## Approximation Algorithms (ADM III) 4- Deterministic Rounding of Linear Programs

**Guillaume Sagnol** 



## Outline

### **1** Minimizing Sum of Completion Times on a Single Machine

- 2 Minimizing Weighted Sum of Completion Times
- 3 Prize-Collecting Steiner Tree Problem
- 4 Uncapacitated Facility Location Problem
- 5 Bin Packing Revisited

Given: jobs with processing time  $p_j > 0$ , release date  $r_j \ge 0$ , j = 1, ..., n. Task: Schedule the jobs nonpreemptively on a single machine;

minimize the total completion time  $\sum_{i=1}^{n} C_i$ .

Given: jobs with processing time  $p_j > 0$ , release date  $r_j \ge 0, j = 1, ..., n$ . Task: Schedule the jobs nonpreemptively on a single machine; minimize the *total completion time*  $\sum_{j=1}^{n} C_j$ . Remarks:

This problem is known to be strongly NP-hard.

Given: jobs with processing time  $p_j > 0$ , release date  $r_j \ge 0, j = 1, ..., n$ . Task: Schedule the jobs nonpreemptively on a single machine; minimize the *total completion time*  $\sum_{j=1}^{n} C_j$ . Remarks:

- This problem is known to be strongly NP-hard.
- The preemptive relaxation, however, can be solved efficiently.

Given: jobs with processing time  $p_j > 0$ , release date  $r_j \ge 0, j = 1, ..., n$ . Task: Schedule the jobs nonpreemptively on a single machine; minimize the *total completion time*  $\sum_{j=1}^{n} C_j$ . Remarks:

- This problem is known to be strongly NP-hard.
- The preemptive relaxation, however, can be solved efficiently.

#### Shortest Remaining Processing Time (SRPT) Rule

At any point in time, process an available and uncompleted job with shortest remaining processing time.

Given: jobs with processing time  $p_j > 0$ , release date  $r_j \ge 0, j = 1, ..., n$ . Task: Schedule the jobs nonpreemptively on a single machine; minimize the *total completion time*  $\sum_{j=1}^{n} C_j$ . Remarks:

- This problem is known to be strongly NP-hard.
- The preemptive relaxation, however, can be solved efficiently.

#### Shortest Remaining Processing Time (SRPT) Rule

 At any point in time, process an available and uncompleted job with shortest remaining processing time.

### Theorem 4.1

The SRPT Rule finds an optimal preemptive schedule in time  $O(n \log n)$ .

Given: jobs with processing time  $p_j > 0$ , release date  $r_j \ge 0, j = 1, ..., n$ . Task: Schedule the jobs nonpreemptively on a single machine; minimize the *total completion time*  $\sum_{j=1}^{n} C_j$ . Remarks:

- This problem is known to be strongly NP-hard.
- The preemptive relaxation, however, can be solved efficiently.

#### Shortest Remaining Processing Time (SRPT) Rule

 At any point in time, process an available and uncompleted job with shortest remaining processing time.

### Theorem 4.1

The SRPT Rule finds an optimal preemptive schedule in time  $O(n \log n)$ .

#### Proof: Use an exchange argument.

G. Sagnol

4- Deterministic LP Rounding 3 / 25

Idea: Use optimal preemptive solution to get good nonpreemptive solution.

Idea: Use optimal preemptive solution to get good nonpreemptive solution.

Algorithm

**1** compute optimal preemptive schedule with job completion times  $C_i^P$ ;

Idea: Use optimal preemptive solution to get good nonpreemptive solution.

Algorithm

- **1** compute optimal preemptive schedule with job completion times  $C_i^P$ ;
- **2** sort jobs such that  $C_1^P < C_2^P < \cdots < C_n^P$ ;

Idea: Use optimal preemptive solution to get good nonpreemptive solution.

Algorithm

- **1** compute optimal preemptive schedule with job completion times  $C_i^P$ ;
- 2 sort jobs such that  $C_1^P < C_2^P < \cdots < C_n^P$ ;
- 3 schedule all jobs nonpreemptively and as early as possible in this order;

Idea: Use optimal preemptive solution to get good nonpreemptive solution.

Algorithm

- **1** compute optimal preemptive schedule with job completion times  $C_i^P$ ;
- 2 sort jobs such that  $C_1^P < C_2^P < \cdots < C_n^P$ ;
- 3 schedule all jobs nonpreemptively and as early as possible in this order;

Step 3: set  $C_1 := r_1 + p_1$ ; for j = 2 to n set  $C_j := \max\{r_j, C_{j-1}\} + p_j$ ;

Idea: Use optimal preemptive solution to get good nonpreemptive solution.

Algorithm

- **1** compute optimal preemptive schedule with job completion times  $C_i^P$ ;
- **2** sort jobs such that  $C_1^P < C_2^P < \cdots < C_n^P$ ;
- 3 schedule all jobs nonpreemptively and as early as possible in this order;

Step 3: set 
$$C_1 := r_1 + p_1$$
; for  $j = 2$  to  $n$  set  $C_j := \max\{r_j, C_{j-1}\} + p_j$ ;

Lemma 4.2

For each job j = 1, ..., n, it holds that  $C_j \leq 2 \cdot C_j^P$ .

Idea: Use optimal preemptive solution to get good nonpreemptive solution.

Algorithm

- **1** compute optimal preemptive schedule with job completion times  $C_i^P$ ;
- **2** sort jobs such that  $C_1^P < C_2^P < \cdots < C_n^P$ ;
- 3 schedule all jobs nonpreemptively and as early as possible in this order;

Step 3: set 
$$C_1 := r_1 + p_1$$
; for  $j = 2$  to  $n$  set  $C_j := \max\{r_j, C_{j-1}\} + p_j$ ;

### Lemma 4.2

For each job 
$$j = 1, \ldots, n$$
, it holds that  $C_j \leq 2 \cdot C_j^P$ .

### Theorem 4.3

The algorithm above is a 2-approximation algorithm.

Idea: Use optimal preemptive solution to get good nonpreemptive solution.

