Approximation Algorithms (ADM III) 3- Rounding Data and Dynamic Programming

Guillaume Sagnol

Outline

1 Knapsack Problem

2 Scheduling Jobs on Identical Parallel Machines

3 Bin Packing

G. Sagnol

Knapsack Problem

Given: *n* items $I = \{1, ..., n\}$, values $v_i \in \mathbb{Z}_{>0}$ and sizes $s_i \in \mathbb{Z}_{>0}$, $i \in I$; knapsack of size $B \in \mathbb{Z}_{>0}$ (assume w.l.o.g. $s_i \leq B$, for all $i \in I$)

Task: find subset of items $S \subseteq I$ with $\sum_{i \in S} s_i \leq B$ maximizing $\sum_{i \in S} v_i$.

Knapsack Problem

Given: *n* items $I = \{1, ..., n\}$, values $v_i \in \mathbb{Z}_{>0}$ and sizes $s_i \in \mathbb{Z}_{>0}$, $i \in I$; knapsack of size $B \in \mathbb{Z}_{>0}$ (assume w.l.o.g. $s_i \leq B$, for all $i \in I$)

Task: find subset of items $S \subseteq I$ with $\sum_{i \in S} s_i \leq B$ maximizing $\sum_{i \in S} v_i$.

Remarks

- The Knapsack Problem is *NP*-hard (reduction from Partition).
- It can be solved in pseudo-polynomialatime by dynamic 3/19

Denote by J(i, b) the maximum value that can be packed in a knapsack of capacity b ≤ B, using only a subset of items T ⊆ {1,...,i}:

$$J(i,b) = \max\left\{v(T) : s(T) \leq b, \ T \subseteq \{1,\ldots,i\}\right\}.$$

Denote by J(i, b) the maximum value that can be packed in a knapsack of capacity b ≤ B, using only a subset of items T ⊆ {1,...,i}:

$$J(i,b) = \max\left\{v(T) : s(T) \leq b, \ T \subseteq \{1,\ldots,i\}\right\}.$$

• The values of J(i, b) can be computed recursively:

$$J(i,b) = \begin{cases} 0 & \text{if } i = 0; \\ J(i-1,b) & \text{if } s_i > b; \end{cases}$$

$$\left(\max(J(i-1,b),J(i-1,b-s_i)+v_i) \right) \quad \text{otherwise.}$$

Denote by J(i, b) the maximum value that can be packed in a knapsack of capacity b ≤ B, using only a subset of items T ⊆ {1,...,i}:

$$J(i,b) = \max\left\{v(T) : s(T) \leq b, \ T \subseteq \{1,\ldots,i\}\right\}.$$

• The values of J(i, b) can be computed recursively:

$$J(i,b) = \begin{cases} 0 & \text{if } i = 0; \\ J(i-1,b) & \text{if } s_i > b; \\ \max(J(i-1,b), J(i-1,b-s_i) + v_i) & \text{otherwise.} \end{cases}$$

• Optimal solution OPT = J(n, B) can be computed by "filling" the table. Hence, the complexity of this algorithm is O(nB).

Denote by J(i, b) the maximum value that can be packed in a knapsack of capacity b ≤ B, using only a subset of items T ⊆ {1,...,i}:

$$J(i,b) = \max\left\{v(T) : s(T) \leq b, \ T \subseteq \{1,\ldots,i\}\right\}.$$

• The values of J(i, b) can be computed recursively:

$$J(i,b) = \begin{cases} 0 & \text{if } i = 0; \\ J(i-1,b) & \text{if } s_i > b; \\ \max(J(i-1,b), J(i-1,b-s_i) + v_i) & \text{otherwise.} \end{cases}$$

- Optimal solution OPT = J(n, B) can be computed by "filling" the table. Hence, the complexity of this algorithm is O(nB).
- However, this is not a polytime algorithm, as the input can be described with only (B) := log₂ B bits.

G. Sagnol

.

■ To construct a polynomial time approximation algorithm, we need another dynamic program, that enumerates the different values w ≤ V = ∑_{i=1}ⁿ v_i that a knapsack can achieve.

