Approximation Algorithms (ADM III) 5- Random Sampling \& Randomized Rounding

Guillaume Sagnol

Randomized Approximation Algorithm

Definition 5.1

A randomized α-approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose expected value is bounded by $\alpha \cdot$ OPT .

Randomized Approximation Algorithm

Definition 5.1

A randomized α-approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose expected value is bounded by $\alpha \cdot$ OPT .

Remarks
■ Often, a randomized α-approximation algorithm can be derandomized, i.e., turned into a deterministic α-approximation algorithm.

Randomized Approximation Algorithm

Definition 5.1

A randomized α-approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose expected value is bounded by $\alpha \cdot$ OPT .

Remarks
■ Often, a randomized α-approximation algorithm can be derandomized, i.e., turned into a deterministic α-approximation algorithm.
■ It is usually simpler to state and analyze the randomized algorithm.

Randomized Approximation Algorithm

Definition 5.1

A randomized α-approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose expected value is bounded by $\alpha \cdot$ OPT .

Remarks
■ Often, a randomized α-approximation algorithm can be derandomized, i.e., turned into a deterministic α-approximation algorithm.
■ It is usually simpler to state and analyze the randomized algorithm.
■ Sometimes, the only known way of analyzing a deterministic approximation algorithm is to analyze a randomized version.

Randomized Approximation Algorithm

Definition 5.1

A randomized α-approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose expected value is bounded by $\alpha \cdot$ OPT .

Remarks
■ Often, a randomized α-approximation algorithm can be derandomized, i.e., turned into a deterministic α-approximation algorithm.
■ It is usually simpler to state and analyze the randomized algorithm.
■ Sometimes, the only known way of analyzing a deterministic approximation algorithm is to analyze a randomized version.

- Sometimes one can show that the performance guarantee of a randomized algorithm holds with high probability.

Outline

1 Random sampling for MAX SAT and MAXCUT

2 Randomized Rounding for MAX SAT
3 Price-Collecting Steiner Tree Problem
4 Uncapacited Facility Location Problem
5 Minimizing the Weighted Sum of Completion Times
\% Minimum-Capacity Multicommodity Flow Problem
7 Rounding a semidefinite programming relaxation for MAXCUT

Maximum Satisfiability Problem (MAXSAT)

Given: Boolean variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m} with weights $w_{1}, \ldots, w_{m} \in \mathbb{R}_{\geq 0}$.
(Clause is disjunction of Boolean variables or negations, e.g., $x_{1} \vee \overline{x_{2}} \vee x_{3}$)
Task: Find a truth assignment to x_{1}, \ldots, x_{n}.
Objective: Maximize the total weight of satisfied clauses.

Maximum Satisfiability Problem (MAX SAT)

Given: Boolean variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m} with weights $w_{1}, \ldots, w_{m} \in \mathbb{R}_{\geq 0}$.
(Clause is disjunction of Boolean variables or negations, e.g., $x_{1} \vee \overline{x_{2}} \vee x_{3}$)
Task: Find a truth assignment to x_{1}, \ldots, x_{n}.
Objective: Maximize the total weight of satisfied clauses.
Example: $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{3}}\right)$

Maximum Satisfiability Problem (MAXSAT)

Given: Boolean variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m} with weights $w_{1}, \ldots, w_{m} \in \mathbb{R}_{\geq 0}$.
(Clause is disjunction of Boolean variables or negations, e.g., $x_{1} \vee \overline{x_{2}} \vee x_{3}$)
Task: Find a truth assignment to x_{1}, \ldots, x_{n}.
Objective: Maximize the total weight of satisfied clauses.
Example: $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{3}}\right)$
Remarks:

- A variable x_{i} or its negation $\overline{x_{i}}$ is a literal.
- The number of literals ℓ_{j} in clause C_{j} is its size or length.
- If $\ell_{j}=1$, then C_{j} is a unit clause.
- W.I.o.g. no literal is repeated in a clause and clauses are distinct.
$■$ W.I.o.g. at most one of x_{i} and $\overline{x_{i}}$ appears in a clause.

Randomized Truth Assignment

Theorem 5.2

a Setting each x_{i} to true independently with probability $1 / 2$ gives a randomized $1 / 2$-approximation algorithm for MAX SAT.
b If $\ell_{j} \geq k$ for all $j=1, \ldots, m$, then the above algorithm is a randomized ($1-1 / 2^{k}$)-approximation algorithm.

