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Knapsack Problem
Given: nitems | = {1,..., n}, values v; € Z~¢ and sizes s; € Z~q, i € I;
knapsack of size B € Z~( (assume w.l.o.g.s; < B, forall i € /)

Task: find subset of items S C [ with Z s;i < B maximizing Z vi.
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Remarks

m The Knapsack Problem is NP-hard (reduction from Partition).

B It candbessolved in bseudo-poly Rontightd mremaricRaeamine 3/19



Dynamic Program for Knapsack Problem (1/3)

m Denote by J(i, b) the maximum value that can be packed in a
knapsack of capacity b < B, using only a subset of items
TCA{1,...,i}:

J(i, b) = max{v(T) . s(TY< b, TC {1,...,/}}.
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Dynamic Program for Knapsack Problem (1/3)

m Denote by J(i, b) the maximum value that can be packed in a
knapsack of capacity b < B, using only a subset of items
TCA{1,...,i}:

J(i, b) = max{v(T) . s(TY< b, TC {1,...,/}}.

m The values of J(i, b) can be computed recursively:

0 if i =0;
J(i,by=<¢ J(i—1,b) if s; > b;
max(J(i —1,b),J(i—1,b—s;)+v;)  otherwise.

m Optimal solution OPT = J(n, B) can be computed by “filling” the
table. Hence, the complexity of this algorithm is O(nB).

m However, this is not a polytime algorithm, as the input can be
described with only (B) := log, B bits.
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Dynamic Program for Knapsack Problem (2/3)
m To construct a polynomial time approximation algorithm, we need

another dynamic program, that enumerates the different values
w < V =37, v that a knapsack can achieve.

G. Sagnol 3- Rounding Data and Dynamic Programming 5/19



Dynamic Program for Knapsack Problem (2/3)

m To construct a polynomial time approximation algorithm, we need
another dynamic program, that enumerates the different values
w < V =37, v that a knapsack can achieve.

m Let G(i, w) denote the minimum capacity of a knapsack that can
hold a value at least w, using only a subset of items 7 C {1,...,i}:

G(i,w) = min{s(T) W(T)>w, TC {1,...,i}}.

G. Sagnol 3- Rounding Data and Dynamic Programming 5/19



Dynamic Program for Knapsack Problem (2/3)

m To construct a polynomial time approximation algorithm, we need
another dynamic program, that enumerates the different values
w < V =37, v that a knapsack can achieve.

m Let G(i, w) denote the minimum capacity of a knapsack that can
hold a value at least w, using only a subset of items 7 C {1,...,i}:

G(i,w) = min{s(T) W(T)>w, TC {1,...,i}}.

m As before, there is a recursive formula to compute the G(i, w)’s, and
OPT is the largest w such that G(n, w) < B. The time complexity of
this algorithm is O(nV).

G. Sagnol 3- Rounding Data and Dynamic Programming 5/19



Dynamic Program for Knapsack Problem (2/3)

To construct a polynomial time approximation algorithm, we need
another dynamic program, that enumerates the different values
w < V =37, v that a knapsack can achieve.

Let G(/, w) denote the minimum capacity of a knapsack that can
hold a value at least w, using only a subset of items 7 C {1,...,i}:

G(i,w) = min{s(T) W(T)>w, TC {1,...,i}}.

As before, there is a recursive formula to compute the G(i, w)’s, and
OPT is the largest w such that G(n, w) < B. The time complexity of
this algorithm is O(nV).

In fact, we can make the best of both worlds and get a DP of
complexity O(nmin(B, V')), by using a notion of dominance.

G. Sagnol 3- Rounding Data and Dynamic Programming 5/19



Dynamic Program for Knapsack Problem (2/3)

To construct a polynomial time approximation algorithm, we need
another dynamic program, that enumerates the different values
w < V =37, v that a knapsack can achieve.

Let G(/, w) denote the minimum capacity of a knapsack that can
hold a value at least w, using only a subset of items 7 C {1,...,i}:

G(i,w) = min{s(T) W(T)>w, TC {1,...,i}}.

As before, there is a recursive formula to compute the G(i, w)’s, and
OPT is the largest w such that G(n, w) < B. The time complexity of
this algorithm is O(nV).

In fact, we can make the best of both worlds and get a DP of
complexity O(nmin(B, V')), by using a notion of dominance.

We identify a subset of items T with a pair (t,w) = (s(T), v(T)).
We say that a pair (t1, wy) is dominated by (tp, wy) if t; > t> and

w1 < wo, and (ty, wy) # (t2, wa) .
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Dynamic Program for Knapsack Problem (3/3)

Forj=0,1,...,nlet A(j) denote the set of feasible non-dominated pairs
given by all subsets S C {1,...,/}.
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Dynamic Program for Knapsack Problem (3/3)

Forj=0,1,...,nlet A(j) denote the set of feasible non-dominated pairs
given by all subsets S C {1,...,/}.

