(n1/ε) or even O(nexp(1/ε)).
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Polynomial-Time Approximation Schemes

Definition 1.4 (FPTAS)
A fully polynomial-time approximation scheme (FPTAS) is a family
of algorithms {Aε}, where there is an algorithm for each ε > 0,
such that the running time of Aε is polynomial in both the problem
size n and 1

ε
, and Aε is a (1+ ε)-approximation algorithm for

minimization problems, (resp. a (1− ε)-approximation algorithm
for maximization problems).

Examples: FPTASes exist for the Knapsack Problem and for
scheduling on a fixed number of identical machines.
Remarks: The running time of an FPTAS is of the form O(1/εk · nd),
so in some sense, the precision ε only influences the hidden
constant of the polynomial.
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Set Cover Problem

There are several fundamental techniques used in the design
and analysis of approximation algorithms.

In particular, linear programming plays an essential role!
In this introductory chapter, we illustrate some of the
techniques on the Set Cover Problem.

Set Cover Problem:
Given: A set of elements E = {e1, . . . , en}, a family of subsets
{S1, . . . , Sm} ⊆ 2

E , and a weight wj ≥ 0 for each j ∈ {1, . . . ,m}.

Task: Find I ⊆ {1, . . . ,m} minimizing
∑
j∈I

wj s.t.
⋃
j∈I

Sj = E .

If wj = 1 for each j ∈ {1, . . . ,m}, the problem is called Unweighted
Set Cover Problem.
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Set Cover

Cost of two set covers:
S1, S2, S3, S7: W = 5 (minimal cost for this example)
S2, S4, S7: W = 6
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IP Formulation of Set Cover
Formulation as integer linear program:

z∗IP = min
m∑
j=1

wj · xj

s.t.
∑
j :ei∈Sj

xj ≥ 1 for all i = 1, . . . , n

xj ∈ {0, 1} for all j = 1, . . . ,m

(1)

Linear programming relaxation:

z∗LP = min
m∑
j=1

wj · xj

s.t.
∑
j :ei∈Sj

xj ≥ 1 for all i = 1, . . . , n

xj ≥ 0 for all j = 1, . . . ,m

(2)

Note: xj ≥ 0 suffices as xj ≤ 1 is redundant.
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A Deterministic Rounding Algorithm
For each i = 1, . . . , n let fi := |{j | ei ∈ Sj}| be the number of sets
containing ei ,

and f := max
i=1,...,n

fi .

Deterministic Rounding Algorithm for Set Cover:
1 Compute an optimal solution x∗ to the set-cover-LP (2).

2 For each j ∈ {1, . . . ,m}, set x̂j = 1 if x∗j ≥
1

f
, and x̂j = 0

otherwise.

Lemma 1.5
The collection of subsets Sj with j ∈ Î := {j | x̂j = 1} is a set cover.

Theorem 1.6
The rounding algorithm above is an f -approximation algorithm for
the Set Cover Problem.
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Proof...
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Vertex cover
Input: Graph G = (V ,E ), weight wi ≥ 0 for all i ∈ V .
Task: Find I ⊂ V minimizing w(I ) :=

∑
i∈I

wi ,

such that every edge e ∈ E has at least one end point in I .

Some vertex covers (minimal for unweighted problem, i.e., wi = 1)

Exercise 1.7
Use the previous algorithm to design an approximation algorithm
for VERTEX COVER. What is its performance guarantee ?
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for VERTEX COVER. What is its performance guarantee ?
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Dual Linear Program
Linear programming relaxation:

z∗LP = min
m∑
j=1

wj · xj

s.t.
∑
j :ei∈Sj

xj ≥ 1 for all i = 1, . . . , n

xj ≥ 0 for all j = 1, . . . ,m

Dual linear program:

z∗LP = max
n∑

i=1

yi

s.t.
∑
ei∈Sj

yi ≤ wj for all j = 1, . . . ,m

yi ≥ 0 for all i = 1, . . . , n

(3)
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Rounding a Dual Solution
Dual Rounding Algorithm for Set Cover:

1 compute an optimal solution y ∗ to the dual (3) of the
set-cover-LP;

2 let I ∗ := {j |
∑
i :ei∈Sj

y ∗i = wj};

Lemma 1.8
The collection of subsets Sj with j ∈ I ∗ is a set cover.