Randomized Truth Assignment

Theorem 5.2

a Setting each x_{i} to true independently with probability $1 / 2$ gives a randomized $1 / 2$-approximation algorithm for MAX SAT.
b If $\ell_{j} \geq k$ for all $j=1, \ldots, m$, then the above algorithm is a randomized $\left(1-1 / 2^{k}\right)$-approximation algorithm.

Proof:...

Randomized Truth Assignment

Theorem 5.2

a Setting each x_{i} to true independently with probability $1 / 2$ gives a randomized $1 / 2$-approximation algorithm for MAX SAT.
b If $\ell_{j} \geq k$ for all $j=1, \ldots, m$, then the above algorithm is a randomized $\left(1-1 / 2^{k}\right)$-approximation algorithm.

Proof:...
Maximum Exactly 3SAT (MAX E 3SAT): The special case of MAX SAT where $\ell_{j}=3$ for all $j=1, \ldots, m$ is called MAX E 3SAT.

Randomized Truth Assignment

Theorem 5.2

a Setting each x_{i} to true independently with probability $1 / 2$ gives a randomized $1 / 2$-approximation algorithm for MAX SAT.
b If $\ell_{j} \geq k$ for all $j=1, \ldots, m$, then the above algorithm is a randomized $\left(1-1 / 2^{k}\right)$-approximation algorithm.

Proof:. . .
Maximum Exactly 3SAT (MAX E 3SAT): The special case of MAX SAT where $\ell_{j}=3$ for all $j=1, \ldots, m$ is called MAX E 3SAT. We state the following theorem without proof.

Randomized Truth Assignment

Theorem 5.2

a Setting each x_{i} to true independently with probability $1 / 2$ gives a randomized 1/2-approximation algorithm for MAX SAT.
b If $\ell_{j} \geq k$ for all $j=1, \ldots, m$, then the above algorithm is a randomized $\left(1-1 / 2^{k}\right)$-approximation algorithm.

Proof:...
Maximum Exactly 3SAT (MAX E 3SAT): The special case of MAX SAT where $\ell_{j}=3$ for all $j=1, \ldots, m$ is called MAX E 3SAT. We state the following theorem without proof.

Theorem 5.3

Unless $P=N P$, there is no $(7 / 8+\varepsilon)$-approximation algorithm for MAXE 3SAT for any constant $\varepsilon>0$.

Maximum Cut Problem (MAX CUT)

Given: Undirected Graph $G=(V, E)$ with edge weights $w_{e} \geq 0$, $e \in E$.
Task: Find $S \subset V$ maximizing $\sum_{e \in \delta(S)} w_{e}$.

Maximum Cut Problem (MAX CUT)

Given: Undirected Graph $G=(V, E)$ with edge weights $w_{e} \geq 0$, $e \in E$.
Task: Find $S \subset V$ maximizing $\sum_{e \in \delta(S)} w_{e}$.

Theorem 5.4

Placing each node $v \in V$ into S independently at random with probability $1 / 2$ gives a randomized $1 / 2$-approximation algorithm for MAX CUT.

Maximum Cut Problem (MAX CUT)

Given: Undirected Graph $G=(V, E)$ with edge weights $w_{e} \geq 0$, $e \in E$.
Task: Find $S \subset V$ maximizing $\sum_{e \in \delta(S)} w_{e}$.

Theorem 5.4

Placing each node $v \in V$ into S independently at random with probability $1 / 2$ gives a randomized $1 / 2$-approximation algorithm for MAX CUT.

Proof:...

Derandomization: Method of Conditional Expectations

Basic Idea:
■ Consider random decisions sequentially one after another.
■ Take next decision deterministically optimizing the expected solution value assuming that all remaining decisions are taken randomly.

Derandomization: Method of Conditional Expectations

Basic Idea:
■ Consider random decisions sequentially one after another.

- Take next decision deterministically optimizing the expected solution value assuming that all remaining decisions are taken randomly.

Example: Derandomized version of randomized
MAX SATalgorithm
Let W denote the total weight of satisfied clauses in final solution.

Derandomization: Method of Conditional Expectations

Basic Idea:
■ Consider random decisions sequentially one after another.

- Take next decision deterministically optimizing the expected solution value assuming that all remaining decisions are taken randomly.