#### Algorithm

- **1** compute optimal preemptive schedule with job completion times  $C_i^P$ ;
- **2** sort jobs such that  $C_1^P < C_2^P < \cdots < C_n^P$ ;
- 3 schedule all jobs nonpreemptively and as early as possible in this order;

Step 3: set 
$$C_1 := r_1 + p_1$$
; for  $j = 2$  to  $n$  set  $C_j := \max\{r_j, C_{j-1}\} + p_j$ ;

### Lemma 4.2

For each job 
$$j = 1, \ldots, n$$
, it holds that  $C_j \leq 2 \cdot C_j^P$ .

### Theorem 4.3

The algorithm above is a 2-approximation algorithm.

Proof:...

G. Sagnol

## Outline

#### 1 Minimizing Sum of Completion Times on a Single Machine

### 2 Minimizing Weighted Sum of Completion Times

- 3 Prize-Collecting Steiner Tree Problem
- 4 Uncapacitated Facility Location Problem
- 5 Bin Packing Revisited

Given: As before, but now all jobs *j* also have a weight  $w_j \ge 0$ .

Given: As before, but now all jobs *j* also have a weight  $w_j \ge 0$ . Task: Minimize the total *weighted* completion time  $\sum_{j=1}^{n} w_j C_j$ .

Given: As before, but now all jobs *j* also have a weight  $w_j \ge 0$ . Task: Minimize the total *weighted* completion time  $\sum_{j=1}^{n} w_j C_j$ .

#### Remarks:

■ Unfortunately, already the weighted preemptive problem is NP-hard.

Given: As before, but now all jobs *j* also have a weight  $w_j \ge 0$ . Task: Minimize the total *weighted* completion time  $\sum_{i=1}^{n} w_j C_j$ .

Remarks:

- Unfortunately, already the weighted preemptive problem is NP-hard.
- Thus, instead of preemptive relaxation use LP relaxation:

Given: As before, but now all jobs *j* also have a weight  $w_j \ge 0$ . Task: Minimize the total *weighted* completion time  $\sum_{i=1}^{n} w_j C_j$ .

Remarks:

- Unfortunately, already the weighted preemptive problem is NP-hard.
- Thus, instead of preemptive relaxation use LP relaxation:

$$\begin{array}{ll} \min & \sum_{j=1}^{n} w_j C_j \\ \text{s.t.} & C_j \ge r_j + p_j \\ & \sum_{j \in S} p_j C_j \ge \frac{1}{2} p(S)^2 \end{array} \quad \quad \text{for all } jobs \ j = 1, \dots, \\ & \text{for all } S \subseteq \{1, \dots, n\}. \end{array}$$

n.

Given: As before, but now all jobs *j* also have a weight  $w_j \ge 0$ . Task: Minimize the total *weighted* completion time  $\sum_{i=1}^{n} w_j C_j$ .

Remarks:

- Unfortunately, already the weighted preemptive problem is NP-hard.
- Thus, instead of preemptive relaxation use LP relaxation:

min 
$$\sum_{j=1}^{n} w_j C_j$$
  
s.t.  $C_j \ge r_j + p_j$  for all jobs  $j = 1, ..., n$ ,  
 $\sum_{j \in S} p_j C_j \ge \frac{1}{2} p(S)^2$  for all  $S \subseteq \{1, ..., n\}$ .

#### Lemma 4.4

The completion times  $C_j$  of a feasible schedule satisfy the LP constraints.

G. Sagnol

4- Deterministic LP Rounding 6 / 25

### Lemma 4.5

Despite the exponential number of constraints, an optimal solution  $C^*$  to the LP relaxation can be computed in polynomial time.

### Lemma 4.5

Despite the exponential number of constraints, an optimal solution  $C^*$  to the LP relaxation can be computed in polynomial time.

Proof:...

### Lemma 4.5

Despite the exponential number of constraints, an optimal solution  $C^*$  to the LP relaxation can be computed in polynomial time.

Proof:...

Algorithm

**1** compute optimal solution  $C^*$  to the LP relaxation;

### Lemma 4.5

Despite the exponential number of constraints, an optimal solution  $C^*$  to the LP relaxation can be computed in polynomial time.

Proof:...

Algorithm

- **1** compute optimal solution  $C^*$  to the LP relaxation;
- 2 sort jobs such that  $C_1^* \leq C_2^* \leq \cdots \leq C_n^*$ ;

### Lemma 4.5

Despite the exponential number of constraints, an optimal solution  $C^*$  to the LP relaxation can be computed in polynomial time.

Proof:...

#### Algorithm

- **1** compute optimal solution  $C^*$  to the LP relaxation;
- 2 sort jobs such that  $C_1^* \leq C_2^* \leq \cdots \leq C_n^*$ ;
- schedule all jobs nonpreemptively and as early as possible in this order;

### Lemma 4.5

Despite the exponential number of constraints, an optimal solution  $C^*$  to the LP relaxation can be computed in polynomial time.

Proof:...

### Algorithm

- **1** compute optimal solution  $C^*$  to the LP relaxation;
- 2 sort jobs such that  $C_1^* \leq C_2^* \leq \cdots \leq C_n^*$ ;
- schedule all jobs nonpreemptively and as early as possible in this order;

### Theorem 4.6

The algorithm above is a 3-approximation algorithm.

### Lemma 4.5

Despite the exponential number of constraints, an optimal solution  $C^*$  to the LP relaxation can be computed in polynomial time.

Proof:...

#### Algorithm

- **1** compute optimal solution  $C^*$  to the LP relaxation;
- 2 sort jobs such that  $C_1^* \leq C_2^* \leq \cdots \leq C_n^*$ ;
- schedule all jobs nonpreemptively and as early as possible in this order;

### Theorem 4.6

### The algorithm above is a 3-approximation algorithm.

#### Proof:...

G. Sagnol

### Outline

- 1 Minimizing Sum of Completion Times on a Single Machine
- 2 Minimizing Weighted Sum of Completion Times
- 3 Prize-Collecting Steiner Tree Problem
- 4 Uncapacitated Facility Location Problem
- 5 Bin Packing Revisited

Given: Graph G = (V, E), root node  $r \in V$ , edge costs  $c_e \ge 0$ ,  $e \in E$ , and penalties  $\pi_i \ge 0$ ,  $i \in V$ .

Given: Graph G = (V, E), root node  $r \in V$ , edge costs  $c_e \ge 0$ ,  $e \in E$ , and penalties  $\pi_i \ge 0$ ,  $i \in V$ .

