Approximation Algorithms (ADM III) 4- Deterministic Rounding of Linear Programs

Guillaume Sagnol

Outline

1 Minimizing Sum of Completion Times on a Single Machine

2 Minimizing Weighted Sum of Completion Times

3 Prize-Collecting Steiner Tree Problem

4 Uncapacitated Facility Location Problem

5 Bin Packing Revisited

The scheduling problem $1\left|r_{j}\right| \sum_{j} C_{j}$

Given: jobs with processing time $p_{j}>0$, release date $r_{j} \geq 0, j=1, \ldots, n$. Task: Schedule the jobs nonpreemptively on a single machine; minimize the total completion time $\sum_{j=1}^{n} C_{j}$.

The scheduling problem $1\left|r_{j}\right| \sum_{j} C_{j}$

Given: jobs with processing time $p_{j}>0$, release date $r_{j} \geq 0, j=1, \ldots, n$. Task: Schedule the jobs nonpreemptively on a single machine; minimize the total completion time $\sum_{j=1}^{n} C_{j}$. Remarks:

■ This problem is known to be strongly NP-hard.

The scheduling problem $1\left|r_{j}\right| \sum_{j} C_{j}$

Given: jobs with processing time $p_{j}>0$, release date $r_{j} \geq 0, j=1, \ldots, n$. Task: Schedule the jobs nonpreemptively on a single machine; minimize the total completion time $\sum_{j=1}^{n} C_{j}$.
Remarks:
■ This problem is known to be strongly NP-hard.
■ The preemptive relaxation, however, can be solved efficiently.

The scheduling problem $1\left|r_{j}\right| \sum_{j} C_{j}$

Given: jobs with processing time $p_{j}>0$, release date $r_{j} \geq 0, j=1, \ldots, n$.
Task: Schedule the jobs nonpreemptively on a single machine;
minimize the total completion time $\sum_{j=1}^{n} C_{j}$.
Remarks:
■ This problem is known to be strongly NP-hard.
■ The preemptive relaxation, however, can be solved efficiently.
Shortest Remaining Processing Time (SRPT) Rule
■ At any point in time, process an available and uncompleted job with shortest remaining processing time.

The scheduling problem $1\left|r_{j}\right| \sum_{j} C_{j}$

Given: jobs with processing time $p_{j}>0$, release date $r_{j} \geq 0, j=1, \ldots, n$.
Task: Schedule the jobs nonpreemptively on a single machine; minimize the total completion time $\sum_{j=1}^{n} C_{j}$.

Remarks:

$$
j=1
$$

■ This problem is known to be strongly NP-hard.
■ The preemptive relaxation, however, can be solved efficiently.
Shortest Remaining Processing Time (SRPT) Rule
■ At any point in time, process an available and uncompleted job with shortest remaining processing time.

Theorem 4.1

The SRPT Rule finds an optimal preemptive schedule in time $O(n \log n)$.

The scheduling problem $1\left|r_{j}\right| \sum_{j} C_{j}$

Given: jobs with processing time $p_{j}>0$, release date $r_{j} \geq 0, j=1, \ldots, n$.
Task: Schedule the jobs nonpreemptively on a single machine; minimize the total completion time $\sum_{j=1}^{n} C_{j}$.

Remarks:

$$
j=1
$$

■ This problem is known to be strongly NP-hard.
■ The preemptive relaxation, however, can be solved efficiently.
Shortest Remaining Processing Time (SRPT) Rule
■ At any point in time, process an available and uncompleted job with shortest remaining processing time.

Theorem 4.1

The SRPT Rule finds an optimal preemptive schedule in time $O(n \log n)$.
Proof: Use an exchange argument.

Converting Preemptive into Nonpreemptive Schedule

 Idea: Use optimal preemptive solution to get good nonpreemptive solution.
Converting Preemptive into Nonpreemptive Schedule

 Idea: Use optimal preemptive solution to get good nonpreemptive solution.
Algorithm

1 compute optimal preemptive schedule with job completion times C_{j}^{P};

Converting Preemptive into Nonpreemptive Schedule

 Idea: Use optimal preemptive solution to get good nonpreemptive solution.
Algorithm

1 compute optimal preemptive schedule with job completion times C_{j}^{P};
2 sort jobs such that $C_{1}^{P}<C_{2}^{P}<\cdots<C_{n}^{P}$;

Converting Preemptive into Nonpreemptive Schedule

 Idea: Use optimal preemptive solution to get good nonpreemptive solution.
Algorithm

1 compute optimal preemptive schedule with job completion times C_{j}^{P};
2 sort jobs such that $C_{1}^{P}<C_{2}^{P}<\cdots<C_{n}^{P}$;
3 schedule all jobs nonpreemptively and as early as possible in this order;

Converting Preemptive into Nonpreemptive Schedule

 Idea: Use optimal preemptive solution to get good nonpreemptive solution.
Algorithm

1 compute optimal preemptive schedule with job completion times C_{j}^{P};
$\boxed{2}$ sort jobs such that $C_{1}^{P}<C_{2}^{P}<\cdots<C_{n}^{P}$;
3 schedule all jobs nonpreemptively and as early as possible in this order;
Step 3: set $C_{1}:=r_{1}+p_{1}$; for $j=2$ to n set $C_{j}:=\max \left\{r_{j}, C_{j-1}\right\}+p_{j}$;

Converting Preemptive into Nonpreemptive Schedule

 Idea: Use optimal preemptive solution to get good nonpreemptive solution.Algorithm
1 compute optimal preemptive schedule with job completion times C_{j}^{P}; 2 sort jobs such that $C_{1}^{P}<C_{2}^{P}<\cdots<C_{n}^{P}$;
3 schedule all jobs nonpreemptively and as early as possible in this order; Step 3: set $C_{1}:=r_{1}+p_{1}$; for $j=2$ to n set $C_{j}:=\max \left\{r_{j}, C_{j-1}\right\}+p_{j}$;

Lemma 4.2

For each job $j=1, \ldots, n$, it holds that $C_{j} \leq 2 \cdot C_{j}^{P}$.

Converting Preemptive into Nonpreemptive Schedule

 Idea: Use optimal preemptive solution to get good nonpreemptive solution.
Algorithm

1 compute optimal preemptive schedule with job completion times C_{j}^{P};
2 sort jobs such that $C_{1}^{P}<C_{2}^{P}<\cdots<C_{n}^{P}$;
3 schedule all jobs nonpreemptively and as early as possible in this order; Step 3: set $C_{1}:=r_{1}+p_{1}$; for $j=2$ to n set $C_{j}:=\max \left\{r_{j}, C_{j-1}\right\}+p_{j}$;

Lemma 4.2

For each job $j=1, \ldots, n$, it holds that $C_{j} \leq 2 \cdot C_{j}^{P}$.
Theorem 4.3
The algorithm above is a 2 -approximation algorithm.

