
Approximation Algorithms (ADM III)
5- Random Sampling & Randomized Rounding

Guillaume Sagnol

G. Sagnol 5- Random Sampling & Randomized Rounding 1 / 43

Randomized Approximation Algorithm

Definition 5.1
A randomized α-approximation algorithm is a polynomial-time
randomized algorithm which always finds a feasible solution
whose expected value is bounded by α · OPT .

Remarks
Often, a randomized α-approximation algorithm can be
derandomized, i.e., turned into a deterministic
α-approximation algorithm.
It is usually simpler to state and analyze the randomized
algorithm.
Sometimes, the only known way of analyzing a deterministic
approximation algorithm is to analyze a randomized version.
Sometimes one can show that the performance guarantee of
a randomized algorithm holds with high probability.

G. Sagnol 5- Random Sampling & Randomized Rounding 2 / 43

Randomized Approximation Algorithm

Definition 5.1
A randomized α-approximation algorithm is a polynomial-time
randomized algorithm which always finds a feasible solution
whose expected value is bounded by α · OPT .

Remarks
Often, a randomized α-approximation algorithm can be
derandomized, i.e., turned into a deterministic
α-approximation algorithm.

It is usually simpler to state and analyze the randomized
algorithm.
Sometimes, the only known way of analyzing a deterministic
approximation algorithm is to analyze a randomized version.
Sometimes one can show that the performance guarantee of
a randomized algorithm holds with high probability.

G. Sagnol 5- Random Sampling & Randomized Rounding 2 / 43

Randomized Approximation Algorithm

Definition 5.1
A randomized α-approximation algorithm is a polynomial-time
randomized algorithm which always finds a feasible solution
whose expected value is bounded by α · OPT .

Remarks
Often, a randomized α-approximation algorithm can be
derandomized, i.e., turned into a deterministic
α-approximation algorithm.
It is usually simpler to state and analyze the randomized
algorithm.

Sometimes, the only known way of analyzing a deterministic
approximation algorithm is to analyze a randomized version.
Sometimes one can show that the performance guarantee of
a randomized algorithm holds with high probability.

G. Sagnol 5- Random Sampling & Randomized Rounding 2 / 43

Randomized Approximation Algorithm

Definition 5.1
A randomized α-approximation algorithm is a polynomial-time
randomized algorithm which always finds a feasible solution
whose expected value is bounded by α · OPT .

Remarks
Often, a randomized α-approximation algorithm can be
derandomized, i.e., turned into a deterministic
α-approximation algorithm.
It is usually simpler to state and analyze the randomized
algorithm.
Sometimes, the only known way of analyzing a deterministic
approximation algorithm is to analyze a randomized version.

Sometimes one can show that the performance guarantee of
a randomized algorithm holds with high probability.

G. Sagnol 5- Random Sampling & Randomized Rounding 2 / 43

Randomized Approximation Algorithm

Definition 5.1
A randomized α-approximation algorithm is a polynomial-time
randomized algorithm which always finds a feasible solution
whose expected value is bounded by α · OPT .

Remarks
Often, a randomized α-approximation algorithm can be
derandomized, i.e., turned into a deterministic
α-approximation algorithm.
It is usually simpler to state and analyze the randomized
algorithm.
Sometimes, the only known way of analyzing a deterministic
approximation algorithm is to analyze a randomized version.
Sometimes one can show that the performance guarantee of
a randomized algorithm holds with high probability.

G. Sagnol 5- Random Sampling & Randomized Rounding 2 / 43

Outline

1 Random sampling for MAXSAT and MAXCUT

2 Randomized Rounding for MAXSAT

3 Price-Collecting Steiner Tree Problem

4 Uncapacited Facility Location Problem

5 Minimizing the Weighted Sum of Completion Times

6 Minimum-Capacity Multicommodity Flow Problem

7 Rounding a semidefinite programming relaxation for MAXCUT

G. Sagnol 5- Random Sampling & Randomized Rounding 3 / 43

Maximum Satisfiability Problem (MAXSAT)
Given: Boolean variables x1, . . . , xn and clauses C1, . . . ,Cm with

weights w1, . . . ,wm ∈ R≥0.
(Clause is disjunction of Boolean variables or negations, e.g.,
x1 ∨ x2 ∨ x3)
Task: Find a truth assignment to x1, . . . , xn.
Objective: Maximize the total weight of satisfied clauses.

Example: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3)

Remarks:
A variable xi or its negation xi is a literal.
The number of literals `j in clause Cj is its size or length.
If `j = 1, then Cj is a unit clause.
W.l.o.g. no literal is repeated in a clause and clauses are
distinct.
W.l.o.g. at most one of xi and xi appears in a clause.

G. Sagnol 5- Random Sampling & Randomized Rounding 4 / 43

Maximum Satisfiability Problem (MAXSAT)
Given: Boolean variables x1, . . . , xn and clauses C1, . . . ,Cm with

weights w1, . . . ,wm ∈ R≥0.
(Clause is disjunction of Boolean variables or negations, e.g.,
x1 ∨ x2 ∨ x3)
Task: Find a truth assignment to x1, . . . , xn.
Objective: Maximize the total weight of satisfied clauses.

Example: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3)

Remarks:
A variable xi or its negation xi is a literal.
The number of literals `j in clause Cj is its size or length.
If `j = 1, then Cj is a unit clause.
W.l.o.g. no literal is repeated in a clause and clauses are
distinct.
W.l.o.g. at most one of xi and xi appears in a clause.

G. Sagnol 5- Random Sampling & Randomized Rounding 4 / 43

Maximum Satisfiability Problem (MAXSAT)
Given: Boolean variables x1, . . . , xn and clauses C1, . . . ,Cm with

weights w1, . . . ,wm ∈ R≥0.
(Clause is disjunction of Boolean variables or negations, e.g.,
x1 ∨ x2 ∨ x3)
Task: Find a truth assignment to x1, . . . , xn.
Objective: Maximize the total weight of satisfied clauses.

Example: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3)

Remarks:
A variable xi or its negation xi is a literal.
The number of literals `j in clause Cj is its size or length.
If `j = 1, then Cj is a unit clause.
W.l.o.g. no literal is repeated in a clause and clauses are
distinct.
W.l.o.g. at most one of xi and xi appears in a clause.

G. Sagnol 5- Random Sampling & Randomized Rounding 4 / 43

Randomized Truth Assignment

Theorem 5.2
a Setting each xi to true independently with probability 1/2 gives
a randomized 1/2-approximation algorithm for MAXSAT.

b If `j ≥ k for all j = 1, . . . ,m, then the above algorithm is a
randomized (1− 1/2k)-approximation algorithm.

Proof:. . .
Maximum Exactly 3SAT (MAXE3SAT): The special case of
MAXSAT where `j = 3 for all j = 1, . . . ,m is called MAXE3SAT.
We state the following theorem without proof.

Theorem 5.3
Unless P = NP , there is no (7/8 + ε)-approximation algorithm for
MAXE3SAT for any constant ε > 0.

G. Sagnol 5- Random Sampling & Randomized Rounding 5 / 43

Randomized Truth Assignment

Theorem 5.2
a Setting each xi to true independently with probability 1/2 gives
a randomized 1/2-approximation algorithm for MAXSAT.

b If `j ≥ k for all j = 1, . . . ,m, then the above algorithm is a
randomized (1− 1/2k)-approximation algorithm.

Proof:. . .

Maximum Exactly 3SAT (MAXE3SAT): The special case of
MAXSAT where `j = 3 for all j = 1, . . . ,m is called MAXE3SAT.
We state the following theorem without proof.

Theorem 5.3
Unless P = NP , there is no (7/8 + ε)-approximation algorithm for
MAXE3SAT for any constant ε > 0.

G. Sagnol 5- Random Sampling & Randomized Rounding 5 / 43

Randomized Truth Assignment

Theorem 5.2
a Setting each xi to true independently with probability 1/2 gives
a randomized 1/2-approximation algorithm for MAXSAT.

b If `j ≥ k for all j = 1, . . . ,m, then the above algorithm is a
randomized (1− 1/2k)-approximation algorithm.

Proof:. . .
Maximum Exactly 3SAT (MAXE3SAT): The special case of
MAXSAT where `j = 3 for all j = 1, . . . ,m is called MAXE3SAT.

We state the following theorem without proof.

Theorem 5.3
Unless P = NP , there is no (7/8 + ε)-approximation algorithm for
MAXE3SAT for any constant ε > 0.

G. Sagnol 5- Random Sampling & Randomized Rounding 5 / 43

Randomized Truth Assignment

Theorem 5.2
a Setting each xi to true independently with probability 1/2 gives
a randomized 1/2-approximation algorithm for MAXSAT.

b If `j ≥ k for all j = 1, . . . ,m, then the above algorithm is a
randomized (1− 1/2k)-approximation algorithm.

Proof:. . .
Maximum Exactly 3SAT (MAXE3SAT): The special case of
MAXSAT where `j = 3 for all j = 1, . . . ,m is called MAXE3SAT.
We state the following theorem without proof.

Theorem 5.3
Unless P = NP , there is no (7/8 + ε)-approximation algorithm for
MAXE3SAT for any constant ε > 0.

G. Sagnol 5- Random Sampling & Randomized Rounding 5 / 43

Randomized Truth Assignment

Theorem 5.2
a Setting each xi to true independently with probability 1/2 gives
a randomized 1/2-approximation algorithm for MAXSAT.

b If `j ≥ k for all j = 1, . . . ,m, then the above algorithm is a
randomized (1− 1/2k)-approximation algorithm.

Proof:. . .
Maximum Exactly 3SAT (MAXE3SAT): The special case of
MAXSAT where `j = 3 for all j = 1, . . . ,m is called MAXE3SAT.
We state the following theorem without proof.