Example: Derandomized version of randomized
MAX SATalgorithm
Let W denote the total weight of satisfied clauses in final solution.
1 for $i=1$ to n
$\mathrm{E}\left[\mathrm{W} \mid x_{1}=b_{1}, \ldots, x_{i-1}=b_{i-1}, x_{i}=\right.$ true $]$
$\begin{array}{ll}2 & \text { if } \geq \mathrm{E}\left[W \mid x_{1}=\right. \\ 3 & \text { then set } b_{i}:=\text { true; }\end{array}$
4 else set $b_{i}:=$ false;
5 return $\mathrm{x}:=\mathrm{b}$;

Method of Conditional Expectations: Analysis

Theorem 5.5

The value of the solution computed by the deterministic MAX SAT algorithm is at least the expected value of the randomized solution.

Method of Conditional Expectations: Analysis

Theorem 5.5

The value of the solution computed by the deterministic MAX SAT algorithm is at least the expected value of the randomized solution.

Remarks.

■ The crucial step of the derandomized algorithm is to compute the conditional expectations.

Method of Conditional Expectations: Analysis

Theorem 5.5

The value of the solution computed by the deterministic MAX SAT algorithm is at least the expected value of the randomized solution.

Remarks.
■ The crucial step of the derandomized algorithm is to compute the conditional expectations.
■ Notice that $\mathrm{E}\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$

$$
=\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[C_{j}=\text { true } \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]
$$

Method of Conditional Expectations: Analysis

Theorem 5.5

The value of the solution computed by the deterministic MAX SAT algorithm is at least the expected value of the randomized solution.

Remarks.

■ The crucial step of the derandomized algorithm is to compute the conditional expectations.
■ Notice that $\mathrm{E}\left[W \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]$

$$
=\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[C_{j}=\operatorname{true} \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right]
$$

and

$$
\begin{aligned}
& \operatorname{Pr}\left[C_{j}=\operatorname{true} \mid x_{1}=b_{1}, \ldots, x_{i}=b_{i}\right] \\
& \quad= \begin{cases}1 & \text { if } x_{1}=b_{1}, \ldots, x_{i}=b_{i} \text { satisfies } C_{j}, \\
1-1 / 2^{k} & \text { else },\end{cases}
\end{aligned}
$$

where k is the number of remaining literals in clause C_{j}.

Flipping Biased Coins

We first restrict to MAX SAT instances with no negated unit clause.

Flipping Biased Coins

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_{i} is independently set to true with probability $p>1 / 2$, then the probability that a clause is satisfied is at least $\min \left\{p, 1-p^{2}\right\}$.

Flipping Biased Coins

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_{i} is independently set to true with probability $p>1 / 2$, then the probability that a clause is satisfied is at least $\min \left\{p, 1-p^{2}\right\}$.

Proof:...

Flipping Biased Coins

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_{i} is independently set to true with probability $p>1 / 2$, then the probability that a clause is satisfied is at least $\min \left\{p, 1-p^{2}\right\}$. Proof:...

Theorem 5.7

For $1 / 2<p \leq 1$ this gives a randomized $\min \left\{p, 1-p^{2}\right\}$-approximation algorithm for MAX SAT.

Flipping Biased Coins

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_{i} is independently set to true with probability $p>1 / 2$, then the probability that a clause is satisfied is at least $\min \left\{p, 1-p^{2}\right\}$. Proof:...

Theorem 5.7

For $1 / 2<p \leq 1$ this gives a randomized $\min \left\{p, 1-p^{2}\right\}$-approximation algorithm for MAX SAT.

Notice: For $p=(\sqrt{5}-1) / 2$ we get $\min \left\{p, 1-p^{2}\right\}=(\sqrt{5}-1) / 2 \approx 0.618$.

Flipping Biased Coins

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_{i} is independently set to true with probability $p>1 / 2$, then the probability that a clause is satisfied is at least $\min \left\{p, 1-p^{2}\right\}$. Proof:...

Theorem 5.7

For $1 / 2<p \leq 1$ this gives a randomized $\min \left\{p, 1-p^{2}\right\}$-approximation algorithm for MAX SAT.

Notice: For $p=(\sqrt{5}-1) / 2$ we get $\min \left\{p, 1-p^{2}\right\}=(\sqrt{5}-1) / 2 \approx 0.618$. Remark:
The initial assumption on the absence of negated unit clauses holds w.l.o.g.!