Converting Preemptive into Nonpreemptive Schedule

 Idea: Use optimal preemptive solution to get good nonpreemptive solution.
Algorithm

1 compute optimal preemptive schedule with job completion times C_{j}^{P};
2 sort jobs such that $C_{1}^{P}<C_{2}^{P}<\cdots<C_{n}^{P}$;
3 schedule all jobs nonpreemptively and as early as possible in this order; Step 3: set $C_{1}:=r_{1}+p_{1}$; for $j=2$ to n set $C_{j}:=\max \left\{r_{j}, C_{j-1}\right\}+p_{j}$;

Lemma 4.2

For each job $j=1, \ldots, n$, it holds that $C_{j} \leq 2 \cdot C_{j}^{P}$.

Theorem 4.3

The algorithm above is a 2 -approximation algorithm.

Outline

1 Minimizing Sum of Completion Times on a Single Machine

2 Minimizing Weighted Sum of Completion Times

3 Prize-Collecting Steiner Tree Problem

4 Uncapacitated Facility Location Problem

5 Bin Packing Revisited

Problem $1\left|r_{j}\right| \sum_{j} w_{j} C_{j}$

Given: As before, but now all jobs j also have a weight $w_{j} \geq 0$.

Problem $1\left|r_{j}\right| \sum_{j} w_{j} C_{j}$

Given: As before, but now all jobs j also have a weight $w_{j} \geq 0$. Task: Minimize the total weighted completion time $\sum_{j=1}^{n} w_{j} c_{j}$.

Problem $1\left|r_{j}\right| \sum_{j} w_{j} C_{j}$

Given: As before, but now all jobs j also have a weight $w_{j} \geq 0$.
Task: Minimize the total weighted completion time $\sum_{j=1}^{n} w_{j} c_{j}$.
Remarks:
■ Unfortunately, already the weighted preemptive problem is NP-hard.

Problem $1\left|r_{j}\right| \sum_{j} w_{j} C_{j}$

Given: As before, but now all jobs j also have a weight $w_{j} \geq 0$.
Task: Minimize the total weighted completion time $\sum_{j=1}^{n} w_{j} C_{j}$.
Remarks:
■ Unfortunately, already the weighted preemptive problem is NP-hard.

- Thus, instead of preemptive relaxation use LP relaxation:

Problem $1\left|r_{j}\right| \sum_{j} w_{j} C_{j}$

Given: As before, but now all jobs j also have a weight $w_{j} \geq 0$.
Task: Minimize the total weighted completion time $\sum_{j=1}^{n} w_{j} C_{j}$.
Remarks:
■ Unfortunately, already the weighted preemptive problem is NP-hard.
■ Thus, instead of preemptive relaxation use LP relaxation:

$$
\begin{array}{lll}
\min & \sum_{j=1}^{n} w_{j} C_{j} & \\
\text { s.t. } & C_{j} \geq r_{j}+p_{j} & \text { for all jobs } j=1, \ldots, n, \\
& \sum_{j \in S} p_{j} C_{j} \geq \frac{1}{2} p(S)^{2} & \text { for all } S \subseteq\{1, \ldots, n\}
\end{array}
$$

Problem $1\left|r_{j}\right| \sum_{j} w_{j} C_{j}$

Given: As before, but now all jobs j also have a weight $w_{j} \geq 0$.
Task: Minimize the total weighted completion time $\sum_{j=1}^{n} w_{j} C_{j}$.
Remarks:
■ Unfortunately, already the weighted preemptive problem is NP-hard.
■ Thus, instead of preemptive relaxation use LP relaxation:

$$
\begin{array}{lll}
\min & \sum_{j=1}^{n} w_{j} C_{j} & \\
\text { s.t. } & C_{j} \geq r_{j}+p_{j} & \text { for all jobs } j=1, \ldots, n, \\
& \sum_{j \in S} p_{j} C_{j} \geq \frac{1}{2} p(S)^{2} & \text { for all } S \subseteq\{1, \ldots, n\}
\end{array}
$$

Lemma 4.4
The completion times C_{j} of a feasible schedule satisfy the LP constraints.

Scheduling in Order of LP Completion Times

Lemma 4.5

Despite the exponential number of constraints, an optimal solution C^{*} to the LP relaxation can be computed in polynomial time.

Scheduling in Order of LP Completion Times

Lemma 4.5

Despite the exponential number of constraints, an optimal solution C^{*} to the LP relaxation can be computed in polynomial time.

Proof:...

Scheduling in Order of LP Completion Times

Lemma 4.5

Despite the exponential number of constraints, an optimal solution C^{*} to the LP relaxation can be computed in polynomial time.

Proof:...
Algorithm
1 compute optimal solution C^{*} to the LP relaxation;

Scheduling in Order of LP Completion Times

Lemma 4.5

Despite the exponential number of constraints, an optimal solution C^{*} to the LP relaxation can be computed in polynomial time.

Proof:...
Algorithm
1 compute optimal solution C^{*} to the LP relaxation;
2 sort jobs such that $C_{1}^{*} \leq C_{2}^{*} \leq \cdots \leq C_{n}^{*}$;

Scheduling in Order of LP Completion Times

Lemma 4.5

Despite the exponential number of constraints, an optimal solution C^{*} to the LP relaxation can be computed in polynomial time.

Proof:...
Algorithm
1 compute optimal solution C^{*} to the LP relaxation;
2 sort jobs such that $C_{1}^{*} \leq C_{2}^{*} \leq \cdots \leq C_{n}^{*}$;
3 schedule all jobs nonpreemptively and as early as possible in this order;

Scheduling in Order of LP Completion Times

Lemma 4.5

Despite the exponential number of constraints, an optimal solution C^{*} to the LP relaxation can be computed in polynomial time.

Proof:...
Algorithm
1 compute optimal solution C^{*} to the LP relaxation;
2 sort jobs such that $C_{1}^{*} \leq C_{2}^{*} \leq \cdots \leq C_{n}^{*}$;
3 schedule all jobs nonpreemptively and as early as possible in this order;

Theorem 4.6

The algorithm above is a 3 -approximation algorithm.

Scheduling in Order of LP Completion Times

Lemma 4.5

Despite the exponential number of constraints, an optimal solution C^{*} to the LP relaxation can be computed in polynomial time.

Proof:...
Algorithm
1 compute optimal solution C^{*} to the LP relaxation;
2 sort jobs such that $C_{1}^{*} \leq C_{2}^{*} \leq \cdots \leq C_{n}^{*}$;
B schedule all jobs nonpreemptively and as early as possible in this order;

Theorem 4.6

The algorithm above is a 3 -approximation algorithm.
Proof:...