- To construct a polynomial time approximation algorithm, we need another dynamic program, that enumerates the different values $w \le V = \sum_{i=1}^{n} v_i$ that a knapsack can achieve.
- Let G(i, w) denote the minimum capacity of a knapsack that can hold a value at least w, using only a subset of items T ⊆ {1,...,i}:

$$G(i,w) = \min \left\{ s(T) : v(T) \ge w, \ T \subseteq \{1,\ldots,i\} \right\}.$$

- To construct a polynomial time approximation algorithm, we need another dynamic program, that enumerates the different values $w \le V = \sum_{i=1}^{n} v_i$ that a knapsack can achieve.
- Let G(i, w) denote the minimum capacity of a knapsack that can hold a value at least w, using only a subset of items T ⊆ {1,...,i}:

$$G(i,w) = \min \left\{ s(T) : v(T) \ge w, \ T \subseteq \{1,\ldots,i\} \right\}.$$

As before, there is a recursive formula to compute the G(i, w)'s, and OPT is the largest w such that $G(n, w) \leq B$. The time complexity of this algorithm is O(nV).

- To construct a polynomial time approximation algorithm, we need another dynamic program, that enumerates the different values $w \le V = \sum_{i=1}^{n} v_i$ that a knapsack can achieve.
- Let G(i, w) denote the minimum capacity of a knapsack that can hold a value at least w, using only a subset of items T ⊆ {1,...,i}:

$$G(i,w) = \min \left\{ s(T) : v(T) \ge w, \ T \subseteq \{1,\ldots,i\} \right\}.$$

- As before, there is a recursive formula to compute the G(i, w)'s, and OPT is the largest w such that $G(n, w) \leq B$. The time complexity of this algorithm is O(nV).
- In fact, we can make the best of both worlds and get a DP of complexity *O*(*n*min(*B*, *V*)), by using a notion of dominance.

- To construct a polynomial time approximation algorithm, we need another dynamic program, that enumerates the different values $w \le V = \sum_{i=1}^{n} v_i$ that a knapsack can achieve.
- Let G(i, w) denote the minimum capacity of a knapsack that can hold a value at least w, using only a subset of items $T \subseteq \{1, ..., i\}$:

$$G(i,w) = \min \left\{ s(T) : v(T) \ge w, \ T \subseteq \{1,\ldots,i\} \right\}.$$

- As before, there is a recursive formula to compute the G(i, w)'s, and OPT is the largest w such that $G(n, w) \leq B$. The time complexity of this algorithm is O(nV).
- In fact, we can make the best of both worlds and get a DP of complexity *O*(*n*min(*B*, *V*)), by using a notion of dominance.
- We identify a subset of items T with a pair (t, w) = (s(T), v(T)). We say that a pair (t_1, w_1) is dominated by (t_2, w_2) if $t_1 \ge t_2$ and $w_1 \le w_2$, and $(t_1, w_1) \ne (t_2, w_2)$.

G. Sagnol

For j = 0, 1, ..., n let A(j) denote the set of feasible non-dominated pairs given by all subsets $S \subseteq \{1, ..., j\}$.

For j = 0, 1, ..., n let A(j) denote the set of feasible non-dominated pairs given by all subsets $S \subseteq \{1, ..., j\}$.

1
$$A(0) := \{(0,0)\};$$

2 for $j = 1, ..., n \text{ let } A(j) := A(j-1);$
3 for each $(t, w) \in A(j-1)$
4 if $t + s_j \le B$ then add $(t + s_j, w + v_j)$ to $A(j);$
5 remove dominated pairs from $A(j);$
6 return max $\{w : (t, w) \in A(n)\};$

For j = 0, 1, ..., n let A(j) denote the set of feasible non-dominated pairs given by all subsets $S \subseteq \{1, ..., j\}$.

1
$$A(0) := \{(0,0)\};$$

2 for $j = 1, ..., n \text{ let } A(j) := A(j-1);$
3 for each $(t, w) \in A(j-1)$
4 if $t + s_j \le B$ then add $(t + s_j, w + v_j)$ to $A(j);$
5 remove dominated pairs from $A(j);$
6 return max $\{w : (t, w) \in A(n)\};$

Theorem 3.1

The dynamic program correctly computes the optimal value of the knapsack problem in $O(n \cdot \min\{B, V\})$ time where $V := \sum_{i=1}^{n} v_i$.

For j = 0, 1, ..., n let A(j) denote the set of feasible non-dominated pairs given by all subsets $S \subseteq \{1, ..., j\}$.

