
Approximation Algorithms (ADM III)
2- Local Search & Greedy Algorithms

Guillaume Sagnol

G. Sagnol 2- Local Search & Greedy Algorithms 1 / 36

Outline

1 Introduction to Scheduling Problems

2 Scheduling Jobs with Due Dates on a Single Machine

3 The k-Center Problem

4 Scheduling Jobs on Identical Parallel Machines

5 The Traveling Salesperson Problem (TSP)

6 Greedy Maximization of Submodular Functions

7 Minimum Edge Coloring

G. Sagnol 2- Local Search & Greedy Algorithms 2 / 36

Scheduling
Scheduling studies the optimal allocation of resources to a set
of tasks, or activities

Those problems have many applications, and are often
studied in the context of Approximation Algorithms
There is a variety of such problems, and we will review many
of them in this course
Standard notation:

n tasks, called jobs
m resources, called machines
Job j has processing time pj ≥ 0. Sometimes, proc. time of job j
depends on the machine on which it is executed, in this case
pij ≥ 0 represents the proc. time of job j on machine i .

Schedules can be represented by Gantt charts

0

M1

M2

time

G. Sagnol 2- Local Search & Greedy Algorithms 3 / 36

Scheduling
Scheduling studies the optimal allocation of resources to a set
of tasks, or activities
Those problems have many applications, and are often
studied in the context of Approximation Algorithms

There is a variety of such problems, and we will review many
of them in this course
Standard notation:

n tasks, called jobs
m resources, called machines
Job j has processing time pj ≥ 0. Sometimes, proc. time of job j
depends on the machine on which it is executed, in this case
pij ≥ 0 represents the proc. time of job j on machine i .

Schedules can be represented by Gantt charts

0

M1

M2

time

G. Sagnol 2- Local Search & Greedy Algorithms 3 / 36

Scheduling
Scheduling studies the optimal allocation of resources to a set
of tasks, or activities
Those problems have many applications, and are often
studied in the context of Approximation Algorithms
There is a variety of such problems, and we will review many
of them in this course

Standard notation:
n tasks, called jobs
m resources, called machines
Job j has processing time pj ≥ 0. Sometimes, proc. time of job j
depends on the machine on which it is executed, in this case
pij ≥ 0 represents the proc. time of job j on machine i .

Schedules can be represented by Gantt charts

0

M1

M2

time

G. Sagnol 2- Local Search & Greedy Algorithms 3 / 36

Scheduling
Scheduling studies the optimal allocation of resources to a set
of tasks, or activities
Those problems have many applications, and are often
studied in the context of Approximation Algorithms
There is a variety of such problems, and we will review many
of them in this course
Standard notation:

n tasks, called jobs
m resources, called machines
Job j has processing time pj ≥ 0. Sometimes, proc. time of job j
depends on the machine on which it is executed, in this case
pij ≥ 0 represents the proc. time of job j on machine i .

Schedules can be represented by Gantt charts

0

M1

M2

time

G. Sagnol 2- Local Search & Greedy Algorithms 3 / 36

Scheduling
Scheduling studies the optimal allocation of resources to a set
of tasks, or activities
Those problems have many applications, and are often
studied in the context of Approximation Algorithms
There is a variety of such problems, and we will review many
of them in this course
Standard notation:

n tasks, called jobs
m resources, called machines
Job j has processing time pj ≥ 0. Sometimes, proc. time of job j
depends on the machine on which it is executed, in this case
pij ≥ 0 represents the proc. time of job j on machine i .

Schedules can be represented by Gantt charts

0

M1

M2

time
G. Sagnol 2- Local Search & Greedy Algorithms 3 / 36

Classification of Scheduling Problems

A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Machine environment α:
α = 1: A single machine

α = P : Parallel identical machines. We can also write α = Pm
to indicate that the number of machines is fixed, so m is
considered as a constant for the analysis of running times.
α = R or Rm: unrelated parallel machines. The processing time
of job j on machine i is pij .
α = O : open shop. Each job must be executed on all machines,
in any order (job j requires machine i for pij time units).
Other environments: Q : uniform parallel machines, F : flow
shop, J : Job shop,...

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Machine environment α:
α = 1: A single machine
α = P : Parallel identical machines. We can also write α = Pm
to indicate that the number of machines is fixed, so m is
considered as a constant for the analysis of running times.

α = R or Rm: unrelated parallel machines. The processing time
of job j on machine i is pij .
α = O : open shop. Each job must be executed on all machines,
in any order (job j requires machine i for pij time units).
Other environments: Q : uniform parallel machines, F : flow
shop, J : Job shop,...

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Machine environment α:
α = 1: A single machine
α = P : Parallel identical machines. We can also write α = Pm
to indicate that the number of machines is fixed, so m is
considered as a constant for the analysis of running times.
α = R or Rm: unrelated parallel machines. The processing time
of job j on machine i is pij .

α = O : open shop. Each job must be executed on all machines,
in any order (job j requires machine i for pij time units).
Other environments: Q : uniform parallel machines, F : flow
shop, J : Job shop,...

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Machine environment α:
α = 1: A single machine
α = P : Parallel identical machines. We can also write α = Pm
to indicate that the number of machines is fixed, so m is
considered as a constant for the analysis of running times.
α = R or Rm: unrelated parallel machines. The processing time
of job j on machine i is pij .
α = O : open shop. Each job must be executed on all machines,
in any order (job j requires machine i for pij time units).

Other environments: Q : uniform parallel machines, F : flow
shop, J : Job shop,...

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Machine environment α:
α = 1: A single machine
α = P : Parallel identical machines. We can also write α = Pm
to indicate that the number of machines is fixed, so m is
considered as a constant for the analysis of running times.
α = R or Rm: unrelated parallel machines. The processing time
of job j on machine i is pij .
α = O : open shop. Each job must be executed on all machines,
in any order (job j requires machine i for pij time units).
Other environments: Q : uniform parallel machines, F : flow
shop, J : Job shop,...
G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Job characteristics, represented by a string β:
β = {}: Default characteristics.

rj ∈ β: Each job has a release-date rj , i.e., job j cannot start
before time t = rj .
pmtn ∈ β: Preemption is allowed, i.e., job execution can be
interrupted and resumed, possibly on another machine.
prec ∈ β A list of precedences is part of the input, e.g., i ≺ j
means that job j cannot start before completion of job i .
Other obvious specifications (e.g., pj = 1 means that all jobs
have unit processing times)

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Job characteristics, represented by a string β:
β = {}: Default characteristics.
rj ∈ β: Each job has a release-date rj , i.e., job j cannot start
before time t = rj .

pmtn ∈ β: Preemption is allowed, i.e., job execution can be
interrupted and resumed, possibly on another machine.
prec ∈ β A list of precedences is part of the input, e.g., i ≺ j
means that job j cannot start before completion of job i .
Other obvious specifications (e.g., pj = 1 means that all jobs
have unit processing times)

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Job characteristics, represented by a string β:
β = {}: Default characteristics.
rj ∈ β: Each job has a release-date rj , i.e., job j cannot start
before time t = rj .
pmtn ∈ β: Preemption is allowed, i.e., job execution can be
interrupted and resumed, possibly on another machine.

prec ∈ β A list of precedences is part of the input, e.g., i ≺ j
means that job j cannot start before completion of job i .
Other obvious specifications (e.g., pj = 1 means that all jobs
have unit processing times)

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Job characteristics, represented by a string β:
β = {}: Default characteristics.
rj ∈ β: Each job has a release-date rj , i.e., job j cannot start
before time t = rj .
pmtn ∈ β: Preemption is allowed, i.e., job execution can be
interrupted and resumed, possibly on another machine.
prec ∈ β A list of precedences is part of the input, e.g., i ≺ j
means that job j cannot start before completion of job i .

Other obvious specifications (e.g., pj = 1 means that all jobs
have unit processing times)

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Job characteristics, represented by a string β:
β = {}: Default characteristics.
rj ∈ β: Each job has a release-date rj , i.e., job j cannot start
before time t = rj .
pmtn ∈ β: Preemption is allowed, i.e., job execution can be
interrupted and resumed, possibly on another machine.
prec ∈ β A list of precedences is part of the input, e.g., i ≺ j
means that job j cannot start before completion of job i .
Other obvious specifications (e.g., pj = 1 means that all jobs
have unit processing times)
G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Objective criterion to minimize γ: A function of the following
parameters of the jobs:

Cj : completion time of job j ; Cmax := max
j

Cj denotes the latest
completion time and is called the makespan.