Outline

1 Minimizing Sum of Completion Times on a Single Machine

2 Minimizing Weighted Sum of Completion Times

3 Prize-Collecting Steiner Tree Problem

4 Uncapacitated Facility Location Problem

5 Bin Packing Revisited

Prize-Collecting Steiner Tree Problem

Given: Graph $G=(V, E)$, root node $r \in V$, edge costs $c_{e} \geq 0, e \in E$, and penalties $\pi_{i} \geq 0, i \in V$.

Prize-Collecting Steiner Tree Problem

Given: Graph $G=(V, E)$, root node $r \in V$, edge costs $c_{e} \geq 0, e \in E$, and penalties $\pi_{i} \geq 0, i \in V$.
Task: Find subtree T containing root r minimizing $\sum_{e \in E(T)} c_{e}+\sum_{i \in V \backslash V(T)} \pi_{i}$.

Prize-Collecting Steiner Tree Problem

Given: Graph $G=(V, E)$, root node $r \in V$, edge costs $c_{e} \geq 0, e \in E$, and penalties $\pi_{i} \geq 0, i \in V$.
Task: Find subtree T containing root r minimizing $\sum_{e \in E(T)} c_{e}+\sum_{i \in V \backslash V(T)} \pi_{i}$.

Example:

- Root node
- Terminal

Prize-Collecting Steiner Tree Problem

Given: Graph $G=(V, E)$, root node $r \in V$, edge costs $c_{e} \geq 0, e \in E$, and penalties $\pi_{i} \geq 0, i \in V$.
Task: Find subtree T containing root r minimizing $\sum_{e \in E(T)} c_{e}+\sum_{i \in V \backslash V(T)} \pi_{i}$. Example:

- Root node

Connected Terminal

- Disonnected Terminal

$$
\text { COST }=c(—)+\pi(\bullet)
$$

Remark: The Steiner Tree Problem is a special case with $\pi_{i}=0$ for all non-terminals and $\pi_{i}=\infty$ for terminals i.

Prize-Collecting Steiner Tree Problem

Given: Graph $G=(V, E)$, root node $r \in V$, edge costs $c_{e} \geq 0, e \in E$, and penalties $\pi_{i} \geq 0, i \in V$.
Task: Find subtree T containing root r minimizing $\sum_{e \in E(T)} c_{e}+\sum_{i \in V \backslash V(T)} \pi_{i}$.
Remark: The Steiner Tree Problem is a special case with $\pi_{i}=0$ for all non-terminals and $\pi_{i}=\infty$ for terminals i.

IP formulation:

$$
\begin{array}{lll}
\min & \sum_{e \in E} c_{e} \cdot x_{e}+\sum_{i \in V} \pi_{i} \cdot\left(1-y_{i}\right) & \\
\text { s.t. } & \sum_{e \in \delta(S)} x_{e} \geq \max _{i \in S} y_{i} & \text { for all } S \subseteq V \backslash\{r\}, \\
& y_{r}=1, & \\
& x_{e}, y_{i} \in\{0,1\} & \text { for all } e \in E, i \in V .
\end{array}
$$

Prize-Collecting Steiner Tree Problem

Given: Graph $G=(V, E)$, root node $r \in V$, edge costs $c_{e} \geq 0, e \in E$, and penalties $\pi_{i} \geq 0, i \in V$.
Task: Find subtree T containing root r minimizing $\sum_{e \in E(T)} c_{e}+\sum_{i \in V \backslash V(T)} \pi_{i}$.
Remark: The Steiner Tree Problem is a special case with $\pi_{i}=0$ for all non-terminals and $\pi_{i}=\infty$ for terminals i.

IP formulation:

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} \cdot x_{e}+\sum_{i \in V} \pi_{i} \cdot\left(1-y_{i}\right) \\
\text { s.t. } & \sum_{e \in \delta(S)} x_{e} \geq \max _{i \in S} y_{i}
\end{array} \quad \text { for all } S \subseteq V \backslash\{r\},
$$

LP relaxation: $x_{e} \geq 0$ for all $e \in E$ and $y_{i} \leq 1$ for all $i \in V$.

Deterministic LP Rounding Algorithm

Let $0 \leq \alpha<1$.

Deterministic LP Rounding Algorithm

Let $0 \leq \alpha<1$.
1 compute optimal LP solution $\left(x^{*}, y^{*}\right)$ in polytime with ellipsoid algo;

Deterministic LP Rounding Algorithm

Let $0 \leq \alpha<1$.
1 compute optimal LP solution (x^{*}, y^{*}) in polytime with ellipsoid algo;
2 set $U:=\left\{i \in V \mid y_{i}^{*} \geq \alpha\right\}$;

Deterministic LP Rounding Algorithm

Let $0 \leq \alpha<1$.
1 compute optimal LP solution $\left(x^{*}, y^{*}\right)$ in polytime with ellipsoid algo;
2 set $U:=\left\{i \in V \mid y_{i}^{*} \geq \alpha\right\}$;
3 Find Steiner tree T on terminals U using some primal-dual algorithm.

Deterministic LP Rounding Algorithm

Let $0 \leq \alpha<1$.
1 compute optimal LP solution $\left(x^{*}, y^{*}\right)$ in polytime with ellipsoid algo;
2 set $U:=\left\{i \in V \mid y_{i}^{*} \geq \alpha\right\}$;
3 Find Steiner tree T on terminals U using some primal-dual algorithm. We will prove the following lemma later, in an exercise:

Lemma 4.7

There is a primal-dual algorithm that returns a Steiner tree T on terminals U with cost at most $\frac{2}{\alpha} \sum_{e \in E} c_{e} \cdot x_{e}^{*}$.

Deterministic LP Rounding Algorithm

Let $0 \leq \alpha<1$.
1 compute optimal LP solution $\left(x^{*}, y^{*}\right)$ in polytime with ellipsoid algo;
2 set $U:=\left\{i \in V \mid y_{i}^{*} \geq \alpha\right\}$;
3 Find Steiner tree T on terminals U using some primal-dual algorithm. We will prove the following lemma later, in an exercise:

Lemma 4.7

There is a primal-dual algorithm that returns a Steiner tree T on terminals U with cost at most $\frac{2}{\alpha} \sum_{e \in E} c_{e} \cdot x_{e}^{*}$.

Theorem 4.8

For $\alpha=2 / 3$ the cost of the solution returned by the algorithm is
$c(E(T))+\pi(V \backslash V(T)) \leq \frac{2}{\alpha} \sum_{e \in E} c_{e} \cdot x_{e}^{*}+\frac{1}{1-\alpha} \sum_{i \in V} \pi_{i} \cdot\left(1-y_{i}^{*}\right) \leq 3 \cdot \mathrm{OPT}$.

Outline

1 Minimizing Sum of Completion Times on a Single Machine

2 Minimizing Weighted Sum of Completion Times

3 Prize-Collecting Steiner Tree Problem

4 Uncapacitated Facility Location Problem

5 Bin Packing Revisited

Uncapacitated Facility Location Problem

Given: Set of facilities F with opening costs $f_{i} \geq 0, i \in F$; set of clients D with connection costs $c_{i j} \geq 0, i \in F, j \in D$.