Theorem 1.9
The dual rounding algorithm is an f -approximation algorithm for
the Set Cover Problem.

Remark: Notice that I ∗ ⊇ Î (the solution obtained by rounding the
primal LP) due to complementary slackness!
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Primal-Dual Algorithm
Note: The two previous algorithms require solving a linear
program.

Special purpose algorithms are often much faster!
Idea: Construct a feasible dual solution that is “good enough”.

Primal-dual algorithm for the Set Cover Problem:
1 set y :≡ 0 and I := ∅;
2 while ∃ek 6∈

⋃
j∈I

Sj

3 increase yk until ∃j with ek ∈ Sj such that
∑
i :ei∈Sj

yi = wj ;
4 set I := I ∪ {j};

Theorem 1.10
The primal-dual algorithm is an f -approximation algorithm for the
Set Cover Problem.
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Greedy Algorithm
Idea: Iteratively select a set minimizing the ratio of its weight to
the number of currently uncovered elements it contains.

Greedy algorithm for the Set Cover Problem
1 set I := ∅ and Ŝj := Sj for all j ;
2 while I is not a cover
3 ` := argmin

{ wj

|Ŝj |

∣∣∣ Ŝj 6= ∅
}
;

4 set I := I ∪ {`};
5 set Ŝj := Ŝj \ S` for all j ;

Theorem 1.11
The greedy algorithm returns a cover I with w(I ) ≤ Hg · z∗LP , where

g := max
j
|Sj | and Hg :=

g∑
k=1

1

k
≈ ln g .
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5 set Ŝj := Ŝj \ S` for all j ;

Theorem 1.11
The greedy algorithm returns a cover I with w(I ) ≤ Hg · z∗LP , where

g := max
j
|Sj | and Hg :=

g∑
k=1

1

k
≈ ln g .

G. Sagnol 1- Introduction 28 / 36



Greedy Algorithm
Idea: Iteratively select a set minimizing the ratio of its weight to
the number of currently uncovered elements it contains.
Greedy algorithm for the Set Cover Problem
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∣∣∣ Ŝj 6= ∅
}
;

4 set I := I ∪ {`};
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Tightness of approximation factor

Instance:
unit weights
E = {(i , j) : i ∈ [3], j ∈ [2k ]}
S1 = {(1, j)j ∈ [2k ]}, S2 = {(2, j)j ∈ [2k ]}, S3 = {(3, j)j ∈ [2k ]}
S3+j contains the points of 2k−j “columns”, ∀j ∈ [k]
Sk+4 contains the points of the last remaining column.

GREEDY selects S4, . . . , S4+k but the optimal set cover is (S1, S2, S3),
hence an approx. ratio of (k + 1)/3 = O(log(n)).
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Randomized Rounding Algorithm
Idea for an algorithm:

1 Compute an optimal solution x∗ to the set-cover-LP (2).

2 Take Sj into the set cover solution with probability x∗j .

Lemma 1.12
The expected value of the computed solution is equal to z∗LP . Any
element ei is covered with probability at least 1− e−1.

Refined algorithm:
For some constant c ≥ 2, take Sj with probability 1− (1− x∗j )

c ln n.

Theorem 1.13
The refined algorithm is a randomized O(ln n)-approximation
algorithm that produces a set cover with high probability.
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Hardness of Approximability Results for Set Cover

Theorem 1.14(Lund & Yannakakis 1994)
If there is a (c ln n)-approximation algorithm for the Unweighted
Set Cover Problem for some constant c < 1, then there is an
O(nO(log log n))-time deterministic algorithm for each NP-complete
problem.

Theorem 1.15 (Feige 1998)
There is some constant c > 0 such that if there is a
(c ln n)-approximation algorithm for the Unweighted Set Cover
Problem, then P = NP .
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Hardness of Approximability Results for Vertex Cover

Theorem 1.16 (Dinur & Safra 2002)
If there is an α-approximation algorithm for the Vertex Cover
Problem with α < 10

√
5− 21 ≈ 1.36, then P = NP .

Theorem 1.17 (Khot & Regev 2008)
Assuming the Unique Games Conjecture holds, if there is an
α-approximation algorithm for the Vertex Cover Problem with
α < 2, then P = NP .
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