1
$$A(0) := \{(0,0)\};$$

2 for $j = 1, ..., n \text{ let } A(j) := A(j-1);$
3 for each $(t, w) \in A(j-1)$
4 if $t + s_j \le B$ then add $(t + s_j, w + v_j)$ to $A(j);$
5 remove dominated pairs from $A(j);$
6 return max $\{w : (t, w) \in A(n)\};$

Theorem 3.1

The dynamic program correctly computes the optimal value of the knapsack problem in $O(n \cdot \min\{B, V\})$ time where $V := \sum_{i=1}^{n} v_i$.

Remark: An optimal subset $S \subseteq I$ can be obtained by backtracking.

G. Sagnol

Definition 3.2 (FPTAS)

A fully polynomial-time approximation scheme is a PTAS $(A_{\varepsilon})_{\varepsilon>0}$ such that the running time of A_{ε} is bounded by a polynomial in $1/\varepsilon$.

Definition 3.2 (FPTAS)

A fully polynomial-time approximation scheme is a PTAS $(A_{\varepsilon})_{\varepsilon>0}$ such that the running time of A_{ε} is bounded by a polynomial in $1/\varepsilon$.

FPTAS for Knapsack Problem

1 let
$$M := \max_{i \in I} v_i$$
; $\mu := \varepsilon \cdot M/n$; $v'_i := \lfloor v_i/\mu \rfloor$ for $i \in I$;

solve knapsack instance with values v_i by dynamic programming;

Definition 3.2 (FPTAS)

A fully polynomial-time approximation scheme is a PTAS $(A_{\varepsilon})_{\varepsilon>0}$ such that the running time of A_{ε} is bounded by a polynomial in $1/\varepsilon$.

FPTAS for Knapsack Problem

1 let
$$M := \max_{i \in I} v_i$$
; $\mu := \varepsilon \cdot M/n$; $v'_i := \lfloor v_i/\mu \rfloor$ for $i \in I$;

solve knapsack instance with values v_i by dynamic programming;

Theorem 3.3

The algorithm above is a fully polynomial-time approximation scheme for the Knapsack Problem.

Definition 3.2 (FPTAS)

A fully polynomial-time approximation scheme is a PTAS $(A_{\varepsilon})_{\varepsilon>0}$ such that the running time of A_{ε} is bounded by a polynomial in $1/\varepsilon$.

FPTAS for Knapsack Problem

1 let
$$M := \max_{i \in I} v_i$$
; $\mu := \varepsilon \cdot M/n$; $v'_i := \lfloor v_i/\mu \rfloor$ for $i \in I$;

solve knapsack instance with values v_i by dynamic programming;

Theorem 3.3

G Sagno

The algorithm above is a fully polynomial-time approximation scheme for the Knapsack Problem.

Proof:...

Outline

1 Knapsack Problem

2 Scheduling Jobs on Identical Parallel Machines

3 Bin Packing

G. Sagnol

Scheduling Jobs on Identical Parallel Machines

Given: *n* jobs j = 1, ..., n with processing times $p_j \ge 0, j = 1, ..., n$, and *m* identical parallel machines.

Task: Process each job j nonpreemptively for p_j time units on one of the m machines. Minimize the makespan.

Scheduling Jobs on Identical Parallel Machines

Given: *n* jobs j = 1, ..., n with processing times $p_j \ge 0, j = 1, ..., n$, and *m* identical parallel machines.

Task: Process each job j nonpreemptively for p_j time units on one of the m machines. Minimize the makespan.

In other words, we consider $Pm||C_{max}$ (or $P||C_{max}$ if *m* is part of the input)

Scheduling Jobs on Identical Parallel Machines

Given: *n* jobs j = 1, ..., n with processing times $p_j \ge 0, j = 1, ..., n$, and *m* identical parallel machines.

Task: Process each job j nonpreemptively for p_j time units on one of the m machines. Minimize the makespan.

In other words, we consider $Pm||C_{max}$ (or $P||C_{max}$ if *m* is part of the input)

Remember:

- List scheduling in arbitrary order is $(2 \frac{1}{m})$ -approximation algorithm.
- List scheduling in LPT order is a $(\frac{4}{3} \frac{1}{3m})$ -approximation algorithm.
- The analysis of both results relies on the fact that

$$C_{\max} \leq \left(1 - \frac{1}{m}\right)p_{\ell} + \frac{1}{m}\sum_{j=1}^{n}p_{j} \leq \left(1 - \frac{1}{m}\right)p_{\ell} + C_{\max}^{*}$$

where ℓ is a job with maximal completion time $C_{\ell} = C_{\max}$.