Uncapacitated Facility Location Problem

Given: Set of facilities F with opening costs $f_{i} \geq 0, i \in F$; set of clients D with connection costs $c_{i j} \geq 0, i \in F, j \in D$.
Task: Choose $F^{\prime} \subseteq F$ and assign each client to nearest facility in F^{\prime}.

Uncapacitated Facility Location Problem

Given: Set of facilities F with opening costs $f_{i} \geq 0, i \in F$; set of clients D with connection costs $c_{i j} \geq 0, i \in F, j \in D$.
Task: Choose $F^{\prime} \subseteq F$ and assign each client to nearest facility in F^{\prime}.
Objective: Minimize $\sum_{i \in F^{\prime}} f_{i}+\sum_{j \in D} \min _{i \in F^{\prime}} c_{i j}$.

Uncapacitated Facility Location Problem

Given: Set of facilities F with opening costs $f_{i} \geq 0, i \in F$; set of clients D with connection costs $c_{i j} \geq 0, i \in F, j \in D$.
Task: Choose $F^{\prime} \subseteq F$ and assign each client to nearest facility in F^{\prime}.
Objective: Minimize $\sum_{i \in F^{\prime}} f_{i}+\sum_{j \in D} \min _{i \in F^{\prime}} c_{i j}$.

Remarks:

■ This is a generalization of the Set Cover Problem.

Uncapacitated Facility Location Problem

Given: Set of facilities F with opening costs $f_{i} \geq 0, i \in F$; set of clients D with connection costs $c_{i j} \geq 0, i \in F, j \in D$.
Task: Choose $F^{\prime} \subseteq F$ and assign each client to nearest facility in F^{\prime}.
Objective: Minimize $\sum_{i \in F^{\prime}} f_{i}+\sum_{j \in D} \min _{i \in F^{\prime}} c_{i j}$.
Remarks:
■ This is a generalization of the Set Cover Problem.

- In the following, we consider the special case with metric costs $c_{i j}$.

Uncapacitated Facility Location Problem

Given: Set of facilities F with opening costs $f_{i} \geq 0, i \in F$; set of clients D with connection costs $c_{i j} \geq 0, i \in F, j \in D$.
Task: Choose $F^{\prime} \subseteq F$ and assign each client to nearest facility in F^{\prime}.
Objective: Minimize $\sum_{i \in F^{\prime}} f_{i}+\sum_{j \in D} \min _{i \in F^{\prime}} c_{i j}$.
Remarks:
■ This is a generalization of the Set Cover Problem.
■ In the following, we consider the special case with metric costs $c_{i j}$.
IP formulation:

$$
\begin{array}{rll}
\min _{x_{i j}, y_{i} \in\{0,1\}} & \sum_{i \in F} f_{i} \cdot y_{i}+\sum_{i \in F, j \in D} c_{i j} \cdot x_{i j} & \\
\text { s.t. } & \sum_{i \in F} x_{i j}=1 & \text { for all } j \in D, \\
& y_{i}-x_{i j} \geq 0 & \text { for all } i \in F, j \in D .
\end{array}
$$

LP Relaxation and Dual LP

$$
\begin{array}{ll}
\min & \sum_{i \in F} f_{i} \cdot y_{i}+\sum_{i \in F, j \in D} c_{i j} \cdot x_{i j} \\
\text { s.t. } & \sum_{i \in F} x_{i j}=1 \\
& y_{i}-x_{i j} \geq 0 \\
& x_{i j}, y_{i} \geq 0
\end{array}
$$

for all $j \in D$,
for all $i \in F, j \in D$, for all $i \in F, j \in D$.

LP Relaxation and Dual LP

$$
\begin{array}{ll}
\min & \sum_{i \in F} f_{i} \cdot y_{i}+\sum_{i \in F, j \in D} c_{i j} \cdot x_{i j} \\
\text { s.t. } & \sum_{i \in F} x_{i j}=1 \\
& y_{i}-x_{i j} \geq 0 \\
& x_{i j}, y_{i} \geq 0
\end{array}
$$

dual LP: $\max _{v_{j}, w_{i j} \geq 0} \sum_{j \in D} v_{j}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j \in D} w_{i j} \leq f_{i} \\
& v_{j}-w_{i j} \leq c_{i j}
\end{array}
$$

for all $j \in D$,
for all $i \in F, j \in D$, for all $i \in F, j \in D$.
for all $i \in F$,
for all $i \in F, j \in D$.

LP Relaxation and Dual LP

$$
\begin{array}{lll}
\min & \sum_{i \in F} f_{i} \cdot y_{i}+\sum_{i \in F, j \in D} c_{i j} \cdot x_{i j} & \\
\text { s.t. } & \sum_{i \in F} x_{i j}=1 & \text { for all } j \in D, \\
& y_{i}-x_{i j} \geq 0 & \text { for all } i \in F, j \in D, \\
& x_{i j}, y_{i} \geq 0 & \text { for all } i \in F, j \in D
\end{array}
$$

dual LP: $\max _{v_{j}, w_{i} \geq 0} \sum_{j \in D} v_{j}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j \in D} w_{i j} \leq f_{i} \\
& \text { for all } i \in F, \\
v_{j}-w_{i j} \leq c_{i j} & \text { for all } i \in F, j \in D .
\end{array}
$$

Interpretation of the dual LP:

- v_{j} is the total amount that client j wants to pay for being served.

LP Relaxation and Dual LP

$$
\begin{array}{lll}
\min & \sum_{i \in F} f_{i} \cdot y_{i}+\sum_{i \in F, j \in D} c_{i j} \cdot x_{i j} & \\
\text { s.t. } & \sum_{i \in F} x_{i j}=1 & \text { for all } j \in D, \\
& y_{i}-x_{i j} \geq 0 & \text { for all } i \in F, j \in D, \\
& x_{i j}, y_{i} \geq 0 & \text { for all } i \in F, j \in D
\end{array}
$$

dual LP: $\max _{v_{j}, w_{i j} \geq 0} \sum_{j \in D} v_{j}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j \in D} w_{i j} \leq f_{i} \\
& \text { for all } i \in F, \\
v_{j}-w_{i j} \leq c_{i j} & \text { for all } i \in F, j \in D .
\end{array}
$$

Interpretation of the dual LP:

- v_{j} is the total amount that client j wants to pay for being served.
- client j might contribute $w_{i j}$ to facility i for being connected to i.

[^0]4- Deterministic LP Rounding
$13 / 25$

Structure of Optimal LP Solution

Let $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ be optimal solutions to the primal and dual LP, respectively.

Structure of Optimal LP Solution

Let $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ be optimal solutions to the primal and dual LP, respectively.
Notation:
■ Facility i neighbors client j if $x_{i j}^{*}>0 ; N(j):=\left\{i \in F \mid x_{i j}^{*}>0\right\}$.
■ $N^{2}(j):=\{\ell \in D \mid$ client ℓ neighbors some facility $i \in N(j)\}$.

