
Approximation Algorithms (ADM III)
3- Rounding Data and Dynamic Programming

Guillaume Sagnol

G. Sagnol 3- Rounding Data and Dynamic Programming 1 / 19

Outline

1 Knapsack Problem

2 Scheduling Jobs on Identical Parallel Machines

3 Bin Packing

G. Sagnol 3- Rounding Data and Dynamic Programming 2 / 19

Knapsack Problem
Given: n items I = {1, . . . , n}, values vi ∈ Z>0 and sizes si ∈ Z>0, i ∈ I ;

knapsack of size B ∈ Z>0 (assume w.l.o.g. si ≤ B , for all i ∈ I)
Task: find subset of items S ⊆ I with

∑
i∈S

si ≤ B maximizing
∑
i∈S

vi .

KS.png

Remarks
The Knapsack Problem is NP-hard (reduction from Partition).

It can be solved in pseudo-polynomial time by dynamic
programming (see next slide).

G. Sagnol 3- Rounding Data and Dynamic Programming 3 / 19

Knapsack Problem
Given: n items I = {1, . . . , n}, values vi ∈ Z>0 and sizes si ∈ Z>0, i ∈ I ;

knapsack of size B ∈ Z>0 (assume w.l.o.g. si ≤ B , for all i ∈ I)
Task: find subset of items S ⊆ I with

∑
i∈S

si ≤ B maximizing
∑
i∈S

vi .

KS.png

Remarks
The Knapsack Problem is NP-hard (reduction from Partition).

It can be solved in pseudo-polynomial time by dynamic
programming (see next slide).

G. Sagnol 3- Rounding Data and Dynamic Programming 3 / 19

Dynamic Program for Knapsack Problem (1/3)

Denote by J(i , b) the maximum value that can be packed in a
knapsack of capacity b ≤ B , using only a subset of items
T ⊆ {1, . . . , i}:

J(i , b) = max
{
v(T) : s(T) ≤ b, T ⊆ {1, . . . , i}

}
.

The values of J(i , b) can be computed recursively:

J(i , b) =

0 if i = 0;
J(i − 1, b) if si > b;
max(J(i − 1, b), J(i − 1, b − si) + vi) otherwise.

Optimal solution OPT = J(n,B) can be computed by “filling” the
table. Hence, the complexity of this algorithm is O(nB).

However, this is not a polytime algorithm, as the input can be
described with only 〈B〉 := log2 B bits.

G. Sagnol 3- Rounding Data and Dynamic Programming 4 / 19

Dynamic Program for Knapsack Problem (1/3)

Denote by J(i , b) the maximum value that can be packed in a
knapsack of capacity b ≤ B , using only a subset of items
T ⊆ {1, . . . , i}:

J(i , b) = max
{
v(T) : s(T) ≤ b, T ⊆ {1, . . . , i}

}
.

The values of J(i , b) can be computed recursively:

J(i , b) =

0 if i = 0;
J(i − 1, b) if si > b;
max(J(i − 1, b), J(i − 1, b − si) + vi) otherwise.

Optimal solution OPT = J(n,B) can be computed by “filling” the
table. Hence, the complexity of this algorithm is O(nB).

However, this is not a polytime algorithm, as the input can be
described with only 〈B〉 := log2 B bits.

G. Sagnol 3- Rounding Data and Dynamic Programming 4 / 19

Dynamic Program for Knapsack Problem (1/3)

Denote by J(i , b) the maximum value that can be packed in a
knapsack of capacity b ≤ B , using only a subset of items
T ⊆ {1, . . . , i}:

J(i , b) = max
{
v(T) : s(T) ≤ b, T ⊆ {1, . . . , i}

}
.

The values of J(i , b) can be computed recursively:

J(i , b) =

0 if i = 0;
J(i − 1, b) if si > b;
max(J(i − 1, b), J(i − 1, b − si) + vi) otherwise.

Optimal solution OPT = J(n,B) can be computed by “filling” the
table. Hence, the complexity of this algorithm is O(nB).

However, this is not a polytime algorithm, as the input can be
described with only 〈B〉 := log2 B bits.

G. Sagnol 3- Rounding Data and Dynamic Programming 4 / 19

Dynamic Program for Knapsack Problem (1/3)

Denote by J(i , b) the maximum value that can be packed in a
knapsack of capacity b ≤ B , using only a subset of items
T ⊆ {1, . . . , i}:

J(i , b) = max
{
v(T) : s(T) ≤ b, T ⊆ {1, . . . , i}

}
.

The values of J(i , b) can be computed recursively:

J(i , b) =

0 if i = 0;
J(i − 1, b) if si > b;
max(J(i − 1, b), J(i − 1, b − si) + vi) otherwise.

Optimal solution OPT = J(n,B) can be computed by “filling” the
table. Hence, the complexity of this algorithm is O(nB).

However, this is not a polytime algorithm, as the input can be
described with only 〈B〉 := log2 B bits.

G. Sagnol 3- Rounding Data and Dynamic Programming 4 / 19

Dynamic Program for Knapsack Problem (2/3)

To construct a polynomial time approximation algorithm, we need
another dynamic program, that enumerates the different values
w ≤ V =

∑n
i=1

vi that a knapsack can achieve.

Let G (i ,w) denote the minimum capacity of a knapsack that can
hold a value at least w , using only a subset of items T ⊆ {1, . . . , i}:

G (i ,w) = min
{
s(T) : v(T) ≥ w , T ⊆ {1, . . . , i}

}
.

As before, there is a recursive formula to compute the G (i ,w)’s, and
OPT is the largest w such that G (n,w) ≤ B . The time complexity of
this algorithm is O(nV).
In fact, we can make the best of both worlds and get a DP of
complexity O(nmin(B,V)), by using a notion of dominance.
We identify a subset of items T with a pair (t,w) = (s(T), v(T)).
We say that a pair (t1,w1) is dominated by (t2,w2) if t1 ≥ t2 and
w1 ≤ w2, and (t1,w1) 6= (t2,w2) .