Lj = Cj − dj : lateness of job j for a given deadline dj ;
Lmax := max

j
Lj denotes the maximal lateness.

Many other criterions (flow time Fj = Cj − rj , tardiness
Tj = max(0,Cj − dj) of job j , unit penalty for tardy jobs
Uj = 1Cj>dj , ...)

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Objective criterion to minimize γ: A function of the following
parameters of the jobs:

Cj : completion time of job j ; Cmax := max
j

Cj denotes the latest
completion time and is called the makespan.
Lj = Cj − dj : lateness of job j for a given deadline dj ;
Lmax := max

j
Lj denotes the maximal lateness.

Many other criterions (flow time Fj = Cj − rj , tardiness
Tj = max(0,Cj − dj) of job j , unit penalty for tardy jobs
Uj = 1Cj>dj , ...)

G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems
A 3-fields notation was introduced by Graham to classify
scheduling problems
Each problem is represented by a triple α|β|γ, where

α describes the machine environment
β describes special job characteristics
γ describes the objective function to minimize

Objective criterion to minimize γ: A function of the following
parameters of the jobs:

Cj : completion time of job j ; Cmax := max
j

Cj denotes the latest
completion time and is called the makespan.
Lj = Cj − dj : lateness of job j for a given deadline dj ;
Lmax := max

j
Lj denotes the maximal lateness.

Many other criterions (flow time Fj = Cj − rj , tardiness
Tj = max(0,Cj − dj) of job j , unit penalty for tardy jobs
Uj = 1Cj>dj , ...)
G. Sagnol 2- Local Search & Greedy Algorithms 4 / 36

Classification of Scheduling Problems

Example 2.1
1|rj |Cmax: minimize the makespan on a single machine; jobs
have release dates.
Ex. input: n = 4, p = (1, 3, 2, 2), r = (0, 5, 4, 1).

P ||
∑

wjCj : minimize the weighted sum of completion times
on parallel identical machines.
Ex. input: n = 5, m = 2, p = (1, 2, 2, 4, 8), w = (10, 1, 1, 1, 1).

P3|prec, dj = d |
∑

wjLj : minimize the total weighted lateness
on 3 parallel identical machines. Jobs must respect
precedences and have a common deadline dj = d .
Ex. input: n = 6, p = (1, 2, 1, 5, 4, 3), d = 2, {1 ≺ 2 ≺ 4, 1 ≺ 3}.

G. Sagnol 2- Local Search & Greedy Algorithms 5 / 36

Classification of Scheduling Problems

Example 2.1
1|rj |Cmax: minimize the makespan on a single machine; jobs
have release dates.
Ex. input: n = 4, p = (1, 3, 2, 2), r = (0, 5, 4, 1).

P ||
∑

wjCj : minimize the weighted sum of completion times
on parallel identical machines.
Ex. input: n = 5, m = 2, p = (1, 2, 2, 4, 8), w = (10, 1, 1, 1, 1).

P3|prec, dj = d |
∑

wjLj : minimize the total weighted lateness
on 3 parallel identical machines. Jobs must respect
precedences and have a common deadline dj = d .
Ex. input: n = 6, p = (1, 2, 1, 5, 4, 3), d = 2, {1 ≺ 2 ≺ 4, 1 ≺ 3}.

G. Sagnol 2- Local Search & Greedy Algorithms 5 / 36

Classification of Scheduling Problems

Example 2.1
1|rj |Cmax: minimize the makespan on a single machine; jobs
have release dates.
Ex. input: n = 4, p = (1, 3, 2, 2), r = (0, 5, 4, 1).

P ||
∑

wjCj : minimize the weighted sum of completion times
on parallel identical machines.
Ex. input: n = 5, m = 2, p = (1, 2, 2, 4, 8), w = (10, 1, 1, 1, 1).

P3|prec, dj = d |
∑

wjLj : minimize the total weighted lateness
on 3 parallel identical machines. Jobs must respect
precedences and have a common deadline dj = d .
Ex. input: n = 6, p = (1, 2, 1, 5, 4, 3), d = 2, {1 ≺ 2 ≺ 4, 1 ≺ 3}.

G. Sagnol 2- Local Search & Greedy Algorithms 5 / 36

Outline

1 Introduction to Scheduling Problems

2 Scheduling Jobs with Due Dates on a Single Machine

3 The k-Center Problem

4 Scheduling Jobs on Identical Parallel Machines

5 The Traveling Salesperson Problem (TSP)

6 Greedy Maximization of Submodular Functions

7 Minimum Edge Coloring

G. Sagnol 2- Local Search & Greedy Algorithms 6 / 36

Scheduling Jobs with Due Dates on a Single Machine

Given: n jobs j = 1, . . . , n with processing time pj ≥ 0, release date
rj ≥ 0 and due dates dj , j = 1, . . . , n.

Task: Schedule each job nonpreemptively for pj units of time,
starting no earlier than time rj , such that no two jobs overlap.
Objective: Minimize the maximum lateness Lmax := max

j=1,...,n
Lj with

Lj := Cj − dj where Cj denotes the completion time of job j ,
j = 1, . . . , n.

In other words, we consider the problem

1|rj |Lmax.

G. Sagnol 2- Local Search & Greedy Algorithms 7 / 36

Scheduling Jobs with Due Dates on a Single Machine

Given: n jobs j = 1, . . . , n with processing time pj ≥ 0, release date
rj ≥ 0 and due dates dj , j = 1, . . . , n.
Task: Schedule each job nonpreemptively for pj units of time,
starting no earlier than time rj , such that no two jobs overlap.

Objective: Minimize the maximum lateness Lmax := max
j=1,...,n

Lj with
Lj := Cj − dj where Cj denotes the completion time of job j ,
j = 1, . . . , n.

In other words, we consider the problem

1|rj |Lmax.

G. Sagnol 2- Local Search & Greedy Algorithms 7 / 36

Scheduling Jobs with Due Dates on a Single Machine

Given: n jobs j = 1, . . . , n with processing time pj ≥ 0, release date
rj ≥ 0 and due dates dj , j = 1, . . . , n.
Task: Schedule each job nonpreemptively for pj units of time,
starting no earlier than time rj , such that no two jobs overlap.
Objective: Minimize the maximum lateness Lmax := max

j=1,...,n
Lj with

Lj := Cj − dj where Cj denotes the completion time of job j ,
j = 1, . . . , n.

In other words, we consider the problem

1|rj |Lmax.

G. Sagnol 2- Local Search & Greedy Algorithms 7 / 36

Scheduling Jobs with Due Dates on a Single Machine

Given: n jobs j = 1, . . . , n with processing time pj ≥ 0, release date
rj ≥ 0 and due dates dj , j = 1, . . . , n.
Task: Schedule each job nonpreemptively for pj units of time,
starting no earlier than time rj , such that no two jobs overlap.
Objective: Minimize the maximum lateness Lmax := max

j=1,...,n
Lj with

Lj := Cj − dj where Cj denotes the completion time of job j ,
j = 1, . . . , n.

In other words, we consider the problem

1|rj |Lmax.

G. Sagnol 2- Local Search & Greedy Algorithms 7 / 36

Scheduling Jobs with Due Dates on a Single Machine

Minimize the maximum lateness on one machine with release
dates: 1|rj |Lmax.

Theorem 2.2
Deciding whether L∗max ≤ 0 is strongly NP-complete.

Proof: Polynomial transformation of the 3-Partition Problem.

Corollary 2.3
There is no α-approximation algorithm for the scheduling problem
for any α, unless P = NP .

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 8 / 36

Scheduling Jobs with Due Dates on a Single Machine

Minimize the maximum lateness on one machine with release
dates: 1|rj |Lmax.

Theorem 2.2
Deciding whether L∗max ≤ 0 is strongly NP-complete.

Proof: Polynomial transformation of the 3-Partition Problem.