Theorem 5.3
Unless P = NP , there is no (7/8 + ε)-approximation algorithm for
MAXE3SAT for any constant ε > 0.

G. Sagnol 5- Random Sampling & Randomized Rounding 5 / 43

Maximum Cut Problem (MAXCUT)

Given: Undirected Graph G = (V ,E) with edge weights we ≥ 0,
e ∈ E .
Task: Find S ⊂ V maximizing

∑
e∈δ(S)

we .

Theorem 5.4
Placing each node v ∈ V into S independently at random with
probability 1/2 gives a randomized 1/2-approximation algorithm
for MAXCUT.

Proof:. . .

G. Sagnol 5- Random Sampling & Randomized Rounding 6 / 43

Maximum Cut Problem (MAXCUT)

Given: Undirected Graph G = (V ,E) with edge weights we ≥ 0,
e ∈ E .
Task: Find S ⊂ V maximizing

∑
e∈δ(S)

we .

Theorem 5.4
Placing each node v ∈ V into S independently at random with
probability 1/2 gives a randomized 1/2-approximation algorithm
for MAXCUT.

Proof:. . .

G. Sagnol 5- Random Sampling & Randomized Rounding 6 / 43

Maximum Cut Problem (MAXCUT)

Given: Undirected Graph G = (V ,E) with edge weights we ≥ 0,
e ∈ E .
Task: Find S ⊂ V maximizing

∑
e∈δ(S)

we .

Theorem 5.4
Placing each node v ∈ V into S independently at random with
probability 1/2 gives a randomized 1/2-approximation algorithm
for MAXCUT.

Proof:. . .

G. Sagnol 5- Random Sampling & Randomized Rounding 6 / 43

Derandomization: Method of Conditional Expectations
Basic Idea:

Consider random decisions sequentially one after another.
Take next decision deterministically optimizing the expected
solution value assuming that all remaining decisions are taken
randomly.

Example: Derandomized version of randomized
MAXSATalgorithm
LetW denote the total weight of satisfied clauses in final solution.

1 for i = 1 to n

2 if
E [W | x1 = b1, . . . , xi−1 = bi−1, xi = true]
≥ E [W | x1 = b1, . . . , xi−1 = bi−1, xi = false]

3 then set bi := true;

4 else set bi := false;

5 return x:=b;

G. Sagnol 5- Random Sampling & Randomized Rounding 7 / 43

Derandomization: Method of Conditional Expectations
Basic Idea:

Consider random decisions sequentially one after another.
Take next decision deterministically optimizing the expected
solution value assuming that all remaining decisions are taken
randomly.

Example: Derandomized version of randomized
MAXSATalgorithm
LetW denote the total weight of satisfied clauses in final solution.

1 for i = 1 to n

2 if
E [W | x1 = b1, . . . , xi−1 = bi−1, xi = true]
≥ E [W | x1 = b1, . . . , xi−1 = bi−1, xi = false]

3 then set bi := true;

4 else set bi := false;

5 return x:=b;

G. Sagnol 5- Random Sampling & Randomized Rounding 7 / 43

Derandomization: Method of Conditional Expectations
Basic Idea:

Consider random decisions sequentially one after another.
Take next decision deterministically optimizing the expected
solution value assuming that all remaining decisions are taken
randomly.

Example: Derandomized version of randomized
MAXSATalgorithm
LetW denote the total weight of satisfied clauses in final solution.

1 for i = 1 to n

2 if
E [W | x1 = b1, . . . , xi−1 = bi−1, xi = true]
≥ E [W | x1 = b1, . . . , xi−1 = bi−1, xi = false]

3 then set bi := true;

4 else set bi := false;

5 return x:=b;
G. Sagnol 5- Random Sampling & Randomized Rounding 7 / 43

Method of Conditional Expectations: Analysis

Theorem 5.5
The value of the solution computed by the deterministic MAXSAT
algorithm is at least the expected value of the randomized solution.

Remarks.
The crucial step of the derandomized algorithm is to compute the
conditional expectations.
Notice that E [W | x1 = b1, . . . , xi = bi]

=
m∑
j=1

wj · Pr [Cj = true | x1 = b1, . . . , xi = bi]

and Pr [Cj = true | x1 = b1, . . . , xi = bi]

=

{
1 if x1 = b1, . . . , xi = bi satisfies Cj ,
1− 1/2k else,

where k is the number of remaining literals in clause Cj .

G. Sagnol 5- Random Sampling & Randomized Rounding 8 / 43

Method of Conditional Expectations: Analysis

Theorem 5.5
The value of the solution computed by the deterministic MAXSAT
algorithm is at least the expected value of the randomized solution.

Remarks.
The crucial step of the derandomized algorithm is to compute the
conditional expectations.

Notice that E [W | x1 = b1, . . . , xi = bi]

=
m∑
j=1

wj · Pr [Cj = true | x1 = b1, . . . , xi = bi]

and Pr [Cj = true | x1 = b1, . . . , xi = bi]

=

{
1 if x1 = b1, . . . , xi = bi satisfies Cj ,
1− 1/2k else,

where k is the number of remaining literals in clause Cj .

G. Sagnol 5- Random Sampling & Randomized Rounding 8 / 43

Method of Conditional Expectations: Analysis

Theorem 5.5
The value of the solution computed by the deterministic MAXSAT
algorithm is at least the expected value of the randomized solution.

Remarks.
The crucial step of the derandomized algorithm is to compute the
conditional expectations.
Notice that E [W | x1 = b1, . . . , xi = bi]

=
m∑
j=1

wj · Pr [Cj = true | x1 = b1, . . . , xi = bi]

and Pr [Cj = true | x1 = b1, . . . , xi = bi]

=

{
1 if x1 = b1, . . . , xi = bi satisfies Cj ,
1− 1/2k else,

where k is the number of remaining literals in clause Cj .

G. Sagnol 5- Random Sampling & Randomized Rounding 8 / 43

Method of Conditional Expectations: Analysis

Theorem 5.5
The value of the solution computed by the deterministic MAXSAT
algorithm is at least the expected value of the randomized solution.

Remarks.
The crucial step of the derandomized algorithm is to compute the
conditional expectations.
Notice that E [W | x1 = b1, . . . , xi = bi]

=
m∑
j=1

wj · Pr [Cj = true | x1 = b1, . . . , xi = bi]

and Pr [Cj = true | x1 = b1, . . . , xi = bi]

=

{
1 if x1 = b1, . . . , xi = bi satisfies Cj ,
1− 1/2k else,

where k is the number of remaining literals in clause Cj .
G. Sagnol 5- Random Sampling & Randomized Rounding 8 / 43

Flipping Biased Coins
We first restrict to MAXSAT instances with no negated unit clause.

Lemma 5.6
If each xi is independently set to true with probability p > 1/2, then
the probability that a clause is satisfied is at least min{p, 1− p2}.

Proof:. . .

Theorem 5.7
For 1/2 < p ≤ 1 this gives a randomized
min{p, 1− p2}-approximation algorithm for MAXSAT.

Notice: For p = (
√
5− 1)/2 we get min{p, 1− p2} = (

√
5− 1)/2 ≈ 0.618.

Remark:
The initial assumption on the absence of negated unit clauses holds
w.l.o.g. !

G. Sagnol 5- Random Sampling & Randomized Rounding 9 / 43

Flipping Biased Coins
We first restrict to MAXSAT instances with no negated unit clause.

Lemma 5.6
If each xi is independently set to true with probability p > 1/2, then
the probability that a clause is satisfied is at least min{p, 1− p2}.

Proof:. . .

Theorem 5.7
For 1/2 < p ≤ 1 this gives a randomized
min{p, 1− p2}-approximation algorithm for MAXSAT.

Notice: For p = (
√
5− 1)/2 we get min{p, 1− p2} = (

√
5− 1)/2 ≈ 0.618.

Remark:
The initial assumption on the absence of negated unit clauses holds
w.l.o.g. !

G. Sagnol 5- Random Sampling & Randomized Rounding 9 / 43

Flipping Biased Coins
We first restrict to MAXSAT instances with no negated unit clause.

Lemma 5.6
If each xi is independently set to true with probability p > 1/2, then
the probability that a clause is satisfied is at least min{p, 1− p2}.

Proof:. . .

Theorem 5.7
For 1/2 < p ≤ 1 this gives a randomized
min{p, 1− p2}-approximation algorithm for MAXSAT.

Notice: For p = (
√
5− 1)/2 we get min{p, 1− p2} = (

√
5− 1)/2 ≈ 0.618.

Remark:
The initial assumption on the absence of negated unit clauses holds
w.l.o.g. !

G. Sagnol 5- Random Sampling & Randomized Rounding 9 / 43

Flipping Biased Coins
We first restrict to MAXSAT instances with no negated unit clause.

Lemma 5.6
If each xi is independently set to true with probability p > 1/2, then
the probability that a clause is satisfied is at least min{p, 1− p2}.

Proof:. . .

Theorem 5.7
For 1/2 < p ≤ 1 this gives a randomized
min{p, 1− p2}-approximation algorithm for MAXSAT.

Notice: For p = (
√
5− 1)/2 we get min{p, 1− p2} = (

√
5− 1)/2 ≈ 0.618.

Remark:
The initial assumption on the absence of negated unit clauses holds
w.l.o.g. !

G. Sagnol 5- Random Sampling & Randomized Rounding 9 / 43

Flipping Biased Coins
We first restrict to MAXSAT instances with no negated unit clause.

Lemma 5.6
If each xi is independently set to true with probability p > 1/2, then
the probability that a clause is satisfied is at least min{p, 1− p2}.

Proof:. . .

Theorem 5.7
For 1/2 < p ≤ 1 this gives a randomized
min{p, 1− p2}-approximation algorithm for MAXSAT.