Structure of Optimal LP Solution

Let $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ be optimal solutions to the primal and dual LP, respectively.

Notation:

■ Facility i neighbors client j if $x_{i j}^{*}>0 ; N(j):=\left\{i \in F \mid x_{i j}^{*}>0\right\}$.
■ $N^{2}(j):=\{\ell \in D \mid$ client ℓ neighbors some facility $i \in N(j)\}$.

Lemma 4.9

If clients j_{1}, \ldots, j_{k} have disjoint neighborhoods $N\left(j_{1}\right), \ldots, N\left(j_{k}\right)$, then opening cheapest facility in each neighborhood costs $\leq \sum_{i \in F} f_{i} \cdot y_{i}^{*} \leq$ OPT .

Structure of Optimal LP Solution

Let $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ be optimal solutions to the primal and dual LP, respectively.
Notation:
■ Facility i neighbors client j if $x_{i j}^{*}>0 ; N(j):=\left\{i \in F \mid x_{i j}^{*}>0\right\}$.
■ $N^{2}(j):=\{\ell \in D \mid$ client ℓ neighbors some facility $i \in N(j)\}$.

Lemma 4.9

If clients j_{1}, \ldots, j_{k} have disjoint neighborhoods $N\left(j_{1}\right), \ldots, N\left(j_{k}\right)$, then opening cheapest facility in each neighborhood costs $\leq \sum_{i \in F} f_{i} \cdot y_{i}^{*} \leq$ OPT .

Lemma 4.10

For each client $j, v_{j}^{*} \geq c_{i j}$ for all $i \in N(j)$.

Structure of Optimal LP Solution

Let $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ be optimal solutions to the primal and dual LP, respectively.
Notation:
■ Facility i neighbors client j if $x_{i j}^{*}>0 ; N(j):=\left\{i \in F \mid x_{i j}^{*}>0\right\}$.
■ $N^{2}(j):=\{\ell \in D \mid$ client ℓ neighbors some facility $i \in N(j)\}$.

Lemma 4.9

If clients j_{1}, \ldots, j_{k} have disjoint neighborhoods $N\left(j_{1}\right), \ldots, N\left(j_{k}\right)$, then opening cheapest facility in each neighborhood costs $\leq \sum_{i \in F} f_{i} \cdot y_{i}^{*} \leq$ OPT .

Lemma 4.10

For each client $j, v_{j}^{*} \geq c_{i j}$ for all $i \in N(j)$.

Deterministic LP Rounding Algorithm

1 compute optimal LP solutions (x^{*}, y^{*}) and (v^{*}, w^{*});
2 while $D \neq \emptyset$
$3 \quad$ choose $j:=\operatorname{argmin}_{j^{\prime} \in D} v_{j^{\prime}}^{*}$ and $i:=\operatorname{argmin}_{i^{\prime} \in N(j)} f_{i^{\prime}}$;
4 assign all unassigned clients in $N^{2}(j)$ to facility i;
$5 \quad$ set $D:=D \backslash N^{2}(j)$;

Deterministic LP Rounding Algorithm

1 compute optimal LP solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$;
2 while $D \neq \emptyset$
$3 \quad$ choose $j:=\operatorname{argmin}_{j^{\prime} \in D} v_{j^{\prime}}^{*}$ and $i:=\operatorname{argmin}_{i^{\prime} \in N(j)} f_{i^{\prime}}$;
4 assign all unassigned clients in $N^{2}(j)$ to facility i;
$5 \quad$ set $D:=D \backslash N^{2}(j)$;

Theorem 4.11

The algorithm above is a 4-approximation algorithm.

Deterministic LP Rounding Algorithm

1 compute optimal LP solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$;
2 while $D \neq \emptyset$
$3 \quad$ choose $j:=\operatorname{argmin}_{j^{\prime} \in D} v_{j^{\prime}}^{*}$ and $i:=\operatorname{argmin}_{i^{\prime} \in N(j)} f_{i^{\prime}}$;
4 assign all unassigned clients in $N^{2}(j)$ to facility i;
$5 \quad$ set $D:=D \backslash N^{2}(j)$;

Theorem 4.11

The algorithm above is a 4-approximation algorithm.
Proof:...

Deterministic LP Rounding Algorithm

1 compute optimal LP solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$;
2 while $D \neq \emptyset$
$3 \quad$ choose $j:=\operatorname{argmin}_{j^{\prime} \in D} v_{j^{\prime}}^{*}$ and $i:=\operatorname{argmin}_{i^{\prime} \in N(j)} f_{i^{\prime}}$;
4 assign all unassigned clients in $N^{2}(j)$ to facility i;
$5 \quad \operatorname{set} D:=D \backslash N^{2}(j)$;

Theorem 4.11

The algorithm above is a 4-approximation algorithm.
Proof:...
We finally mention the following non-approximability result without proof.

Theorem 4.12

There is no α-approximation algorithm for the metric uncapacitated facility location problem with $\alpha<1.463$ unless each problem in NP has an $O\left(n^{O(\log \log n)}\right)$ time algorithm.

Outline

1 Minimizing Sum of Completion Times on a Single Machine

2 Minimizing Weighted Sum of Completion Times

3 Prize-Collecting Steiner Tree Problem

4 Uncapacitated Facility Location Problem

5 Bin Packing Revisited

Bin Packing Revisited

In the previous chapter we showed how to find a solution to instance $/$ with at most $(1+\varepsilon) \mathrm{OPT}(I)+1$ bins in polynomial time.

Bin Packing Revisited

In the previous chapter we showed how to find a solution to instance $/$ with at most $(1+\varepsilon) 0 \mathrm{PT}(I)+1$ bins in polynomial time.

Goal: Use at most OPT $(I)+O\left(\log ^{2}\right.$ OPT $\left.(I)\right)$ bins! (Karmarkar \& Karp, 1982)

Bin Packing Revisited

In the previous chapter we showed how to find a solution to instance $/$ with at most $(1+\varepsilon) \mathrm{OPT}(I)+1$ bins in polynomial time.

Goal: Use at most OPT $(I)+O\left(\log ^{2} \mathrm{OPT}(I)\right)$ bins! (Karmarkar \& Karp, 1982)

Ingredients:
■ Replace dynamic program with integer program plus LP rounding.
■ Improved grouping scheme.
■ Recursive application of two previous ingredients.

Bin Packing Revisited

In the previous chapter we showed how to find a solution to instance $/$ with at most $(1+\varepsilon) \mathrm{OPT}(I)+1$ bins in polynomial time.