Corollary 2.3
There is no α-approximation algorithm for the scheduling problem
for any α, unless P = NP .

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 8 / 36

Scheduling Jobs with Due Dates on a Single Machine

Minimize the maximum lateness on one machine with release
dates: 1|rj |Lmax.

Theorem 2.2
Deciding whether L∗max ≤ 0 is strongly NP-complete.

Proof: Polynomial transformation of the 3-Partition Problem.

Corollary 2.3
There is no α-approximation algorithm for the scheduling problem
for any α, unless P = NP .

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 8 / 36

Scheduling Jobs with Due Dates on a Single Machine

Minimize the maximum lateness on one machine with release
dates: 1|rj |Lmax.

Theorem 2.2
Deciding whether L∗max ≤ 0 is strongly NP-complete.

Proof: Polynomial transformation of the 3-Partition Problem.

Corollary 2.3
There is no α-approximation algorithm for the scheduling problem
for any α, unless P = NP .

Proof: . . .
G. Sagnol 2- Local Search & Greedy Algorithms 8 / 36

Greedy 2-Approximation Algorithm for Negative Due Dates

For a subset of jobs S ⊆ {1, . . . , n} let:

r(S) := min
j∈S

rj p(S) :=
∑
j∈S

pj d(S) := max
j∈S

dj

Lemma 2.4
Let L∗max denote the optimal value. For each subset S of jobs

L∗max ≥ r(S) + p(S)− d(S) .

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 9 / 36

Greedy 2-Approximation Algorithm for Negative Due Dates

For a subset of jobs S ⊆ {1, . . . , n} let:

r(S) := min
j∈S

rj p(S) :=
∑
j∈S

pj d(S) := max
j∈S

dj

Lemma 2.4
Let L∗max denote the optimal value. For each subset S of jobs

L∗max ≥ r(S) + p(S)− d(S) .

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 9 / 36

Greedy 2-Approximation Algorithm for Negative Due Dates

Algorithm EDD (earliest due date): Whenever the machine is idle,
start to process among all available jobs the one with the earliest
due date.

We will see that EDD in an approximation algorithm whenever the
due dates are non-positive , i.e., for 1|rj , dj ≤ 0|Lmax.

Theorem 2.5
For the case of non-positive due dates dj ≤ 0 for all jobs j ,
Algorithm EDD is a 2-approximation algorithm.

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 10 / 36

Greedy 2-Approximation Algorithm for Negative Due Dates

Algorithm EDD (earliest due date): Whenever the machine is idle,
start to process among all available jobs the one with the earliest
due date.
We will see that EDD in an approximation algorithm whenever the
due dates are non-positive , i.e., for 1|rj , dj ≤ 0|Lmax.

Theorem 2.5
For the case of non-positive due dates dj ≤ 0 for all jobs j ,
Algorithm EDD is a 2-approximation algorithm.

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 10 / 36

Greedy 2-Approximation Algorithm for Negative Due Dates

Algorithm EDD (earliest due date): Whenever the machine is idle,
start to process among all available jobs the one with the earliest
due date.
We will see that EDD in an approximation algorithm whenever the
due dates are non-positive , i.e., for 1|rj , dj ≤ 0|Lmax.

Theorem 2.5
For the case of non-positive due dates dj ≤ 0 for all jobs j ,
Algorithm EDD is a 2-approximation algorithm.

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 10 / 36

Greedy 2-Approximation Algorithm for Negative Due Dates

Algorithm EDD (earliest due date): Whenever the machine is idle,
start to process among all available jobs the one with the earliest
due date.
We will see that EDD in an approximation algorithm whenever the
due dates are non-positive , i.e., for 1|rj , dj ≤ 0|Lmax.

Theorem 2.5
For the case of non-positive due dates dj ≤ 0 for all jobs j ,
Algorithm EDD is a 2-approximation algorithm.

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 10 / 36

Outline

1 Introduction to Scheduling Problems

2 Scheduling Jobs with Due Dates on a Single Machine

3 The k-Center Problem

4 Scheduling Jobs on Identical Parallel Machines

5 The Traveling Salesperson Problem (TSP)

6 Greedy Maximization of Submodular Functions

7 Minimum Edge Coloring

G. Sagnol 2- Local Search & Greedy Algorithms 11 / 36

The k-Center Problem

Given: A finite metric space V with distances dij for i , j ∈ V and
k ∈ N.
Task: Find k centers in V , i.e., S ⊆ V with |S | = k .
Objective: Minimize max

i∈V
d(i , S) where d(i , S) := min

j∈S
dij .

Greedy Algorithm:
1 pick arbitrary i ∈ V and set S := {i};
2 while |S | < k let j := arg max

`∈V
d(`, S) and set S := S ∪ {j};

Theorem 2.6
The algorithm is a 2-approximation algorithm for the k-Center
Problem.

G. Sagnol 2- Local Search & Greedy Algorithms 12 / 36

The k-Center Problem

Given: A finite metric space V with distances dij for i , j ∈ V and
k ∈ N.
Task: Find k centers in V , i.e., S ⊆ V with |S | = k .
Objective: Minimize max

i∈V
d(i , S) where d(i , S) := min

j∈S
dij .

Greedy Algorithm:
1 pick arbitrary i ∈ V and set S := {i};
2 while |S | < k let j := arg max

`∈V
d(`, S) and set S := S ∪ {j};

Theorem 2.6
The algorithm is a 2-approximation algorithm for the k-Center
Problem.

G. Sagnol 2- Local Search & Greedy Algorithms 12 / 36

The k-Center Problem

Given: A finite metric space V with distances dij for i , j ∈ V and
k ∈ N.
Task: Find k centers in V , i.e., S ⊆ V with |S | = k .
Objective: Minimize max

i∈V
d(i , S) where d(i , S) := min

j∈S
dij .

Greedy Algorithm:
1 pick arbitrary i ∈ V and set S := {i};
2 while |S | < k let j := arg max

`∈V
d(`, S) and set S := S ∪ {j};

Theorem 2.6
The algorithm is a 2-approximation algorithm for the k-Center
Problem.

G. Sagnol 2- Local Search & Greedy Algorithms 12 / 36

The k-Center Problem: hardness of approximation

Theorem 2.7
There is no α-approximation algorithm for the k-center problem
for α < 2, unless P = NP .

Proof: Reduction from Dominating Set Problem. . .

G. Sagnol 2- Local Search & Greedy Algorithms 13 / 36

The k-Center Problem: hardness of approximation

Theorem 2.7
There is no α-approximation algorithm for the k-center problem
for α < 2, unless P = NP .

Proof: Reduction from Dominating Set Problem. . .

G. Sagnol 2- Local Search & Greedy Algorithms 13 / 36

Outline

1 Introduction to Scheduling Problems

2 Scheduling Jobs with Due Dates on a Single Machine

3 The k-Center Problem

4 Scheduling Jobs on Identical Parallel Machines

5 The Traveling Salesperson Problem (TSP)

6 Greedy Maximization of Submodular Functions

7 Minimum Edge Coloring

G. Sagnol 2- Local Search & Greedy Algorithms 14 / 36

Scheduling Jobs on Identical Parallel Machines
Given: n jobs j = 1, . . . , n with processing time pj ≥ 0, j = 1, . . . , n,
and m identical parallel machines.
Task: Process each job j nonpreemptively for pj units of time on
one of the m machines. A machine can process at most one job at
a time.
Objective: Minimize the maximum machine load, i.e., the
maximum completion time Cmax := max

j=1,...,n
Cj (makespan).

In other words, we consider P ||Cmax.

0 time

G. Sagnol 2- Local Search & Greedy Algorithms 15 / 36

Scheduling Jobs on Identical Parallel Machines
Given: n jobs j = 1, . . . , n with processing time pj ≥ 0, j = 1, . . . , n,
and m identical parallel machines.
Task: Process each job j nonpreemptively for pj units of time on
one of the m machines. A machine can process at most one job at
a time.
Objective: Minimize the maximum machine load, i.e., the
maximum completion time Cmax := max

j=1,...,n
Cj (makespan).

In other words, we consider P ||Cmax.