Task: Find subtree *T* containing root *r* minimizing  $\sum_{e \in E(T)} c_e + \sum_{i \in V \setminus V(T)} \pi_i$ .

Given: Graph G = (V, E), root node  $r \in V$ , edge costs  $c_e \ge 0$ ,  $e \in E$ , and penalties  $\pi_i \ge 0$ ,  $i \in V$ .

Task: Find subtree T containing root r minimizing  $\sum c_e + \sum$ 

Example:



 $\pi_i$ .

 $e \in E(T)$   $i \in V \setminus V(T)$ 

Given: Graph G = (V, E), root node  $r \in V$ , edge costs  $c_e \ge 0$ ,  $e \in E$ , and penalties  $\pi_i \ge 0$ ,  $i \in V$ .

Task: Find subtree *T* containing root *r* minimizing  $\sum_{e \in E(T)} c_e + \sum_{i \in V \setminus V(T)} \pi_i.$ 

Example:



Remark: The Steiner Tree Problem is a special case with  $\pi_i = 0$  for all non-terminals and  $\pi_i = \infty$  for terminals *i*.

Given: Graph G = (V, E), root node  $r \in V$ , edge costs  $c_e \ge 0$ ,  $e \in E$ , and penalties  $\pi_i \ge 0$ ,  $i \in V$ .

Task: Find subtree *T* containing root *r* minimizing  $\sum_{e \in E(T)} c_e + \sum_{i \in V \setminus V(T)} \pi_i$ .

Remark: The Steiner Tree Problem is a special case with  $\pi_i = 0$  for all non-terminals and  $\pi_i = \infty$  for terminals *i*.

IP formulation:

$$\begin{array}{ll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{i \in V} \pi_i \cdot (1 - y_i) \\ \text{s.t.} & \sum_{e \in \delta(S)} x_e \geq \max_{i \in S} y_i \\ & y_r = 1, \\ & x_e, y_i \in \{0, 1\} \end{array} \qquad \qquad \text{for all } S \subseteq V \setminus \{r\}, \\ \end{array}$$

G. Sagnol

4- Deterministic LP Rounding 9 / 25
### Prize-Collecting Steiner Tree Problem

Given: Graph G = (V, E), root node  $r \in V$ , edge costs  $c_e \ge 0$ ,  $e \in E$ , and penalties  $\pi_i \ge 0$ ,  $i \in V$ .

Task: Find subtree *T* containing root *r* minimizing  $\sum_{e \in E(T)} c_e + \sum_{i \in V \setminus V(T)} \pi_i$ .

Remark: The Steiner Tree Problem is a special case with  $\pi_i = 0$  for all non-terminals and  $\pi_i = \infty$  for terminals *i*.

IP formulation:

G. Sagnol

$$\begin{array}{ll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{i \in V} \pi_i \cdot (1 - y_i) \\ \text{s.t.} & \sum_{e \in \delta(S)} x_e \geq \max_{i \in S} y_i & \text{for all } S \subseteq V \setminus \{r\}, \\ & y_r = 1, \\ & x_e, y_i \in \{0, 1\} & \text{for all } e \in E, i \in V. \end{array}$$

LP relaxation:  $x_e \ge 0$  for all  $e \in E$  and  $y_i \le 1$  for all  $i \in V$ .

4- Deterministic LP Rounding 9 / 25

# Deterministic LP Rounding Algorithm Let $0 \le \alpha < 1$ .

- Let  $0 \le \alpha < 1$ .
  - **1** compute optimal LP solution  $(x^*, y^*)$  in polytime with ellipsoid algo;

Let  $0 \le \alpha < 1$ .

**1** compute optimal LP solution  $(x^*, y^*)$  in polytime with ellipsoid algo;

```
2 set U := \{i \in V \mid y_i^* \ge \alpha\};
```

Let  $0 \le \alpha < 1$ .

- **1** compute optimal LP solution  $(x^*, y^*)$  in polytime with ellipsoid algo;
- **2** set  $U := \{i \in V \mid y_i^* \ge \alpha\};$
- **3** Find Steiner tree *T* on terminals *U* using some primal-dual algorithm.

Let  $0 \le \alpha < 1$ .

- **1** compute optimal LP solution  $(x^*, y^*)$  in polytime with ellipsoid algo;
- **2** set  $U := \{i \in V \mid y_i^* \ge \alpha\};$
- Find Steiner tree T on terminals U using some primal-dual algorithm. We will prove the following lemma later, in an exercise:

### Lemma 4.7

There is a primal-dual algorithm that returns a Steiner tree T on terminals U with cost at most  $\frac{2}{\alpha} \sum_{e \in E} c_e \cdot x_e^*$ .

Let  $0 \le \alpha < 1$ .

- **1** compute optimal LP solution  $(x^*, y^*)$  in polytime with ellipsoid algo;
- **2** set  $U := \{i \in V \mid y_i^* \ge \alpha\};$
- Find Steiner tree T on terminals U using some primal-dual algorithm. We will prove the following lemma later, in an exercise:

### Lemma 4.7

There is a primal-dual algorithm that returns a Steiner tree T on terminals U with cost at most  $\frac{2}{\alpha} \sum_{e \in E} c_e \cdot x_e^*$ .

## Theorem 4.8

For  $\alpha={\rm 2/3}$  the cost of the solution returned by the algorithm is

$$c(E(T)) + \pi(V \setminus V(T)) \leq \frac{2}{\alpha} \sum_{e \in E} c_e \cdot x_e^* + \frac{1}{1 - \alpha} \sum_{i \in V} \pi_i \cdot (1 - y_i^*) \leq 3 \cdot \text{OPT}$$

G. Sagnol

4- Deterministic LP Rounding 10 / 25

## Outline

- 1 Minimizing Sum of Completion Times on a Single Machine
- 2 Minimizing Weighted Sum of Completion Times
- 3 Prize-Collecting Steiner Tree Problem
- 4 Uncapacitated Facility Location Problem
- 5 Bin Packing Revisited

Given: Set of facilities *F* with opening costs  $f_i \ge 0$ ,  $i \in F$ ; set of clients *D* with connection costs  $c_{ij} \ge 0$ ,  $i \in F$ ,  $j \in D$ .