Goal: Use at most OPT $(I)+O\left(\log ^{2}\right.$ OPT $\left.(I)\right)$ bins! (Karmarkar \& Karp, 1982)

Ingredients:
■ Replace dynamic program with integer program plus LP rounding.
■ Improved grouping scheme.
■ Recursive application of two previous ingredients.
Notice:
By Lemma 3.14 we can assume that all items have size at least $1 / \mathrm{SIZE}(I)$.

Configuration Integer Program for Bin Packing

■ let $s_{1}>s_{2}>\cdots>s_{m}$ denote the different item sizes;
\square for $i=1, \ldots, m$, let b_{i} denote the number of items of size s_{i};

Configuration Integer Program for Bin Packing

■ let $s_{1}>s_{2}>\cdots>s_{m}$ denote the different item sizes;
\square for $i=1, \ldots, m$, let b_{i} denote the number of items of size s_{i};
■ an m-tuple $\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ is a configuration if $\sum_{i=1}^{m} t_{i} \cdot s_{i} \leq 1$;

Configuration Integer Program for Bin Packing

■ let $s_{1}>s_{2}>\cdots>s_{m}$ denote the different item sizes;
■ for $i=1, \ldots, m$, let b_{i} denote the number of items of size s_{i};
■ an m-tuple $\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ is a configuration if $\sum_{i=1}^{m} t_{i} \cdot s_{i} \leq 1$;
■ let T_{1}, \ldots, T_{N} be a complete enumeration of all configurations and denote by $t_{i j}$ the multiplicity of item i in configuration T_{j};

Configuration Integer Program for Bin Packing

■ let $s_{1}>s_{2}>\cdots>s_{m}$ denote the different item sizes;
\square for $i=1, \ldots, m$, let b_{i} denote the number of items of size s_{i};
■ an m-tuple $\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ is a configuration if $\sum_{i=1}^{m} t_{i} \cdot s_{i} \leq 1$;
$■$ let T_{1}, \ldots, T_{N} be a complete enumeration of all configurations and denote by $t_{i j}$ the multiplicity of item i in configuration T_{j};
■ for $j=1, \ldots, N$, the integer variable x_{j} denotes the number of bins that shall be packed according to configuration T_{j} :

Configuration Integer Program for Bin Packing

■ let $s_{1}>s_{2}>\cdots>s_{m}$ denote the different item sizes;
\square for $i=1, \ldots, m$, let b_{i} denote the number of items of size s_{i};
■ an m-tuple $\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ is a configuration if $\sum_{i=1}^{m} t_{i} \cdot s_{i} \leq 1$;
■ let T_{1}, \ldots, T_{N} be a complete enumeration of all configurations and denote by $t_{i j}$ the multiplicity of item i in configuration T_{j};
■ for $j=1, \ldots, N$, the integer variable x_{j} denotes the number of bins that shall be packed according to configuration T_{j} :
$\begin{array}{rll}\min & \sum_{j=1}^{N} x_{j} & \\ \text { s.t. } & \sum_{j=1}^{N} t_{i j} \cdot x_{j} \geq b_{i} & \text { for all } i=1, \ldots, m, \\ & x_{j} \in \mathbb{Z}_{\geq 0} & \text { for all } j=1, \ldots, N .\end{array}$

Configuration LP and its Dual

$$
\begin{array}{lll}
\text { Primal: } \quad \min & \sum_{j=1}^{N} x_{j} & \\
\text { s.t. } & \sum_{j=1}^{N} t_{i j} \cdot x_{j} \geq b_{i} & \text { for all } i=1, \ldots, m, \\
& x_{j} \geq 0 & \text { for all } j=1, \ldots, N .
\end{array}
$$

Configuration LP and its Dual

$$
\begin{array}{lll}
\text { Primal: } & \min & \sum_{j=1}^{N} x_{j} \\
& \text { s.t. } & \sum_{j=1}^{N} t_{i j} \cdot x_{j} \geq b_{i} \\
& & \text { for all } i=1, \ldots, m, \\
& x_{j} \geq 0 & \text { for all } j=1, \ldots, N . \\
\text { Dual: } \max & \sum_{i=1}^{m} b_{i} \cdot y_{i} & \\
& \text { s.t. } & \sum_{i=1}^{m} t_{i j} \cdot y_{i} \leq 1
\end{array}
$$

Configuration LP and its Dual

$$
\begin{array}{lll}
\text { Primal: } \quad \min & \sum_{j=1}^{N} x_{j} & \\
& \text { s.t. } & \sum_{j=1}^{N} t_{i j} \cdot x_{j} \geq b_{i} \\
& x_{j} \geq 0 & \text { for all } i=1, \ldots, m, \\
\text { Dual: } \quad \max & \sum_{i=1}^{m} b_{i} \cdot y_{i} & \\
& \text { s.t. } & \sum_{i=1}^{m} t_{i j} \cdot y_{i} \leq 1
\end{array}
$$

Notice: $\operatorname{SIZE}(I) \leq \operatorname{OPT}_{L P}(I) \leq \operatorname{OPT}(I)$

Solving the Configuration LP Approximately

- Configuration LP suffers from exponentially many variables.

Solving the Configuration LP Approximately

- Configuration LP suffers from exponentially many variables.

■ Dual separation problem is Knapsack Problem and thus NP-hard.

Solving the Configuration LP Approximately

- Configuration LP suffers from exponentially many variables.

■ Dual separation problem is Knapsack Problem and thus NP-hard.

■ Remember: optimization and separation are equally difficult.

Solving the Configuration LP Approximately

- Configuration LP suffers from exponentially many variables.

■ Dual separation problem is Knapsack Problem and thus NP-hard.

■ Remember: optimization and separation are equally difficult.
■ Therefore, it is NP-hard to solve the Configuration LP to optimality.

Solving the Configuration LP Approximately

- Configuration LP suffers from exponentially many variables.

■ Dual separation problem is Knapsack Problem and thus NP-hard.

■ Remember: optimization and separation are equally difficult.
■ Therefore, it is NP-hard to solve the Configuration LP to optimality.

Theorem 4.13

An LP solution of value at most $\operatorname{OPT}_{L P}(I)+1$ can be computed in polynomial time.

Solving the Configuration LP Approximately

- Configuration LP suffers from exponentially many variables.

■ Dual separation problem is Knapsack Problem and thus NP-hard.

■ Remember: optimization and separation are equally difficult.
■ Therefore, it is NP-hard to solve the Configuration LP to optimality.

Theorem 4.13

An LP solution of value at most $\operatorname{OPT}_{L P}(I)+1$ can be computed in polynomial time.

Proof of Theorem 4.13

Main idea: Use FPTAS for Knapsack Problem as approximate separation routine within ellipsoid method.