A(0) == {(0,0)};

forj=1,...,nlet A(j) .= A( —1);

for each (t,w) € A(j — 1)

if t +s; < Bthenadd (t + sj, w + vj) to A(j);
remove dominated pairs from A());

A return max{w : (t,w) € A(n)};
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Dynamic Program for Knapsack Problem (3/3)

Forj=0,1,...,nlet A(j) denote the set of feasible non-dominated pairs
given by all subsets S C {1,...,/}.

A(0) := {(0,0)};

forj=1,...,nlet A(j) == A( — 1);

foreach (t,w) € A(j — 1)

if t +s; < Bthenadd (t + sj, w + vj) to A(j);

remove dominated pairs from A());

A return max{w : (t,w) € A(n)};

Theorem 3.1
The dynamic program correctly computes the optimal value of the

knapsack problem in O(n - min{B, V'}) time where V := Z vi.
i=1
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Forj=0,1,...,nlet A(j) denote the set of feasible non-dominated pairs
given by all subsets S C {1,...,/}.

A(0) == {(0,0)};

forj=1,...,nlet A(j) == A( — 1);

foreach (t,w) € A(j — 1)

if t +s; < Bthenadd (t + sj, w + vj) to A(j);
remove dominated pairs from A());

A return max{w : (t,w) € A(n)};

Theorem 3.1
The dynamic program correctly computes the optimal value of the

knapsack problem in O(n - min{B, V'}) time where V := Z vi.
i=1

Remark: An optimal subset S C /| can be obtained by backtracking.
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FPTAS for the Knapsack Problem

Definition 3.2 (FPTAS)

A fully polynomial-time approximation scheme is a PTAS (A.):~0
such that the running time of A. is bounded by a polynomial in 1/e.
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solve knapsack instance with values v/ by dynamic
programming;
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FPTAS for the Knapsack Problem

Definition 3.2 (FPTAS)

A fully polynomial-time approximation scheme is a PTAS (A.):~0
such that the running time of A. is bounded by a polynomial in 1/e.

FPTAS for Knapsack Problem
let M .= maxvi; 1= e M/n; vi:=|v;/u] foriel,
e

solve knapsack instance with values v/ by dynamic
programming;

Theorem 3.3

The algorithm above is a fully polynomial-time approximation
scheme for the Knapsack Problem.

Proof:...
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Scheduling Jobs on Identical Parallel Machines

Given: njobs j =1,..., n with processing times p; >0,/ =1,...,n,and
m identical parallel machines.

Task: Process each job j nonpreemptively for p; time units on one of the
m machines. Minimize the makespan.

G. Sagnol 3- Rounding Data and Dynamic Programming 9/19



Scheduling Jobs on Identical Parallel Machines
Given: njobs j =1,..., n with processing times p; >0,/ =1,...,n,and
m identical parallel machines.

Task: Process each job j nonpreemptively for p; time units on one of the
m machines. Minimize the makespan.
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Scheduling Jobs on Identical Parallel Machines
Given: njobs j =1,..., n with processing times p; >0,/ =1,...,n,and
m identical parallel machines.

Task: Process each job j nonpreemptively for p; time units on one of the
m machines. Minimize the makespan.

In other words, we consider Pm||Cy.x (or P||Crax if mis part of the input)

Remember:

1
m List scheduling in arbitrary order is (2 — —)-approximation
m
algorithm.

4
m List scheduling in LPT order is a ( )-approximation algorithm.

3 3m
m The analysis of both results relies on the fact that

Cmax_( p€+1zpj 1_*p€+cr>’r<13x

where ¢ is a job with maximal completlon time C; = Crax-
G. Sagnol 3- Rounding Data and Dynamic Programming 9/19



PTAS for Constant Number of Machines

Let the number of machines m be constant and ¢ > 0 fixed.
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PTAS for Constant Number of Machines
Let the number of machines m be constant and £ > 0 fixed.

Partition into short and long jobs:
m Ajob /s called short if p, < = >~ pj; otherwise, job £ is long.
m “
J

Notice: There are at most | m/c] long jobs and this number is constant.

Algorithm A,
enumerate all schedules of long jobs; choose one with min

makespan;
extend this schedule by using list scheduling for short jobs;

Theorem 3.4

Algorithm A, runs in polynomial time for the problem Pm||C,... and
produces a schedule of makespan at most (1 +¢) - C;..
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PTAS for Arbitrary Number of Machines (P|| Ciax)

Now, m is no longer constant but part of the input. Let ¢ > 0 be fixed.
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PTAS for Arbitrary Number of Machines (P|| Ciax)

Now, m is no longer constant but part of the input. Let ¢ > 0 be fixed.