G. Sagnol

Let the number of machines *m* be constant and $\varepsilon > 0$ fixed.

Let the number of machines *m* be constant and $\varepsilon > 0$ fixed.

Partition into short and long jobs:

• A job ℓ is called short if $p_{\ell} \leq \frac{\varepsilon}{m} \sum_{j} p_{j}$; otherwise, job ℓ is long.

Let the number of machines *m* be constant and $\varepsilon > 0$ fixed.

Partition into short and long jobs:

• A job ℓ is called short if $p_{\ell} \leq \frac{\varepsilon}{m} \sum_{j} p_{j}$; otherwise, job ℓ is long.

Notice: There are at most $\lfloor m/\varepsilon \rfloor$ long jobs and this number is constant.

Let the number of machines *m* be constant and $\varepsilon > 0$ fixed.

Partition into short and long jobs:

■ A job ℓ is called short if $p_{\ell} \leq \frac{\varepsilon}{m} \sum_{j} p_{j}$; otherwise, job ℓ is long.

Notice: There are at most $\lfloor m/\varepsilon \rfloor$ long jobs and this number is constant.

Algorithm A_{ε}

 enumerate all schedules of long jobs; choose one with min makespan;

Let the number of machines *m* be constant and $\varepsilon > 0$ fixed.

Partition into short and long jobs:

■ A job ℓ is called short if $p_{\ell} \leq \frac{\varepsilon}{m} \sum_{i} p_{j}$; otherwise, job ℓ is long.

Notice: There are at most $\lfloor m/\varepsilon \rfloor$ long jobs and this number is constant.

Algorithm A_{ε}

- enumerate all schedules of long jobs; choose one with min makespan;
- **2** extend this schedule by using list scheduling for short jobs;

Let the number of machines *m* be constant and $\varepsilon > 0$ fixed.

Partition into short and long jobs:

• A job ℓ is called short if $p_{\ell} \leq \frac{\varepsilon}{m} \sum_{i} p_{j}$; otherwise, job ℓ is long.

Notice: There are at most $\lfloor m/\varepsilon \rfloor$ long jobs and this number is constant.

Algorithm A_{ε}

- enumerate all schedules of long jobs; choose one with min makespan;
- **2** extend this schedule by using list scheduling for short jobs;

Theorem 3.4

Algorithm A_{ε} runs in polynomial time for the problem $Pm||C_{\max}$ and produces a schedule of makespan at most $(1 + \varepsilon) \cdot C^*_{\max}$.

Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed.

Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed. Main ideas:

An approximate schedule for the long jobs suffices.

Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed. Main ideas:

- An approximate schedule for the long jobs suffices.
- Round long jobs such that there are constantly many different sizes.

Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed. Main ideas:

- An approximate schedule for the long jobs suffices.
- Round long jobs such that there are constantly many different sizes.

Let *T* be a target length for the schedule ($T \ge \max_{j} p_{j}, T \ge \frac{1}{m} \sum_{i} p_{j}$).

Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed. Main ideas:

- An approximate schedule for the long jobs suffices.
- Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule $(T \ge \max_{j} p_j, T \ge \frac{1}{m} \sum_{j} p_j)$.

Short and long jobs:

• A job *j* is called short if $p_j \le \varepsilon T$; otherwise, job *j* is long.
Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed. Main ideas:

- An approximate schedule for the long jobs suffices.
- Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule $(T \ge \max_{j} p_j, T \ge \frac{1}{m} \sum_{j} p_j)$.

Short and long jobs:

- A job *j* is called short if $p_j \leq \varepsilon T$; otherwise, job *j* is long.
- For each long job *j* let $\bar{p}_j := \lfloor p_j / (\varepsilon^2 T) \rfloor \cdot \varepsilon^2 T$.

Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed. Main ideas:

- An approximate schedule for the long jobs suffices.
- Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule $(T \ge \max_{j} p_j, T \ge \frac{1}{m} \sum_{j} p_j)$.