Given: Set of facilities *F* with opening costs  $f_i \ge 0$ ,  $i \in F$ ; set of clients *D* with connection costs  $c_{ij} \ge 0$ ,  $i \in F$ ,  $j \in D$ .

Task: Choose  $F' \subseteq F$  and assign each client to nearest facility in F'.

Given: Set of facilities F with opening costs  $f_i \ge 0$ ,  $i \in F$ ; set of clients D with connection costs  $c_{ij} \ge 0$ ,  $i \in F$ ,  $j \in D$ . Task: Choose  $F' \subseteq F$  and assign each client to nearest facility in F'. Objective: Minimize  $\sum_{i \in F'} f_i + \sum_{i \in D} \min_{i \in F'} c_{ij}$ .

Given: Set of facilities F with opening costs  $f_i \ge 0, i \in F$ ; set of clients D with connection costs  $c_{ij} \ge 0, i \in F, j \in D$ . Task: Choose  $F' \subseteq F$  and assign each client to nearest facility in F'. Objective: Minimize  $\sum_{i \in F'} f_i + \sum_{j \in D} \min_{i \in F'} c_{ij}$ .

Remarks:

• This is a generalization of the Set Cover Problem.

Given: Set of facilities F with opening costs  $f_i \ge 0, i \in F$ ; set of clients D with connection costs  $c_{ij} \ge 0, i \in F, j \in D$ . Task: Choose  $F' \subseteq F$  and assign each client to nearest facility in F'. Objective: Minimize  $\sum_{i \in F'} f_i + \sum_{j \in D} \min_{i \in F'} c_{ij}$ .

Remarks:

- This is a generalization of the Set Cover Problem.
- In the following, we consider the special case with metric costs *c*<sub>ij</sub>.

Given: Set of facilities F with opening costs  $f_i \ge 0, i \in F$ ; set of clients D with connection costs  $c_{ij} \ge 0, i \in F, j \in D$ . Task: Choose  $F' \subseteq F$  and assign each client to nearest facility in F'. Objective: Minimize  $\sum_{i \in F'} f_i + \sum_{j \in D} \min_{i \in F'} c_{ij}$ .

Remarks:

- This is a generalization of the Set Cover Problem.
- In the following, we consider the special case with metric costs *c*<sub>ij</sub>.

IP formulation:

$$\begin{array}{ll} \min_{x_{ij},y_i \in \{0,1\}} & \sum_{i \in F} f_i \cdot y_i + \sum_{i \in F, j \in D} c_{ij} \cdot x_{ij} \\ \text{s.t.} & \sum_{i \in F} x_{ij} = 1 & \text{for all } j \in D, \\ & y_i - x_{ij} \ge 0 & \text{for all } i \in F, j \in D. \end{array}$$

G. Sagnol

4- Deterministic LP Rounding 12 / 25

min 
$$\sum_{i \in F} f_i \cdot y_i + \sum_{i \in F, j \in D} c_{ij} \cdot x_{ij}$$
  
s.t. 
$$\sum_{i \in F} x_{ij} = 1$$
$$y_i - x_{ij} \ge 0$$
$$x_{ij}, y_i \ge 0$$

for all  $j \in D$ ,

for all  $i \in F$ ,  $j \in D$ , for all  $i \in F$ ,  $j \in D$ .

$$\begin{array}{ll} \min & \sum_{i \in F} f_i \cdot y_i + \sum_{i \in F, j \in D} c_{ij} \cdot x_{ij} \\ \text{s.t.} & \sum_{i \in F} x_{ij} = 1 \\ & y_i - x_{ij} \geq 0 \\ & x_{ij}, y_i \geq 0 \end{array}$$
$$\begin{array}{ll} \text{p:} & \max_{v_j, w_{ij} \geq 0} & \sum_{j \in D} v_j \\ & \text{s.t.} & \sum_{j \in D} w_{ij} \leq f_i \\ & v_j - w_{ij} \leq c_{ij} \end{array}$$

for all  $j \in D$ ,

for all  $i \in F$ ,  $j \in D$ , for all  $i \in F$ ,  $j \in D$ .

dual LP

for all  $i \in F$ , for all  $i \in F$ ,  $j \in D$ .

$$\begin{array}{ll} \min & \sum_{i \in F} f_i \cdot y_i + \sum_{i \in F, j \in D} c_{ij} \cdot x_{ij} \\ \text{s.t.} & \sum_{i \in F} x_{ij} = 1 & \text{for all } j \in D, \\ & y_i - x_{ij} \ge 0 & \text{for all } i \in F, j \in D, \\ & x_{ij}, y_i \ge 0 & \text{for all } i \in F, j \in D. \end{array}$$

$$\begin{array}{ll} \text{LP:} & \max_{v_j, w_{ij} \ge 0} & \sum_{j \in D} v_j \\ & \text{s.t.} & \sum_{j \in D} w_{ij} \le f_i & \text{for all } i \in F, \\ & v_j - w_{ij} \le c_{ij} & \text{for all } i \in F, j \in D. \end{array}$$

Interpretation of the dual LP:

dual

•  $v_j$  is the total amount that client *j* wants to pay for being served.

$$\begin{array}{ll} \min & \sum_{i \in F} f_i \cdot y_i + \sum_{i \in F, j \in D} c_{ij} \cdot x_{ij} \\ \text{s.t.} & \sum_{i \in F} x_{ij} = 1 & \text{for all } j \in D, \\ & y_i - x_{ij} \ge 0 & \text{for all } i \in F, j \in D, \\ & x_{ij}, y_i \ge 0 & \text{for all } i \in F, j \in D. \end{array}$$

$$\begin{array}{ll} \text{LP:} & \max_{v_j, w_{ij} \ge 0} & \sum_{j \in D} v_j \\ & \text{s.t.} & \sum_{j \in D} w_{ij} \le f_i & \text{for all } i \in F, \\ & v_j - w_{ij} \le c_{ij} & \text{for all } i \in F, j \in D. \end{array}$$

Interpretation of the dual LP:

dual

- *v<sub>j</sub>* is the total amount that client *j* wants to pay for being served.
- client j might contribute w<sub>ij</sub> to facility i for being connected to i.
   G. Sagnol
   4- Deterministic LP Rounding
   13 / 25

Let  $(x^*, y^*)$  and  $(v^*, w^*)$  be optimal solutions to the primal and dual LP, respectively.