Main ideas:
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m Round long jobs such that there are constantly many different sizes.

1
Let T be a target length for the schedule (T > maxp;, T > p. Z pj).
J )
J

Short and long jobs:
m Ajobis called short if p; < eT; otherwise, job j is long.
m For each long job j let p; := |p;/(¢°T)| - €*T.
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find schedule for all long jobs with rounded sizes p; of makespan < T;
if no such schedule exists, then return “T too small”;
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Analysis and Results

Theorem 3.5

For a given problem instance and a target length T, Algorithm B. either
correctly decides that there is no schedule of length < T orit finds a
schedule of length < (1 +¢)- T.
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Analysis and Results

Theorem 3.5

For a given problem instance and a target length T, Algorithm B. either
correctly decides that there is no schedule of length < T orit finds a
schedule of length < (1 +¢)- T.

Proof:.... O
Remarks:

m According to Theorem 3.5 Algorithm B: is a (1 + ¢)-approximate
decision procedure.

m Together with a binary search framework for the optimal makespan
T = C’ .., we get a polynomial-time approximation scheme (PTAS).

max?

Theorem 3.6

There is a polynomial-time approximation scheme for P|| C,ax.
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Existence of an FPTAS

We state the next theorems without proof:

Theorem 3.7

There is a fully polynomial-time approximation scheme for the problem
of minimizing the makespan on constantly many identical parallel
machines: Pm||Cyax.
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Existence of an FPTAS

We state the next theorems without proof:

Theorem 3.7

There is a fully polynomial-time approximation scheme for the problem
of minimizing the makespan on constantly many identical parallel
machines: Pm||Cyax.

Theorem 3.8

If the number of machines is part of the input, i.e.for the problem
P||Cmax, there is no FPTAS, unless P = NP.

Remark: More generally, a strongly NP-hard optimization problem whose
objective function values are integral and polynomially bounded in the
numbers occurring in the input does not have an FPTAS, unless P = NP.
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Bin-Packing Problem

Given: n items with positive sizes a;, ..., a, < 1.
Task: Pack the items into a minimal number of unit-size bins.
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Given: n items with positive sizes a;, ..., a, < 1.
Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9
Unless P = NP, there is no a-approximation algorithm for the
Bin-Packing Problem for any o < 3/2.
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Bin-Packing Problem
Given: n items with positive sizes a;, ..., a, < 1.

Task: Pack the items into a minimal number of unit-size bins.

Theorem 3.9

Unless P = NP, there is no a-approximation algorithm for the
Bin-Packing Problem for any o < 3/2.

Proof: Reduce the Partition Problem. O

Algorithm Next-Fit
m consider items in arbitrary order; start to pack them into the first bin;
m whenever next item does not fit into the current bin, open a new bin;

Theorem 3.10
Algorithm Next-Fit runs in O(n) time and uses at most 2 - OPT — 1 bins.
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First-Fit Heuristics for Bin-Packing
Algorithm First-Fit
m consider items in arbitrary order; open one bin;

m pack the next item into the first open bin in which it fits;
m if the item does not fit into any open bin, open a new bin;
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First-Fit Heuristics for Bin-Packing

Algorithm First-Fit
m consider items in arbitrary order; open one bin;
m pack the next item into the first open bin in which it fits;
m if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Ddsa, Sgall 2013)

. . . . . . 17 .
Algorithm First-Fit runs in polynomial time; it uses at most [EDPTJ bins.
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First-Fit Heuristics for Bin-Packing

Algorithm First-Fit
m consider items in arbitrary order; open one bin;
m pack the next item into the first open bin in which it fits;
m if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Ddsa, Sgall 2013)

. . . . . . 17 .
Algorithm First-Fit runs in polynomial time; it uses at most [EDPTJ bins.

Algorithm First-Fit-Decreasing
m Same as First-Fit, but consider items in order of decreasing size
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First-Fit Heuristics for Bin-Packing

Algorithm First-Fit
m consider items in arbitrary order; open one bin;
m pack the next item into the first open bin in which it fits;
m if the item does not fit into any open bin, open a new bin;

Theorem 3.11 (Ddsa, Sgall 2013)

. . . . . . 17 .
Algorithm First-Fit runs in polynomial time; it uses at most [EDPTJ bins.

Algorithm First-Fit-Decreasing
m Same as First-Fit, but consider items in order of decreasing size

Theorem 3.12 (Désa 2007)
Algorithm First-Fit-Decreasing uses at most 19—10PT + % bins.
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Towards an Asymptotic PTAS for Bin-Packing
Definition 3.13

An asymptotic polynomial-time approximation scheme (APTAS) is a
family of polynomial-time algorithms (A;).~0 along with a constant ¢
such that A. returns a solution of value at most (1 + €)0PT + c.