Short and long jobs:

- A job *j* is called short if $p_j \le \varepsilon T$; otherwise, job *j* is long.
- For each long job *j* let $\bar{p}_j := \lfloor p_j / (\varepsilon^2 T) \rfloor \cdot \varepsilon^2 T$.
- Notice that there are at most $\lfloor 1/\varepsilon^2 \rfloor$ different rounded job sizes \bar{p}_j .

Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed. Main ideas:

- An approximate schedule for the long jobs suffices.
- Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule $(T \ge \max_{j} p_j, T \ge \frac{1}{m} \sum_{j} p_j)$.

Short and long jobs:

- A job *j* is called short if $p_j \le \varepsilon T$; otherwise, job *j* is long.
- For each long job *j* let $\overline{p}_j := \lfloor p_j / (\varepsilon^2 T) \rfloor \cdot \varepsilon^2 T$.
- Notice that there are at most $\lfloor 1/\varepsilon^2 \rfloor$ different rounded job sizes \bar{p}_j .

Algorithm B_{ε}

1 find schedule for all long jobs with rounded sizes \bar{p}_j of makespan $\leq T$; if no such schedule exists, then return "T too small";

Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed. Main ideas:

- An approximate schedule for the long jobs suffices.
- Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule $(T \ge \max_{j} p_j, T \ge \frac{1}{m} \sum_{j} p_j)$.

Short and long jobs:

- A job *j* is called short if $p_j \le \varepsilon T$; otherwise, job *j* is long.
- For each long job *j* let $\bar{p}_j := \lfloor p_j / (\varepsilon^2 T) \rfloor \cdot \varepsilon^2 T$.
- Notice that there are at most $\lfloor 1/\varepsilon^2 \rfloor$ different rounded job sizes \bar{p}_j .

Algorithm B_{ε}

- 1 find schedule for all long jobs with rounded sizes \bar{p}_j of makespan $\leq T$; if no such schedule exists, then return "T too small";
- **2** interpret as a schedule for the long jobs with original sizes p_j ;

Now, *m* is no longer constant but part of the input. Let $\varepsilon > 0$ be fixed. Main ideas:

- An approximate schedule for the long jobs suffices.
- Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule $(T \ge \max_{j} p_j, T \ge \frac{1}{m} \sum_{j} p_j)$.

Short and long jobs:

- A job *j* is called short if $p_j \le \varepsilon T$; otherwise, job *j* is long.
- For each long job *j* let $\bar{p}_j := \lfloor p_j / (\varepsilon^2 T) \rfloor \cdot \varepsilon^2 T$.
- Notice that there are at most $\lfloor 1/\varepsilon^2 \rfloor$ different rounded job sizes \bar{p}_j .

Algorithm B_{ε}

- 1 find schedule for all long jobs with rounded sizes \bar{p}_j of makespan $\leq T$; if no such schedule exists, then return "T too small";
- **2** interpret as a schedule for the long jobs with original sizes p_j ;
- extend this schedule by using list scheduling for short jobs;
 G. Sagnol
 3- Rounding Data and Dynamic Programming
 11/19

Theorem 3.5

For a given problem instance and a target length T, Algorithm B_{ε} either correctly decides that there is no schedule of length $\leq T$ or it finds a schedule of length $\leq (1 + \varepsilon) \cdot T$.

Theorem 3.5

For a given problem instance and a target length T, Algorithm B_{ε} either correctly decides that there is no schedule of length $\leq T$ or it finds a schedule of length $\leq (1 + \varepsilon) \cdot T$.

Proof:...

Theorem 3.5

For a given problem instance and a target length T, Algorithm B_{ε} either correctly decides that there is no schedule of length $\leq T$ or it finds a schedule of length $\leq (1 + \varepsilon) \cdot T$.

Proof:...

Remarks:

According to Theorem 3.5 Algorithm B_ε is a (1 + ε)-approximate decision procedure.

Theorem 3.5

For a given problem instance and a target length T, Algorithm B_{ε} either correctly decides that there is no schedule of length $\leq T$ or it finds a schedule of length $\leq (1 + \varepsilon) \cdot T$.

Proof:...

Remarks:

- According to Theorem 3.5 Algorithm B_ε is a (1 + ε)-approximate decision procedure.
- Together with a binary search framework for the optimal makespan $T = C_{max}^*$, we get a polynomial-time approximation scheme (PTAS).