G. Sagnol 3- Rounding Data and Dynamic Programming 5 / 19

Dynamic Program for Knapsack Problem (2/3)

To construct a polynomial time approximation algorithm, we need
another dynamic program, that enumerates the different values
w ≤ V =

∑n
i=1

vi that a knapsack can achieve.

Let G (i ,w) denote the minimum capacity of a knapsack that can
hold a value at least w , using only a subset of items T ⊆ {1, . . . , i}:

G (i ,w) = min
{
s(T) : v(T) ≥ w , T ⊆ {1, . . . , i}

}
.

As before, there is a recursive formula to compute the G (i ,w)’s, and
OPT is the largest w such that G (n,w) ≤ B . The time complexity of
this algorithm is O(nV).
In fact, we can make the best of both worlds and get a DP of
complexity O(nmin(B,V)), by using a notion of dominance.
We identify a subset of items T with a pair (t,w) = (s(T), v(T)).
We say that a pair (t1,w1) is dominated by (t2,w2) if t1 ≥ t2 and
w1 ≤ w2, and (t1,w1) 6= (t2,w2) .

G. Sagnol 3- Rounding Data and Dynamic Programming 5 / 19

Dynamic Program for Knapsack Problem (2/3)

To construct a polynomial time approximation algorithm, we need
another dynamic program, that enumerates the different values
w ≤ V =

∑n
i=1

vi that a knapsack can achieve.

Let G (i ,w) denote the minimum capacity of a knapsack that can
hold a value at least w , using only a subset of items T ⊆ {1, . . . , i}:

G (i ,w) = min
{
s(T) : v(T) ≥ w , T ⊆ {1, . . . , i}

}
.

As before, there is a recursive formula to compute the G (i ,w)’s, and
OPT is the largest w such that G (n,w) ≤ B . The time complexity of
this algorithm is O(nV).

In fact, we can make the best of both worlds and get a DP of
complexity O(nmin(B,V)), by using a notion of dominance.
We identify a subset of items T with a pair (t,w) = (s(T), v(T)).
We say that a pair (t1,w1) is dominated by (t2,w2) if t1 ≥ t2 and
w1 ≤ w2, and (t1,w1) 6= (t2,w2) .

G. Sagnol 3- Rounding Data and Dynamic Programming 5 / 19

Dynamic Program for Knapsack Problem (2/3)

To construct a polynomial time approximation algorithm, we need
another dynamic program, that enumerates the different values
w ≤ V =

∑n
i=1

vi that a knapsack can achieve.

Let G (i ,w) denote the minimum capacity of a knapsack that can
hold a value at least w , using only a subset of items T ⊆ {1, . . . , i}:

G (i ,w) = min
{
s(T) : v(T) ≥ w , T ⊆ {1, . . . , i}

}
.

As before, there is a recursive formula to compute the G (i ,w)’s, and
OPT is the largest w such that G (n,w) ≤ B . The time complexity of
this algorithm is O(nV).
In fact, we can make the best of both worlds and get a DP of
complexity O(nmin(B,V)), by using a notion of dominance.

We identify a subset of items T with a pair (t,w) = (s(T), v(T)).
We say that a pair (t1,w1) is dominated by (t2,w2) if t1 ≥ t2 and
w1 ≤ w2, and (t1,w1) 6= (t2,w2) .

G. Sagnol 3- Rounding Data and Dynamic Programming 5 / 19

Dynamic Program for Knapsack Problem (2/3)

To construct a polynomial time approximation algorithm, we need
another dynamic program, that enumerates the different values
w ≤ V =

∑n
i=1

vi that a knapsack can achieve.

Let G (i ,w) denote the minimum capacity of a knapsack that can
hold a value at least w , using only a subset of items T ⊆ {1, . . . , i}:

G (i ,w) = min
{
s(T) : v(T) ≥ w , T ⊆ {1, . . . , i}

}
.

As before, there is a recursive formula to compute the G (i ,w)’s, and
OPT is the largest w such that G (n,w) ≤ B . The time complexity of
this algorithm is O(nV).
In fact, we can make the best of both worlds and get a DP of
complexity O(nmin(B,V)), by using a notion of dominance.
We identify a subset of items T with a pair (t,w) = (s(T), v(T)).
We say that a pair (t1,w1) is dominated by (t2,w2) if t1 ≥ t2 and
w1 ≤ w2, and (t1,w1) 6= (t2,w2) .

G. Sagnol 3- Rounding Data and Dynamic Programming 5 / 19

Dynamic Program for Knapsack Problem (3/3)
For j = 0, 1, . . . , n let A(j) denote the set of feasible non-dominated pairs
given by all subsets S ⊆ {1, . . . , j}.

1 A(0) := {(0, 0)};
2 for j = 1, . . . , n let A(j) := A(j − 1);
3 for each (t,w) ∈ A(j − 1)

4 if t + sj ≤ B then add (t + sj ,w + vj) to A(j);
5 remove dominated pairs from A(j);
6 return max{w : (t,w) ∈ A(n)};

Theorem 3.1
The dynamic program correctly computes the optimal value of the

knapsack problem in O(n ·min{B,V }) time where V :=
n∑

i=1

vi .

Remark: An optimal subset S ⊆ I can be obtained by backtracking.

G. Sagnol 3- Rounding Data and Dynamic Programming 6 / 19

Dynamic Program for Knapsack Problem (3/3)
For j = 0, 1, . . . , n let A(j) denote the set of feasible non-dominated pairs
given by all subsets S ⊆ {1, . . . , j}.

1 A(0) := {(0, 0)};
2 for j = 1, . . . , n let A(j) := A(j − 1);
3 for each (t,w) ∈ A(j − 1)

4 if t + sj ≤ B then add (t + sj ,w + vj) to A(j);
5 remove dominated pairs from A(j);
6 return max{w : (t,w) ∈ A(n)};

Theorem 3.1
The dynamic program correctly computes the optimal value of the

knapsack problem in O(n ·min{B,V }) time where V :=
n∑

i=1

vi .

Remark: An optimal subset S ⊆ I can be obtained by backtracking.