G. Sagnol 3- Rounding Data and Dynamic Programming 17 /19



Towards an Asymptotic PTAS for Bin-Packing
Definition 3.13

An asymptotic polynomial-time approximation scheme (APTAS) is a
family of polynomial-time algorithms (A:).~0 along with a constant ¢
such that A. returns a solution of value at most (1 + €)0PT + c.

Lemma 3.14

Any packing of all items of size > ~ into ¢ bins can be greedily extended
. . . 1 .
to a packing of all items into at most max{¥, ESIZE(I) + 1} bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 17 /19



Towards an Asymptotic PTAS for Bin-Packing
Definition 3.13

An asymptotic polynomial-time approximation scheme (APTAS) is a
family of polynomial-time algorithms (A;).~0 along with a constant ¢
such that A. returns a solution of value at most (1 + €)0PT + c.

Lemma 3.14

Any packing of all items of size > ~ into ¢ bins can be greedily extended

. . . 1 .
to a packing of all items into at most max{¥, ESIZE(I) + 1} bins.

Proof:.... O

G. Sagnol 3- Rounding Data and Dynamic Programming 17 /19



Towards an Asymptotic PTAS for Bin-Packing
Definition 3.13

An asymptotic polynomial-time approximation scheme (APTAS) is a
family of polynomial-time algorithms (A;).~0 along with a constant ¢
such that A. returns a solution of value at most (1 + €)0PT + c.

Lemma 3.14

Any packing of all items of size > ~ into ¢ bins can be greedily extended

. . . 1 .
to a packing of all items into at most max{¥, 1T}/SIZE(I) + 1} bins.

Proof:.... O
Remarks:

m For v = ¢/2, the lemma yields a packing of all items into at most
max{/, (1 4 )0PT + 1} bins.
m In the following we can thus restrict to items of size at least /2.
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Linear Grouping Scheme

For given instance / and parameter k € Zq, define a new instance /’:
sort the items of instance / such that a; > a» > --- > a,;
instance /" has n — k items of size a} := aAi/kk+1 I =1, ,n—k;
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Linear Grouping Scheme

For given instance / and parameter k € Zq, define a new instance /’:
sort the items of instance / such that a; > a» > --- > a,;
instance /" has n — k items of size a} := ap; /kquq1, i = 1,...,n— k;

HIlns..
/
% ||||||||||

Remarks
m Instance /’ has at most | n/k| distinct item sizes.
m ltholdsthata; , < af <afori=1,...,n— k.

ai k=4
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Linear Grouping Scheme

For given instance / and parameter k € Z-, define a new instance /’:

sort the items of instance / such that a; > a» > --- > a,;
instance /" has n — k items of size a} := ap; /kquq1, i = 1,...,n— k;

k=4
I,
al IRRIETY

Remarks
m Instance /” has at most | n/k| distinct item sizes.
m ltholdsthata; , < af <afori=1,...,n— k.

a;

Lemma 3.15

Any packing of /I’ can be easily turned into a packing of / with at most k
additional bins. Moreover, 0PT (/") < OPT (/) < OPT (/') + k.
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APTAS for Bin-Packing

Ingredients:
m All items have size at least £/2 such that SIZE(/) > en/2.
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APTAS for Bin-Packing

Ingredients:

m All items have size at least £/2 such that SIZE(/) > en/2.

m W.lo.g.: ¢ SIZE(/) > 1 (otherwise, there are at most 2/¢? items...).
m Set k := |e - SIZE(/)] and apply the linear grouping scheme.

m Resulting instance /’ has at most n/k < 4/&? distinct item sizes.

m Thus, instance I’ can be solved optimally in polynomial time.

Theorem 3.16

For any € > 0, there is a polynomial-time algorithm for the
Bin-Packing Problem that computes a solution with at most
(1+¢)-0PT + 1 bins.

G. Sagnol 3- Rounding Data and Dynamic Programming 19/19



APTAS for Bin-Packing

Ingredients:

m All items have size at least £/2 such that SIZE(/) > en/2.

m W.lo.g.: ¢ SIZE(/) > 1 (otherwise, there are at most 2/¢? items...).
m Set k := |e - SIZE(/)] and apply the linear grouping scheme.

m Resulting instance /’ has at most n/k < 4/&? distinct item sizes.

m Thus, instance I’ can be solved optimally in polynomial time.

Theorem 3.16

For any € > 0, there is a polynomial-time algorithm for the
Bin-Packing Problem that computes a solution with at most
(1+¢)-0PT + 1 bins.

Proof:... ]
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