Theorem 3.5

For a given problem instance and a target length T, Algorithm B_{ε} either correctly decides that there is no schedule of length $\leq T$ or it finds a schedule of length $\leq (1 + \varepsilon) \cdot T$.

Proof:...

Remarks:

According to Theorem 3.5 Algorithm B_ε is a (1 + ε)-approximate decision procedure.

• Together with a binary search framework for the optimal makespan $T = C_{max}^*$, we get a polynomial-time approximation scheme (PTAS).

Theorem 3.6

There is a polynomial-time approximation scheme for $P || C_{max}$.

G. Sagnol

Existence of an FPTAS

We state the next theorems without proof:

Theorem 3.7

There is a fully polynomial-time approximation scheme for the problem of minimizing the makespan on constantly many identical parallel machines: $Pm||C_{max}$.

Existence of an FPTAS

We state the next theorems without proof:

Theorem 3.7

There is a fully polynomial-time approximation scheme for the problem of minimizing the makespan on constantly many identical parallel machines: $Pm||C_{max}$.

Theorem 3.8

If the number of machines is part of the input, i.e.for the problem $P||C_{max}$, there is no FPTAS, unless P = NP.

Existence of an FPTAS

We state the next theorems without proof:

Theorem 3.7

There is a fully polynomial-time approximation scheme for the problem of minimizing the makespan on constantly many identical parallel machines: $Pm||C_{max}$.

Theorem 3.8

If the number of machines is part of the input, i.e.for the problem $P||C_{max}$, there is no FPTAS, unless P = NP.

Remark: More generally, a strongly *NP*-hard optimization problem whose objective function values are integral and polynomially bounded in the numbers occurring in the input does not have an FPTAS, unless P = NP.

G. Sagnol

3- Rounding Data and Dynamic Programming 13 / 19

Outline

1 Knapsack Problem

2 Scheduling Jobs on Identical Parallel Machines

3 Bin Packing

G. Sagnol

3- Rounding Data and Dynamic Programming 14 / 19

Given: *n* items with positive sizes $a_1, \ldots, a_n \leq 1$.

Task: Pack the items into a minimal number of unit-size bins.

Given: *n* items with positive sizes $a_1, \ldots, a_n \leq 1$.

Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9

Unless P = NP, there is no α -approximation algorithm for the Bin-Packing Problem for any $\alpha < 3/2$.

Given: *n* items with positive sizes $a_1, \ldots, a_n \leq 1$.

Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9

Unless P = NP, there is no α -approximation algorithm for the Bin-Packing Problem for any $\alpha < 3/2$.

Proof: Reduce the Partition Problem.

Given: *n* items with positive sizes $a_1, \ldots, a_n \leq 1$.

Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9

Unless P = NP, there is no α -approximation algorithm for the Bin-Packing Problem for any $\alpha < 3/2$.

Proof: Reduce the Partition Problem.

Algorithm Next-Fit

- consider items in arbitrary order; start to pack them into the first bin;
- whenever next item does not fit into the current bin, open a new bin;

Given: *n* items with positive sizes $a_1, \ldots, a_n \leq 1$.

Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9

Unless P = NP, there is no α -approximation algorithm for the Bin-Packing Problem for any $\alpha < 3/2$.

Proof: Reduce the Partition Problem.

Algorithm Next-Fit

- consider items in arbitrary order; start to pack them into the first bin;
- whenever next item does not fit into the current bin, open a new bin;

Theorem 3.10

Algorithm Next-Fit runs in O(n) time and uses at most $2 \cdot OPT - 1$ bins.

G. Sagnol

Algorithm First-Fit

- consider items in arbitrary order; open one bin;
- pack the next item into the first open bin in which it fits;
- if the item does not fit into any open bin, open a new bin;

Algorithm First-Fit

- consider items in arbitrary order; open one bin;
- pack the next item into the first open bin in which it fits;
- if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Dósa, Sgall 2013)

Algorithm First-Fit runs in polynomial time; it uses at most $\lfloor \frac{17}{10}$ OPT \rfloor bins.

Algorithm First-Fit

- consider items in arbitrary order; open one bin;
- pack the next item into the first open bin in which it fits;
- if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Dósa, Sgall 2013)

Algorithm First-Fit runs in polynomial time; it uses at most $\lfloor \frac{17}{10}$ OPT \rfloor bins.