Notice: For p = (
√
5− 1)/2 we get min{p, 1− p2} = (

√
5− 1)/2 ≈ 0.618.

Remark:
The initial assumption on the absence of negated unit clauses holds
w.l.o.g. !

G. Sagnol 5- Random Sampling & Randomized Rounding 9 / 43

Flipping Biased Coins
We first restrict to MAXSAT instances with no negated unit clause.

Lemma 5.6
If each xi is independently set to true with probability p > 1/2, then
the probability that a clause is satisfied is at least min{p, 1− p2}.

Proof:. . .

Theorem 5.7
For 1/2 < p ≤ 1 this gives a randomized
min{p, 1− p2}-approximation algorithm for MAXSAT.

Notice: For p = (
√
5− 1)/2 we get min{p, 1− p2} = (

√
5− 1)/2 ≈ 0.618.

Remark:
The initial assumption on the absence of negated unit clauses holds
w.l.o.g. !

G. Sagnol 5- Random Sampling & Randomized Rounding 9 / 43

Outline

1 Random sampling for MAXSAT and MAXCUT

2 Randomized Rounding for MAXSAT

3 Price-Collecting Steiner Tree Problem

4 Uncapacited Facility Location Problem

5 Minimizing the Weighted Sum of Completion Times

6 Minimum-Capacity Multicommodity Flow Problem

7 Rounding a semidefinite programming relaxation for MAXCUT

G. Sagnol 5- Random Sampling & Randomized Rounding 10 / 43

Integer Programming Formulation for MAXSAT
For j = 1, . . . ,m let Pj := {i | literal xi occurs in Cj}

and Nj := {i | literal xi occurs in Cj}.

That is, Cj =
∨
i∈Pj

xi ∨
∨
i∈Nj

xi .

IP formulation:

max
m∑
j=1

wj · zj

s.t.
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for all j = 1, . . . ,m,

yi ∈ {0, 1} for all i = 1, . . . , n,
0 ≤ zj ≤ 1 for all j = 1, . . . ,m.

LP relaxation: Replace yi ∈ {0, 1} with 0 ≤ yi ≤ 1 for all i = 1, . . . , n.

G. Sagnol 5- Random Sampling & Randomized Rounding 11 / 43

Integer Programming Formulation for MAXSAT
For j = 1, . . . ,m let Pj := {i | literal xi occurs in Cj}

and Nj := {i | literal xi occurs in Cj}.

That is, Cj =
∨
i∈Pj

xi ∨
∨
i∈Nj

xi .

IP formulation:

max
m∑
j=1

wj · zj

s.t.
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for all j = 1, . . . ,m,

yi ∈ {0, 1} for all i = 1, . . . , n,
0 ≤ zj ≤ 1 for all j = 1, . . . ,m.

LP relaxation: Replace yi ∈ {0, 1} with 0 ≤ yi ≤ 1 for all i = 1, . . . , n.

G. Sagnol 5- Random Sampling & Randomized Rounding 11 / 43

Integer Programming Formulation for MAXSAT
For j = 1, . . . ,m let Pj := {i | literal xi occurs in Cj}

and Nj := {i | literal xi occurs in Cj}.

That is, Cj =
∨
i∈Pj

xi ∨
∨
i∈Nj

xi .

IP formulation:

max
m∑
j=1

wj · zj

s.t.
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj for all j = 1, . . . ,m,

yi ∈ {0, 1} for all i = 1, . . . , n,
0 ≤ zj ≤ 1 for all j = 1, . . . ,m.

LP relaxation: Replace yi ∈ {0, 1} with 0 ≤ yi ≤ 1 for all i = 1, . . . , n.
G. Sagnol 5- Random Sampling & Randomized Rounding 11 / 43

Randomized Rounding

1 compute an optimal solution (y ∗, z∗) to the LP relaxation;
2 for i = 1 to n do
3 set xi to true independently at random with probability y ∗i ;

Theorem 5.8
Randomized rounding gives a randomized (1− 1/e)-approximation
algorithm for MAXSAT.

Proof:. . .

Remark.
Algorithm can be derandomized by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 12 / 43

Randomized Rounding

1 compute an optimal solution (y ∗, z∗) to the LP relaxation;
2 for i = 1 to n do
3 set xi to true independently at random with probability y ∗i ;

Theorem 5.8
Randomized rounding gives a randomized (1− 1/e)-approximation
algorithm for MAXSAT.

Proof:. . .

Remark.
Algorithm can be derandomized by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 12 / 43

Randomized Rounding

1 compute an optimal solution (y ∗, z∗) to the LP relaxation;
2 for i = 1 to n do
3 set xi to true independently at random with probability y ∗i ;

Theorem 5.8
Randomized rounding gives a randomized (1− 1/e)-approximation
algorithm for MAXSAT.

Proof:. . .

Remark.
Algorithm can be derandomized by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 12 / 43

Randomized Rounding

1 compute an optimal solution (y ∗, z∗) to the LP relaxation;
2 for i = 1 to n do
3 set xi to true independently at random with probability y ∗i ;

Theorem 5.8
Randomized rounding gives a randomized (1− 1/e)-approximation
algorithm for MAXSAT.

Proof:. . .

Remark.
Algorithm can be derandomized by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 12 / 43

Choosing the Better of Two Solutions

Theorem 5.9
Running either the unbiased randomized 1/2-approximation
algorithm or the randomized rounding algorithm, both with
probability 1/2, yields a randomized 3/4-approximation algorithm.

Proof: Consider clause Cj of length `j :
1st algorithm: Pr [Cj = true] = 1− 1/2`j .
2nd algorithm: Pr [Cj = true] ≥

(
1− (1− 1/`j)

`j
)
z∗j .

. . .

Derandomizing the initial coin flip yields:

Corollary 5.10
Running both algorithms and choosing the better of the two
solutions is a randomized 3/4-approximation algorithm.

G. Sagnol 5- Random Sampling & Randomized Rounding 13 / 43

Choosing the Better of Two Solutions

Theorem 5.9
Running either the unbiased randomized 1/2-approximation
algorithm or the randomized rounding algorithm, both with
probability 1/2, yields a randomized 3/4-approximation algorithm.

Proof: Consider clause Cj of length `j :
1st algorithm: Pr [Cj = true] = 1− 1/2`j .
2nd algorithm: Pr [Cj = true] ≥

(
1− (1− 1/`j)

`j
)
z∗j .

. . .

Derandomizing the initial coin flip yields:

Corollary 5.10
Running both algorithms and choosing the better of the two
solutions is a randomized 3/4-approximation algorithm.

G. Sagnol 5- Random Sampling & Randomized Rounding 13 / 43

Choosing the Better of Two Solutions

Theorem 5.9
Running either the unbiased randomized 1/2-approximation
algorithm or the randomized rounding algorithm, both with
probability 1/2, yields a randomized 3/4-approximation algorithm.

Proof: Consider clause Cj of length `j :
1st algorithm: Pr [Cj = true] = 1− 1/2`j .
2nd algorithm: Pr [Cj = true] ≥

(
1− (1− 1/`j)

`j
)
z∗j .

. . .

Derandomizing the initial coin flip yields:

Corollary 5.10
Running both algorithms and choosing the better of the two
solutions is a randomized 3/4-approximation algorithm.

G. Sagnol 5- Random Sampling & Randomized Rounding 13 / 43

Visualization of Proof of Theorem 5.9

k

f (k)

3

4

1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

1− (1− 1

k
)k

1− 2
−k

average

G. Sagnol 5- Random Sampling & Randomized Rounding 14 / 43

Non-linear Randomized Rounding
Consider a function f : [0, 1]→ [0, 1].
1 compute an optimal solution (y ∗, z∗) to the LP relaxation;
2 for i = 1 to n do
3 set xi to true independently at random with probability f (y ∗i);

Theorem 5.11
Let f : [0, 1]→ [0, 1] with 1− 4

−x ≤ f (x) ≤ 4
x−1 for all x ∈ [0, 1].

Then non-linear randomized rounding with function f is a
randomized 3/4-approximation algorithm.

Proof:. . .
Remark:

The integrality gap of the LP relaxation for MAXSAT is 3/4.
Thus, 3/4 is best performance ratio one can prove based on
the LP.

G. Sagnol 5- Random Sampling & Randomized Rounding 15 / 43

Non-linear Randomized Rounding
Consider a function f : [0, 1]→ [0, 1].
1 compute an optimal solution (y ∗, z∗) to the LP relaxation;
2 for i = 1 to n do
3 set xi to true independently at random with probability f (y ∗i);

Theorem 5.11
Let f : [0, 1]→ [0, 1] with 1− 4

−x ≤ f (x) ≤ 4
x−1 for all x ∈ [0, 1].

Then non-linear randomized rounding with function f is a
randomized 3/4-approximation algorithm.

Proof:. . .
Remark:

The integrality gap of the LP relaxation for MAXSAT is 3/4.
Thus, 3/4 is best performance ratio one can prove based on
the LP.

G. Sagnol 5- Random Sampling & Randomized Rounding 15 / 43

Non-linear Randomized Rounding
Consider a function f : [0, 1]→ [0, 1].
1 compute an optimal solution (y ∗, z∗) to the LP relaxation;
2 for i = 1 to n do
3 set xi to true independently at random with probability f (y ∗i);

Theorem 5.11
Let f : [0, 1]→ [0, 1] with 1− 4

−x ≤ f (x) ≤ 4
x−1 for all x ∈ [0, 1].

Then non-linear randomized rounding with function f is a
randomized 3/4-approximation algorithm.

Proof:. . .

Remark:
The integrality gap of the LP relaxation for MAXSAT is 3/4.
Thus, 3/4 is best performance ratio one can prove based on
the LP.