0 time

G. Sagnol 2- Local Search & Greedy Algorithms 15 / 36

Scheduling Jobs on Identical Parallel Machines
Given: n jobs j = 1, . . . , n with processing time pj ≥ 0, j = 1, . . . , n,
and m identical parallel machines.
Task: Process each job j nonpreemptively for pj units of time on
one of the m machines. A machine can process at most one job at
a time.
Objective: Minimize the maximum machine load, i.e., the
maximum completion time Cmax := max

j=1,...,n
Cj (makespan).

In other words, we consider P ||Cmax.

0 time

G. Sagnol 2- Local Search & Greedy Algorithms 15 / 36

Scheduling Jobs on Indentical Parallel Machines

Theorem 2.8
This scheduling problem is strongly NP-hard.

Proof: Reduction from 3-Partition. . .

G. Sagnol 2- Local Search & Greedy Algorithms 16 / 36

Scheduling Jobs on Indentical Parallel Machines

Theorem 2.8
This scheduling problem is strongly NP-hard.

Proof: Reduction from 3-Partition. . .

G. Sagnol 2- Local Search & Greedy Algorithms 16 / 36

Local Search
Local Search Algorithm

1 start with an arbitrary schedule;
2 let j := arg max

j=1,...,n
Cj ;

3 if there is a machine i with load
< Cj − pj , reassign j to i and goto 2;

0 time

Theorem 2.9
When the algorithm terminates, the makespan of the final solution
is at most 2− 1

m
times the optimum makespan.

Lemma 2.10
If the Local Search Algorithm always moves job j to a currently
least loaded machine, it terminates after at most n iterations.

G. Sagnol 2- Local Search & Greedy Algorithms 17 / 36

Local Search
Local Search Algorithm

1 start with an arbitrary schedule;
2 let j := arg max

j=1,...,n
Cj ;

3 if there is a machine i with load
< Cj − pj , reassign j to i and goto 2; 0 time

Theorem 2.9
When the algorithm terminates, the makespan of the final solution
is at most 2− 1

m
times the optimum makespan.

Lemma 2.10
If the Local Search Algorithm always moves job j to a currently
least loaded machine, it terminates after at most n iterations.

G. Sagnol 2- Local Search & Greedy Algorithms 17 / 36

Local Search
Local Search Algorithm

1 start with an arbitrary schedule;
2 let j := arg max

j=1,...,n
Cj ;

3 if there is a machine i with load
< Cj − pj , reassign j to i and goto 2; 0 time

Theorem 2.9
When the algorithm terminates, the makespan of the final solution
is at most 2− 1

m
times the optimum makespan.

Lemma 2.10
If the Local Search Algorithm always moves job j to a currently
least loaded machine, it terminates after at most n iterations.

G. Sagnol 2- Local Search & Greedy Algorithms 17 / 36

Local Search
Local Search Algorithm

1 start with an arbitrary schedule;
2 let j := arg max

j=1,...,n
Cj ;

3 if there is a machine i with load
< Cj − pj , reassign j to i and goto 2; 0 time

Theorem 2.9
When the algorithm terminates, the makespan of the final solution
is at most 2− 1

m
times the optimum makespan.

Lemma 2.10
If the Local Search Algorithm always moves job j to a currently
least loaded machine, it terminates after at most n iterations.

G. Sagnol 2- Local Search & Greedy Algorithms 17 / 36

Local Search
Local Search Algorithm

1 start with an arbitrary schedule;
2 let j := arg max

j=1,...,n
Cj ;

3 if there is a machine i with load
< Cj − pj , reassign j to i and goto 2; 0 time

Theorem 2.9
When the algorithm terminates, the makespan of the final solution
is at most 2− 1

m
times the optimum makespan.

Lemma 2.10
If the Local Search Algorithm always moves job j to a currently
least loaded machine, it terminates after at most n iterations.

G. Sagnol 2- Local Search & Greedy Algorithms 17 / 36

Local Search
Local Search Algorithm

1 start with an arbitrary schedule;
2 let j := arg max

j=1,...,n
Cj ;

3 if there is a machine i with load
< Cj − pj , reassign j to i and goto 2; 0 time

Theorem 2.9
When the algorithm terminates, the makespan of the final solution
is at most 2− 1

m
times the optimum makespan.

Lemma 2.10
If the Local Search Algorithm always moves job j to a currently
least loaded machine, it terminates after at most n iterations.

G. Sagnol 2- Local Search & Greedy Algorithms 17 / 36

List Scheduling

List Scheduling Algorithm
1 start with the empty schedule and consider the jobs in
arbitrary order;

2 always assign the next job to the currently least loaded
machine;

Theorem 2.11
The List Scheduling Algorithm is a

(
2− 1

m

)
-approximation

algorithm.

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 18 / 36

List Scheduling

List Scheduling Algorithm
1 start with the empty schedule and consider the jobs in
arbitrary order;

2 always assign the next job to the currently least loaded
machine;

Theorem 2.11
The List Scheduling Algorithm is a

(
2− 1

m

)
-approximation

algorithm.

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 18 / 36

List Scheduling

List Scheduling Algorithm
1 start with the empty schedule and consider the jobs in
arbitrary order;

2 always assign the next job to the currently least loaded
machine;

Theorem 2.11
The List Scheduling Algorithm is a

(
2− 1

m

)
-approximation

algorithm.

Proof: . . .

G. Sagnol 2- Local Search & Greedy Algorithms 18 / 36

LPT rule

The variant of list scheduling where jobs are considered in
non-increasing order is called the longest processing time (LPT)
rule.

Theorem 2.12
The LPT rule is a

(4
3
− 1

3m

)
-approximation algorithm.

Proof: . . .

Later: There is a PTAS for this scheduling problem!

G. Sagnol 2- Local Search & Greedy Algorithms 19 / 36

LPT rule

The variant of list scheduling where jobs are considered in
non-increasing order is called the longest processing time (LPT)
rule.

Theorem 2.12
The LPT rule is a

(4
3
− 1

3m

)
-approximation algorithm.

Proof: . . .

Later: There is a PTAS for this scheduling problem!

G. Sagnol 2- Local Search & Greedy Algorithms 19 / 36

LPT rule

The variant of list scheduling where jobs are considered in
non-increasing order is called the longest processing time (LPT)
rule.

Theorem 2.12
The LPT rule is a

(4
3
− 1

3m

)
-approximation algorithm.

Proof: . . .

Later: There is a PTAS for this scheduling problem!

G. Sagnol 2- Local Search & Greedy Algorithms 19 / 36

LPT rule

The variant of list scheduling where jobs are considered in
non-increasing order is called the longest processing time (LPT)
rule.

Theorem 2.12
The LPT rule is a

(4
3
− 1

3m

)
-approximation algorithm.

Proof: . . .

Later: There is a PTAS for this scheduling problem!

G. Sagnol 2- Local Search & Greedy Algorithms 19 / 36

Outline

1 Introduction to Scheduling Problems

2 Scheduling Jobs with Due Dates on a Single Machine

3 The k-Center Problem

4 Scheduling Jobs on Identical Parallel Machines

5 The Traveling Salesperson Problem (TSP)

6 Greedy Maximization of Submodular Functions

7 Minimum Edge Coloring

G. Sagnol 2- Local Search & Greedy Algorithms 20 / 36

Traveling Salesperson Problem (TSP)
Given: Finite set of n points V = {1, . . . , n} with (symmetric)
distances dij ≥ 0 for i , j ∈ V .

Task: Find a closed tour that visits every point in V exactly once
(i.e., a permutation π of V).

Objective: Minimize total length of tour: dπ(n)π(1) +
n−1∑
i=1

dπ(i)π(i+1)

Theorem 2.13
There is no α-approximation algorithm for the TSP for any α
(e. g., α = 2

n), unless P = NP .

Proof: Reduction from Hamiltonian Circuit. . .

In the following we thus consider the metric TSP where distances
between cities fulfill the triangle inequalities.

G. Sagnol 2- Local Search & Greedy Algorithms 21 / 36

Traveling Salesperson Problem (TSP)
Given: Finite set of n points V = {1, . . . , n} with (symmetric)
distances dij ≥ 0 for i , j ∈ V .
Task: Find a closed tour that visits every point in V exactly once
(i.e., a permutation π of V).

