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The scheduling problem 1|rj |
∑

jCj

Given: jobs with processing time pj > 0, release date rj ≥ 0, j = 1, . . . , n.
Task: Schedule the jobs nonpreemptively on a single machine;

minimize the total completion time
n∑

j=1

Cj .

Remarks:
This problem is known to be strongly NP-hard.
The preemptive relaxation, however, can be solved efficiently.

Shortest Remaining Processing Time (SRPT) Rule
At any point in time, process an available and uncompleted job with
shortest remaining processing time.

Theorem 4.1
The SRPT Rule finds an optimal preemptive schedule in time O(n log n).

Proof: Use an exchange argument.
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Converting Preemptive into Nonpreemptive Schedule
Idea: Use optimal preemptive solution to get good nonpreemptive
solution.

Algorithm
1 compute optimal preemptive schedule with job completion times CP

j ;

2 sort jobs such that CP
1 < CP

2 < · · · < CP
n ;

3 schedule all jobs nonpreemptively and as early as possible in this order;
Step 3: set C1 := r1 + p1; for j = 2 to n set Cj := max{rj ,Cj−1}+ pj ;

Lemma 4.2
For each job j = 1, . . . , n, it holds that Cj ≤ 2 · CP

j .

Theorem 4.3
The algorithm above is a 2-approximation algorithm.

Proof:. . .
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Problem 1|rj |
∑

jwjCj

Given: As before, but now all jobs j also have a weight wj ≥ 0.

Task: Minimize the total weighted completion time
n∑

j=1

wjCj .

Remarks:
Unfortunately, already the weighted preemptive problem is NP-hard.
Thus, instead of preemptive relaxation use LP relaxation:

min
n∑

j=1

wjCj

s.t. Cj ≥ rj + pj for all jobs j = 1, . . . , n,∑
j∈S

pjCj ≥ 1

2
p(S)2 for all S ⊆ {1, . . . , n}.

Lemma 4.4
The completion times Cj of a feasible schedule satisfy the LP constraints.
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Scheduling in Order of LP Completion Times

Lemma 4.5
Despite the exponential number of constraints, an optimal solution
C ∗ to the LP relaxation can be computed in polynomial time.

Proof:. . .

Algorithm
1 compute optimal solution C ∗ to the LP relaxation;
2 sort jobs such that C ∗

1
≤ C ∗

2
≤ · · · ≤ C ∗n ;

3 schedule all jobs nonpreemptively and as early as possible in
this order;

Theorem 4.6
The algorithm above is a 3-approximation algorithm.

Proof:. . .
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Prize-Collecting Steiner Tree Problem
Given: Graph G = (V ,E ), root node r ∈ V , edge costs ce ≥ 0, e ∈ E ,

and penalties πi ≥ 0, i ∈ V .

Task: Find subtree T containing root r minimizing
∑

e∈E(T )

ce +
∑

i∈V \V (T )

πi .

Remark: The Steiner Tree Problem is a special case with πi = 0 for all
non-terminals and πi =∞ for terminals i .

IP formulation:
min

∑
e∈E

ce · xe +
∑
i∈V

πi · (1− yi )

s.t.
∑

e∈δ(S)

xe ≥ max
i∈S

yi for all S ⊆ V \ {r},

yr = 1,

xe , yi ∈ {0, 1} for all e ∈ E , i ∈ V .
LP relaxation: xe ≥ 0 for all e ∈ E and yi ≤ 1 for all i ∈ V .
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Deterministic LP Rounding Algorithm
Let 0 ≤ α < 1.

1 compute optimal LP solution (x∗, y∗) in polytime with ellipsoid algo;
2 set U := {i ∈ V | y∗i ≥ α};
3 Find Steiner tree T on terminals U using some primal-dual

algorithm. We will prove the following lemma later, in an exercise:

Lemma 4.7
There is a primal-dual algorithm that returns a Steiner tree T on
terminals U with cost at most 2

α

∑
e∈E

ce · x∗e .