Outline

1 Random sampling for MAX SAT and MAX CUT

2 Randomized Rounding for MAXSAT
3 Price-Collecting Steiner Tree Problem

4 Uncapacited Facility Location Problem
5 Minimizing the Weighted Sum of Completion Times
6 Minimum-Capacity Multicommodity Flow Problem

7 Rounding a semidefinite programming relaxation for MAXCUT

Integer Programming Formulation for MAX SAT

That is,

$$
C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \overline{x_{i}} .
$$

Integer Programming Formulation for MAX SAT
For $j=1, \ldots, m$ let $\begin{aligned} & P_{j}:=\left\{i \mid \text { literal } x_{i} \text { occurs in } C_{j}\right\} \\ & \text { and } N_{j}:=\left\{i \mid \text { literal } \overline{x_{i}} \text { occurs in } C_{j}\right\} \text {. }\end{aligned}$
That is,

$$
C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \overline{x_{i}} .
$$

IP formulation:

$$
\begin{array}{ll}
\max & \sum_{j=1}^{m} w_{j} \cdot z_{j} \\
\text { s.t. } & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} \\
& \text { for all } j=1, \ldots, m, \\
& y_{i} \in\{0,1\} \\
& 0 \leq z_{j} \leq 1
\end{array}
$$

Integer Programming Formulation for MAX SAT
For $j=1, \ldots, m$ let $\begin{aligned} & P_{j}:=\left\{i \mid \text { literal } x_{i} \text { occurs in } C_{j}\right\} \\ & \text { and } N_{j}:=\left\{i \mid \text { literal } \overline{x_{i}} \text { occurs in } C_{j}\right\} \text {. }\end{aligned}$
That is,

$$
C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \overline{x_{i}} .
$$

IP formulation:

$$
\begin{array}{ll}
\max & \sum_{j=1}^{m} w_{j} \cdot z_{j} \\
\text { s.t. } & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} \\
& \text { for all } j=1, \ldots, m, \\
& y_{i} \in\{0,1\} \\
& 0 \leq z_{j} \leq 1
\end{array}
$$

LP relaxation: Replace $y_{i} \in\{0,1\}$ with $0 \leq y_{i} \leq 1$ for all $i=1, \ldots, n$.

Randomized Rounding

1 compute an optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation;
[2 for $i=1$ to n do
3 set x_{i} to true independently at random with probability y_{i}^{*};

Randomized Rounding

1 compute an optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation;
[2 for $i=1$ to n do
3 set x_{i} to true independently at random with probability y_{i}^{*};

Theorem 5.8

Randomized rounding gives a randomized ($1-1 / e$)-approximation algorithm for MAXSAT.

Randomized Rounding

1 compute an optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation;
[2 for $i=1$ to n do
3 set x_{i} to true independently at random with probability y_{i}^{*};

Theorem 5.8

Randomized rounding gives a randomized ($1-1 / e$)-approximation algorithm for MAX SAT.

Proof:...

Randomized Rounding

1 compute an optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation;
[2 for $i=1$ to n do
3 set x_{i} to true independently at random with probability y_{i}^{*};

Theorem 5.8

Randomized rounding gives a randomized ($1-1 / e$)-approximation algorithm for MAX SAT.

Proof:...
Remark.
Algorithm can be derandomized by method of conditional expectations.

Choosing the Better of Two Solutions

Theorem 5.9

Running either the unbiased randomized $1 / 2$-approximation algorithm or the randomized rounding algorithm, both with probability $1 / 2$, yields a randomized $3 / 4$-approximation algorithm.

Choosing the Better of Two Solutions

Theorem 5.9

Running either the unbiased randomized $1 / 2$-approximation algorithm or the randomized rounding algorithm, both with probability $1 / 2$, yields a randomized $3 / 4$-approximation algorithm.

Proof: Consider clause C_{j} of length ℓ_{j} :
■ 1st algorithm: $\operatorname{Pr}\left[C_{j}=\right.$ true $]=1-1 / 2^{\ell_{j}}$.

- 2nd algorithm: $\operatorname{Pr}\left[C_{j}=\right.$ true $] \geq\left(1-\left(1-1 / \ell_{j}\right)^{\ell_{j}}\right) z_{j}^{*}$.

Choosing the Better of Two Solutions

Theorem 5.9

Running either the unbiased randomized $1 / 2$-approximation algorithm or the randomized rounding algorithm, both with probability $1 / 2$, yields a randomized $3 / 4$-approximation algorithm.

Proof: Consider clause C_{j} of length ℓ_{j} :
■ 1st algorithm: $\operatorname{Pr}\left[C_{j}=\right.$ true $]=1-1 / 2^{\ell_{j}}$.