Objective: Minimize total length of tour: dπ(n)π(1) +
n−1∑
i=1

dπ(i)π(i+1)

Theorem 2.13
There is no α-approximation algorithm for the TSP for any α
(e. g., α = 2

n), unless P = NP .

Proof: Reduction from Hamiltonian Circuit. . .

In the following we thus consider the metric TSP where distances
between cities fulfill the triangle inequalities.

G. Sagnol 2- Local Search & Greedy Algorithms 21 / 36

Traveling Salesperson Problem (TSP)
Given: Finite set of n points V = {1, . . . , n} with (symmetric)
distances dij ≥ 0 for i , j ∈ V .
Task: Find a closed tour that visits every point in V exactly once
(i.e., a permutation π of V).

Objective: Minimize total length of tour: dπ(n)π(1) +
n−1∑
i=1

dπ(i)π(i+1)

Theorem 2.13
There is no α-approximation algorithm for the TSP for any α
(e. g., α = 2

n), unless P = NP .

Proof: Reduction from Hamiltonian Circuit. . .

In the following we thus consider the metric TSP where distances
between cities fulfill the triangle inequalities.

G. Sagnol 2- Local Search & Greedy Algorithms 21 / 36

Traveling Salesperson Problem (TSP)
Given: Finite set of n points V = {1, . . . , n} with (symmetric)
distances dij ≥ 0 for i , j ∈ V .
Task: Find a closed tour that visits every point in V exactly once
(i.e., a permutation π of V).

Objective: Minimize total length of tour: dπ(n)π(1) +
n−1∑
i=1

dπ(i)π(i+1)

Theorem 2.13
There is no α-approximation algorithm for the TSP for any α
(e. g., α = 2

n), unless P = NP .

Proof: Reduction from Hamiltonian Circuit. . .

In the following we thus consider the metric TSP where distances
between cities fulfill the triangle inequalities.

G. Sagnol 2- Local Search & Greedy Algorithms 21 / 36

Traveling Salesperson Problem (TSP)
Given: Finite set of n points V = {1, . . . , n} with (symmetric)
distances dij ≥ 0 for i , j ∈ V .
Task: Find a closed tour that visits every point in V exactly once
(i.e., a permutation π of V).

Objective: Minimize total length of tour: dπ(n)π(1) +
n−1∑
i=1

dπ(i)π(i+1)

Theorem 2.13
There is no α-approximation algorithm for the TSP for any α
(e. g., α = 2

n), unless P = NP .

Proof: Reduction from Hamiltonian Circuit. . .

In the following we thus consider the metric TSP where distances
between cities fulfill the triangle inequalities.

G. Sagnol 2- Local Search & Greedy Algorithms 21 / 36

Traveling Salesperson Problem (TSP)
Given: Finite set of n points V = {1, . . . , n} with (symmetric)
distances dij ≥ 0 for i , j ∈ V .
Task: Find a closed tour that visits every point in V exactly once
(i.e., a permutation π of V).

Objective: Minimize total length of tour: dπ(n)π(1) +
n−1∑
i=1

dπ(i)π(i+1)

Theorem 2.13
There is no α-approximation algorithm for the TSP for any α
(e. g., α = 2

n), unless P = NP .

Proof: Reduction from Hamiltonian Circuit. . .

In the following we thus consider the metric TSP where distances
between cities fulfill the triangle inequalities.

G. Sagnol 2- Local Search & Greedy Algorithms 21 / 36

Lower Bounds for TSP

Lemma 2.14
The cost of a minimum spanning tree of the complete graph with
nodes V and edge costs dij is a lower bound on the length of a
shortest TSP tour.

Proof:. . .

Lemma 2.15
Let S ⊆ V with |S | even and consider the complete graph on
nodes S and edge costs dij . Twice the cost of a min-cost perfect
matching of S is a lower bound on the length of a shortest TSP
tour of V .

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 22 / 36

Lower Bounds for TSP

Lemma 2.14
The cost of a minimum spanning tree of the complete graph with
nodes V and edge costs dij is a lower bound on the length of a
shortest TSP tour.

Proof:. . .

Lemma 2.15
Let S ⊆ V with |S | even and consider the complete graph on
nodes S and edge costs dij . Twice the cost of a min-cost perfect
matching of S is a lower bound on the length of a shortest TSP
tour of V .

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 22 / 36

Lower Bounds for TSP

Lemma 2.14
The cost of a minimum spanning tree of the complete graph with
nodes V and edge costs dij is a lower bound on the length of a
shortest TSP tour.

Proof:. . .

Lemma 2.15
Let S ⊆ V with |S | even and consider the complete graph on
nodes S and edge costs dij . Twice the cost of a min-cost perfect
matching of S is a lower bound on the length of a shortest TSP
tour of V .

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 22 / 36

Lower Bounds for TSP

Lemma 2.14
The cost of a minimum spanning tree of the complete graph with
nodes V and edge costs dij is a lower bound on the length of a
shortest TSP tour.

Proof:. . .

Lemma 2.15
Let S ⊆ V with |S | even and consider the complete graph on
nodes S and edge costs dij . Twice the cost of a min-cost perfect
matching of S is a lower bound on the length of a shortest TSP
tour of V .

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 22 / 36

Lower Bounds for TSP

Lemma 2.14
The cost of a minimum spanning tree of the complete graph with
nodes V and edge costs dij is a lower bound on the length of a
shortest TSP tour.

Proof:. . .

Lemma 2.15
Let S ⊆ V with |S | even and consider the complete graph on
nodes S and edge costs dij . Twice the cost of a min-cost perfect
matching of S is a lower bound on the length of a shortest TSP
tour of V .

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 22 / 36

Lower Bounds for TSP

Lemma 2.14
The cost of a minimum spanning tree of the complete graph with
nodes V and edge costs dij is a lower bound on the length of a
shortest TSP tour.

Proof:. . .

Lemma 2.15
Let S ⊆ V with |S | even and consider the complete graph on
nodes S and edge costs dij . Twice the cost of a min-cost perfect
matching of S is a lower bound on the length of a shortest TSP
tour of V .

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 22 / 36

Lower Bounds for TSP

Lemma 2.14
The cost of a minimum spanning tree of the complete graph with
nodes V and edge costs dij is a lower bound on the length of a
shortest TSP tour.

Proof:. . .

Lemma 2.15
Let S ⊆ V with |S | even and consider the complete graph on
nodes S and edge costs dij . Twice the cost of a min-cost perfect
matching of S is a lower bound on the length of a shortest TSP
tour of V .

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 22 / 36

Lower Bounds for TSP

Lemma 2.14
The cost of a minimum spanning tree of the complete graph with
nodes V and edge costs dij is a lower bound on the length of a
shortest TSP tour.

Proof:. . .

Lemma 2.15
Let S ⊆ V with |S | even and consider the complete graph on
nodes S and edge costs dij . Twice the cost of a min-cost perfect
matching of S is a lower bound on the length of a shortest TSP
tour of V .

Proof:. . .
G. Sagnol 2- Local Search & Greedy Algorithms 22 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;

2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;

3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;

4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

Double-Tree Algorithm for TSP

1 compute a minimum spanning tree T on V ;
2 take two copies of each edge in T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Theorem 2.16
The Double-Tree Algorithm is a 2-approximation algorithm for the
TSP.

G. Sagnol 2- Local Search & Greedy Algorithms 23 / 36

TSP: Nearest Insertion Algorithm

Nearest Insertion Algorithm
1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm
Nearest Insertion Algorithm

1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm
Nearest Insertion Algorithm

1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm
Nearest Insertion Algorithm

1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm
Nearest Insertion Algorithm

1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm
Nearest Insertion Algorithm

1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm
Nearest Insertion Algorithm

1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm
Nearest Insertion Algorithm

1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm
Nearest Insertion Algorithm

1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm

Nearest Insertion Algorithm
1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

Theorem 2.17
The Nearest Insertion Algorithm is a 2-approximation algorithm for
the metric TSP.