Let  $(x^*, y^*)$  and  $(v^*, w^*)$  be optimal solutions to the primal and dual LP, respectively.

Notation:

Facility *i* neighbors client *j* if  $x_{ij}^* > 0$ ;  $N(j) := \{i \in F \mid x_{ij}^* > 0\}$ .

•  $N^2(j) := \{\ell \in D \mid \text{client } \ell \text{ neighbors some facility } i \in N(j)\}.$ 

Let  $(x^*, y^*)$  and  $(v^*, w^*)$  be optimal solutions to the primal and dual LP, respectively.

Notation:

Facility *i* neighbors client *j* if  $x_{ij}^* > 0$ ;  $N(j) := \{i \in F \mid x_{ij}^* > 0\}$ .

•  $N^2(j) := \{\ell \in D \mid \text{client } \ell \text{ neighbors some facility } i \in N(j)\}.$ 

### Lemma 4.9

If clients  $j_1, \ldots, j_k$  have disjoint neighborhoods  $N(j_1), \ldots, N(j_k)$ , then opening cheapest facility in each neighborhood costs  $\leq \sum_{i \in F} f_i \cdot y_i^* \leq \text{OPT}$ .

Let  $(x^*, y^*)$  and  $(v^*, w^*)$  be optimal solutions to the primal and dual LP, respectively.

Notation:

Facility *i* neighbors client *j* if  $x_{ij}^* > 0$ ;  $N(j) := \{i \in F \mid x_{ij}^* > 0\}$ .

•  $N^2(j) := \{\ell \in D \mid \text{client } \ell \text{ neighbors some facility } i \in N(j)\}.$ 

### Lemma 4.9

If clients  $j_1, \ldots, j_k$  have disjoint neighborhoods  $N(j_1), \ldots, N(j_k)$ , then opening cheapest facility in each neighborhood costs  $\leq \sum_{i \in F} f_i \cdot y_i^* \leq \text{OPT}$ .

#### Lemma 4.10

For each client j,  $v_i^* \ge c_{ij}$  for all  $i \in N(j)$ .

Let  $(x^*, y^*)$  and  $(v^*, w^*)$  be optimal solutions to the primal and dual LP, respectively.

Notation:

Facility *i* neighbors client *j* if  $x_{ij}^* > 0$ ;  $N(j) := \{i \in F \mid x_{ij}^* > 0\}$ .

•  $N^2(j) := \{\ell \in D \mid \text{client } \ell \text{ neighbors some facility } i \in N(j)\}.$ 

### Lemma 4.9

If clients  $j_1, \ldots, j_k$  have disjoint neighborhoods  $N(j_1), \ldots, N(j_k)$ , then opening cheapest facility in each neighborhood costs  $\leq \sum_{i \in F} f_i \cdot y_i^* \leq \text{OPT}$ .

#### Lemma 4.10

For each client j,  $v_i^* \ge c_{ij}$  for all  $i \in N(j)$ .

#### Proofs: ...

G. Sagnol

- **1** compute optimal LP solutions  $(x^*, y^*)$  and  $(v^*, w^*)$ ;
- 2 while  $D \neq \emptyset$
- 3 choose  $j := \operatorname{argmin}_{j' \in D} v_{j'}^*$  and  $i := \operatorname{argmin}_{i' \in N(j)} f_{i'};$
- 4 assign all unassigned clients in  $N^2(j)$  to facility *i*;
- $5 \qquad \text{set } D := D \setminus N^2(j);$

- **1** compute optimal LP solutions  $(x^*, y^*)$  and  $(v^*, w^*)$ ;
- 2 while  $D \neq \emptyset$
- 3 choose  $j := \operatorname{argmin}_{j' \in D} v_{j'}^*$  and  $i := \operatorname{argmin}_{i' \in N(j)} f_{i'};$
- 4 assign all unassigned clients in  $N^2(j)$  to facility *i*;
- $5 \qquad \text{set } D := D \setminus N^2(j);$

# Theorem 4.11

The algorithm above is a 4-approximation algorithm.

- **1** compute optimal LP solutions  $(x^*, y^*)$  and  $(v^*, w^*)$ ;
- 2 while  $D \neq \emptyset$
- 3 choose  $j := \operatorname{argmin}_{j' \in D} v_{j'}^*$  and  $i := \operatorname{argmin}_{i' \in N(j)} f_{i'};$
- 4 assign all unassigned clients in  $N^2(j)$  to facility *i*;
- $5 \qquad \text{set } D := D \setminus N^2(j);$

## Theorem 4.11

The algorithm above is a 4-approximation algorithm.

Proof:...

- **1** compute optimal LP solutions  $(x^*, y^*)$  and  $(v^*, w^*)$ ;
- 2 while  $D \neq \emptyset$
- 3 choose  $j := \operatorname{argmin}_{j' \in D} v_{j'}^*$  and  $i := \operatorname{argmin}_{i' \in N(j)} f_{i'};$
- **4** assign all unassigned clients in  $N^2(j)$  to facility *i*;
- $5 \qquad \text{set } D := D \setminus N^2(j);$

# Theorem 4.11

The algorithm above is a 4-approximation algorithm.

Proof:...

We finally mention the following non-approximability result without proof.

# Theorem 4.12

There is no  $\alpha$ -approximation algorithm for the metric uncapacitated facility location problem with  $\alpha < 1.463$  unless each problem in *NP* has an  $O(n^{O(\log \log n)})$  time algorithm.

## Outline

- **1** Minimizing Sum of Completion Times on a Single Machine
- 2 Minimizing Weighted Sum of Completion Times
- 3 Prize-Collecting Steiner Tree Problem
- 4 Uncapacitated Facility Location Problem
- 5 Bin Packing Revisited

In the previous chapter we showed how to find a solution to instance *I* with at most  $(1 + \varepsilon)$  OPT (I) + 1 bins in polynomial time.

In the previous chapter we showed how to find a solution to instance *I* with at most  $(1 + \varepsilon)$  OPT (I) + 1 bins in polynomial time.