Theorem 4.8
For α = 2/3 the cost of the solution returned by the algorithm is

c
(
E (T )

)
+π
(
V \V (T )

)
≤ 2

α

∑
e∈E

ce · x∗e +
1

1− α
∑
i∈V

πi · (1− y∗i ) ≤ 3 ·OPT .
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Uncapacitated Facility Location Problem
Given: Set of facilities F with opening costs fi ≥ 0, i ∈ F ;

set of clients D with connection costs cij ≥ 0, i ∈ F , j ∈ D .

Task: Choose F ′ ⊆ F and assign each client to nearest facility in F ′.
Objective: Minimize

∑
i∈F ′

fi +
∑
j∈D

min
i∈F ′

cij .

Remarks:
This is a generalization of the Set Cover Problem.
In the following, we consider the special case with metric costs cij .

IP formulation:
min

xij ,yi∈{0,1}

∑
i∈F

fi · yi +
∑

i∈F ,j∈D
cij · xij

s.t.
∑
i∈F

xij = 1 for all j ∈ D ,

yi − xij ≥ 0 for all i ∈ F , j ∈ D .
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LP Relaxation and Dual LP
min

∑
i∈F

fi · yi +
∑

i∈F , j∈D
cij · xij

s.t.
∑
i∈F

xij = 1 for all j ∈ D ,

yi − xij ≥ 0 for all i ∈ F , j ∈ D ,
xij , yi ≥ 0 for all i ∈ F , j ∈ D .

dual LP: max
vj ,wij≥0

∑
j∈D

vj

s.t.
∑
j∈D

wij ≤ fi for all i ∈ F ,

vj − wij ≤ cij for all i ∈ F , j ∈ D .
Interpretation of the dual LP:

vj is the total amount that client j wants to pay for being served.

client j might contribute wij to facility i for being connected to i .
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Structure of Optimal LP Solution
Let (x∗, y∗) and (v∗,w∗) be optimal solutions to the primal and dual LP,
respectively.

Notation:
Facility i neighbors client j if x∗ij > 0; N(j) := {i ∈ F | x∗ij > 0}.
N2(j) := {` ∈ D | client ` neighbors some facility i ∈ N(j)}.

Lemma 4.9
If clients j1, . . . , jk have disjoint neighborhoods N(j1), . . . ,N(jk), then
opening cheapest facility in each neighborhood costs ≤

∑
i∈F

fi · y∗i ≤ OPT .

Lemma 4.10
For each client j , v∗j ≥ cij for all i ∈ N(j).

Proofs: . . .
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Deterministic LP Rounding Algorithm
1 compute optimal LP solutions (x∗, y∗) and (v∗,w∗);
2 while D 6= ∅
3 choose j := argminj ′∈Dv∗j ′ and i := argmini ′∈N(j)fi ′ ;
4 assign all unassigned clients in N2(j) to facility i ;
5 set D := D \ N2(j);

Theorem 4.11
The algorithm above is a 4-approximation algorithm.

Proof:. . .
We finally mention the following non-approximability result without proof.

Theorem 4.12
There is no α-approximation algorithm for the metric uncapacitated
facility location problem with α < 1.463 unless each problem in NP has
an O(nO(log log n)) time algorithm.
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Bin Packing Revisited

In the previous chapter we showed how to find a solution to
instance I with at most (1+ ε)OPT (I ) + 1 bins in polynomial time.

Goal: Use at most OPT (I ) + O
(
log2 OPT (I )

)
bins!

(Karmarkar & Karp, 1982)

Ingredients:
Replace dynamic program with integer program plus LP
rounding.
Improved grouping scheme.
Recursive application of two previous ingredients.

Notice:
By Lemma 3.14 we can assume that all items have size at least
1/SIZE(I ).

G. Sagnol 4- Deterministic LP Rounding 17 / 25



Bin Packing Revisited

In the previous chapter we showed how to find a solution to
instance I with at most (1+ ε)OPT (I ) + 1 bins in polynomial time.

Goal: Use at most OPT (I ) + O
(
log2 OPT (I )

)
bins!

(Karmarkar & Karp, 1982)

Ingredients:
Replace dynamic program with integer program plus LP
rounding.
Improved grouping scheme.
Recursive application of two previous ingredients.

Notice:
By Lemma 3.14 we can assume that all items have size at least
1/SIZE(I ).