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

TSP: Nearest Insertion Algorithm
Nearest Insertion Algorithm

1 start with tour through two cities S := {i , j} of minimum
distance dij ;

2 for each uninserted city k , compute the minimum distance
d(k , S) between k and a city in the current tour;

3 let ` := arg min
k 6∈S

d(k , S); add ` to the tour after its nearest city;

4 set S := S ∪ {`}; if S 6= V , then goto 2;

Theorem 2.17
The Nearest Insertion Algorithm is a 2-approximation algorithm for
the metric TSP.
Notice: The Nearest Insertion Algorithm is closely related to Prim’s
Algorithm and the Double-Tree Algorithm.

G. Sagnol 2- Local Search & Greedy Algorithms 24 / 36

Christofides’ Algorithm

1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm

1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;

3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm

1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;

4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm

1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm

1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm
1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .
G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm
1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .
G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm
1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .
G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm
1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .
G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm
1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .
G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm
1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Proof:. . .
G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Christofides’ Algorithm

1 compute a minimum spanning tree T on V ; let S be the
subset of nodes with odd degree in T ;

2 compute a min-cost perfect matching on S and add it to T ;
3 compute a Eulerian tour on the resulting graph;
4 reduce the Eulerian tour to a TSP tour by shortcutting;

Theorem 2.18
Christofides’ Algorithm is a 3

2
-approximation algorithm for the TSP.

Proof:. . .

G. Sagnol 2- Local Search & Greedy Algorithms 25 / 36

Approximability of Metric TSP

Theorem 2.19 (Papadimitriou & Vempala 2006)
There is no α-approximation algorithm for the metric TSP for
α < 220/219, unless P = NP .

Theorem 2.20 (Karlin, Klein, Gharan 2020)
A (3/2− ε)-approximation algorithm for some ε > 10

−36.

Remark: There is a PTAS for the Euclidean TSP (special case).

G. Sagnol 2- Local Search & Greedy Algorithms 26 / 36

Approximability of Metric TSP

Theorem 2.19 (Papadimitriou & Vempala 2006)
There is no α-approximation algorithm for the metric TSP for
α < 220/219, unless P = NP .

Theorem 2.20 (Karlin, Klein, Gharan 2020)
A (3/2− ε)-approximation algorithm for some ε > 10

−36.

Remark: There is a PTAS for the Euclidean TSP (special case).

G. Sagnol 2- Local Search & Greedy Algorithms 26 / 36

Approximability of Metric TSP

Theorem 2.19 (Papadimitriou & Vempala 2006)
There is no α-approximation algorithm for the metric TSP for
α < 220/219, unless P = NP .

Theorem 2.20 (Karlin, Klein, Gharan 2020)
A (3/2− ε)-approximation algorithm for some ε > 10

−36.

Remark: There is a PTAS for the Euclidean TSP (special case).

G. Sagnol 2- Local Search & Greedy Algorithms 26 / 36

Outline

1 Introduction to Scheduling Problems

2 Scheduling Jobs with Due Dates on a Single Machine

3 The k-Center Problem

4 Scheduling Jobs on Identical Parallel Machines

5 The Traveling Salesperson Problem (TSP)

6 Greedy Maximization of Submodular Functions

7 Minimum Edge Coloring

G. Sagnol 2- Local Search & Greedy Algorithms 27 / 36

Submodular Function

Given a finite ground set V , we consider set functions f : 2V → R, i.e. we
assign each S ⊆ V a value f (S) ∈ R.
We assume that f (S) can be evaluated in constant time, for each S ⊆ V .

Definition 2.21
A function f : 2V → R is submodular if for every A ⊆ B ⊆ V and
i ∈ V \ B it holds

f (A ∪ {i})− f (A) ≥ f (B ∪ {i})− f (B).

Equivalently, it can be seen that f is submodular iff

f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B), ∀A,B ⊆ V .

In words, f is submodular if it exhibits a diminishing returns property.

G. Sagnol 2- Local Search & Greedy Algorithms 28 / 36

Submodular Function

Given a finite ground set V , we consider set functions f : 2V → R, i.e. we
assign each S ⊆ V a value f (S) ∈ R.
We assume that f (S) can be evaluated in constant time, for each S ⊆ V .

Definition 2.21
A function f : 2V → R is submodular if for every A ⊆ B ⊆ V and
i ∈ V \ B it holds

f (A ∪ {i})− f (A) ≥ f (B ∪ {i})− f (B).

Equivalently, it can be seen that f is submodular iff

f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B), ∀A,B ⊆ V .

In words, f is submodular if it exhibits a diminishing returns property.

G. Sagnol 2- Local Search & Greedy Algorithms 28 / 36

Submodular Function Maximization

We consider the problem of maximizing a nonnegative monotone
submodular function, i.e., a submodular function f such that

0 ≤ f (A) ≤ f (B), ∀A ⊆ B ⊆ V ,

subject to a cardinality constraint:

max
S⊆V
{f (S) : |S | ≤ k}.

This problem generalizes many classical problems in discrete
mathematics !

G. Sagnol 2- Local Search & Greedy Algorithms 29 / 36

Submodular Function Maximization

We consider the problem of maximizing a nonnegative monotone
submodular function, i.e., a submodular function f such that

0 ≤ f (A) ≤ f (B), ∀A ⊆ B ⊆ V ,

subject to a cardinality constraint:

max
S⊆V
{f (S) : |S | ≤ k}.

This problem generalizes many classical problems in discrete
mathematics !

G. Sagnol 2- Local Search & Greedy Algorithms 29 / 36

Submodular Function Maximization

max
S⊆V
{f (S) : |S | ≤ k}, f nonnegative monotone submodular.

Special cases
Linear (aka modular) functions: f (S) =

∑
i∈S

wi for some wi ≥ 0

The rank function of a matroid

Weighted coverage functions

Facility location:
There is a collection of n potential locations to open facilities to
serve m customers. Opening a facility at location j provides service
of valueMi ,j ≥ 0 to customer i. If we open the subset of facilities
S ⊆ {1, . . . , n} and each customer selects the opened facility with
highest value, the total value provided to all customers is

f (S) =
∑
i∈[m]

max
j∈S

Mij

G. Sagnol 2- Local Search & Greedy Algorithms 30 / 36

Submodular Function Maximization

max
S⊆V
{f (S) : |S | ≤ k}, f nonnegative monotone submodular.

Special cases
Linear (aka modular) functions: f (S) =

∑
i∈S

wi for some wi ≥ 0

The rank function of a matroid
f (S) = max{|U| : U ⊆ S , U independent}.

Weighted coverage functions

Facility location:
There is a collection of n potential locations to open facilities to
serve m customers. Opening a facility at location j provides service
of valueMi ,j ≥ 0 to customer i. If we open the subset of facilities
S ⊆ {1, . . . , n} and each customer selects the opened facility with
highest value, the total value provided to all customers is

f (S) =
∑
i∈[m]

max
j∈S

Mij

G. Sagnol 2- Local Search & Greedy Algorithms 30 / 36

Submodular Function Maximization

max
S⊆V
{f (S) : |S | ≤ k}, f nonnegative monotone submodular.

Special cases
Linear (aka modular) functions: f (S) =

∑
i∈S

wi for some wi ≥ 0

The rank function of a matroid

Weighted coverage functions: Given a collection of subsets
A1, . . . ,An of a finite universe U and some weigths wu ≥ 0 (∀u ∈ U)
and a set S ⊆ {1, . . . , n}, f (S) is the weight of elements covered by
the union of the Ak ’s with k ∈ S : f (S) =

∑
u∈

⋃
k∈S Ak

wu

Facility location:
There is a collection of n potential locations to open facilities to
serve m customers. Opening a facility at location j provides service
of valueMi ,j ≥ 0 to customer i. If we open the subset of facilities
S ⊆ {1, . . . , n} and each customer selects the opened facility with
highest value, the total value provided to all customers is

f (S) =
∑
i∈[m]

max
j∈S

Mij

G. Sagnol 2- Local Search & Greedy Algorithms 30 / 36

Submodular Function Maximization

max
S⊆V
{f (S) : |S | ≤ k}, f nonnegative monotone submodular.