G. Sagnol 3- Rounding Data and Dynamic Programming 6 / 19

Dynamic Program for Knapsack Problem (3/3)
For j = 0, 1, . . . , n let A(j) denote the set of feasible non-dominated pairs
given by all subsets S ⊆ {1, . . . , j}.

1 A(0) := {(0, 0)};
2 for j = 1, . . . , n let A(j) := A(j − 1);
3 for each (t,w) ∈ A(j − 1)

4 if t + sj ≤ B then add (t + sj ,w + vj) to A(j);
5 remove dominated pairs from A(j);
6 return max{w : (t,w) ∈ A(n)};

Theorem 3.1
The dynamic program correctly computes the optimal value of the

knapsack problem in O(n ·min{B,V }) time where V :=
n∑

i=1

vi .

Remark: An optimal subset S ⊆ I can be obtained by backtracking.

G. Sagnol 3- Rounding Data and Dynamic Programming 6 / 19

Dynamic Program for Knapsack Problem (3/3)
For j = 0, 1, . . . , n let A(j) denote the set of feasible non-dominated pairs
given by all subsets S ⊆ {1, . . . , j}.

1 A(0) := {(0, 0)};
2 for j = 1, . . . , n let A(j) := A(j − 1);
3 for each (t,w) ∈ A(j − 1)

4 if t + sj ≤ B then add (t + sj ,w + vj) to A(j);
5 remove dominated pairs from A(j);
6 return max{w : (t,w) ∈ A(n)};

Theorem 3.1
The dynamic program correctly computes the optimal value of the

knapsack problem in O(n ·min{B,V }) time where V :=
n∑

i=1

vi .

Remark: An optimal subset S ⊆ I can be obtained by backtracking.
G. Sagnol 3- Rounding Data and Dynamic Programming 6 / 19

FPTAS for the Knapsack Problem

Definition 3.2 (FPTAS)
A fully polynomial-time approximation scheme is a PTAS (Aε)ε>0

such that the running time of Aε is bounded by a polynomial in 1/ε.

FPTAS for Knapsack Problem
1 let M := max

i∈I
vi ; µ := ε ·M/n; v ′i := bvi/µc for i ∈ I ;

2 solve knapsack instance with values v ′i by dynamic
programming;

Theorem 3.3
The algorithm above is a fully polynomial-time approximation
scheme for the Knapsack Problem.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 7 / 19

FPTAS for the Knapsack Problem

Definition 3.2 (FPTAS)
A fully polynomial-time approximation scheme is a PTAS (Aε)ε>0

such that the running time of Aε is bounded by a polynomial in 1/ε.

FPTAS for Knapsack Problem
1 let M := max

i∈I
vi ; µ := ε ·M/n; v ′i := bvi/µc for i ∈ I ;

2 solve knapsack instance with values v ′i by dynamic
programming;

Theorem 3.3
The algorithm above is a fully polynomial-time approximation
scheme for the Knapsack Problem.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 7 / 19

FPTAS for the Knapsack Problem

Definition 3.2 (FPTAS)
A fully polynomial-time approximation scheme is a PTAS (Aε)ε>0

such that the running time of Aε is bounded by a polynomial in 1/ε.

FPTAS for Knapsack Problem
1 let M := max

i∈I
vi ; µ := ε ·M/n; v ′i := bvi/µc for i ∈ I ;

2 solve knapsack instance with values v ′i by dynamic
programming;

Theorem 3.3
The algorithm above is a fully polynomial-time approximation
scheme for the Knapsack Problem.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 7 / 19

FPTAS for the Knapsack Problem

Definition 3.2 (FPTAS)
A fully polynomial-time approximation scheme is a PTAS (Aε)ε>0

such that the running time of Aε is bounded by a polynomial in 1/ε.

FPTAS for Knapsack Problem
1 let M := max

i∈I
vi ; µ := ε ·M/n; v ′i := bvi/µc for i ∈ I ;

2 solve knapsack instance with values v ′i by dynamic
programming;

Theorem 3.3
The algorithm above is a fully polynomial-time approximation
scheme for the Knapsack Problem.

Proof:. . .
G. Sagnol 3- Rounding Data and Dynamic Programming 7 / 19

Outline

1 Knapsack Problem

2 Scheduling Jobs on Identical Parallel Machines

3 Bin Packing

G. Sagnol 3- Rounding Data and Dynamic Programming 8 / 19

Scheduling Jobs on Identical Parallel Machines
Given: n jobs j = 1, . . . , n with processing times pj ≥ 0, j = 1, . . . , n, and
m identical parallel machines.
Task: Process each job j nonpreemptively for pj time units on one of the
m machines. Minimize the makespan.

In other words, we consider Pm||Cmax (or P||Cmax if m is part of the input)

Remember:

List scheduling in arbitrary order is
(
2− 1

m

)
-approximation

algorithm.

List scheduling in LPT order is a
(4
3
− 1

3m

)
-approximation algorithm.

The analysis of both results relies on the fact that

Cmax ≤
(
1− 1

m

)
p` + 1

m

n∑
j=1

pj ≤
(
1− 1

m

)
p` + C ∗max

where ` is a job with maximal completion time C` = Cmax.

G. Sagnol 3- Rounding Data and Dynamic Programming 9 / 19

Scheduling Jobs on Identical Parallel Machines
Given: n jobs j = 1, . . . , n with processing times pj ≥ 0, j = 1, . . . , n, and
m identical parallel machines.
Task: Process each job j nonpreemptively for pj time units on one of the
m machines. Minimize the makespan.
In other words, we consider Pm||Cmax (or P||Cmax if m is part of the input)

Remember:

List scheduling in arbitrary order is
(
2− 1

m

)
-approximation

algorithm.

List scheduling in LPT order is a
(4
3
− 1

3m

)
-approximation algorithm.

The analysis of both results relies on the fact that

Cmax ≤
(
1− 1

m

)
p` + 1

m

n∑
j=1

pj ≤
(
1− 1

m

)
p` + C ∗max

where ` is a job with maximal completion time C` = Cmax.