G. Sagnol 4- Deterministic LP Rounding 17 / 25



Bin Packing Revisited

In the previous chapter we showed how to find a solution to
instance I with at most (1+ ε)OPT (I ) + 1 bins in polynomial time.

Goal: Use at most OPT (I ) + O
(
log2 OPT (I )

)
bins!

(Karmarkar & Karp, 1982)

Ingredients:
Replace dynamic program with integer program plus LP
rounding.
Improved grouping scheme.
Recursive application of two previous ingredients.

Notice:
By Lemma 3.14 we can assume that all items have size at least
1/SIZE(I ).

G. Sagnol 4- Deterministic LP Rounding 17 / 25



Bin Packing Revisited

In the previous chapter we showed how to find a solution to
instance I with at most (1+ ε)OPT (I ) + 1 bins in polynomial time.

Goal: Use at most OPT (I ) + O
(
log2 OPT (I )

)
bins!

(Karmarkar & Karp, 1982)

Ingredients:
Replace dynamic program with integer program plus LP
rounding.
Improved grouping scheme.
Recursive application of two previous ingredients.

Notice:
By Lemma 3.14 we can assume that all items have size at least
1/SIZE(I ).

G. Sagnol 4- Deterministic LP Rounding 17 / 25



Configuration Integer Program for Bin Packing

let s1 > s2 > · · · > sm denote the different item sizes;
for i = 1, . . . ,m, let bi denote the number of items of size si ;

an m-tuple (t1, . . . , tm) ∈ Zm
≥0 is a configuration if

m∑
i=1

ti · si ≤ 1;

let T1, . . . ,TN be a complete enumeration of all configurations and
denote by tij the multiplicity of item i in configuration Tj ;
for j = 1, . . . ,N , the integer variable xj denotes the number of bins
that shall be packed according to configuration Tj :

min
N∑
j=1

xj

s.t.
N∑
j=1

tij · xj ≥ bi for all i = 1, . . . ,m,

xj ∈ Z≥0 for all j = 1, . . . ,N .
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Configuration LP and its Dual

Primal: min
N∑
j=1

xj

s.t.
N∑
j=1

tij · xj ≥ bi for all i = 1, . . . ,m,

xj ≥ 0 for all j = 1, . . . ,N .

Dual: max
m∑
i=1

bi · yi

s.t.
m∑
i=1

tij · yi ≤ 1 for all j = 1, . . . ,N ,

yi ≥ 0 for all i = 1, . . . ,m.

Notice: SIZE(I ) ≤ OPT LP(I ) ≤ OPT (I )
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Solving the Configuration LP Approximately

Configuration LP suffers from exponentially many variables.

Dual separation problem is Knapsack Problem and thus
NP-hard.

Remember: optimization and separation are equally difficult.

Therefore, it is NP-hard to solve the Configuration LP to
optimality.

Theorem 4.13
An LP solution of value at most OPTLP(I ) + 1 can be computed in
polynomial time.

Proof:. . .
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Proof of Theorem 4.13
Main idea: Use FPTAS for Knapsack Problem as approximate separation
routine within ellipsoid method.

This yields optimal solution y∗ to

perturbed dual: max
m∑
i=1

bi · yi

s.t.
m∑
i=1

tij · yi ≤ δj for all j = 1, . . . ,N ,

yi ≥ 0 for all i = 1, . . . ,m,
with δj ∈ {1, 1 + ε} and |{j | δj = 1}| polynomially bounded.
Since y∗/(1 + ε) is feasible dual solution,

∑m
i=1

bi · y∗i ≤ (1 + ε)OPTLP .
Moreover, for J := {j | δj = 1}, vector y∗ is optimal solution to

reduced dual: max
m∑
i=1

bi · yi

s.t.
m∑
i=1

tij · yi ≤ 1 for all j with δj = 1,

yi ≥ 0 for all i = 1, . . . ,m.
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Proof of Theorem 4.13 (Cont.)

Consider the corresponding

reduced primal: min
∑
j∈J

xj

s.t.
∑
j∈J

tij · xj ≥ bi for all i = 1, . . . ,m,

xj ≥ 0 for all j ∈ J .

It has polynomial size and optimal solution value at most (1 + ε)OPTLP .