Algorithm First-Fit

- consider items in arbitrary order; open one bin;
- pack the next item into the first open bin in which it fits;
- if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Dósa, Sgall 2013)

Algorithm First-Fit runs in polynomial time; it uses at most $\lfloor \frac{17}{10}$ OPT \rfloor bins.

Algorithm First-Fit-Decreasing

Same as First-Fit, but consider items in order of decreasing size

Algorithm First-Fit

- consider items in arbitrary order; open one bin;
- pack the next item into the first open bin in which it fits;
- if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Dósa, Sgall 2013)

Algorithm First-Fit runs in polynomial time; it uses at most $\lfloor \frac{17}{10}$ OPT \rfloor bins.

Algorithm First-Fit-Decreasing

Same as First-Fit, but consider items in order of decreasing size

Theorem 3.12 (Dósa 2007)

Algorithm First-Fit-Decreasing uses at most $\frac{11}{9}$ OPT $+\frac{2}{3}$ bins.

Definition 3.13

An asymptotic polynomial-time approximation scheme (APTAS) is a family of polynomial-time algorithms $(A_{\varepsilon})_{\varepsilon>0}$ along with a constant c such that A_{ε} returns a solution of value at most $(1 + \varepsilon)$ OPT + c.

Definition 3.13

An asymptotic polynomial-time approximation scheme (APTAS) is a family of polynomial-time algorithms $(A_{\varepsilon})_{\varepsilon>0}$ along with a constant c such that A_{ε} returns a solution of value at most $(1 + \varepsilon)$ OPT + c.

Lemma 3.14

Any packing of all items of size $\geq \gamma$ into ℓ bins can be greedily extended to a packing of all items into at most max $\{\ell, \frac{1}{1-\gamma} SIZE(I) + 1\}$ bins.

Definition 3.13

An asymptotic polynomial-time approximation scheme (APTAS) is a family of polynomial-time algorithms $(A_{\varepsilon})_{\varepsilon>0}$ along with a constant c such that A_{ε} returns a solution of value at most $(1 + \varepsilon)$ OPT + c.

Lemma 3.14

Any packing of all items of size $\geq \gamma$ into ℓ bins can be greedily extended to a packing of all items into at most max $\{\ell, \frac{1}{1-\gamma} SIZE(I) + 1\}$ bins.

Proof:...

Definition 3.13

An asymptotic polynomial-time approximation scheme (APTAS) is a family of polynomial-time algorithms $(A_{\varepsilon})_{\varepsilon>0}$ along with a constant c such that A_{ε} returns a solution of value at most $(1 + \varepsilon)$ OPT + c.

Lemma 3.14

Any packing of all items of size $\geq \gamma$ into ℓ bins can be greedily extended to a packing of all items into at most max $\{\ell, \frac{1}{1-\gamma} SIZE(I) + 1\}$ bins.

Proof:...

Remarks:

- For $\gamma = \varepsilon/2$, the lemma yields a packing of all items into at most $\max\{\ell, (1 + \varepsilon) \text{OPT} + 1\}$ bins.
- In the following we can thus restrict to items of size at least $\varepsilon/2$.

G. Sagnol

3- Rounding Data and Dynamic Programming 17 / 19

- **1** sort the items of instance *I* such that $a_1 \ge a_2 \ge \cdots \ge a_n$;
- 2 instance I' has n k items of size $a'_i := a_{\lceil i/k \rceil \cdot k+1}$, $i = 1, \ldots, n-k$;

- **1** sort the items of instance *I* such that $a_1 \ge a_2 \ge \cdots \ge a_n$;
- 2 instance I' has n k items of size $a'_i := a_{\lceil i/k \rceil \cdot k+1}$, $i = 1, \ldots, n-k$;

- **1** sort the items of instance *I* such that $a_1 \ge a_2 \ge \cdots \ge a_n$;
- 2 instance I' has n k items of size $a'_i := a_{\lceil i/k \rceil \cdot k+1}$, $i = 1, \ldots, n-k$;

- **1** sort the items of instance *I* such that $a_1 \ge a_2 \ge \cdots \ge a_n$;
- 2 instance I' has n k items of size $a'_i := a_{\lceil i/k \rceil \cdot k+1}$, $i = 1, \ldots, n-k$;

For given instance *I* and parameter $k \in \mathbb{Z}_{>0}$, define a new instance *I*':

- **1** sort the items of instance *I* such that $a_1 \ge a_2 \ge \cdots \ge a_n$;
- 2 instance I' has n k items of size $a'_i := a_{\lceil i/k \rceil \cdot k+1}$, $i = 1, \ldots, n-k$;

Remarks

- Instance I' has at most $\lfloor n/k \rfloor$ distinct item sizes.
- It holds that $a_{i+k} \leq a'_i \leq a_i$ for $i = 1, \ldots, n-k$.