G. Sagnol 5- Random Sampling & Randomized Rounding 15 / 43

Non-linear Randomized Rounding
Consider a function f : [0, 1]→ [0, 1].
1 compute an optimal solution (y ∗, z∗) to the LP relaxation;
2 for i = 1 to n do
3 set xi to true independently at random with probability f (y ∗i);

Theorem 5.11
Let f : [0, 1]→ [0, 1] with 1− 4

−x ≤ f (x) ≤ 4
x−1 for all x ∈ [0, 1].

Then non-linear randomized rounding with function f is a
randomized 3/4-approximation algorithm.

Proof:. . .
Remark:

The integrality gap of the LP relaxation for MAXSAT is 3/4.

Thus, 3/4 is best performance ratio one can prove based on
the LP.

G. Sagnol 5- Random Sampling & Randomized Rounding 15 / 43

Non-linear Randomized Rounding
Consider a function f : [0, 1]→ [0, 1].
1 compute an optimal solution (y ∗, z∗) to the LP relaxation;
2 for i = 1 to n do
3 set xi to true independently at random with probability f (y ∗i);

Theorem 5.11
Let f : [0, 1]→ [0, 1] with 1− 4

−x ≤ f (x) ≤ 4
x−1 for all x ∈ [0, 1].

Then non-linear randomized rounding with function f is a
randomized 3/4-approximation algorithm.

Proof:. . .
Remark:

The integrality gap of the LP relaxation for MAXSAT is 3/4.
Thus, 3/4 is best performance ratio one can prove based on
the LP.

G. Sagnol 5- Random Sampling & Randomized Rounding 15 / 43

Visualization of Lower and Upper Bound on f

0 x

0

f (x)

1

1

4

1 4
x−1

1− 4
−x

G. Sagnol 5- Random Sampling & Randomized Rounding 16 / 43

Outline

1 Random sampling for MAXSAT and MAXCUT

2 Randomized Rounding for MAXSAT

3 Price-Collecting Steiner Tree Problem

4 Uncapacited Facility Location Problem

5 Minimizing the Weighted Sum of Completion Times

6 Minimum-Capacity Multicommodity Flow Problem

7 Rounding a semidefinite programming relaxation for MAXCUT

G. Sagnol 5- Random Sampling & Randomized Rounding 17 / 43

Randomized Algo for Prize-Collecting Steiner Trees
Idea:

Obtain randomized variant of deterministic LP rounding
algorithm from Chapter 4 by choosing α randomly.

For some fixed γ > 0 choose α uniformly at random from [γ, 1].
That is, choose α from [γ, 1] with constant density function
1/(1− γ).

Lemma 5.12
The tree T returned by the randomized algorithm has expected
cost

E

 ∑
e∈E(T)

ce

 ≤ 2

1− γ
ln

1

γ

∑
e∈E

ce · x∗e .

Proof:. . .

G. Sagnol 5- Random Sampling & Randomized Rounding 18 / 43

Randomized Algo for Prize-Collecting Steiner Trees
Idea:

Obtain randomized variant of deterministic LP rounding
algorithm from Chapter 4 by choosing α randomly.
For some fixed γ > 0 choose α uniformly at random from [γ, 1].

That is, choose α from [γ, 1] with constant density function
1/(1− γ).

Lemma 5.12
The tree T returned by the randomized algorithm has expected
cost

E

 ∑
e∈E(T)

ce

 ≤ 2

1− γ
ln

1

γ

∑
e∈E

ce · x∗e .

Proof:. . .

G. Sagnol 5- Random Sampling & Randomized Rounding 18 / 43

Randomized Algo for Prize-Collecting Steiner Trees
Idea:

Obtain randomized variant of deterministic LP rounding
algorithm from Chapter 4 by choosing α randomly.
For some fixed γ > 0 choose α uniformly at random from [γ, 1].
That is, choose α from [γ, 1] with constant density function
1/(1− γ).

Lemma 5.12
The tree T returned by the randomized algorithm has expected
cost

E

 ∑
e∈E(T)

ce

 ≤ 2

1− γ
ln

1

γ

∑
e∈E

ce · x∗e .

Proof:. . .

G. Sagnol 5- Random Sampling & Randomized Rounding 18 / 43

Randomized Algo for Prize-Collecting Steiner Trees
Idea:

Obtain randomized variant of deterministic LP rounding
algorithm from Chapter 4 by choosing α randomly.
For some fixed γ > 0 choose α uniformly at random from [γ, 1].
That is, choose α from [γ, 1] with constant density function
1/(1− γ).

Lemma 5.12
The tree T returned by the randomized algorithm has expected
cost

E

 ∑
e∈E(T)

ce

 ≤ 2

1− γ
ln

1

γ

∑
e∈E

ce · x∗e .

Proof:. . .

G. Sagnol 5- Random Sampling & Randomized Rounding 18 / 43

Randomized Algo for Prize-Collecting Steiner Trees
Idea:

Obtain randomized variant of deterministic LP rounding
algorithm from Chapter 4 by choosing α randomly.
For some fixed γ > 0 choose α uniformly at random from [γ, 1].
That is, choose α from [γ, 1] with constant density function
1/(1− γ).

Lemma 5.12
The tree T returned by the randomized algorithm has expected
cost

E

 ∑
e∈E(T)

ce

 ≤ 2

1− γ
ln

1

γ

∑
e∈E

ce · x∗e .

Proof:. . .
G. Sagnol 5- Random Sampling & Randomized Rounding 18 / 43

Randomized Algo for Prize-Collecting Steiner Trees

Lemma 5.13
The expected penalty costs are

E

 ∑
i∈V \V (T)

πi

 ≤ 1

1− γ
∑
i∈V

πi · (1− y∗i) .

Proof:. . .

Theorem 5.14
For γ := e−1/2 the expected cost of the solution is

E

 ∑
e∈E(T)

ce +
∑

i∈V \V (T)

πi

 ≤ 1

1− 1/
√
e
· OPT LP .

Thus, we have a randomized 2.54-approximation algorithm.

G. Sagnol 5- Random Sampling & Randomized Rounding 19 / 43

Randomized Algo for Prize-Collecting Steiner Trees

Lemma 5.13
The expected penalty costs are

E

 ∑
i∈V \V (T)

πi

 ≤ 1

1− γ
∑
i∈V

πi · (1− y∗i) .

Proof:. . .

Theorem 5.14
For γ := e−1/2 the expected cost of the solution is

E

 ∑
e∈E(T)

ce +
∑

i∈V \V (T)

πi

 ≤ 1

1− 1/
√
e
· OPT LP .

Thus, we have a randomized 2.54-approximation algorithm.

G. Sagnol 5- Random Sampling & Randomized Rounding 19 / 43

Randomized Algo for Prize-Collecting Steiner Trees

Lemma 5.13
The expected penalty costs are

E

 ∑
i∈V \V (T)

πi

 ≤ 1

1− γ
∑
i∈V

πi · (1− y∗i) .

Proof:. . .

Theorem 5.14
For γ := e−1/2 the expected cost of the solution is

E

 ∑
e∈E(T)

ce +
∑

i∈V \V (T)

πi

 ≤ 1

1− 1/
√
e
· OPT LP .

Thus, we have a randomized 2.54-approximation algorithm.
G. Sagnol 5- Random Sampling & Randomized Rounding 19 / 43

Derandomization and Integrality Gap

Derandomization.

There are at most n := |V | distinct values of y∗i .

Consider n sets Uj := {i ∈ V | y∗i ≥ y∗j }, for j = 1, . . . , n.

Any possible value of α corresponds to one of these n sets.

Derandomize by trying each set Uj and choosing the best solution.

Integrality gap.

There exist instances with integrality gap 2− 2

n
.

By Theorem 5.14 the integrality gap is at most 1

1− 1/
√
e
≈ 2.54.

We will prove later that the integrality gap is at most 2.

G. Sagnol 5- Random Sampling & Randomized Rounding 20 / 43

Derandomization and Integrality Gap

Derandomization.

There are at most n := |V | distinct values of y∗i .

Consider n sets Uj := {i ∈ V | y∗i ≥ y∗j }, for j = 1, . . . , n.

Any possible value of α corresponds to one of these n sets.

Derandomize by trying each set Uj and choosing the best solution.

Integrality gap.

There exist instances with integrality gap 2− 2

n
.

By Theorem 5.14 the integrality gap is at most 1

1− 1/
√
e
≈ 2.54.

We will prove later that the integrality gap is at most 2.

G. Sagnol 5- Random Sampling & Randomized Rounding 20 / 43

Derandomization and Integrality Gap

Derandomization.

There are at most n := |V | distinct values of y∗i .

Consider n sets Uj := {i ∈ V | y∗i ≥ y∗j }, for j = 1, . . . , n.

Any possible value of α corresponds to one of these n sets.

Derandomize by trying each set Uj and choosing the best solution.

Integrality gap.

There exist instances with integrality gap 2− 2

n
.

By Theorem 5.14 the integrality gap is at most 1

1− 1/
√
e
≈ 2.54.

We will prove later that the integrality gap is at most 2.

G. Sagnol 5- Random Sampling & Randomized Rounding 20 / 43

Derandomization and Integrality Gap

Derandomization.

There are at most n := |V | distinct values of y∗i .

Consider n sets Uj := {i ∈ V | y∗i ≥ y∗j }, for j = 1, . . . , n.

Any possible value of α corresponds to one of these n sets.

Derandomize by trying each set Uj and choosing the best solution.

Integrality gap.

There exist instances with integrality gap 2− 2

n
.

By Theorem 5.14 the integrality gap is at most 1

1− 1/
√
e
≈ 2.54.

We will prove later that the integrality gap is at most 2.