G. Sagnol 3- Rounding Data and Dynamic Programming 9 / 19

Scheduling Jobs on Identical Parallel Machines
Given: n jobs j = 1, . . . , n with processing times pj ≥ 0, j = 1, . . . , n, and
m identical parallel machines.
Task: Process each job j nonpreemptively for pj time units on one of the
m machines. Minimize the makespan.
In other words, we consider Pm||Cmax (or P||Cmax if m is part of the input)

Remember:

List scheduling in arbitrary order is
(
2− 1

m

)
-approximation

algorithm.

List scheduling in LPT order is a
(4
3
− 1

3m

)
-approximation algorithm.

The analysis of both results relies on the fact that

Cmax ≤
(
1− 1

m

)
p` + 1

m

n∑
j=1

pj ≤
(
1− 1

m

)
p` + C ∗max

where ` is a job with maximal completion time C` = Cmax.
G. Sagnol 3- Rounding Data and Dynamic Programming 9 / 19

PTAS for Constant Number of Machines
Let the number of machines m be constant and ε > 0 fixed.

Partition into short and long jobs:
A job ` is called short if p` ≤

ε

m

∑
j

pj ; otherwise, job ` is long.

Notice: There are at most bm/εc long jobs and this number is constant.

Algorithm Aε

1 enumerate all schedules of long jobs; choose one with min
makespan;

2 extend this schedule by using list scheduling for short jobs;

Theorem 3.4
Algorithm Aε runs in polynomial time for the problem Pm||Cmax and
produces a schedule of makespan at most (1+ ε) · C ∗max.

G. Sagnol 3- Rounding Data and Dynamic Programming 10 / 19

PTAS for Constant Number of Machines
Let the number of machines m be constant and ε > 0 fixed.

Partition into short and long jobs:
A job ` is called short if p` ≤

ε

m

∑
j

pj ; otherwise, job ` is long.

Notice: There are at most bm/εc long jobs and this number is constant.

Algorithm Aε

1 enumerate all schedules of long jobs; choose one with min
makespan;

2 extend this schedule by using list scheduling for short jobs;

Theorem 3.4
Algorithm Aε runs in polynomial time for the problem Pm||Cmax and
produces a schedule of makespan at most (1+ ε) · C ∗max.

G. Sagnol 3- Rounding Data and Dynamic Programming 10 / 19

PTAS for Constant Number of Machines
Let the number of machines m be constant and ε > 0 fixed.

Partition into short and long jobs:
A job ` is called short if p` ≤

ε

m

∑
j

pj ; otherwise, job ` is long.

Notice: There are at most bm/εc long jobs and this number is constant.

Algorithm Aε

1 enumerate all schedules of long jobs; choose one with min
makespan;

2 extend this schedule by using list scheduling for short jobs;

Theorem 3.4
Algorithm Aε runs in polynomial time for the problem Pm||Cmax and
produces a schedule of makespan at most (1+ ε) · C ∗max.

G. Sagnol 3- Rounding Data and Dynamic Programming 10 / 19

PTAS for Constant Number of Machines
Let the number of machines m be constant and ε > 0 fixed.

Partition into short and long jobs:
A job ` is called short if p` ≤

ε

m

∑
j

pj ; otherwise, job ` is long.

Notice: There are at most bm/εc long jobs and this number is constant.

Algorithm Aε

1 enumerate all schedules of long jobs; choose one with min
makespan;

2 extend this schedule by using list scheduling for short jobs;

Theorem 3.4
Algorithm Aε runs in polynomial time for the problem Pm||Cmax and
produces a schedule of makespan at most (1+ ε) · C ∗max.

G. Sagnol 3- Rounding Data and Dynamic Programming 10 / 19

PTAS for Constant Number of Machines
Let the number of machines m be constant and ε > 0 fixed.

Partition into short and long jobs:
A job ` is called short if p` ≤

ε

m

∑
j

pj ; otherwise, job ` is long.

Notice: There are at most bm/εc long jobs and this number is constant.

Algorithm Aε

1 enumerate all schedules of long jobs; choose one with min
makespan;

2 extend this schedule by using list scheduling for short jobs;

Theorem 3.4
Algorithm Aε runs in polynomial time for the problem Pm||Cmax and
produces a schedule of makespan at most (1+ ε) · C ∗max.

G. Sagnol 3- Rounding Data and Dynamic Programming 10 / 19

PTAS for Constant Number of Machines
Let the number of machines m be constant and ε > 0 fixed.

Partition into short and long jobs:
A job ` is called short if p` ≤

ε

m

∑
j

pj ; otherwise, job ` is long.

Notice: There are at most bm/εc long jobs and this number is constant.

Algorithm Aε

1 enumerate all schedules of long jobs; choose one with min
makespan;

2 extend this schedule by using list scheduling for short jobs;

Theorem 3.4
Algorithm Aε runs in polynomial time for the problem Pm||Cmax and
produces a schedule of makespan at most (1+ ε) · C ∗max.

G. Sagnol 3- Rounding Data and Dynamic Programming 10 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.

Main ideas:
An approximate schedule for the long jobs suffices.
Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.
For each long job j let p̄j := bpj/(ε2T)c · ε2T .
Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;
3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.
Main ideas:

An approximate schedule for the long jobs suffices.

Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.
For each long job j let p̄j := bpj/(ε2T)c · ε2T .
Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;
3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.
Main ideas:

An approximate schedule for the long jobs suffices.
Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.
For each long job j let p̄j := bpj/(ε2T)c · ε2T .
Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;
3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.
Main ideas:

An approximate schedule for the long jobs suffices.
Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.
For each long job j let p̄j := bpj/(ε2T)c · ε2T .
Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;
3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.
Main ideas:

An approximate schedule for the long jobs suffices.
Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.

For each long job j let p̄j := bpj/(ε2T)c · ε2T .
Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;
3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.
Main ideas:

An approximate schedule for the long jobs suffices.
Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.
For each long job j let p̄j := bpj/(ε2T)c · ε2T .

Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;
3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.
Main ideas:

An approximate schedule for the long jobs suffices.
Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.
For each long job j let p̄j := bpj/(ε2T)c · ε2T .
Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;
3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.
Main ideas:

An approximate schedule for the long jobs suffices.
Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.
For each long job j let p̄j := bpj/(ε2T)c · ε2T .
Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;
3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.
Main ideas:

An approximate schedule for the long jobs suffices.
Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.
For each long job j let p̄j := bpj/(ε2T)c · ε2T .
Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;

3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

PTAS for Arbitrary Number of Machines (P ||Cmax)
Now, m is no longer constant but part of the input. Let ε > 0 be fixed.
Main ideas:

An approximate schedule for the long jobs suffices.
Round long jobs such that there are constantly many different sizes.

Let T be a target length for the schedule (T ≥ max
j

pj , T ≥
1

m

∑
j

pj).

Short and long jobs:
A job j is called short if pj ≤ εT ; otherwise, job j is long.
For each long job j let p̄j := bpj/(ε2T)c · ε2T .
Notice that there are at most b1/ε2c different rounded job sizes p̄j .

Algorithm Bε

1 find schedule for all long jobs with rounded sizes p̄j of makespan ≤ T ;
if no such schedule exists, then return “T too small”;

2 interpret as a schedule for the long jobs with original sizes pj ;
3 extend this schedule by using list scheduling for short jobs;

G. Sagnol 3- Rounding Data and Dynamic Programming 11 / 19

Analysis and Results

Theorem 3.5
For a given problem instance and a target length T , Algorithm Bε either
correctly decides that there is no schedule of length ≤ T or it finds a
schedule of length ≤ (1 + ε) · T .

Proof:. . .
Remarks:

According to Theorem 3.5 Algorithm Bε is a (1 + ε)-approximate
decision procedure.

Together with a binary search framework for the optimal makespan
T = C ∗max, we get a polynomial-time approximation scheme (PTAS).

Theorem 3.6
There is a polynomial-time approximation scheme for P||Cmax.

G. Sagnol 3- Rounding Data and Dynamic Programming 12 / 19

Analysis and Results

Theorem 3.5
For a given problem instance and a target length T , Algorithm Bε either
correctly decides that there is no schedule of length ≤ T or it finds a
schedule of length ≤ (1 + ε) · T .

Proof:. . .

Remarks:
According to Theorem 3.5 Algorithm Bε is a (1 + ε)-approximate
decision procedure.

Together with a binary search framework for the optimal makespan
T = C ∗max, we get a polynomial-time approximation scheme (PTAS).

Theorem 3.6
There is a polynomial-time approximation scheme for P||Cmax.

G. Sagnol 3- Rounding Data and Dynamic Programming 12 / 19

Analysis and Results

Theorem 3.5
For a given problem instance and a target length T , Algorithm Bε either
correctly decides that there is no schedule of length ≤ T or it finds a
schedule of length ≤ (1 + ε) · T .

Proof:. . .
Remarks:

According to Theorem 3.5 Algorithm Bε is a (1 + ε)-approximate
decision procedure.

Together with a binary search framework for the optimal makespan
T = C ∗max, we get a polynomial-time approximation scheme (PTAS).

Theorem 3.6
There is a polynomial-time approximation scheme for P||Cmax.

G. Sagnol 3- Rounding Data and Dynamic Programming 12 / 19

Analysis and Results

Theorem 3.5
For a given problem instance and a target length T , Algorithm Bε either
correctly decides that there is no schedule of length ≤ T or it finds a
schedule of length ≤ (1 + ε) · T .

Proof:. . .
Remarks:

According to Theorem 3.5 Algorithm Bε is a (1 + ε)-approximate
decision procedure.

Together with a binary search framework for the optimal makespan
T = C ∗max, we get a polynomial-time approximation scheme (PTAS).

Theorem 3.6
There is a polynomial-time approximation scheme for P||Cmax.

G. Sagnol 3- Rounding Data and Dynamic Programming 12 / 19

Analysis and Results

Theorem 3.5
For a given problem instance and a target length T , Algorithm Bε either
correctly decides that there is no schedule of length ≤ T or it finds a
schedule of length ≤ (1 + ε) · T .

Proof:. . .
Remarks:

According to Theorem 3.5 Algorithm Bε is a (1 + ε)-approximate
decision procedure.

Together with a binary search framework for the optimal makespan
T = C ∗max, we get a polynomial-time approximation scheme (PTAS).

Theorem 3.6
There is a polynomial-time approximation scheme for P||Cmax.

G. Sagnol 3- Rounding Data and Dynamic Programming 12 / 19

Existence of an FPTAS
We state the next theorems without proof:

Theorem 3.7
There is a fully polynomial-time approximation scheme for the problem
of minimizing the makespan on constantly many identical parallel
machines: Pm||Cmax.

Theorem 3.8
If the number of machines is part of the input, i.e.for the problem
P||Cmax, there is no FPTAS, unless P = NP .

Remark: More generally, a strongly NP-hard optimization problem whose
objective function values are integral and polynomially bounded in the
numbers occurring in the input does not have an FPTAS, unless P = NP .

G. Sagnol 3- Rounding Data and Dynamic Programming 13 / 19

Existence of an FPTAS
We state the next theorems without proof:

Theorem 3.7
There is a fully polynomial-time approximation scheme for the problem
of minimizing the makespan on constantly many identical parallel
machines: Pm||Cmax.

Theorem 3.8
If the number of machines is part of the input, i.e.for the problem
P||Cmax, there is no FPTAS, unless P = NP .

Remark: More generally, a strongly NP-hard optimization problem whose
objective function values are integral and polynomially bounded in the
numbers occurring in the input does not have an FPTAS, unless P = NP .

G. Sagnol 3- Rounding Data and Dynamic Programming 13 / 19

Existence of an FPTAS
We state the next theorems without proof:

Theorem 3.7
There is a fully polynomial-time approximation scheme for the problem
of minimizing the makespan on constantly many identical parallel
machines: Pm||Cmax.