Goal: Use at most  $OPT(I) + O(\log^2 OPT(I))$  bins! (Karmarkar & Karp, 1982)

In the previous chapter we showed how to find a solution to instance *I* with at most  $(1 + \varepsilon)$ OPT (I) + 1 bins in polynomial time.

```
Goal: Use at most OPT (I) + O(\log^2 OPT(I)) bins! (Karmarkar & Karp, 1982)
```

Ingredients:

- Replace dynamic program with integer program plus LP rounding.
- Improved grouping scheme.
- Recursive application of two previous ingredients.

In the previous chapter we showed how to find a solution to instance *I* with at most  $(1 + \varepsilon)$ OPT (I) + 1 bins in polynomial time.

```
Goal: Use at most OPT(I) + O(\log^2 OPT(I)) bins!
(Karmarkar & Karp, 1982)
```

Ingredients:

- Replace dynamic program with integer program plus LP rounding.
- Improved grouping scheme.
- Recursive application of two previous ingredients.

Notice:

By Lemma 3.14 we can assume that all items have size at least 1/SIZE(I).

G. Sagnol

4- Deterministic LP Rounding 17 / 25

- let  $s_1 > s_2 > \cdots > s_m$  denote the different item sizes;
- for i = 1, ..., m, let  $b_i$  denote the number of items of size  $s_i$ ;

- let  $s_1 > s_2 > \cdots > s_m$  denote the different item sizes;
- for i = 1, ..., m, let  $b_i$  denote the number of items of size  $s_i$ ;
- an *m*-tuple  $(t_1, \ldots, t_m) \in \mathbb{Z}_{\geq 0}^m$  is a configuration if  $\sum_{i=1}^m t_i \cdot s_i \leq 1$ ;

- let  $s_1 > s_2 > \cdots > s_m$  denote the different item sizes;
- for i = 1, ..., m, let  $b_i$  denote the number of items of size  $s_i$ ;
- an *m*-tuple  $(t_1, \ldots, t_m) \in \mathbb{Z}_{\geq 0}^m$  is a configuration if  $\sum_{i=1}^m t_i \cdot s_i \leq 1$ ;
- let T<sub>1</sub>,..., T<sub>N</sub> be a complete enumeration of all configurations and denote by t<sub>ij</sub> the multiplicity of item *i* in configuration T<sub>j</sub>;

- let  $s_1 > s_2 > \cdots > s_m$  denote the different item sizes;
- for i = 1, ..., m, let  $b_i$  denote the number of items of size  $s_i$ ;
- an *m*-tuple  $(t_1, \ldots, t_m) \in \mathbb{Z}_{\geq 0}^m$  is a configuration if  $\sum_{i=1}^m t_i \cdot s_i \leq 1$ ;
- let T<sub>1</sub>,..., T<sub>N</sub> be a complete enumeration of all configurations and denote by t<sub>ij</sub> the multiplicity of item i in configuration T<sub>j</sub>;
- for j = 1,..., N, the integer variable x<sub>j</sub> denotes the number of bins that shall be packed according to configuration T<sub>j</sub>:
### Configuration Integer Program for Bin Packing

- let  $s_1 > s_2 > \cdots > s_m$  denote the different item sizes;
- for i = 1, ..., m, let  $b_i$  denote the number of items of size  $s_i$ ;
- an *m*-tuple  $(t_1, \ldots, t_m) \in \mathbb{Z}_{\geq 0}^m$  is a configuration if  $\sum_{i=1}^m t_i \cdot s_i \leq 1$ ;
- let T<sub>1</sub>,..., T<sub>N</sub> be a complete enumeration of all configurations and denote by t<sub>ij</sub> the multiplicity of item i in configuration T<sub>j</sub>;
- for j = 1,..., N, the integer variable x<sub>j</sub> denotes the number of bins that shall be packed according to configuration T<sub>j</sub>:

$$\begin{array}{ll} \min & \sum_{j=1}^N x_j \\ \text{s.t.} & \sum_{j=1}^N t_{ij} \cdot x_j \geq b_i \\ & x_j \in \mathbb{Z}_{\geq 0} \end{array}$$

for all  $i = 1, \ldots, m$ ,

for all 
$$j = 1, ..., N$$
.

G. Sagnol

4- Deterministic LP Rounding 18 / 25

# Configuration LP and its Dual

...

Primal:

min 
$$\sum_{j=1}^{N} x_j$$
  
s.t.  $\sum_{j=1}^{N} t_{ij} \cdot x_j \ge b_i$  for all  $i = 1, \dots, m$ ,  
 $x_j \ge 0$  for all  $j = 1, \dots, N$ .

#### Configuration LP and its Dual

min  $\sum_{j=1}^{n} x_j$ Primal: s.t.  $\sum_{j=1}^{N} t_{ij} \cdot x_j \ge b_i$ for all  $i = 1, \ldots, m$ ,  $x_i > 0$ for all  $i = 1, \ldots, N$ .  $\max \sum_{i=1}^{m} b_i \cdot y_i$ Dual: s.t.  $\sum_{ij}^{m} t_{ij} \cdot y_i \leq 1$ for all j = 1, ..., N,  $v_i > 0$ for all  $i = 1, \ldots, m$ .

### Configuration LP and its Dual

Primal:min
$$\sum_{j=1}^{N} x_j$$
s.t. $\sum_{j=1}^{N} t_{ij} \cdot x_j \ge b_i$ for all  $i = 1, \dots, m$ ,  
 $x_j \ge 0$ Dual:max $\sum_{i=1}^{m} b_i \cdot y_i$ s.t. $\sum_{i=1}^{m} t_{ij} \cdot y_i \le 1$ for all  $j = 1, \dots, N$ ,  
 $y_i \ge 0$ 

Notice: SIZE(I)  $\leq$  OPT  $_{LP}(I) \leq$  OPT (I)

G. Sagnol

4- Deterministic LP Rounding 19 / 25

■ Configuration LP suffers from exponentially many variables.

- Configuration LP suffers from exponentially many variables.
- Dual separation problem is Knapsack Problem and thus NP-hard.

- Configuration LP suffers from exponentially many variables.
- Dual separation problem is Knapsack Problem and thus NP-hard.
- Remember: optimization and separation are equally difficult.

- Configuration LP suffers from exponentially many variables.
- Dual separation problem is Knapsack Problem and thus NP-hard.
- Remember: optimization and separation are equally difficult.
- Therefore, it is NP-hard to solve the Configuration LP to optimality.