- 2nd algorithm: $\operatorname{Pr}\left[C_{j}=\right.$ true $] \geq\left(1-\left(1-1 / \ell_{j}\right)^{\ell_{j}}\right) z_{j}^{*}$.

Derandomizing the initial coin flip yields:

Corollary 5.10

Running both algorithms and choosing the better of the two solutions is a randomized $3 / 4$-approximation algorithm.

Visualization of Proof of Theorem 5.9

5- Random Sampling \& Randomized Rounding

Non-linear Randomized Rounding

Consider a function $f:[0,1] \rightarrow[0,1]$.
1 compute an optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation;
2 for $i=1$ to n do
3 set x_{i} to true independently at random with probability $f\left(y_{i}^{*}\right)$;

Non-linear Randomized Rounding

Consider a function $f:[0,1] \rightarrow[0,1]$.
1 compute an optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation;
(2) for $i=1$ to n do

3 set x_{i} to true independently at random with probability $f\left(y_{i}^{*}\right)$;

Theorem 5.11

Let $f:[0,1] \rightarrow[0,1]$ with $1-4^{-x} \leq f(x) \leq 4^{x-1}$ for all $x \in[0,1]$. Then non-linear randomized rounding with function f is a randomized 3/4-approximation algorithm.

Non-linear Randomized Rounding

Consider a function $f:[0,1] \rightarrow[0,1]$.
1 compute an optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation;
(2) for $i=1$ to n do

3 set x_{i} to true independently at random with probability $f\left(y_{i}^{*}\right)$;

Theorem 5.11

Let $f:[0,1] \rightarrow[0,1]$ with $1-4^{-x} \leq f(x) \leq 4^{x-1}$ for all $x \in[0,1]$. Then non-linear randomized rounding with function f is a randomized 3/4-approximation algorithm.

Proof:...

Non-linear Randomized Rounding

Consider a function $f:[0,1] \rightarrow[0,1]$.
1 compute an optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation;
(2) for $i=1$ to n do
(3) set x_{i} to true independently at random with probability $f\left(y_{i}^{*}\right)$;

Theorem 5.11

Let $f:[0,1] \rightarrow[0,1]$ with $1-4^{-x} \leq f(x) \leq 4^{x-1}$ for all $x \in[0,1]$. Then non-linear randomized rounding with function f is a randomized 3/4-approximation algorithm.

Proof:...
Remark:

- The integrality gap of the LP relaxation for MAX SAT is $3 / 4$.

Non-linear Randomized Rounding

Consider a function $f:[0,1] \rightarrow[0,1]$.
1 compute an optimal solution $\left(y^{*}, z^{*}\right)$ to the LP relaxation;
(2) for $i=1$ to n do

3 set x_{i} to true independently at random with probability $f\left(y_{i}^{*}\right)$;

Theorem 5.11

Let $f:[0,1] \rightarrow[0,1]$ with $1-4^{-x} \leq f(x) \leq 4^{x-1}$ for all $x \in[0,1]$. Then non-linear randomized rounding with function f is a randomized 3/4-approximation algorithm.

Proof:...
Remark:

- The integrality gap of the LP relaxation for MAX SAT is $3 / 4$.
- Thus, $3 / 4$ is best performance ratio one can prove based on the LP.
G. Sagnol

5- Random Sampling \& Randomized Rounding
$15 / 43$

Visualization of Lower and Upper Bound on f

Outline

1 Random sampling for MAX SAT and MAX CUT
$\overline{2}$ Randomized Rounding for MAX SAT

3 Price-Collecting Steiner Tree Problem

4 Uncapacited Facility Location Problem
5 Minimizing the Weighted Sum of Completion Times
6 Minimum-Capacity Multicommodity Flow Problem

7 Rounding a semidefinite programming relaxation for MAXCUT

Randomized Algo for Prize-Collecting Steiner Trees

Idea:
■ Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing α randomly.

Randomized Algo for Prize-Collecting Steiner Trees

Idea:
■ Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing α randomly.

■ For some fixed $\gamma>0$ choose α uniformly at random from $[\gamma, 1]$.

Randomized Algo for Prize-Collecting Steiner Trees

Idea:
■ Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing α randomly.

■ For some fixed $\gamma>0$ choose α uniformly at random from $[\gamma, 1]$.

- That is, choose α from $[\gamma, 1]$ with constant density function $1 /(1-\gamma)$.

Randomized Algo for Prize-Collecting Steiner Trees

 Idea:■ Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing α randomly.