Theorem 3.8
If the number of machines is part of the input, i.e.for the problem
P||Cmax, there is no FPTAS, unless P = NP .

Remark: More generally, a strongly NP-hard optimization problem whose
objective function values are integral and polynomially bounded in the
numbers occurring in the input does not have an FPTAS, unless P = NP .

G. Sagnol 3- Rounding Data and Dynamic Programming 13 / 19

Outline

1 Knapsack Problem

2 Scheduling Jobs on Identical Parallel Machines

3 Bin Packing

G. Sagnol 3- Rounding Data and Dynamic Programming 14 / 19

Bin-Packing Problem
Given: n items with positive sizes a1, . . . , an ≤ 1.
Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9
Unless P = NP , there is no α-approximation algorithm for the
Bin-Packing Problem for any α < 3/2.

Proof: Reduce the Partition Problem.

Algorithm Next-Fit
consider items in arbitrary order; start to pack them into the first bin;
whenever next item does not fit into the current bin, open a new bin;

Theorem 3.10
Algorithm Next-Fit runs in O(n) time and uses at most 2 · OPT − 1 bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 15 / 19

Bin-Packing Problem
Given: n items with positive sizes a1, . . . , an ≤ 1.
Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9
Unless P = NP , there is no α-approximation algorithm for the
Bin-Packing Problem for any α < 3/2.

Proof: Reduce the Partition Problem.

Algorithm Next-Fit
consider items in arbitrary order; start to pack them into the first bin;
whenever next item does not fit into the current bin, open a new bin;

Theorem 3.10
Algorithm Next-Fit runs in O(n) time and uses at most 2 · OPT − 1 bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 15 / 19

Bin-Packing Problem
Given: n items with positive sizes a1, . . . , an ≤ 1.
Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9
Unless P = NP , there is no α-approximation algorithm for the
Bin-Packing Problem for any α < 3/2.

Proof: Reduce the Partition Problem.

Algorithm Next-Fit
consider items in arbitrary order; start to pack them into the first bin;
whenever next item does not fit into the current bin, open a new bin;

Theorem 3.10
Algorithm Next-Fit runs in O(n) time and uses at most 2 · OPT − 1 bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 15 / 19

Bin-Packing Problem
Given: n items with positive sizes a1, . . . , an ≤ 1.
Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9
Unless P = NP , there is no α-approximation algorithm for the
Bin-Packing Problem for any α < 3/2.

Proof: Reduce the Partition Problem.

Algorithm Next-Fit
consider items in arbitrary order; start to pack them into the first bin;
whenever next item does not fit into the current bin, open a new bin;

Theorem 3.10
Algorithm Next-Fit runs in O(n) time and uses at most 2 · OPT − 1 bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 15 / 19

Bin-Packing Problem
Given: n items with positive sizes a1, . . . , an ≤ 1.
Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9
Unless P = NP , there is no α-approximation algorithm for the
Bin-Packing Problem for any α < 3/2.

Proof: Reduce the Partition Problem.

Algorithm Next-Fit
consider items in arbitrary order; start to pack them into the first bin;
whenever next item does not fit into the current bin, open a new bin;

Theorem 3.10
Algorithm Next-Fit runs in O(n) time and uses at most 2 · OPT − 1 bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 15 / 19

First-Fit Heuristics for Bin-Packing
Algorithm First-Fit

consider items in arbitrary order; open one bin;
pack the next item into the first open bin in which it fits;
if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Dósa, Sgall 2013)
Algorithm First-Fit runs in polynomial time; it uses at most

⌊17
10

OPT
⌋
bins.

Algorithm First-Fit-Decreasing
Same as First-Fit, but consider items in order of decreasing size

Theorem 3.12 (Dósa 2007)
Algorithm First-Fit-Decreasing uses at most 11

9
OPT +

2

3
bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 16 / 19

First-Fit Heuristics for Bin-Packing
Algorithm First-Fit

consider items in arbitrary order; open one bin;
pack the next item into the first open bin in which it fits;
if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Dósa, Sgall 2013)
Algorithm First-Fit runs in polynomial time; it uses at most

⌊17
10

OPT
⌋
bins.

Algorithm First-Fit-Decreasing
Same as First-Fit, but consider items in order of decreasing size

Theorem 3.12 (Dósa 2007)
Algorithm First-Fit-Decreasing uses at most 11

9
OPT +

2

3
bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 16 / 19

First-Fit Heuristics for Bin-Packing
Algorithm First-Fit

consider items in arbitrary order; open one bin;
pack the next item into the first open bin in which it fits;
if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Dósa, Sgall 2013)
Algorithm First-Fit runs in polynomial time; it uses at most

⌊17
10

OPT
⌋
bins.

Algorithm First-Fit-Decreasing
Same as First-Fit, but consider items in order of decreasing size

Theorem 3.12 (Dósa 2007)
Algorithm First-Fit-Decreasing uses at most 11

9
OPT +

2

3
bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 16 / 19

First-Fit Heuristics for Bin-Packing
Algorithm First-Fit

consider items in arbitrary order; open one bin;
pack the next item into the first open bin in which it fits;
if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Dósa, Sgall 2013)
Algorithm First-Fit runs in polynomial time; it uses at most

⌊17
10

OPT
⌋
bins.

Algorithm First-Fit-Decreasing
Same as First-Fit, but consider items in order of decreasing size

Theorem 3.12 (Dósa 2007)
Algorithm First-Fit-Decreasing uses at most 11

9
OPT +

2

3
bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 16 / 19

First-Fit Heuristics for Bin-Packing
Algorithm First-Fit

consider items in arbitrary order; open one bin;
pack the next item into the first open bin in which it fits;
if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Dósa, Sgall 2013)
Algorithm First-Fit runs in polynomial time; it uses at most

⌊17
10

OPT
⌋
bins.

Algorithm First-Fit-Decreasing
Same as First-Fit, but consider items in order of decreasing size

Theorem 3.12 (Dósa 2007)
Algorithm First-Fit-Decreasing uses at most 11

9
OPT +

2

3
bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 16 / 19

Towards an Asymptotic PTAS for Bin-Packing

Definition 3.13
An asymptotic polynomial-time approximation scheme (APTAS) is a
family of polynomial-time algorithms (Aε)ε>0 along with a constant c
such that Aε returns a solution of value at most (1 + ε)OPT + c .