Choose ε := 1/n such that (1 + ε)OPTLP ≤ OPTLP + εn ≤ OPTLP + 1.

Reduced primal and its optimal solution ȳ can be computed in polynomial
time (FPTAS for Knapsack!).

ȳ is feasible solution to original primal LP of value at most OPTLP + 1.
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Harmonic Grouping Scheme and Rounding
Grouping

consider items in order of non-increasing size;
open a group and start putting items in current group, one at a time;
close current group if its total size is at least 2 and start new group;

Let r := number of groups; let Gi denote ith group; ni := |Gi |.

Notice that r ≤ dSIZE(I )/2e and ni ≥ ni−1, for i = 2, . . . , r − 1.

Rounding: Construct new instance I ′ as follows:
discard items in G1 and Gr ;
for i = 2, . . . , r − 1 discard the ni − ni−1 smallest items in Gi ;
for i = 2, . . . , r − 1 round sizes of remaining items in Gi to largest one.

Lemma 4.14
There are at most SIZE(I )/2 distinct item sizes in I ′; the total size of all
discarded items is O(log SIZE(I )).
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Recursive Bin Packing Algorithm
BinPack(I )

1 if SIZE(I ) < 10 then pack remaining items using First-Fit and
stop;

2 apply harmonic grouping scheme to create instance I ′;

3 pack discarded items in O(log SIZE(I )) bins using First-Fit;

4 compute near-optimal solution x to Configuration LP for
instance I ′;

5 for j = 1, . . . ,N pack bxjc bins in configuration Tj ;

6 call the packed items instance I1 and the remaining items I2;

7 pack I2 recursively via BinPack(I2);

G. Sagnol 4- Deterministic LP Rounding 24 / 25



Recursive Bin Packing Algorithm
BinPack(I )

1 if SIZE(I ) < 10 then pack remaining items using First-Fit and
stop;

2 apply harmonic grouping scheme to create instance I ′;

3 pack discarded items in O(log SIZE(I )) bins using First-Fit;

4 compute near-optimal solution x to Configuration LP for
instance I ′;

5 for j = 1, . . . ,N pack bxjc bins in configuration Tj ;

6 call the packed items instance I1 and the remaining items I2;

7 pack I2 recursively via BinPack(I2);

G. Sagnol 4- Deterministic LP Rounding 24 / 25



Recursive Bin Packing Algorithm
BinPack(I )

1 if SIZE(I ) < 10 then pack remaining items using First-Fit and
stop;

2 apply harmonic grouping scheme to create instance I ′;

3 pack discarded items in O(log SIZE(I )) bins using First-Fit;

4 compute near-optimal solution x to Configuration LP for
instance I ′;

5 for j = 1, . . . ,N pack bxjc bins in configuration Tj ;

6 call the packed items instance I1 and the remaining items I2;

7 pack I2 recursively via BinPack(I2);

G. Sagnol 4- Deterministic LP Rounding 24 / 25



Recursive Bin Packing Algorithm
BinPack(I )

1 if SIZE(I ) < 10 then pack remaining items using First-Fit and
stop;

2 apply harmonic grouping scheme to create instance I ′;

3 pack discarded items in O(log SIZE(I )) bins using First-Fit;

4 compute near-optimal solution x to Configuration LP for
instance I ′;

5 for j = 1, . . . ,N pack bxjc bins in configuration Tj ;

6 call the packed items instance I1 and the remaining items I2;

7 pack I2 recursively via BinPack(I2);
G. Sagnol 4- Deterministic LP Rounding 24 / 25



Analysis of Algorithm BinPack

Lemma 4.15
OPT LP(I1) + OPT LP(I2) ≤ OPT LP(I

′) ≤ OPT LP(I ).

Proof:. . .

Theorem 4.16 (Karmarkar & Karp, 1982)
Algorithm BinPack runs in polynomial time and finds a solution
using at most OPT (I ) + O

(
log2 OPT (I )

)
bins.

Proof:. . .

Theorem 4.17 (Hoberg & Rothvoß, 2015)
A solution using at most OPT (I ) + O

(
log OPT (I )

)
bins can be found

in polynomial time.
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