- For some fixed $\gamma>0$ choose α uniformly at random from $[\gamma, 1]$.

■ That is, choose α from $[\gamma, 1]$ with constant density function $1 /(1-\gamma)$.

Lemma 5.12

The tree T returned by the randomized algorithm has expected cost

$$
\mathrm{E}\left[\sum_{e \in E(T)} c_{e}\right] \leq \frac{2}{1-\gamma} \ln \frac{1}{\gamma} \sum_{e \in E} c_{e} \cdot x_{e}^{*} .
$$

Randomized Algo for Prize-Collecting Steiner Trees

 Idea:■ Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing α randomly.

- For some fixed $\gamma>0$ choose α uniformly at random from $[\gamma, 1]$.
- That is, choose α from $[\gamma, 1]$ with constant density function $1 /(1-\gamma)$.

Lemma 5.12

The tree T returned by the randomized algorithm has expected cost

$$
\mathrm{E}\left[\sum_{e \in E(T)} c_{e}\right] \leq \frac{2}{1-\gamma} \ln \frac{1}{\gamma} \sum_{e \in E} c_{e} \cdot x_{e}^{*} .
$$

Randomized Algo for Prize-Collecting Steiner Trees

Lemma 5.13

The expected penalty costs are

$$
\mathrm{E}\left[\sum_{i \in V \backslash V(T)} \pi_{i}\right] \leq \frac{1}{1-\gamma} \sum_{i \in V} \pi_{i} \cdot\left(1-y_{i}^{*}\right)
$$

Randomized Algo for Prize-Collecting Steiner Trees

Lemma 5.13

The expected penalty costs are

$$
\mathrm{E}\left[\sum_{i \in V \backslash V(T)} \pi_{i}\right] \leq \frac{1}{1-\gamma} \sum_{i \in V} \pi_{i} \cdot\left(1-y_{i}^{*}\right)
$$

Proof:...

Randomized Algo for Prize-Collecting Steiner Trees

Lemma 5.13

The expected penalty costs are

$$
\mathrm{E}\left[\sum_{i \in V \backslash V(T)} \pi_{i}\right] \leq \frac{1}{1-\gamma} \sum_{i \in V} \pi_{i} \cdot\left(1-y_{i}^{*}\right)
$$

Proof:...

Theorem 5.14

For $\gamma:=e^{-1 / 2}$ the expected cost of the solution is

$$
\mathrm{E}\left[\sum_{e \in E(T)} c_{e}+\sum_{i \in V \backslash V(T)} \pi_{i}\right] \leq \frac{1}{1-1 / \sqrt{e}} \cdot \mathrm{OPT}_{L P} .
$$

Thus, we have a randomized 2.54-approximation algorithm.

Derandomization and Integrality Gap

Derandomization.

- There are at most $n:=|V|$ distinct values of y_{i}^{*}.
- Consider n sets $U_{j}:=\left\{i \in V \mid y_{i}^{*} \geq y_{j}^{*}\right\}$, for $j=1, \ldots, n$.
- Any possible value of α corresponds to one of these n sets.
- Derandomize by trying each set U_{j} and choosing the best solution.

Derandomization and Integrality Gap

Derandomization.

- There are at most $n:=|V|$ distinct values of y_{i}^{*}.
- Consider n sets $U_{j}:=\left\{i \in V \mid y_{i}^{*} \geq y_{j}^{*}\right\}$, for $j=1, \ldots, n$.
- Any possible value of α corresponds to one of these n sets.
- Derandomize by trying each set U_{j} and choosing the best solution.

Integrality gap.

- There exist instances with integrality gap $2-\frac{2}{n}$.

Derandomization and Integrality Gap

Derandomization.

- There are at most $n:=|V|$ distinct values of y_{i}^{*}.
- Consider n sets $U_{j}:=\left\{i \in V \mid y_{i}^{*} \geq y_{j}^{*}\right\}$, for $j=1, \ldots, n$.
- Any possible value of α corresponds to one of these n sets.
- Derandomize by trying each set U_{j} and choosing the best solution.

Integrality gap.

- There exist instances with integrality gap $2-\frac{2}{n}$.
- By Theorem 5.14 the integrality gap is at most $\frac{1}{1-1 / \sqrt{e}} \approx 2.54$.

Derandomization and Integrality Gap

Derandomization.

- There are at most $n:=|V|$ distinct values of y_{i}^{*}.
- Consider n sets $U_{j}:=\left\{i \in V \mid y_{i}^{*} \geq y_{j}^{*}\right\}$, for $j=1, \ldots, n$.
- Any possible value of α corresponds to one of these n sets.
- Derandomize by trying each set U_{j} and choosing the best solution.