Lemma 3.14
Any packing of all items of size ≥ γ into ` bins can be greedily extended
to a packing of all items into at most max

{
`,

1

1− γ
SIZE(I) + 1

}
bins.

Proof:. . .
Remarks:

For γ = ε/2, the lemma yields a packing of all items into at most
max

{
`, (1 + ε)OPT + 1

}
bins.

In the following we can thus restrict to items of size at least ε/2.

G. Sagnol 3- Rounding Data and Dynamic Programming 17 / 19

Towards an Asymptotic PTAS for Bin-Packing

Definition 3.13
An asymptotic polynomial-time approximation scheme (APTAS) is a
family of polynomial-time algorithms (Aε)ε>0 along with a constant c
such that Aε returns a solution of value at most (1 + ε)OPT + c .

Lemma 3.14
Any packing of all items of size ≥ γ into ` bins can be greedily extended
to a packing of all items into at most max

{
`,

1

1− γ
SIZE(I) + 1

}
bins.

Proof:. . .
Remarks:

For γ = ε/2, the lemma yields a packing of all items into at most
max

{
`, (1 + ε)OPT + 1

}
bins.

In the following we can thus restrict to items of size at least ε/2.

G. Sagnol 3- Rounding Data and Dynamic Programming 17 / 19

Towards an Asymptotic PTAS for Bin-Packing

Definition 3.13
An asymptotic polynomial-time approximation scheme (APTAS) is a
family of polynomial-time algorithms (Aε)ε>0 along with a constant c
such that Aε returns a solution of value at most (1 + ε)OPT + c .

Lemma 3.14
Any packing of all items of size ≥ γ into ` bins can be greedily extended
to a packing of all items into at most max

{
`,

1

1− γ
SIZE(I) + 1

}
bins.

Proof:. . .

Remarks:
For γ = ε/2, the lemma yields a packing of all items into at most
max

{
`, (1 + ε)OPT + 1

}
bins.

In the following we can thus restrict to items of size at least ε/2.

G. Sagnol 3- Rounding Data and Dynamic Programming 17 / 19

Towards an Asymptotic PTAS for Bin-Packing

Definition 3.13
An asymptotic polynomial-time approximation scheme (APTAS) is a
family of polynomial-time algorithms (Aε)ε>0 along with a constant c
such that Aε returns a solution of value at most (1 + ε)OPT + c .

Lemma 3.14
Any packing of all items of size ≥ γ into ` bins can be greedily extended
to a packing of all items into at most max

{
`,

1

1− γ
SIZE(I) + 1

}
bins.

Proof:. . .
Remarks:

For γ = ε/2, the lemma yields a packing of all items into at most
max

{
`, (1 + ε)OPT + 1

}
bins.

In the following we can thus restrict to items of size at least ε/2.
G. Sagnol 3- Rounding Data and Dynamic Programming 17 / 19

Linear Grouping Scheme
For given instance I and parameter k ∈ Z>0, define a new instance I ′:

1 sort the items of instance I such that a1 ≥ a2 ≥ · · · ≥ an;
2 instance I ′ has n − k items of size a′i := adi/ke·k+1, i = 1, . . . , n − k ;

ai

k = 4

a′i

Remarks
Instance I ′ has at most bn/kc distinct item sizes.
It holds that ai+k ≤ a′i ≤ ai for i = 1, . . . , n − k .

Lemma 3.15
Any packing of I ′ can be easily turned into a packing of I with at most k
additional bins. Moreover, OPT (I ′) ≤ OPT (I) ≤ OPT (I ′) + k .

G. Sagnol 3- Rounding Data and Dynamic Programming 18 / 19

Linear Grouping Scheme
For given instance I and parameter k ∈ Z>0, define a new instance I ′:

1 sort the items of instance I such that a1 ≥ a2 ≥ · · · ≥ an;
2 instance I ′ has n − k items of size a′i := adi/ke·k+1, i = 1, . . . , n − k ;

ai

k = 4

a′i

Remarks
Instance I ′ has at most bn/kc distinct item sizes.
It holds that ai+k ≤ a′i ≤ ai for i = 1, . . . , n − k .

Lemma 3.15
Any packing of I ′ can be easily turned into a packing of I with at most k
additional bins. Moreover, OPT (I ′) ≤ OPT (I) ≤ OPT (I ′) + k .

G. Sagnol 3- Rounding Data and Dynamic Programming 18 / 19

Linear Grouping Scheme
For given instance I and parameter k ∈ Z>0, define a new instance I ′:

1 sort the items of instance I such that a1 ≥ a2 ≥ · · · ≥ an;
2 instance I ′ has n − k items of size a′i := adi/ke·k+1, i = 1, . . . , n − k ;

ai
k = 4

a′i

Remarks
Instance I ′ has at most bn/kc distinct item sizes.
It holds that ai+k ≤ a′i ≤ ai for i = 1, . . . , n − k .

Lemma 3.15
Any packing of I ′ can be easily turned into a packing of I with at most k
additional bins. Moreover, OPT (I ′) ≤ OPT (I) ≤ OPT (I ′) + k .

G. Sagnol 3- Rounding Data and Dynamic Programming 18 / 19

Linear Grouping Scheme
For given instance I and parameter k ∈ Z>0, define a new instance I ′:

1 sort the items of instance I such that a1 ≥ a2 ≥ · · · ≥ an;
2 instance I ′ has n − k items of size a′i := adi/ke·k+1, i = 1, . . . , n − k ;

ai
k = 4

a′i

Remarks
Instance I ′ has at most bn/kc distinct item sizes.
It holds that ai+k ≤ a′i ≤ ai for i = 1, . . . , n − k .

Lemma 3.15
Any packing of I ′ can be easily turned into a packing of I with at most k
additional bins. Moreover, OPT (I ′) ≤ OPT (I) ≤ OPT (I ′) + k .