Proof of Theorem 4.13

Main idea: Use FPTAS for Knapsack Problem as approximate separation routine within ellipsoid method. This yields optimal solution y^{*} to

$$
\begin{array}{lll}
\text { perturbed dual: } & \max & \sum_{i=1}^{m} b_{i} \cdot y_{i} \\
\\
\qquad \begin{array}{lll}
\text { s.t. } & \sum_{i=1}^{m} t_{i j} \cdot y_{i} \leq \delta_{j} & \text { for all } j=1, \ldots, N, \\
& y_{i} \geq 0 & \text { for all } i=1, \ldots, m,
\end{array}
\end{array}
$$

with $\delta_{j} \in\{1,1+\varepsilon\}$ and $\left|\left\{j \mid \delta_{j}=1\right\}\right|$ polynomially bounded.

Proof of Theorem 4.13

Main idea: Use FPTAS for Knapsack Problem as approximate separation routine within ellipsoid method. This yields optimal solution y^{*} to

$$
\begin{array}{lll}
\text { perturbed dual: } \quad \max & \sum_{i=1}^{m} b_{i} \cdot y_{i} & \\
\qquad \begin{array}{lll}
\text { s.t. } & \sum_{i=1}^{m} t_{i j} \cdot y_{i} \leq \delta_{j} & \text { for all } j=1, \ldots, N, \\
& y_{i} \geq 0 & \text { for all } i=1, \ldots, m,
\end{array}
\end{array}
$$

with $\delta_{j} \in\{1,1+\varepsilon\}$ and $\left|\left\{j \mid \delta_{j}=1\right\}\right|$ polynomially bounded.
Since $y^{*} /(1+\varepsilon)$ is feasible dual solution, $\sum_{i=1}^{m} b_{i} \cdot y_{i}^{*} \leq(1+\varepsilon) \mathrm{OPT}_{L P}$.

Proof of Theorem 4.13

Main idea: Use FPTAS for Knapsack Problem as approximate separation routine within ellipsoid method. This yields optimal solution y^{*} to

$$
\begin{array}{lll}
\text { perturbed dual: } \quad \max & \sum_{i=1}^{m} b_{i} \cdot y_{i} & \\
\qquad \begin{array}{lll}
\text { s.t. } & \sum_{i=1}^{m} t_{i j} \cdot y_{i} \leq \delta_{j} & \text { for all } j=1, \ldots, N, \\
& y_{i} \geq 0 & \text { for all } i=1, \ldots, m,
\end{array}
\end{array}
$$

with $\delta_{j} \in\{1,1+\varepsilon\}$ and $\left|\left\{j \mid \delta_{j}=1\right\}\right|$ polynomially bounded.
Since $y^{*} /(1+\varepsilon)$ is feasible dual solution, $\sum_{i=1}^{m} b_{i} \cdot y_{i}^{*} \leq(1+\varepsilon) \mathrm{OPT}_{L P}$.
Moreover, for $J:=\left\{j \mid \delta_{j}=1\right\}$, vector y^{*} is optimal solution to
reduced dual: $\max \sum_{i=1}^{m} b_{i} \cdot y_{i}$

$$
\begin{aligned}
& \text { s.t. } \quad \sum_{i=1}^{m} t_{i j} \cdot y_{i} \leq 1 \quad \text { for all } j \text { with } \delta_{j}=1 \text {, } \\
& y_{i} \geq 0 \quad \text { for all } i=1, \ldots, m .
\end{aligned}
$$

Proof of Theorem 4.13 (Cont.)

Consider the corresponding

Proof of Theorem 4.13 (Cont.)

Consider the corresponding

$$
\begin{array}{lll}
\text { reduced primal: } \quad \min & \sum_{j \in J} x_{j} & \\
\qquad \begin{array}{lll}
\text { s.t. } & \sum_{j \in J} t_{i j} \cdot x_{j} \geq b_{i} & \text { for all } i=1, \ldots, m, \\
& x_{j} \geq 0 & \text { for all } j \in J .
\end{array}
\end{array}
$$

It has polynomial size and optimal solution value at most $(1+\varepsilon) \mathrm{OPT}_{L P}$.

Proof of Theorem 4.13 (Cont.)

Consider the corresponding

$$
\begin{array}{lll}
\text { reduced primal: } \quad \min & \sum_{j \in J} x_{j} & \\
\qquad \begin{array}{lll}
\text { s.t. } & \sum_{j \in J} t_{i j} \cdot x_{j} \geq b_{i} & \text { for all } i=1, \ldots, m, \\
& x_{j} \geq 0 & \text { for all } j \in J .
\end{array}
\end{array}
$$

It has polynomial size and optimal solution value at most $(1+\varepsilon) \mathrm{OPT}_{L P}$.
Choose $\varepsilon:=1 / n$ such that $(1+\varepsilon) \mathrm{OPT}_{L P} \leq \mathrm{OPT}_{L P}+\varepsilon n \leq \mathrm{OPT}_{L P}+1$.

Proof of Theorem 4.13 (Cont.)

Consider the corresponding

```
reduced primal: \(\min \sum_{j \in J} x_{j}\)
s.t. \(\quad \sum_{j \in J} t_{i j} \cdot x_{j} \geq b_{i} \quad\) for all \(i=1, \ldots, m\),
\(x_{j} \geq 0 \quad\) for all \(j \in J\).
```

It has polynomial size and optimal solution value at most $(1+\varepsilon) \mathrm{OPT}_{L P}$.
Choose $\varepsilon:=1 / n$ such that $(1+\varepsilon) \mathrm{OPT}_{L P} \leq \mathrm{OPT}_{L P}+\varepsilon n \leq \mathrm{OPT}_{L P}+1$.
Reduced primal and its optimal solution \bar{y} can be computed in polynomial time (FPTAS for Knapsack!).

Proof of Theorem 4.13 (Cont.)

Consider the corresponding

```
reduced primal: \(\quad \min \sum_{j \in J} x_{j}\)
s.t. \(\quad \sum_{j \in J} t_{i j} \cdot x_{j} \geq b_{i} \quad\) for all \(i=1, \ldots, m\),
\(x_{j} \geq 0 \quad\) for all \(j \in J\).
```

It has polynomial size and optimal solution value at most $(1+\varepsilon) \mathrm{OPT}_{L P}$.
Choose $\varepsilon:=1 / n$ such that $(1+\varepsilon) \mathrm{OPT}_{L P} \leq \mathrm{OPT}_{L P}+\varepsilon n \leq \mathrm{OPT}_{L P}+1$.
Reduced primal and its optimal solution \bar{y} can be computed in polynomial time (FPTAS for Knapsack!).
\bar{y} is feasible solution to original primal LP of value at most $\mathrm{OPT}_{L P}+1$.

Harmonic Grouping Scheme and Rounding

Grouping
■ consider items in order of non-increasing size;
■ open a group and start putting items in current group, one at a time;
■ close current group if its total size is at least 2 and start new group;

Harmonic Grouping Scheme and Rounding

Grouping
■ consider items in order of non-increasing size;
■ open a group and start putting items in current group, one at a time;
■ close current group if its total size is at least 2 and start new group;
Let $r:=$ number of groups; let G_{i} denote i th group; $n_{i}:=\left|G_{i}\right|$.