Integrality gap.

- There exist instances with integrality gap $2-\frac{2}{n}$.
- By Theorem 5.14 the integrality gap is at most $\frac{1}{1-1 / \sqrt{e}} \approx 2.54$.
- We will prove later that the integrality gap is at most 2.

Outline

1 Random sampling for MAX SAT and MAXCUT
2 Randomized Rounding for MAXSAT
3 Price-Collecting Steiner Tree Problem
4 Uncapacited Facility Location Problem
5 Minimizing the Weighted Sum of Completion Times
6 Minimum-Capacity Multicommodity Flow Problem
7 Rounding a semidefinite programming relaxation for MAXCUT

Randomized Algo for Uncapacitated Facility Location

In Chapter 4 we obtained an LP-based 4-approximation algorithm which computes a solution of cost at most

$$
\sum_{i \in F} f_{i} \cdot y_{i}^{*}+3 \cdot \sum_{j \in D} v_{j}^{*} .
$$

Randomized Algo for Uncapacitated Facility Location

In Chapter 4 we obtained an LP-based 4-approximation algorithm which computes a solution of cost at most

$$
\sum_{i \in F} f_{i} \cdot y_{i}^{*}+3 \cdot \sum_{j \in D} v_{j}^{*} .
$$

Notation.
Let $C_{j}^{*}:=\sum_{i \in F} c_{i j} \cdot x_{i j}^{*}$ denote the assignment cost of j paid by the LP, i.e.,

$$
\mathrm{OPT}_{L P}=\sum_{i \in F} f_{i} \cdot y_{i}^{*}+\sum_{j \in D} C_{j}^{*} .
$$

Randomized Algo for Uncapacitated Facility Location

In Chapter 4 we obtained an LP-based 4-approximation algorithm which computes a solution of cost at most

$$
\sum_{i \in F} f_{i} \cdot y_{i}^{*}+3 \cdot \sum_{j \in D} v_{j}^{*} .
$$

Notation.
Let $C_{j}^{*}:=\sum_{i \in F} c_{i j} \cdot x_{i j}^{*}$ denote the assignment cost of j paid by the LP, i.e.,

$$
\mathrm{OPT}_{L P}=\sum_{i \in F} f_{i} \cdot y_{i}^{*}+\sum_{j \in D} C_{j}^{*} .
$$

Idea:

- Include the assignment cost C_{j}^{*} in the analysis.
- Instead of bounding only the facility cost by OPT ${ }_{L P}$, bound both the facility cost and part of the assignment cost by OPT $\angle P$.

Randomized Algorithm for Uncapacitated Facility Location

Randomized algorithm for Uncapacitated Facility Location Problem
1 compute optimal LP solutions (x^{*}, y^{*}) and (v^{*}, w^{*});
2 while $D \neq \emptyset$
$3 \quad$ choose $j:=\operatorname{argmin}_{j^{\prime} \in D}\left(v_{j^{\prime}}^{*}+C_{j^{\prime}}^{*}\right)$;
$4 \quad$ choose $i \in N(j)$ according to probability distribution $x_{i j}^{*}$;
5 assign all unassigned clients in $N^{2}(j)$ to facility i;
6 set $D:=D \backslash N^{2}(j)$;

Randomized Algorithm for Uncapacitated Facility Location

Randomized algorithm for Uncapacitated Facility Location Problem
1 compute optimal LP solutions (x^{*}, y^{*}) and (v^{*}, w^{*});
\simeq while $D \neq \emptyset$
$3 \quad$ choose $j:=\operatorname{argmin}_{j^{\prime} \in D}\left(v_{j^{\prime}}^{*}+C_{j^{\prime}}^{*}\right)$;
$4 \quad$ choose $i \in N(j)$ according to probability distribution $x_{i j}^{*}$;
5 assign all unassigned clients in $N^{2}(j)$ to facility i;
$6 \quad$ set $D:=D \backslash N^{2}(j)$;

Theorem 5.15

The algorithm above is a randomized 3-approximation algorithm for the Uncapacitated Facility Location Problem.