G. Sagnol 5- Random Sampling & Randomized Rounding 20 / 43

Outline

1 Random sampling for MAXSAT and MAXCUT

2 Randomized Rounding for MAXSAT

3 Price-Collecting Steiner Tree Problem

4 Uncapacited Facility Location Problem

5 Minimizing the Weighted Sum of Completion Times

6 Minimum-Capacity Multicommodity Flow Problem

7 Rounding a semidefinite programming relaxation for MAXCUT

G. Sagnol 5- Random Sampling & Randomized Rounding 21 / 43

Randomized Algo for Uncapacitated Facility Location
In Chapter 4 we obtained an LP-based 4-approximation algorithm
which computes a solution of cost at most∑

i∈F

fi · y ∗i + 3 ·
∑
j∈D

v ∗j .

Notation.
Let C ∗j :=

∑
i∈F

cij · x∗ij denote the assignment cost of j paid by the LP,

i.e.,
OPT LP =

∑
i∈F

fi · y ∗i +
∑
j∈D

C ∗j .

Idea:
Include the assignment cost C ∗j in the analysis.
Instead of bounding only the facility cost by OPT LP , bound both the
facility cost and part of the assignment cost by OPT LP .

G. Sagnol 5- Random Sampling & Randomized Rounding 22 / 43

Randomized Algo for Uncapacitated Facility Location
In Chapter 4 we obtained an LP-based 4-approximation algorithm
which computes a solution of cost at most∑

i∈F

fi · y ∗i + 3 ·
∑
j∈D

v ∗j .

Notation.
Let C ∗j :=

∑
i∈F

cij · x∗ij denote the assignment cost of j paid by the LP,

i.e.,
OPT LP =

∑
i∈F

fi · y ∗i +
∑
j∈D

C ∗j .

Idea:
Include the assignment cost C ∗j in the analysis.
Instead of bounding only the facility cost by OPT LP , bound both the
facility cost and part of the assignment cost by OPT LP .

G. Sagnol 5- Random Sampling & Randomized Rounding 22 / 43

Randomized Algo for Uncapacitated Facility Location
In Chapter 4 we obtained an LP-based 4-approximation algorithm
which computes a solution of cost at most∑

i∈F

fi · y ∗i + 3 ·
∑
j∈D

v ∗j .

Notation.
Let C ∗j :=

∑
i∈F

cij · x∗ij denote the assignment cost of j paid by the LP,

i.e.,
OPT LP =

∑
i∈F

fi · y ∗i +
∑
j∈D

C ∗j .

Idea:
Include the assignment cost C ∗j in the analysis.
Instead of bounding only the facility cost by OPT LP , bound both the
facility cost and part of the assignment cost by OPT LP .

G. Sagnol 5- Random Sampling & Randomized Rounding 22 / 43

Randomized Algorithm for Uncapacitated Facility
Location
Randomized algorithm for Uncapacitated Facility Location Problem

1 compute optimal LP solutions (x∗, y ∗) and (v ∗,w ∗);
2 while D 6= ∅
3 choose j := argminj ′∈D(v ∗j ′ + C ∗j ′);
4 choose i ∈ N(j) according to probability distribution x∗ij ;
5 assign all unassigned clients in N2(j) to facility i ;
6 set D := D \ N2(j);

Theorem 5.15
The algorithm above is a randomized 3-approximation algorithm
for the Uncapacitated Facility Location Problem.

Proof:. . .

G. Sagnol 5- Random Sampling & Randomized Rounding 23 / 43

Randomized Algorithm for Uncapacitated Facility
Location
Randomized algorithm for Uncapacitated Facility Location Problem

1 compute optimal LP solutions (x∗, y ∗) and (v ∗,w ∗);
2 while D 6= ∅
3 choose j := argminj ′∈D(v ∗j ′ + C ∗j ′);
4 choose i ∈ N(j) according to probability distribution x∗ij ;
5 assign all unassigned clients in N2(j) to facility i ;
6 set D := D \ N2(j);

Theorem 5.15
The algorithm above is a randomized 3-approximation algorithm
for the Uncapacitated Facility Location Problem.

Proof:. . .

G. Sagnol 5- Random Sampling & Randomized Rounding 23 / 43

Randomized Algorithm for Uncapacitated Facility
Location
Randomized algorithm for Uncapacitated Facility Location Problem

1 compute optimal LP solutions (x∗, y ∗) and (v ∗,w ∗);
2 while D 6= ∅
3 choose j := argminj ′∈D(v ∗j ′ + C ∗j ′);
4 choose i ∈ N(j) according to probability distribution x∗ij ;
5 assign all unassigned clients in N2(j) to facility i ;
6 set D := D \ N2(j);

Theorem 5.15
The algorithm above is a randomized 3-approximation algorithm
for the Uncapacitated Facility Location Problem.

Proof:. . .
G. Sagnol 5- Random Sampling & Randomized Rounding 23 / 43

Outline

1 Random sampling for MAXSAT and MAXCUT

2 Randomized Rounding for MAXSAT

3 Price-Collecting Steiner Tree Problem

4 Uncapacited Facility Location Problem

5 Minimizing the Weighted Sum of Completion Times

6 Minimum-Capacity Multicommodity Flow Problem

7 Rounding a semidefinite programming relaxation for MAXCUT

G. Sagnol 5- Random Sampling & Randomized Rounding 24 / 43

Min Weighted Sum of Completion Times 1|rj |
∑

wjCj

Given: jobs with processing time pj ∈ Z>0, weight wj ≥ 0,
and release date rj ∈ Z≥0, j = 1, . . . , n.

Task: Schedule the jobs nonpreemptively on a single machine;

minimize the total weighted completion time
n∑

j=1

wj · Cj .

Let T := max
j

rj +
n∑

j=1

pj (upper bound on all completion times).

Consider an integer programming relaxation with variables

yjt =

{
1 if job j is processed in time [t − 1, t),
0 otherwise

for j = 1, . . . , n, t = 1, . . . ,T .

G. Sagnol 5- Random Sampling & Randomized Rounding 25 / 43

Min Weighted Sum of Completion Times 1|rj |
∑

wjCj

Given: jobs with processing time pj ∈ Z>0, weight wj ≥ 0,
and release date rj ∈ Z≥0, j = 1, . . . , n.

Task: Schedule the jobs nonpreemptively on a single machine;

minimize the total weighted completion time
n∑

j=1

wj · Cj .

Let T := max
j

rj +
n∑

j=1

pj (upper bound on all completion times).

Consider an integer programming relaxation with variables

yjt =

{
1 if job j is processed in time [t − 1, t),
0 otherwise

for j = 1, . . . , n, t = 1, . . . ,T .

G. Sagnol 5- Random Sampling & Randomized Rounding 25 / 43

Min Weighted Sum of Completion Times 1|rj |
∑

wjCj

Given: jobs with processing time pj ∈ Z>0, weight wj ≥ 0,
and release date rj ∈ Z≥0, j = 1, . . . , n.

Task: Schedule the jobs nonpreemptively on a single machine;

minimize the total weighted completion time
n∑

j=1

wj · Cj .

Let T := max
j

rj +
n∑

j=1

pj (upper bound on all completion times).

Consider an integer programming relaxation with variables

yjt =

{
1 if job j is processed in time [t − 1, t),
0 otherwise

for j = 1, . . . , n, t = 1, . . . ,T .
G. Sagnol 5- Random Sampling & Randomized Rounding 25 / 43

Integer Programming Relaxation
min

n∑
j=1

wj · Cj

s.t.
n∑

j=1

yjt ≤ 1 for t = 1, . . . ,T ,

T∑
t=1

yjt = pj for j = 1, . . . , n,

yjt = 0 for j = 1, . . . , n, t = 1, . . . , rj ,

Cj =
1

pj

T∑
t=1

yjt
(
t − 1

2

)
+ 1

2
pj for j = 1, . . . , n,

yjt ∈ {0, 1} for j = 1, . . . , n, t = 1, . . . ,T .

Remarks.
Notice that in a feasible IP solution jobs might be preempted.
In this case, Cj underestimates the actual completion time of job j .

G. Sagnol 5- Random Sampling & Randomized Rounding 26 / 43

Integer Programming Relaxation
min

n∑
j=1

wj · Cj

s.t.
n∑

j=1

yjt ≤ 1 for t = 1, . . . ,T ,

T∑
t=1

yjt = pj for j = 1, . . . , n,

yjt = 0 for j = 1, . . . , n, t = 1, . . . , rj ,

Cj =
1

pj

T∑
t=1

yjt
(
t − 1

2

)
+ 1

2
pj for j = 1, . . . , n,

yjt ∈ {0, 1} for j = 1, . . . , n, t = 1, . . . ,T .
Remarks.

Notice that in a feasible IP solution jobs might be preempted.

In this case, Cj underestimates the actual completion time of job j .

G. Sagnol 5- Random Sampling & Randomized Rounding 26 / 43

Integer Programming Relaxation
min

n∑
j=1

wj · Cj

s.t.
n∑

j=1

yjt ≤ 1 for t = 1, . . . ,T ,

T∑
t=1

yjt = pj for j = 1, . . . , n,

yjt = 0 for j = 1, . . . , n, t = 1, . . . , rj ,

Cj =
1

pj

T∑
t=1

yjt
(
t − 1

2

)
+ 1

2
pj for j = 1, . . . , n,

yjt ∈ {0, 1} for j = 1, . . . , n, t = 1, . . . ,T .
Remarks.

Notice that in a feasible IP solution jobs might be preempted.
In this case, Cj underestimates the actual completion time of job j .

G. Sagnol 5- Random Sampling & Randomized Rounding 26 / 43

Randomized Rounding
1 compute optimal IP solution (y ∗,C ∗);
2 for j = 1 to n set random variable Xj to t − 1

2
with probability

y ∗jt/pj ;
3 sort the jobs such that X1 ≤ X2 ≤ · · · ≤ Xn;
4 schedule all jobs nonpreemptively and as early as possible in
this order;

Lemma 5.16
If the random variables Xj are independent, then
E [Cj | Xj = x] ≤ pj + 2x .