Harmonic Grouping Scheme and Rounding

Grouping
■ consider items in order of non-increasing size;
■ open a group and start putting items in current group, one at a time;
■ close current group if its total size is at least 2 and start new group;
Let $r:=$ number of groups; let G_{i} denote i th group; $n_{i}:=\left|G_{i}\right|$.
Notice that $r \leq\lceil\operatorname{SIZE}(I) / 2\rceil$ and $n_{i} \geq n_{i-1}$, for $i=2, \ldots, r-1$.

Harmonic Grouping Scheme and Rounding

Grouping

- consider items in order of non-increasing size;

■ open a group and start putting items in current group, one at a time;
■ close current group if its total size is at least 2 and start new group;
Let $r:=$ number of groups; let G_{i} denote i th group; $n_{i}:=\left|G_{i}\right|$.
Notice that $r \leq\lceil\operatorname{SIZE}(I) / 2\rceil$ and $n_{i} \geq n_{i-1}$, for $i=2, \ldots, r-1$.
Rounding: Construct new instance I^{\prime} as follows:

- discard items in G_{1} and G_{r};

■ for $i=2, \ldots, r-1$ discard the $n_{i}-n_{i-1}$ smallest items in G_{i};
■ for $i=2, \ldots, r-1$ round sizes of remaining items in G_{i} to largest one.

Harmonic Grouping Scheme and Rounding Grouping

- consider items in order of non-increasing size;

■ open a group and start putting items in current group, one at a time;
■ close current group if its total size is at least 2 and start new group;
Let $r:=$ number of groups; let G_{i} denote ith group; $n_{i}:=\left|G_{i}\right|$.
Notice that $r \leq\lceil\operatorname{SIZE}(I) / 2\rceil$ and $n_{i} \geq n_{i-1}$, for $i=2, \ldots, r-1$.
Rounding: Construct new instance I^{\prime} as follows:

- discard items in G_{1} and G_{r};

■ for $i=2, \ldots, r-1$ discard the $n_{i}-n_{i-1}$ smallest items in G_{i};
■ for $i=2, \ldots, r-1$ round sizes of remaining items in G_{i} to largest one.

Lemma 4.14

There are at most $\operatorname{SIZE}(I) / 2$ distinct item sizes in I^{\prime}; the total size of all discarded items is $O(\log \operatorname{SIZE}(I))$.

Recursive Bin Packing Algorithm

BinPack(I)
1 if $\operatorname{SIZE}(I)<10$ then pack remaining items using First-Fit and stop;

Recursive Bin Packing Algorithm

BinPack(I)
1 if $\operatorname{SIZE}(I)<10$ then pack remaining items using First-Fit and stop;

2 apply harmonic grouping scheme to create instance I^{\prime};
3 pack discarded items in $O(\log \operatorname{SIZE}(I))$ bins using First-Fit;

Recursive Bin Packing Algorithm

BinPack(I)
1 if $\operatorname{SIZE}(I)<10$ then pack remaining items using First-Fit and stop;

2 apply harmonic grouping scheme to create instance I^{\prime};
3 pack discarded items in $O(\log \operatorname{SIZE}(I))$ bins using First-Fit;
4 compute near-optimal solution x to Configuration LP for instance I';

5 for $j=1, \ldots, N$ pack $\left\lfloor x_{j}\right\rfloor$ bins in configuration T_{j};
6 call the packed items instance I_{1} and the remaining items l_{2};

Recursive Bin Packing Algorithm

BinPack(I)
1 if $\operatorname{SIZE}(I)<10$ then pack remaining items using First-Fit and stop;

2 apply harmonic grouping scheme to create instance I^{\prime};
3 pack discarded items in $O(\log \operatorname{SIZE}(I))$ bins using First-Fit;
4 compute near-optimal solution x to Configuration LP for instance I';

5 for $j=1, \ldots, N$ pack $\left\lfloor x_{j}\right\rfloor$ bins in configuration T_{j};
6 call the packed items instance I_{1} and the remaining items l_{2};
7 pack I_{2} recursively via $\operatorname{BinPack}\left(I_{2}\right)$;

Analysis of Algorithm BinPack

Lemma 4.15

$\operatorname{OPT}_{L P}\left(I_{1}\right)+\operatorname{OPT}_{L P}\left(I_{2}\right) \leq \operatorname{OPT}_{L P}\left(I^{\prime}\right) \leq \operatorname{OPT}_{L P}(I)$.

Analysis of Algorithm BinPack

Lemma 4.15

$\operatorname{OPT}_{L P}\left(I_{1}\right)+\operatorname{OPT}_{L P}\left(I_{2}\right) \leq \operatorname{OPT}_{L P}\left(I^{\prime}\right) \leq \operatorname{OPT}_{L P}(I)$.
Proof:...

Analysis of Algorithm BinPack

Lemma 4.15

$\operatorname{OPT}_{L P}\left(I_{1}\right)+\operatorname{OPT}_{L P}\left(I_{2}\right) \leq \operatorname{OPT}_{L P}\left(I^{\prime}\right) \leq \operatorname{OPT}_{L P}(I)$.
Proof:...

Theorem 4.16 (Karmarkar \& Karp, 1982)

Algorithm BinPack runs in polynomial time and finds a solution using at most OPT $(I)+O\left(\log ^{2}\right.$ OPT $\left.(I)\right)$ bins.

Analysis of Algorithm BinPack

Lemma 4.15

$\operatorname{OPT}_{L P}\left(I_{1}\right)+\operatorname{OPT}_{L P}\left(I_{2}\right) \leq \operatorname{OPT}_{L P}\left(I^{\prime}\right) \leq \operatorname{OPT}_{L P}(I)$.
Proof:...

Theorem 4.16 (Karmarkar \& Karp, 1982)

Algorithm BinPack runs in polynomial time and finds a solution using at most OPT $(I)+O\left(\log ^{2}\right.$ OPT $\left.(I)\right)$ bins.

Proof:...

Analysis of Algorithm BinPack

Lemma 4.15

$\operatorname{OPT}_{L P}\left(I_{1}\right)+\operatorname{OPT}_{L P}\left(I_{2}\right) \leq \operatorname{OPT}_{L P}\left(I^{\prime}\right) \leq \operatorname{OPT}_{L P}(I)$.
Proof:...

Theorem 4.16 (Karmarkar \& Karp, 1982)

Algorithm BinPack runs in polynomial time and finds a solution using at most OPT $(I)+O\left(\log ^{2}\right.$ OPT $\left.(I)\right)$ bins.

Proof:...

Theorem 4.17 (Hoberg \& Rothvoß, 2015)

A solution using at most OPT $(I)+O(\log$ OPT $(I))$ bins can be found in polynomial time.

[^0]: G. Sagnol