G. Sagnol 3- Rounding Data and Dynamic Programming 18 / 19

Linear Grouping Scheme
For given instance I and parameter k ∈ Z>0, define a new instance I ′:

1 sort the items of instance I such that a1 ≥ a2 ≥ · · · ≥ an;
2 instance I ′ has n − k items of size a′i := adi/ke·k+1, i = 1, . . . , n − k ;

ai
k = 4

a′i

Remarks
Instance I ′ has at most bn/kc distinct item sizes.
It holds that ai+k ≤ a′i ≤ ai for i = 1, . . . , n − k .

Lemma 3.15
Any packing of I ′ can be easily turned into a packing of I with at most k
additional bins. Moreover, OPT (I ′) ≤ OPT (I) ≤ OPT (I ′) + k .

G. Sagnol 3- Rounding Data and Dynamic Programming 18 / 19

Linear Grouping Scheme
For given instance I and parameter k ∈ Z>0, define a new instance I ′:

1 sort the items of instance I such that a1 ≥ a2 ≥ · · · ≥ an;
2 instance I ′ has n − k items of size a′i := adi/ke·k+1, i = 1, . . . , n − k ;

ai
k = 4

a′i

Remarks
Instance I ′ has at most bn/kc distinct item sizes.
It holds that ai+k ≤ a′i ≤ ai for i = 1, . . . , n − k .

Lemma 3.15
Any packing of I ′ can be easily turned into a packing of I with at most k
additional bins. Moreover, OPT (I ′) ≤ OPT (I) ≤ OPT (I ′) + k .

G. Sagnol 3- Rounding Data and Dynamic Programming 18 / 19

APTAS for Bin-Packing

Ingredients:
All items have size at least ε/2 such that SIZE(I) ≥ εn/2.

W.l.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ε2 items. . .).
Set k := bε · SIZE(I)c and apply the linear grouping scheme.
Resulting instance I ′ has at most n/k ≤ 4/ε2 distinct item sizes.
Thus, instance I ′ can be solved optimally in polynomial time.

Theorem 3.16
For any ε > 0, there is a polynomial-time algorithm for the
Bin-Packing Problem that computes a solution with at most
(1+ ε) · OPT + 1 bins.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 19 / 19

APTAS for Bin-Packing

Ingredients:
All items have size at least ε/2 such that SIZE(I) ≥ εn/2.
W.l.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ε2 items. . .).

Set k := bε · SIZE(I)c and apply the linear grouping scheme.
Resulting instance I ′ has at most n/k ≤ 4/ε2 distinct item sizes.
Thus, instance I ′ can be solved optimally in polynomial time.

Theorem 3.16
For any ε > 0, there is a polynomial-time algorithm for the
Bin-Packing Problem that computes a solution with at most
(1+ ε) · OPT + 1 bins.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 19 / 19

APTAS for Bin-Packing

Ingredients:
All items have size at least ε/2 such that SIZE(I) ≥ εn/2.
W.l.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ε2 items. . .).
Set k := bε · SIZE(I)c and apply the linear grouping scheme.

Resulting instance I ′ has at most n/k ≤ 4/ε2 distinct item sizes.
Thus, instance I ′ can be solved optimally in polynomial time.

Theorem 3.16
For any ε > 0, there is a polynomial-time algorithm for the
Bin-Packing Problem that computes a solution with at most
(1+ ε) · OPT + 1 bins.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 19 / 19

APTAS for Bin-Packing

Ingredients:
All items have size at least ε/2 such that SIZE(I) ≥ εn/2.
W.l.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ε2 items. . .).
Set k := bε · SIZE(I)c and apply the linear grouping scheme.
Resulting instance I ′ has at most n/k ≤ 4/ε2 distinct item sizes.

Thus, instance I ′ can be solved optimally in polynomial time.

Theorem 3.16
For any ε > 0, there is a polynomial-time algorithm for the
Bin-Packing Problem that computes a solution with at most
(1+ ε) · OPT + 1 bins.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 19 / 19

APTAS for Bin-Packing

Ingredients:
All items have size at least ε/2 such that SIZE(I) ≥ εn/2.
W.l.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ε2 items. . .).
Set k := bε · SIZE(I)c and apply the linear grouping scheme.
Resulting instance I ′ has at most n/k ≤ 4/ε2 distinct item sizes.
Thus, instance I ′ can be solved optimally in polynomial time.

Theorem 3.16
For any ε > 0, there is a polynomial-time algorithm for the
Bin-Packing Problem that computes a solution with at most
(1+ ε) · OPT + 1 bins.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 19 / 19

APTAS for Bin-Packing

Ingredients:
All items have size at least ε/2 such that SIZE(I) ≥ εn/2.
W.l.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ε2 items. . .).
Set k := bε · SIZE(I)c and apply the linear grouping scheme.
Resulting instance I ′ has at most n/k ≤ 4/ε2 distinct item sizes.
Thus, instance I ′ can be solved optimally in polynomial time.

Theorem 3.16
For any ε > 0, there is a polynomial-time algorithm for the
Bin-Packing Problem that computes a solution with at most
(1+ ε) · OPT + 1 bins.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 19 / 19

APTAS for Bin-Packing

Ingredients:
All items have size at least ε/2 such that SIZE(I) ≥ εn/2.
W.l.o.g.: ε · SIZE(I) ≥ 1 (otherwise, there are at most 2/ε2 items. . .).
Set k := bε · SIZE(I)c and apply the linear grouping scheme.
Resulting instance I ′ has at most n/k ≤ 4/ε2 distinct item sizes.
Thus, instance I ′ can be solved optimally in polynomial time.

Theorem 3.16
For any ε > 0, there is a polynomial-time algorithm for the
Bin-Packing Problem that computes a solution with at most
(1+ ε) · OPT + 1 bins.

Proof:. . .

G. Sagnol 3- Rounding Data and Dynamic Programming 19 / 19

	Knapsack Problem
	Scheduling Jobs on Identical Parallel Machines
	Bin Packing