Theorem 5.17
The expected performance ratio of the randomized algorithm is at
most 2.

G. Sagnol 5- Random Sampling & Randomized Rounding 27 / 43

Randomized Rounding
1 compute optimal IP solution (y ∗,C ∗);
2 for j = 1 to n set random variable Xj to t − 1

2
with probability

y ∗jt/pj ;
3 sort the jobs such that X1 ≤ X2 ≤ · · · ≤ Xn;
4 schedule all jobs nonpreemptively and as early as possible in
this order;

Lemma 5.16
If the random variables Xj are independent, then
E [Cj | Xj = x] ≤ pj + 2x .

Theorem 5.17
The expected performance ratio of the randomized algorithm is at
most 2.

G. Sagnol 5- Random Sampling & Randomized Rounding 27 / 43

Randomized Rounding
1 compute optimal IP solution (y ∗,C ∗);
2 for j = 1 to n set random variable Xj to t − 1

2
with probability

y ∗jt/pj ;
3 sort the jobs such that X1 ≤ X2 ≤ · · · ≤ Xn;
4 schedule all jobs nonpreemptively and as early as possible in
this order;

Lemma 5.16
If the random variables Xj are independent, then
E [Cj | Xj = x] ≤ pj + 2x .

Theorem 5.17
The expected performance ratio of the randomized algorithm is at
most 2.

G. Sagnol 5- Random Sampling & Randomized Rounding 27 / 43

Computing an Optimum IP Solution
1 sort the jobs such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn;
2 construct a preemptive schedule:
3 → always schedule the first available job which is not yet
completed;

4 implicitely assign the variables yjt (and Cj) accordingly;

Lemma 5.18
The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument. . .
Remarks.

This schedule consists of at most 2n intervals of time.
Randomized rounding can be implemented to run in polytime.
Derandomization (of a variant) of this algo by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 28 / 43

Computing an Optimum IP Solution
1 sort the jobs such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn;
2 construct a preemptive schedule:
3 → always schedule the first available job which is not yet
completed;

4 implicitely assign the variables yjt (and Cj) accordingly;

Lemma 5.18
The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument. . .
Remarks.

This schedule consists of at most 2n intervals of time.
Randomized rounding can be implemented to run in polytime.
Derandomization (of a variant) of this algo by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 28 / 43

Computing an Optimum IP Solution
1 sort the jobs such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn;
2 construct a preemptive schedule:
3 → always schedule the first available job which is not yet
completed;

4 implicitely assign the variables yjt (and Cj) accordingly;

Lemma 5.18
The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument. . .

Remarks.
This schedule consists of at most 2n intervals of time.
Randomized rounding can be implemented to run in polytime.
Derandomization (of a variant) of this algo by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 28 / 43

Computing an Optimum IP Solution
1 sort the jobs such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn;
2 construct a preemptive schedule:
3 → always schedule the first available job which is not yet
completed;

4 implicitely assign the variables yjt (and Cj) accordingly;

Lemma 5.18
The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument. . .
Remarks.

This schedule consists of at most 2n intervals of time.

Randomized rounding can be implemented to run in polytime.
Derandomization (of a variant) of this algo by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 28 / 43

Computing an Optimum IP Solution
1 sort the jobs such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn;
2 construct a preemptive schedule:
3 → always schedule the first available job which is not yet
completed;

4 implicitely assign the variables yjt (and Cj) accordingly;

Lemma 5.18
The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument. . .
Remarks.

This schedule consists of at most 2n intervals of time.
Randomized rounding can be implemented to run in polytime.

Derandomization (of a variant) of this algo by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 28 / 43

Computing an Optimum IP Solution
1 sort the jobs such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn;
2 construct a preemptive schedule:
3 → always schedule the first available job which is not yet
completed;

4 implicitely assign the variables yjt (and Cj) accordingly;

Lemma 5.18
The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument. . .
Remarks.

This schedule consists of at most 2n intervals of time.
Randomized rounding can be implemented to run in polytime.
Derandomization (of a variant) of this algo by method of conditional
expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 28 / 43

Outline

1 Random sampling for MAXSAT and MAXCUT

2 Randomized Rounding for MAXSAT

3 Price-Collecting Steiner Tree Problem

4 Uncapacited Facility Location Problem

5 Minimizing the Weighted Sum of Completion Times

6 Minimum-Capacity Multicommodity Flow Problem

7 Rounding a semidefinite programming relaxation for MAXCUT

G. Sagnol 5- Random Sampling & Randomized Rounding 29 / 43

Minimum-Capacity Multicommodity Flow Problem
Given: Undirected graph G = (V ,E) and k pairs si , ti ∈ V , i = 1, . . . , k .
Task: Find single si -ti -path in G , for i = 1, . . . , k .
Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let Pi := {P | P is si -ti -path}.
min W

s.t.
∑
P∈Pi

xP = 1 for all i = 1, . . . , k ,

∑
P:e∈P

xP ≤W for all e ∈ E ,

xP ∈ {0, 1} for all P ∈ Pi , i = 1, . . . , k .

LP relaxation: Replace xP ∈ {0, 1} with xP ≥ 0.
Despite exponential number of variables, LP relaxation can be
solved in polynomial time!

G. Sagnol 5- Random Sampling & Randomized Rounding 30 / 43

Minimum-Capacity Multicommodity Flow Problem
Given: Undirected graph G = (V ,E) and k pairs si , ti ∈ V , i = 1, . . . , k .
Task: Find single si -ti -path in G , for i = 1, . . . , k .
Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let Pi := {P | P is si -ti -path}.
min W

s.t.
∑
P∈Pi

xP = 1 for all i = 1, . . . , k ,

∑
P:e∈P

xP ≤W for all e ∈ E ,

xP ∈ {0, 1} for all P ∈ Pi , i = 1, . . . , k .

LP relaxation: Replace xP ∈ {0, 1} with xP ≥ 0.
Despite exponential number of variables, LP relaxation can be
solved in polynomial time!

G. Sagnol 5- Random Sampling & Randomized Rounding 30 / 43

Minimum-Capacity Multicommodity Flow Problem
Given: Undirected graph G = (V ,E) and k pairs si , ti ∈ V , i = 1, . . . , k .
Task: Find single si -ti -path in G , for i = 1, . . . , k .
Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let Pi := {P | P is si -ti -path}.
min W

s.t.
∑
P∈Pi

xP = 1 for all i = 1, . . . , k ,

∑
P:e∈P

xP ≤W for all e ∈ E ,

xP ∈ {0, 1} for all P ∈ Pi , i = 1, . . . , k .

LP relaxation: Replace xP ∈ {0, 1} with xP ≥ 0.

Despite exponential number of variables, LP relaxation can be
solved in polynomial time!

G. Sagnol 5- Random Sampling & Randomized Rounding 30 / 43

Minimum-Capacity Multicommodity Flow Problem
Given: Undirected graph G = (V ,E) and k pairs si , ti ∈ V , i = 1, . . . , k .
Task: Find single si -ti -path in G , for i = 1, . . . , k .
Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let Pi := {P | P is si -ti -path}.
min W

s.t.
∑
P∈Pi

xP = 1 for all i = 1, . . . , k ,

∑
P:e∈P

xP ≤W for all e ∈ E ,

xP ∈ {0, 1} for all P ∈ Pi , i = 1, . . . , k .

LP relaxation: Replace xP ∈ {0, 1} with xP ≥ 0.
Despite exponential number of variables, LP relaxation can be
solved in polynomial time!

G. Sagnol 5- Random Sampling & Randomized Rounding 30 / 43

Randomized Rounding
1 compute optimal LP solution (x∗,W ∗);
2 for i = 1 to k

3 independently choose one path P ∈ Pi with probability x∗P ;

Definition 5.19
A probabilistic event happens with high probability if the
probability that it does not occur is at most n−c for some constant
c ≥ 1.

Theorem 5.20
IfW ∗ ≥ c · ln n for a large enough constant c , then with high
probability, the total number of paths using any edge is at most
W ∗ +

√
c ·W ∗ ln n.

G. Sagnol 5- Random Sampling & Randomized Rounding 31 / 43

Randomized Rounding
1 compute optimal LP solution (x∗,W ∗);
2 for i = 1 to k

3 independently choose one path P ∈ Pi with probability x∗P ;

Definition 5.19
A probabilistic event happens with high probability if the
probability that it does not occur is at most n−c for some constant
c ≥ 1.

Theorem 5.20
IfW ∗ ≥ c · ln n for a large enough constant c , then with high
probability, the total number of paths using any edge is at most
W ∗ +

√
c ·W ∗ ln n.

G. Sagnol 5- Random Sampling & Randomized Rounding 31 / 43

Markov’s Inequality and Chernoff Bound

Lemma 5.21 (Markov’s Inequality)
If X ≥ 0 is a random variable, then Pr [X ≥ a] ≤ E [X]/a for a > 0.

Proof:

. . .

Theorem 5.22 (Chernoff Bound)
Let X1, . . . ,Xk be independent 0-1 random variables. Then for

X :=
k∑

i=1

Xi , µ ≥ E [X], and 0 < δ ≤ 1

Pr [X ≥ (1+ δ) · µ] <
(

eδ

(1+ δ)1+δ

)µ
≤ e−µ·δ

2/3 .

Proof idea: Apply Markov inequality to the event Pr [etX ≥ et(1+δ)µ] for a
well-chosen value of t .

G. Sagnol 5- Random Sampling & Randomized Rounding 32 / 43

Markov’s Inequality and Chernoff Bound

Lemma 5.21 (Markov’s Inequality)
If X ≥ 0 is a random variable, then Pr [X ≥ a] ≤ E [X]/a for a > 0.