For given instance *I* and parameter $k \in \mathbb{Z}_{>0}$, define a new instance *I*':

- **1** sort the items of instance *I* such that $a_1 \ge a_2 \ge \cdots \ge a_n$;
- 2 instance I' has n k items of size $a'_i := a_{\lceil i/k \rceil \cdot k+1}$, $i = 1, \ldots, n k$;

Remarks

- Instance I' has at most $\lfloor n/k \rfloor$ distinct item sizes.
- It holds that $a_{i+k} \leq a'_i \leq a_i$ for $i = 1, \ldots, n-k$.

Lemma 3.15

Any packing of I' can be easily turned into a packing of I with at most k additional bins. Moreover, $OPT(I') \le OPT(I) \le OPT(I') + k$.

G. Sagnol

APTAS for Bin-Packing

Ingredients:

■ All items have size at least $\varepsilon/2$ such that SIZE(I) $\ge \varepsilon n/2$.

APTAS for Bin-Packing

Ingredients:

- All items have size at least $\varepsilon/2$ such that SIZE(I) $\geq \varepsilon n/2$.
- W.I.o.g.: $\varepsilon \cdot SIZE(I) \ge 1$ (otherwise, there are at most $2/\varepsilon^2$ items...).
Ingredients:

- All items have size at least $\varepsilon/2$ such that SIZE(I) $\geq \varepsilon n/2$.
- W.I.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ ε ² items...).

Set $k := \lfloor \varepsilon \cdot SIZE(I) \rfloor$ and apply the linear grouping scheme.

Ingredients:

- All items have size at least $\varepsilon/2$ such that SIZE(I) $\geq \varepsilon n/2$.
- W.I.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ ε ² items...).
- Set $k := \lfloor \varepsilon \cdot SIZE(I) \rfloor$ and apply the linear grouping scheme.
- Resulting instance I' has at most $n/k \le 4/\varepsilon^2$ distinct item sizes.

Ingredients:

- All items have size at least $\varepsilon/2$ such that SIZE(I) $\geq \varepsilon n/2$.
- W.I.o.g.: $\varepsilon \cdot SIZE(I) \ge 1$ (otherwise, there are at most $2/\varepsilon^2$ items...).
- Set $k := \lfloor \varepsilon \cdot SIZE(I) \rfloor$ and apply the linear grouping scheme.
- Resulting instance I' has at most $n/k \le 4/\varepsilon^2$ distinct item sizes.
- Thus, instance I' can be solved optimally in polynomial time.

Ingredients:

- All items have size at least $\varepsilon/2$ such that SIZE(I) $\ge \varepsilon n/2$.
- W.I.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ ε ² items...).
- Set $k := \lfloor \varepsilon \cdot SIZE(I) \rfloor$ and apply the linear grouping scheme.
- Resulting instance I' has at most $n/k \le 4/\varepsilon^2$ distinct item sizes.
- Thus, instance *I*' can be solved optimally in polynomial time.

Theorem 3.16

For any $\varepsilon > 0$, there is a polynomial-time algorithm for the Bin-Packing Problem that computes a solution with at most $(1 + \varepsilon) \cdot 0$ PT + 1 bins.

Ingredients:

- All items have size at least $\varepsilon/2$ such that SIZE(I) $\geq \varepsilon n/2$.
- W.I.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ ε ² items...).
- Set $k := \lfloor \varepsilon \cdot SIZE(I) \rfloor$ and apply the linear grouping scheme.
- Resulting instance I' has at most $n/k \le 4/\varepsilon^2$ distinct item sizes.
- Thus, instance *I*' can be solved optimally in polynomial time.

Theorem 3.16

For any $\varepsilon > 0$, there is a polynomial-time algorithm for the Bin-Packing Problem that computes a solution with at most $(1 + \varepsilon) \cdot 0$ PT + 1 bins.

Proof:...

G. Sagnol