- Configuration LP suffers from exponentially many variables.
- Dual separation problem is Knapsack Problem and thus NP-hard.
- Remember: optimization and separation are equally difficult.
- Therefore, it is NP-hard to solve the Configuration LP to optimality.

### Theorem 4.13

An LP solution of value at most  $OPT_{LP}(I) + 1$  can be computed in polynomial time.

- Configuration LP suffers from exponentially many variables.
- Dual separation problem is Knapsack Problem and thus NP-hard.
- Remember: optimization and separation are equally difficult.
- Therefore, it is NP-hard to solve the Configuration LP to optimality.

### Theorem 4.13

An LP solution of value at most  $OPT_{LP}(I) + 1$  can be computed in polynomial time.

Proof:...

G. Sagnol

Main idea: Use FPTAS for Knapsack Problem as approximate separation routine within ellipsoid method.

Main idea: Use FPTAS for Knapsack Problem as approximate separation routine within ellipsoid method. This yields optimal solution  $y^*$  to

perturbed dual:
$$\max \sum_{i=1}^{m} b_i \cdot y_i$$
s.t. $\sum_{i=1}^{m} t_{ij} \cdot y_i \le \delta_j$ for all  $j = 1, \dots, N$ , $y_i \ge 0$ for all  $i = 1, \dots, m$ ,

with  $\delta_j \in \{1, 1 + \varepsilon\}$  and  $|\{j \mid \delta_j = 1\}|$  polynomially bounded.

Main idea: Use FPTAS for Knapsack Problem as approximate separation routine within ellipsoid method. This yields optimal solution  $y^*$  to

perturbed dual:
$$\max \sum_{i=1}^{m} b_i \cdot y_i$$
s.t. $\sum_{i=1}^{m} t_{ij} \cdot y_i \le \delta_j$ for all  $j = 1, \dots, N$ , $y_i \ge 0$ for all  $i = 1, \dots, m$ ,

with  $\delta_j \in \{1, 1 + \varepsilon\}$  and  $|\{j \mid \delta_j = 1\}|$  polynomially bounded.

Since  $y^*/(1 + \varepsilon)$  is feasible dual solution,  $\sum_{i=1}^m b_i \cdot y_i^* \leq (1 + \varepsilon) \mathsf{OPT}_{LP}$ .

Main idea: Use FPTAS for Knapsack Problem as approximate separation routine within ellipsoid method. This yields optimal solution  $y^*$  to

perturbed dual: max 
$$\sum_{i=1}^{m} b_i \cdot y_i$$
  
s.t.  $\sum_{i=1}^{m} t_{ij} \cdot y_i \le \delta_j$  for all  $j = 1, \dots, N$ ,  
 $y_i \ge 0$  for all  $i = 1, \dots, m$ ,

with  $\delta_j \in \{1, 1 + \varepsilon\}$  and  $|\{j \mid \delta_j = 1\}|$  polynomially bounded. Since  $y^*/(1 + \varepsilon)$  is feasible dual solution,  $\sum_{i=1}^m b_i \cdot y_i^* \leq (1 + \varepsilon) \mathsf{OPT}_{LP}$ . Moreover, for  $J := \{j \mid \delta_j = 1\}$ , vector  $y^*$  is optimal solution to

reduced dual: max 
$$\sum_{i=1}^{m} b_i \cdot y_i$$
  
s.t.  $\sum_{i=1}^{m} t_{ij} \cdot y_i \le 1$  for all  $j$  with  $\delta_j = 1$ ,  
 $y_i \ge 0$  for all  $i = 1, ..., m$ .

Consider the corresponding

reduced primal:

$$\begin{array}{ll} \min & \sum_{j \in J} x_j \\ \text{s.t.} & \sum_{j \in J} t_{ij} \cdot x_j \geq b_i & \text{ for all } i = 1, \dots, m, \\ & x_j \geq 0 & \text{ for all } j \in J. \end{array}$$

Consider the corresponding

reduced primal:min
$$\sum_{j \in J} x_j$$
s.t. $\sum_{j \in J} t_{ij} \cdot x_j \ge b_i$ for all  $i = 1, \dots, m$ , $x_j \ge 0$ for all  $j \in J$ .

It has polynomial size and optimal solution value at most  $(1 + \varepsilon)OPT_{LP}$ .

Consider the corresponding

reduced primal:min
$$\sum_{j \in J} x_j$$
s.t. $\sum_{j \in J} t_{ij} \cdot x_j \ge b_i$ for all  $i = 1, \dots, m$ , $x_j \ge 0$ for all  $j \in J$ .

It has polynomial size and optimal solution value at most  $(1 + \varepsilon)OPT_{LP}$ .

Choose  $\varepsilon := 1/n$  such that  $(1 + \varepsilon)OPT_{LP} \le OPT_{LP} + \varepsilon n \le OPT_{LP} + 1$ .

G. Sagnol

Consider the corresponding

reduced primal: min 
$$\sum_{j \in J} x_j$$
  
s.t.  $\sum_{j \in J} t_{ij} \cdot x_j \ge b_i$  for all  $i = 1, \dots, m$ ,  
 $x_j \ge 0$  for all  $j \in J$ .

It has polynomial size and optimal solution value at most  $(1 + \varepsilon)OPT_{LP}$ .

Choose  $\varepsilon := 1/n$  such that  $(1 + \varepsilon)OPT_{LP} \le OPT_{LP} + \varepsilon n \le OPT_{LP} + 1$ .

Reduced primal and its optimal solution  $\bar{y}$  can be computed in polynomial time (FPTAS for Knapsack!).

G. Sagnol

Consider the corresponding

reduced primal: min 
$$\sum_{j \in J} x_j$$
  
s.t.  $\sum_{j \in J} t_{ij} \cdot x_j \ge b_i$  for all  $i = 1, \dots, m$ ,  
 $x_j \ge 0$  for all  $j \in J$ .

It has polynomial size and optimal solution value at most  $(1 + \varepsilon)OPT_{LP}$ .

Choose  $\varepsilon := 1/n$  such that  $(1 + \varepsilon)OPT_{LP} \le OPT_{LP} + \varepsilon n \le OPT_{LP} + 1$ .

Reduced primal and its optimal solution  $\bar{y}$  can be computed in polynomial time (FPTAS for Knapsack!).