Proof:

. . .

Theorem 5.22 (Chernoff Bound)
Let X1, . . . ,Xk be independent 0-1 random variables. Then for

X :=
k∑

i=1

Xi , µ ≥ E [X], and 0 < δ ≤ 1

Pr [X ≥ (1+ δ) · µ] <
(

eδ

(1+ δ)1+δ

)µ
≤ e−µ·δ

2/3 .

Proof idea: Apply Markov inequality to the event Pr [etX ≥ et(1+δ)µ] for a
well-chosen value of t .

G. Sagnol 5- Random Sampling & Randomized Rounding 32 / 43

Markov’s Inequality and Chernoff Bound

Lemma 5.21 (Markov’s Inequality)
If X ≥ 0 is a random variable, then Pr [X ≥ a] ≤ E [X]/a for a > 0.

Proof:

. . .

Theorem 5.22 (Chernoff Bound)
Let X1, . . . ,Xk be independent 0-1 random variables. Then for

X :=
k∑

i=1

Xi , µ ≥ E [X], and 0 < δ ≤ 1

Pr [X ≥ (1+ δ) · µ] <
(

eδ

(1+ δ)1+δ

)µ
≤ e−µ·δ

2/3 .

Proof idea: Apply Markov inequality to the event Pr [etX ≥ et(1+δ)µ] for a
well-chosen value of t .

G. Sagnol 5- Random Sampling & Randomized Rounding 32 / 43

Performance Guarantees

Corollary 5.23
a IfW ∗ ≥ c · ln n, then randomized rounding with high
probability produces a solution of value at most 2W ∗.

b IfW ∗ ≥ 1, then with high probability the total number of
paths using any edge is O(log n) ·W ∗.

Proof:. . .

Remarks.
The statement of
Corollary 5.23 can be sharpened by replacing the term
O(log n) with O(log n/ log log n).
On the other hand, the integrality gap of the IP formulation is
in Ω(log n/ log log n).

G. Sagnol 5- Random Sampling & Randomized Rounding 33 / 43

Performance Guarantees

Corollary 5.23
a IfW ∗ ≥ c · ln n, then randomized rounding with high
probability produces a solution of value at most 2W ∗.

b IfW ∗ ≥ 1, then with high probability the total number of
paths using any edge is O(log n) ·W ∗.

Proof:. . .

Remarks.
The statement of
Corollary 5.23 can be sharpened by replacing the term
O(log n) with O(log n/ log log n).
On the other hand, the integrality gap of the IP formulation is
in Ω(log n/ log log n).

G. Sagnol 5- Random Sampling & Randomized Rounding 33 / 43

Performance Guarantees

Corollary 5.23
a IfW ∗ ≥ c · ln n, then randomized rounding with high
probability produces a solution of value at most 2W ∗.

b IfW ∗ ≥ 1, then with high probability the total number of
paths using any edge is O(log n) ·W ∗.

Proof:. . .

Remarks.
The statement of
Corollary 5.23 can be sharpened by replacing the term
O(log n) with O(log n/ log log n).

On the other hand, the integrality gap of the IP formulation is
in Ω(log n/ log log n).

G. Sagnol 5- Random Sampling & Randomized Rounding 33 / 43

Performance Guarantees

Corollary 5.23
a IfW ∗ ≥ c · ln n, then randomized rounding with high
probability produces a solution of value at most 2W ∗.

b IfW ∗ ≥ 1, then with high probability the total number of
paths using any edge is O(log n) ·W ∗.

Proof:. . .

Remarks.
The statement of
Corollary 5.23 can be sharpened by replacing the term
O(log n) with O(log n/ log log n).
On the other hand, the integrality gap of the IP formulation is
in Ω(log n/ log log n).

G. Sagnol 5- Random Sampling & Randomized Rounding 33 / 43

Outline

1 Random sampling for MAXSAT and MAXCUT

2 Randomized Rounding for MAXSAT

3 Price-Collecting Steiner Tree Problem

4 Uncapacited Facility Location Problem

5 Minimizing the Weighted Sum of Completion Times

6 Minimum-Capacity Multicommodity Flow Problem

7 Rounding a semidefinite programming relaxation for MAXCUT

G. Sagnol 5- Random Sampling & Randomized Rounding 34 / 43

Semidefinite Matrices

Definition 5.24
A symmetric matrix X ∈ Rn×n is positive semidefinite if
yT · X · y ≥ 0 for all y ∈ Rn. In this case we write X � 0.

Theorem 5.25
For a symmetric X ∈ Rn×n the following statements are equivalent:

i X is positive semidefinite;
ii all eigenvalues of X are non-negative;

iii X = V T · V for some V ∈ Rm×n where m ≤ n;

iv X =
n∑

i=1

λi (wi · wT
i) for some λi ≥ 0 and wi ∈ Rn such that

wT
i · wi = 1 and wT

i · wj = 0 for i 6= j .

G. Sagnol 5- Random Sampling & Randomized Rounding 35 / 43

Semidefinite Matrices

Definition 5.24
A symmetric matrix X ∈ Rn×n is positive semidefinite if
yT · X · y ≥ 0 for all y ∈ Rn. In this case we write X � 0.

Theorem 5.25
For a symmetric X ∈ Rn×n the following statements are equivalent:

i X is positive semidefinite;
ii all eigenvalues of X are non-negative;

iii X = V T · V for some V ∈ Rm×n where m ≤ n;

iv X =
n∑

i=1

λi (wi · wT
i) for some λi ≥ 0 and wi ∈ Rn such that

wT
i · wi = 1 and wT

i · wj = 0 for i 6= j .
G. Sagnol 5- Random Sampling & Randomized Rounding 35 / 43

Semidefinite Programs (SDPs)

Definition 5.26
A semidefinite program is a linear program with the additional constraint
that a square symmetric matrix of variables must be positive semidefinite.

Example.

min / max
∑
i , j

cijxij

s.t.
∑
i , j

aijkxij = bk for all k ,

xij = xji for all i , j ,

X = (xij) � 0

Remark. The set of feasible solutions of a semidefinite program is
convex.

G. Sagnol 5- Random Sampling & Randomized Rounding 36 / 43

Semidefinite Programs (SDPs)

Definition 5.26
A semidefinite program is a linear program with the additional constraint
that a square symmetric matrix of variables must be positive semidefinite.

Example.

min / max
∑
i , j

cijxij

s.t.
∑
i , j

aijkxij = bk for all k ,

xij = xji for all i , j ,

X = (xij) � 0

Remark. The set of feasible solutions of a semidefinite program is
convex.

G. Sagnol 5- Random Sampling & Randomized Rounding 36 / 43

Semidefinite Programs (SDPs)

Definition 5.26
A semidefinite program is a linear program with the additional constraint
that a square symmetric matrix of variables must be positive semidefinite.

Example.

min / max
∑
i , j

cijxij

s.t.
∑
i , j

aijkxij = bk for all k ,

xij = xji for all i , j ,

X = (xij) � 0

Remark. The set of feasible solutions of a semidefinite program is
convex.

G. Sagnol 5- Random Sampling & Randomized Rounding 36 / 43

Vector Programs
A semidefinite program can be stated equivalently as a vector
program and vice versa (see Theorem 5.25(iii)):

min / max
∑
i , j

cij (vT
i · vj)

s.t.
∑
i , j

aijk (vT
i · vj) = bk for all k = 1, . . . ,K ,

vi ∈ Rn for all i = 1, . . . , n.

Remark.
Under mild technical conditions, semidefinite programs can be
solved within additive error ε in time polynomial in input size
and log(1/ε).
For simplicity, we assume in the following that we can
efficiently obtain an optimal solution.

G. Sagnol 5- Random Sampling & Randomized Rounding 37 / 43

Vector Programs
A semidefinite program can be stated equivalently as a vector
program and vice versa (see Theorem 5.25(iii)):

min / max
∑
i , j

cij (vT
i · vj)

s.t.
∑
i , j

aijk (vT
i · vj) = bk for all k = 1, . . . ,K ,

vi ∈ Rn for all i = 1, . . . , n.

Remark.
Under mild technical conditions, semidefinite programs can be
solved within additive error ε in time polynomial in input size
and log(1/ε).

For simplicity, we assume in the following that we can
efficiently obtain an optimal solution.

G. Sagnol 5- Random Sampling & Randomized Rounding 37 / 43

Vector Programs
A semidefinite program can be stated equivalently as a vector
program and vice versa (see Theorem 5.25(iii)):

min / max
∑
i , j

cij (vT
i · vj)

s.t.
∑
i , j

aijk (vT
i · vj) = bk for all k = 1, . . . ,K ,

vi ∈ Rn for all i = 1, . . . , n.

Remark.
Under mild technical conditions, semidefinite programs can be
solved within additive error ε in time polynomial in input size
and log(1/ε).
For simplicity, we assume in the following that we can
efficiently obtain an optimal solution.

G. Sagnol 5- Random Sampling & Randomized Rounding 37 / 43

SDP Relaxation of MAXCUT
Integer quadratic programming formulation of MAXCUT

max 1

2

∑
ij∈E

wij (1− yiyj)

s.t. yi ∈ {−1, 1} for all i ∈ V .

Semidefinite programming relaxation of MAXCUT

max 1

2

∑
ij∈E

wij (1− vT
i · vj)

s.t. vT
i · vi = 1 for all i ∈ V ,
vi ∈ Rn for all i ∈ V .

Lemma 5.27
The above SDP is a relaxation of MAXCUT, therefore OPT ≤ SDP.