Special cases
Linear (aka modular) functions: f (S) =

∑
i∈S

wi for some wi ≥ 0

The rank function of a matroid

Weighted coverage functions: Given a collection of subsets
A1, . . . ,An of a finite universe U and some weigths wu ≥ 0 (∀u ∈ U)
and a set S ⊆ {1, . . . , n}, f (S) is the weight of elements covered by
the union of the Ak ’s with k ∈ S : f (S) =

∑
u∈

⋃
k∈S Ak

wu

Applications

Sensor location

Antenna selection

Facility location:
There is a collection of n potential locations to open facilities to
serve m customers. Opening a facility at location j provides service
of valueMi ,j ≥ 0 to customer i. If we open the subset of facilities
S ⊆ {1, . . . , n} and each customer selects the opened facility with
highest value, the total value provided to all customers is

f (S) =
∑
i∈[m]

max
j∈S

Mij

G. Sagnol 2- Local Search & Greedy Algorithms 30 / 36

Submodular Function Maximization

max
S⊆V
{f (S) : |S | ≤ k}, f nonnegative monotone submodular.

Special cases
Linear (aka modular) functions: f (S) =

∑
i∈S

wi for some wi ≥ 0

The rank function of a matroid

Weighted coverage functions

Facility location:
There is a collection of n potential locations to open facilities to
serve m customers. Opening a facility at location j provides service
of valueMi ,j ≥ 0 to customer i. If we open the subset of facilities
S ⊆ {1, . . . , n} and each customer selects the opened facility with
highest value, the total value provided to all customers is

f (S) =
∑
i∈[m]

max
j∈S

Mij

G. Sagnol 2- Local Search & Greedy Algorithms 30 / 36

Greedy Algorithm for Submodular Optimization

max
S⊆V
{f (S) : |S | ≤ k}, f nonnegative monotone submodular.

Greedy Algorithm
S0 ← ∅
For i = 1, . . . k :

ei ← argmax
e∈V

f (Si−1 ∪ {e})− f (Si−1)

Si ← Si−1 ∪ {ei}
return Sk

Theorem 2.22 (Nemhauser, Wolsey 1978)
The greedy algorithm is a (1− 1

e
)- approximation algorithm for the

problem of maximizing a nonnegative monotone submodular
function subject to a cardinality constraint.

Proof ...

G. Sagnol 2- Local Search & Greedy Algorithms 31 / 36

Greedy Algorithm for Submodular Optimization

max
S⊆V
{f (S) : |S | ≤ k}, f nonnegative monotone submodular.

Greedy Algorithm
S0 ← ∅
For i = 1, . . . k :

ei ← argmax
e∈V

f (Si−1 ∪ {e})− f (Si−1)

Si ← Si−1 ∪ {ei}
return Sk

Theorem 2.22 (Nemhauser, Wolsey 1978)
The greedy algorithm is a (1− 1

e
)- approximation algorithm for the

problem of maximizing a nonnegative monotone submodular
function subject to a cardinality constraint.

Proof ...

G. Sagnol 2- Local Search & Greedy Algorithms 31 / 36

Greedy Algorithm for Submodular Optimization

max
S⊆V
{f (S) : |S | ≤ k}, f nonnegative monotone submodular.

Greedy Algorithm
S0 ← ∅
For i = 1, . . . k :

ei ← argmax
e∈V

f (Si−1 ∪ {e})− f (Si−1)

Si ← Si−1 ∪ {ei}
return Sk

Theorem 2.22 (Nemhauser, Wolsey 1978)
The greedy algorithm is a (1− 1

e
)- approximation algorithm for the

problem of maximizing a nonnegative monotone submodular
function subject to a cardinality constraint.

Proof ... G. Sagnol 2- Local Search & Greedy Algorithms 31 / 36

Submodular function maximization: further results
Theorem 2.23 (Sviridenko 2004)

A modified greedy algorithm achieves an approximation ratio of (1− 1/e)
maximizing monotone submodular functions subject to a knapsack
constraint

∑
i∈S

wi ≤ B .

Theorem 2.24 (Fisher, Nemhauser, Wolsey 1978)

The greedy algorithm is a 1

2
−approximation algorithm for the problem of

maximizing a ≥ 0 monotone submodular function over a matroid.

Theorem 2.25 (Calinescu, Chekuri, Pál, Vondrák 2009)

A continuous greedy algorithm used with a technique called pipage
rounding finds a (1− 1/e)-approximate solution for the above problem.

Theorem 2.26 (Buchbinder, Feldman, Naor, Schwartz 2014)

A 1/e−approx. algo for maximizing non-monotone ≥ 0 submodular funct.

G. Sagnol 2- Local Search & Greedy Algorithms 32 / 36

Submodular function maximization: further results
Theorem 2.23 (Sviridenko 2004)

A modified greedy algorithm achieves an approximation ratio of (1− 1/e)
maximizing monotone submodular functions subject to a knapsack
constraint

∑
i∈S

wi ≤ B .

Theorem 2.24 (Fisher, Nemhauser, Wolsey 1978)

The greedy algorithm is a 1

2
−approximation algorithm for the problem of

maximizing a ≥ 0 monotone submodular function over a matroid.

Theorem 2.25 (Calinescu, Chekuri, Pál, Vondrák 2009)

A continuous greedy algorithm used with a technique called pipage
rounding finds a (1− 1/e)-approximate solution for the above problem.

Theorem 2.26 (Buchbinder, Feldman, Naor, Schwartz 2014)

A 1/e−approx. algo for maximizing non-monotone ≥ 0 submodular funct.

G. Sagnol 2- Local Search & Greedy Algorithms 32 / 36

Submodular function maximization: further results
Theorem 2.23 (Sviridenko 2004)

A modified greedy algorithm achieves an approximation ratio of (1− 1/e)
maximizing monotone submodular functions subject to a knapsack
constraint

∑
i∈S

wi ≤ B .

Theorem 2.24 (Fisher, Nemhauser, Wolsey 1978)

The greedy algorithm is a 1

2
−approximation algorithm for the problem of

maximizing a ≥ 0 monotone submodular function over a matroid.

Theorem 2.25 (Calinescu, Chekuri, Pál, Vondrák 2009)

A continuous greedy algorithm used with a technique called pipage
rounding finds a (1− 1/e)-approximate solution for the above problem.

Theorem 2.26 (Buchbinder, Feldman, Naor, Schwartz 2014)

A 1/e−approx. algo for maximizing non-monotone ≥ 0 submodular funct.

G. Sagnol 2- Local Search & Greedy Algorithms 32 / 36

Submodular function maximization: further results
Theorem 2.23 (Sviridenko 2004)

A modified greedy algorithm achieves an approximation ratio of (1− 1/e)
maximizing monotone submodular functions subject to a knapsack
constraint

∑
i∈S

wi ≤ B .

Theorem 2.24 (Fisher, Nemhauser, Wolsey 1978)

The greedy algorithm is a 1

2
−approximation algorithm for the problem of

maximizing a ≥ 0 monotone submodular function over a matroid.

Theorem 2.25 (Calinescu, Chekuri, Pál, Vondrák 2009)

A continuous greedy algorithm used with a technique called pipage
rounding finds a (1− 1/e)-approximate solution for the above problem.

Theorem 2.26 (Buchbinder, Feldman, Naor, Schwartz 2014)

A 1/e−approx. algo for maximizing non-monotone ≥ 0 submodular funct.
G. Sagnol 2- Local Search & Greedy Algorithms 32 / 36

Outline

1 Introduction to Scheduling Problems

2 Scheduling Jobs with Due Dates on a Single Machine

3 The k-Center Problem

4 Scheduling Jobs on Identical Parallel Machines

5 The Traveling Salesperson Problem (TSP)

6 Greedy Maximization of Submodular Functions

7 Minimum Edge Coloring

G. Sagnol 2- Local Search & Greedy Algorithms 33 / 36

Minimum Edge Coloring
Given: Graph G = (V ,E) without parallel edges
Task: Find a coloring c : E → {1, . . . ,C} such that no two incident
edges get the same color.
Objective: Use a minimum number of colors C = χ′(G).

Examples:

∆(G) = 3= χ′(G) Petersen-Graph: ∆(G) = 3< 4 = χ′(G)

G. Sagnol 2- Local Search & Greedy Algorithms 34 / 36

Minimum Edge Coloring
Given: Graph G = (V ,E) without parallel edges
Task: Find a coloring c : E → {1, . . . ,C} such that no two incident
edges get the same color.
Objective: Use a minimum number of colors C = χ′(G).