 $\bar{y}$  is feasible solution to original primal LP of value at most OPT<sub>LP</sub> + 1.

G. Sagnol

4- Deterministic LP Rounding 22 / 25

#### Grouping

- consider items in order of non-increasing size;
- open a group and start putting items in current group, one at a time;
- close current group if its total size is at least 2 and start new group;

Grouping

- consider items in order of non-increasing size;
- open a group and start putting items in current group, one at a time;
- close current group if its total size is at least 2 and start new group;

Let r := number of groups; let  $G_i$  denote *i*th group;  $n_i := |G_i|$ .

Grouping

- consider items in order of non-increasing size;
- open a group and start putting items in current group, one at a time;
- close current group if its total size is at least 2 and start new group;

Let r := number of groups; let  $G_i$  denote *i*th group;  $n_i := |G_i|$ .

Notice that  $r \leq \lceil SIZE(I)/2 \rceil$  and  $n_i \geq n_{i-1}$ , for i = 2, ..., r - 1.

Grouping

- consider items in order of non-increasing size;
- open a group and start putting items in current group, one at a time;
- close current group if its total size is at least 2 and start new group;

Let r := number of groups; let  $G_i$  denote *i*th group;  $n_i := |G_i|$ .

Notice that  $r \leq \lceil SIZE(I)/2 \rceil$  and  $n_i \geq n_{i-1}$ , for i = 2, ..., r - 1.

Rounding: Construct new instance I' as follows:

- discard items in  $G_1$  and  $G_r$ ;
- for i = 2, ..., r 1 discard the  $n_i n_{i-1}$  smallest items in  $G_i$ ;
- for i = 2, ..., r 1 round sizes of remaining items in  $G_i$  to largest one.

Grouping

- consider items in order of non-increasing size;
- open a group and start putting items in current group, one at a time;
- close current group if its total size is at least 2 and start new group;

Let r := number of groups; let  $G_i$  denote *i*th group;  $n_i := |G_i|$ .

Notice that  $r \leq \lceil SIZE(I)/2 \rceil$  and  $n_i \geq n_{i-1}$ , for i = 2, ..., r - 1.

Rounding: Construct new instance I' as follows:

- discard items in  $G_1$  and  $G_r$ ;
- for i = 2, ..., r 1 discard the  $n_i n_{i-1}$  smallest items in  $G_i$ ;
- for i = 2, ..., r 1 round sizes of remaining items in  $G_i$  to largest one.

#### Lemma 4.14

There are at most SIZE(I)/2 distinct item sizes in I'; the total size of all discarded items is  $O(\log SIZE(I))$ .

G. Sagnol

4- Deterministic LP Rounding 23 / 25

# BinPack(1)

if SIZE(*I*) < 10 then pack remaining items using First-Fit and stop;</li>

### BinPack(1)

- if SIZE(1) < 10 then pack remaining items using First-Fit and stop;
- **2** apply harmonic grouping scheme to create instance *I*';
- **3** pack discarded items in  $O(\log SIZE(I))$  bins using First-Fit;

### BinPack(1)

- if SIZE(1) < 10 then pack remaining items using First-Fit and stop;
- **2** apply harmonic grouping scheme to create instance *I*';
- **3** pack discarded items in  $O(\log SIZE(I))$  bins using First-Fit;
- compute near-optimal solution x to Configuration LP for instance l';
- **5** for j = 1, ..., N pack  $\lfloor x_j \rfloor$  bins in configuration  $T_j$ ;
- **6** call the packed items instance  $I_1$  and the remaining items  $I_2$ ;

# BinPack(1)

- if SIZE(1) < 10 then pack remaining items using First-Fit and stop;
- **2** apply harmonic grouping scheme to create instance I';
- **3** pack discarded items in  $O(\log SIZE(I))$  bins using First-Fit;
- compute near-optimal solution x to Configuration LP for instance l';
- **5** for j = 1, ..., N pack  $\lfloor x_j \rfloor$  bins in configuration  $T_j$ ;
- **6** call the packed items instance  $I_1$  and the remaining items  $I_2$ ;
- pack *I*<sub>2</sub> recursively via BinPack(*I*<sub>2</sub>);

G. Sagnol

#### Lemma 4.15

#### $\operatorname{OPT}_{LP}(I_1) + \operatorname{OPT}_{LP}(I_2) \leq \operatorname{OPT}_{LP}(I') \leq \operatorname{OPT}_{LP}(I).$

#### Lemma 4.15

### $\operatorname{OPT}_{LP}(I_1) + \operatorname{OPT}_{LP}(I_2) \leq \operatorname{OPT}_{LP}(I') \leq \operatorname{OPT}_{LP}(I).$

Proof:...

#### Lemma 4.15

$$\operatorname{OPT}_{LP}(I_1) + \operatorname{OPT}_{LP}(I_2) \leq \operatorname{OPT}_{LP}(I') \leq \operatorname{OPT}_{LP}(I).$$

Proof:...

### Theorem 4.16 (Karmarkar & Karp, 1982)

Algorithm BinPack runs in polynomial time and finds a solution using at most  $OPT(I) + O(\log^2 OPT(I))$  bins.

#### Lemma 4.15

$$\operatorname{OPT}_{LP}(I_1) + \operatorname{OPT}_{LP}(I_2) \leq \operatorname{OPT}_{LP}(I') \leq \operatorname{OPT}_{LP}(I).$$

Proof:...

### Theorem 4.16 (Karmarkar & Karp, 1982)

Algorithm BinPack runs in polynomial time and finds a solution using at most  $OPT(I) + O(\log^2 OPT(I))$  bins.

Proof:...

### Lemma 4.15

$$\operatorname{OPT}_{LP}(I_1) + \operatorname{OPT}_{LP}(I_2) \leq \operatorname{OPT}_{LP}(I') \leq \operatorname{OPT}_{LP}(I).$$

Proof:...

Theorem 4.16 (Karmarkar & Karp, 1982)

Algorithm BinPack runs in polynomial time and finds a solution using at most  $OPT(I) + O(log^2 OPT(I))$  bins.

Proof:...

Theorem 4.17 (Hoberg & Rothvoß, 2015)

A solution using at most  $OPT(I) + O(\log OPT(I))$  bins can be found in polynomial time.

G. Sagnol

4- Deterministic LP Rounding 25 / 25