G. Sagnol 5- Random Sampling & Randomized Rounding 38 / 43

SDP Relaxation of MAXCUT
Integer quadratic programming formulation of MAXCUT

max 1

2

∑
ij∈E

wij (1− yiyj)

s.t. yi ∈ {−1, 1} for all i ∈ V .

Semidefinite programming relaxation of MAXCUT

max 1

2

∑
ij∈E

wij (1− vT
i · vj)

s.t. vT
i · vi = 1 for all i ∈ V ,
vi ∈ Rn for all i ∈ V .

Lemma 5.27
The above SDP is a relaxation of MAXCUT, therefore OPT ≤ SDP.

G. Sagnol 5- Random Sampling & Randomized Rounding 38 / 43

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v∗) to SDP relaxation;
2 pick a random vector r = (r1, . . . , rn)

T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

3 for i = 1, . . . , n: if rT · v∗i ≥ 0 then put i in S ;

G. Sagnol 5- Random Sampling & Randomized Rounding 39 / 43

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v∗) to SDP relaxation;
2 pick a random vector r = (r1, . . . , rn)

T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

3 for i = 1, . . . , n: if rT · v∗i ≥ 0 then put i in S ;

v1

v2

v3

v4

v5

G. Sagnol 5- Random Sampling & Randomized Rounding 39 / 43

Randomized Rounding of Vector Program
1 compute (near-)optimal solution (v∗) to SDP relaxation;
2 pick a random vector r = (r1, . . . , rn)

T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

3 for i = 1, . . . , n: if rT · v∗i ≥ 0 then put i in S ;

v2

v3 r

v4

v5

v1

G. Sagnol 5- Random Sampling & Randomized Rounding 39 / 43

Randomized Rounding of Vector Program
1 compute (near-)optimal solution (v∗) to SDP relaxation;
2 pick a random vector r = (r1, . . . , rn)

T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

3 for i = 1, . . . , n: if rT · v∗i ≥ 0 then put i in S ;

v2

v3 r

v4

v5

v1

The random hyperplane
with normal vector r

produces the cut

S = {1, 4, 5},

V \ S = {2, 3}.

G. Sagnol 5- Random Sampling & Randomized Rounding 39 / 43

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v∗) to SDP relaxation;
2 pick a random vector r = (r1, . . . , rn)

T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

3 for i = 1, . . . , n: if rT · v∗i ≥ 0 then put i in S ;

Remarks.

The hyperplane orthogonal to r partitions the n-dimensional unit
sphere into two halves, corresponding to S and V \ S .

The normalization r/‖r‖ of r is uniformly distributed over the
n-dimensional unit sphere.
The projections of r onto two unit vectors e1, e2 are independent
and normally distributed if and only if e1 and e2 are orthogonal.

G. Sagnol 5- Random Sampling & Randomized Rounding 39 / 43

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v∗) to SDP relaxation;
2 pick a random vector r = (r1, . . . , rn)

T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

3 for i = 1, . . . , n: if rT · v∗i ≥ 0 then put i in S ;

Remarks.

The hyperplane orthogonal to r partitions the n-dimensional unit
sphere into two halves, corresponding to S and V \ S .
The normalization r/‖r‖ of r is uniformly distributed over the
n-dimensional unit sphere.

The projections of r onto two unit vectors e1, e2 are independent
and normally distributed if and only if e1 and e2 are orthogonal.

G. Sagnol 5- Random Sampling & Randomized Rounding 39 / 43

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v∗) to SDP relaxation;
2 pick a random vector r = (r1, . . . , rn)

T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

3 for i = 1, . . . , n: if rT · v∗i ≥ 0 then put i in S ;

Remarks.

The hyperplane orthogonal to r partitions the n-dimensional unit
sphere into two halves, corresponding to S and V \ S .
The normalization r/‖r‖ of r is uniformly distributed over the
n-dimensional unit sphere.
The projections of r onto two unit vectors e1, e2 are independent
and normally distributed if and only if e1 and e2 are orthogonal.

G. Sagnol 5- Random Sampling & Randomized Rounding 39 / 43

Randomized Rounding of Vector Program
1 compute (near-)optimal solution (v∗) to SDP relaxation;
2 pick a random vector r = (r1, . . . , rn)

T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

3 for i = 1, . . . , n: if rT · v∗i ≥ 0 then put i in S ;

Remarks.
The hyperplane orthogonal to r partitions the n-dimensional unit
sphere into two halves, corresponding to S and V \ S .
The normalization r/‖r‖ of r is uniformly distributed over the
n-dimensional unit sphere.
The projections of r onto two unit vectors e1, e2 are independent
and normally distributed if and only if e1 and e2 are orthogonal.

Corollary 5.28
Let r ′ the projection of r onto a 2-dimensional plane. The normalization
r ′/‖r ′‖ of r ′, is uniformly distributed on a unit circle in the plane.

G. Sagnol 5- Random Sampling & Randomized Rounding 39 / 43

Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge ij ∈ E is in the cut is 1

π
arccos(vT

i · vj).

Proof:. . .

Lemma 5.30
For x ∈ [−1, 1] it holds that 1

π
arccos(x) ≥ 0.878 · 1

2
(1− x).

Theorem 5.31 (Goemans & Williamson)
SDP-based randomized rounding is a randomized 0.878-approximation
algorithm for MAXCUT.

Proof:. . .
Remark. The algorithm can be derandomized by using a sophisticated
application of the method of conditional expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 40 / 43

Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge ij ∈ E is in the cut is 1

π
arccos(vT

i · vj).

Proof:. . .

Lemma 5.30
For x ∈ [−1, 1] it holds that 1

π
arccos(x) ≥ 0.878 · 1

2
(1− x).

Theorem 5.31 (Goemans & Williamson)
SDP-based randomized rounding is a randomized 0.878-approximation
algorithm for MAXCUT.

Proof:. . .
Remark. The algorithm can be derandomized by using a sophisticated
application of the method of conditional expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 40 / 43

Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge ij ∈ E is in the cut is 1

π
arccos(vT

i · vj).

Proof:. . .

Lemma 5.30
For x ∈ [−1, 1] it holds that 1

π
arccos(x) ≥ 0.878 · 1

2
(1− x).

Theorem 5.31 (Goemans & Williamson)
SDP-based randomized rounding is a randomized 0.878-approximation
algorithm for MAXCUT.

Proof:. . .
Remark. The algorithm can be derandomized by using a sophisticated
application of the method of conditional expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 40 / 43

Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge ij ∈ E is in the cut is 1

π
arccos(vT

i · vj).

Proof:. . .

Lemma 5.30
For x ∈ [−1, 1] it holds that 1

π
arccos(x) ≥ 0.878 · 1

2
(1− x).

Theorem 5.31 (Goemans & Williamson)
SDP-based randomized rounding is a randomized 0.878-approximation
algorithm for MAXCUT.

Proof:. . .
Remark. The algorithm can be derandomized by using a sophisticated
application of the method of conditional expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 40 / 43

Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge ij ∈ E is in the cut is 1

π
arccos(vT

i · vj).

Proof:. . .

Lemma 5.30
For x ∈ [−1, 1] it holds that 1

π
arccos(x) ≥ 0.878 · 1

2
(1− x).

Theorem 5.31 (Goemans & Williamson)
SDP-based randomized rounding is a randomized 0.878-approximation
algorithm for MAXCUT.

Proof:. . .

Remark. The algorithm can be derandomized by using a sophisticated
application of the method of conditional expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 40 / 43

Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge ij ∈ E is in the cut is 1

π
arccos(vT

i · vj).

Proof:. . .

Lemma 5.30
For x ∈ [−1, 1] it holds that 1

π
arccos(x) ≥ 0.878 · 1

2
(1− x).

Theorem 5.31 (Goemans & Williamson)
SDP-based randomized rounding is a randomized 0.878-approximation
algorithm for MAXCUT.

Proof:. . .
Remark. The algorithm can be derandomized by using a sophisticated
application of the method of conditional expectations.

G. Sagnol 5- Random Sampling & Randomized Rounding 40 / 43

Illustration of Lemma 5.30

x

0

f (x)

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

1

π
arccos(x)

1

2
(1− x)

G. Sagnol 5- Random Sampling & Randomized Rounding 41 / 43

Illustration of Lemma 5.30 (Cont.)

x

0

f (x)
1

π
arccos(x)
1

2
(1− x)

0.878

−1 −0.5 0.5 1

0.5

1

1.5

2

G. Sagnol 5- Random Sampling & Randomized Rounding 42 / 43

Inapproximability Results for MAXCUT
We state the following results without proof.

Theorem 5.32
If there is an α-approximation algorithm for MAXCUT with
α > 16/17 ≈ 0.941, then P = NP .

Theorem 5.33
Given the Unique Games Conjecture there is no α-approximation
algorithm for MAXCUT with constant

α > min
−1≤x≤1

1

π
arccos(x)
1

2
(1− x)

≈ 0.878

unless P = NP .

G. Sagnol 5- Random Sampling & Randomized Rounding 43 / 43

Inapproximability Results for MAXCUT
We state the following results without proof.

Theorem 5.32
If there is an α-approximation algorithm for MAXCUT with
α > 16/17 ≈ 0.941, then P = NP .

Theorem 5.33
Given the Unique Games Conjecture there is no α-approximation
algorithm for MAXCUT with constant

α > min
−1≤x≤1

1

π
arccos(x)
1

2
(1− x)

≈ 0.878

unless P = NP .
G. Sagnol 5- Random Sampling & Randomized Rounding 43 / 43

	Random sampling for MAXSAT and MAXCUT
	Randomized Rounding for MAXSAT
	Price-Collecting Steiner Tree Problem
	Uncapacited Facility Location Problem
	Minimizing the Weighted Sum of Completion Times
	Minimum-Capacity Multicommodity Flow Problem
	Rounding a semidefinite programming relaxation for MAXCUT