Examples:

∆(G) = 3

= χ′(G) Petersen-Graph: ∆(G) = 3< 4 = χ′(G)

G. Sagnol 2- Local Search & Greedy Algorithms 34 / 36

Minimum Edge Coloring
Given: Graph G = (V ,E) without parallel edges
Task: Find a coloring c : E → {1, . . . ,C} such that no two incident
edges get the same color.
Objective: Use a minimum number of colors C = χ′(G).

Examples:

∆(G) = 3= χ′(G)

Petersen-Graph: ∆(G) = 3< 4 = χ′(G)

G. Sagnol 2- Local Search & Greedy Algorithms 34 / 36

Minimum Edge Coloring
Given: Graph G = (V ,E) without parallel edges
Task: Find a coloring c : E → {1, . . . ,C} such that no two incident
edges get the same color.
Objective: Use a minimum number of colors C = χ′(G).

Examples:

∆(G) = 3= χ′(G) Petersen-Graph: ∆(G) = 3

< 4 = χ′(G)

G. Sagnol 2- Local Search & Greedy Algorithms 34 / 36

Minimum Edge Coloring
Given: Graph G = (V ,E) without parallel edges
Task: Find a coloring c : E → {1, . . . ,C} such that no two incident
edges get the same color.
Objective: Use a minimum number of colors C = χ′(G).

Examples:

∆(G) = 3= χ′(G) Petersen-Graph: ∆(G) = 3

< 4 = χ′(G)

G. Sagnol 2- Local Search & Greedy Algorithms 34 / 36

Minimum Edge Coloring
Given: Graph G = (V ,E) without parallel edges
Task: Find a coloring c : E → {1, . . . ,C} such that no two incident
edges get the same color.
Objective: Use a minimum number of colors C = χ′(G).

Examples:

∆(G) = 3= χ′(G) Petersen-Graph: ∆(G) = 3

< 4 = χ′(G)

G. Sagnol 2- Local Search & Greedy Algorithms 34 / 36

Minimum Edge Coloring
Given: Graph G = (V ,E) without parallel edges
Task: Find a coloring c : E → {1, . . . ,C} such that no two incident
edges get the same color.
Objective: Use a minimum number of colors C = χ′(G).

Examples:

∆(G) = 3= χ′(G) Petersen-Graph: ∆(G) = 3

< 4 = χ′(G)

G. Sagnol 2- Local Search & Greedy Algorithms 34 / 36

Minimum Edge Coloring
Given: Graph G = (V ,E) without parallel edges
Task: Find a coloring c : E → {1, . . . ,C} such that no two incident
edges get the same color.
Objective: Use a minimum number of colors C = χ′(G).

Examples:

∆(G) = 3= χ′(G) Petersen-Graph: ∆(G) = 3< 4 = χ′(G)
G. Sagnol 2- Local Search & Greedy Algorithms 34 / 36

Approximate Minimum Edge Colorings
Observation.
The maximum node degree ∆(G) is a lower bound on the required
number of colors, i.e.,

∆(G) ≤ χ′(G) .

Theorem 2.27
For graphs with ∆ = 3, it is NP-complete to decide whether the
graph is 3-edge-colorable or not.

Theorem 2.28 (Vizing 1964)
There is a polynomial-time algorithm (Vizing’s Algorithm) that finds
a (∆ + 1)-edge-coloring of a graph. In particular,

χ′(G) ∈ {∆(G),∆(G) + 1} .

G. Sagnol 2- Local Search & Greedy Algorithms 35 / 36

Approximate Minimum Edge Colorings
Observation.
The maximum node degree ∆(G) is a lower bound on the required
number of colors, i.e.,

∆(G) ≤ χ′(G) .

Theorem 2.27
For graphs with ∆ = 3, it is NP-complete to decide whether the
graph is 3-edge-colorable or not.

Theorem 2.28 (Vizing 1964)
There is a polynomial-time algorithm (Vizing’s Algorithm) that finds
a (∆ + 1)-edge-coloring of a graph. In particular,

χ′(G) ∈ {∆(G),∆(G) + 1} .

G. Sagnol 2- Local Search & Greedy Algorithms 35 / 36

Approximate Minimum Edge Colorings
Observation.
The maximum node degree ∆(G) is a lower bound on the required
number of colors, i.e.,

∆(G) ≤ χ′(G) .

Theorem 2.27
For graphs with ∆ = 3, it is NP-complete to decide whether the
graph is 3-edge-colorable or not.

Theorem 2.28 (Vizing 1964)
There is a polynomial-time algorithm (Vizing’s Algorithm) that finds
a (∆ + 1)-edge-coloring of a graph. In particular,

χ′(G) ∈ {∆(G),∆(G) + 1} .
G. Sagnol 2- Local Search & Greedy Algorithms 35 / 36

Outline of Vizing’s Algorithm

Input: Undirected graph G = (V ,E) without parallel edges.
Output: A (∆(G) + 1)-edge-coloring.
Main idea: Color one new edge in each iteration;

always maintain a feasible partial (∆ + 1)-edge-coloring.

Start with an uncolored graph.

In every iteration, pick a currently uncolored edge and color it.

In the process, some other edges might have to be re-colored.

Useful fact: For any node v ∈ V there is always a color c that is
currently not being used by its incident edges. We say that “v lacks
color c .”

G. Sagnol 2- Local Search & Greedy Algorithms 36 / 36

Outline of Vizing’s Algorithm

Input: Undirected graph G = (V ,E) without parallel edges.
Output: A (∆(G) + 1)-edge-coloring.
Main idea: Color one new edge in each iteration;

always maintain a feasible partial (∆ + 1)-edge-coloring.
Start with an uncolored graph.

In every iteration, pick a currently uncolored edge and color it.

In the process, some other edges might have to be re-colored.

Useful fact: For any node v ∈ V there is always a color c that is
currently not being used by its incident edges. We say that “v lacks
color c .”

G. Sagnol 2- Local Search & Greedy Algorithms 36 / 36

Outline of Vizing’s Algorithm

Input: Undirected graph G = (V ,E) without parallel edges.
Output: A (∆(G) + 1)-edge-coloring.
Main idea: Color one new edge in each iteration;

always maintain a feasible partial (∆ + 1)-edge-coloring.
Start with an uncolored graph.

In every iteration, pick a currently uncolored edge and color it.

In the process, some other edges might have to be re-colored.

Useful fact: For any node v ∈ V there is always a color c that is
currently not being used by its incident edges. We say that “v lacks
color c .”

G. Sagnol 2- Local Search & Greedy Algorithms 36 / 36

Outline of Vizing’s Algorithm

Input: Undirected graph G = (V ,E) without parallel edges.
Output: A (∆(G) + 1)-edge-coloring.
Main idea: Color one new edge in each iteration;

always maintain a feasible partial (∆ + 1)-edge-coloring.
Start with an uncolored graph.

In every iteration, pick a currently uncolored edge and color it.

In the process, some other edges might have to be re-colored.

Useful fact: For any node v ∈ V there is always a color c that is
currently not being used by its incident edges. We say that “v lacks
color c .”

G. Sagnol 2- Local Search & Greedy Algorithms 36 / 36

Outline of Vizing’s Algorithm

Input: Undirected graph G = (V ,E) without parallel edges.
Output: A (∆(G) + 1)-edge-coloring.
Main idea: Color one new edge in each iteration;

always maintain a feasible partial (∆ + 1)-edge-coloring.
Start with an uncolored graph.

In every iteration, pick a currently uncolored edge and color it.

In the process, some other edges might have to be re-colored.

Useful fact: For any node v ∈ V there is always a color c that is
currently not being used by its incident edges. We say that “v lacks
color c .”

G. Sagnol 2- Local Search & Greedy Algorithms 36 / 36

	Introduction to Scheduling Problems
	Scheduling Jobs with Due Dates on a Single Machine
	The k-Center Problem
	Scheduling Jobs on Identical Parallel Machines
	The Traveling Salesperson Problem (TSP)
	Greedy Maximization of Submodular Functions
	Minimum Edge Coloring