Randomized Algorithm for Uncapacitated Facility Location

Randomized algorithm for Uncapacitated Facility Location Problem
1 compute optimal LP solutions (x^{*}, y^{*}) and (v^{*}, w^{*});
\simeq while $D \neq \emptyset$
$3 \quad$ choose $j:=\operatorname{argmin}_{j^{\prime} \in D}\left(v_{j^{\prime}}^{*}+C_{j^{\prime}}^{*}\right)$;
4 choose $i \in N(j)$ according to probability distribution $x_{i j}^{*}$;
5 assign all unassigned clients in $N^{2}(j)$ to facility i;
6 set $D:=D \backslash N^{2}(j)$;

Theorem 5.15

The algorithm above is a randomized 3-approximation algorithm for the Uncapacitated Facility Location Problem.

Proof:...

Outline

1 Random sampling for MAX SAT and MAX CUT
$\overline{2}$ Randomized Rounding for MAX SAT
3 Price-Collecting Steiner Tree Problem
4 Uncapacited Facility Location Problem
5 Minimizing the Weighted Sum of Completion Times
6 Minimum-Capacity Multicommodity Flow Problem
7 Rounding a semidefinite programming relaxation for MAXCUT

Min Weighted Sum of Completion Times $1\left|r_{j}\right| \sum w_{j} C_{j}$

Given: jobs with processing time $p_{j} \in \mathbb{Z}_{>0}$, weight $w_{j} \geq 0$, and release date $r_{j} \in \mathbb{Z}_{\geq 0}, j=1, \ldots, n$.
Task: Schedule the jobs nonpreemptively on a single machine; minimize the total weighted completion time $\sum_{j=1}^{n} w_{j} \cdot C_{j}$.

Min Weighted Sum of Completion Times $1\left|r_{j}\right| \sum w_{j} C_{j}$

Given: jobs with processing time $p_{j} \in \mathbb{Z}_{>0}$, weight $w_{j} \geq 0$, and release date $r_{j} \in \mathbb{Z}_{\geq 0}, j=1, \ldots, n$.
Task: Schedule the jobs nonpreemptively on a single machine;
minimize the total weighted completion time $\sum_{j=1}^{n} w_{j} \cdot C_{j}$.
Let $T:=\max _{j} r_{j}+\sum_{j=1}^{n} p_{j}$ (upper bound on all completion times).

Min Weighted Sum of Completion Times $1\left|r_{j}\right| \sum w_{j} C_{j}$

Given: jobs with processing time $p_{j} \in \mathbb{Z}_{>0}$, weight $w_{j} \geq 0$, and release date $r_{j} \in \mathbb{Z}_{\geq 0}, j=1, \ldots, n$.
Task: Schedule the jobs nonpreemptively on a single machine;
minimize the total weighted completion time $\sum_{j=1}^{n} w_{j} \cdot C_{j}$.
Let $T:=\max _{j} r_{j}+\sum_{j=1}^{n} p_{j}$ (upper bound on all completion times).
Consider an integer programming relaxation with variables

$$
y_{j t}= \begin{cases}1 & \text { if job } j \text { is processed in time }[t-1, t) \\ 0 & \text { otherwise }\end{cases}
$$

for $j=1, \ldots, n, t=1, \ldots, T$.

Integer Programming Relaxation

$$
\begin{array}{lll}
\min & \sum_{j=1}^{n} w_{j} \cdot C_{j} & \\
\text { s.t. } & \sum_{j=1}^{n} y_{j t} \leq 1 & \text { for } t=1, \ldots, T \\
& \sum_{t=1}^{T} y_{j t}=p_{j} & \text { for } j=1, \ldots, n, \\
& y_{j t}=0 & \text { for } j=1, \ldots, n, t=1, \ldots, r_{j}, \\
& C_{j}=\frac{1}{p_{j}} \sum_{t=1}^{T} y_{j t}\left(t-\frac{1}{2}\right)+\frac{1}{2} p_{j} & \text { for } j=1, \ldots, n, \\
& y_{j t} \in\{0,1\} & \text { for } j=1, \ldots, n, t=1, \ldots, T
\end{array}
$$

Integer Programming Relaxation

$$
\begin{array}{lll}
\min & \sum_{j=1}^{n} w_{j} \cdot C_{j} & \\
\text { s.t. } & \sum_{j=1}^{n} y_{j t} \leq 1 & \text { for } t=1, \ldots, T \\
& \sum_{t=1}^{T} y_{j t}=p_{j} & \text { for } j=1, \ldots, n, \\
& y_{j t}=0 & \text { for } j=1, \ldots, n, t=1, \ldots, r_{j}, \\
& C_{j}=\frac{1}{p_{j}} \sum_{t=1}^{T} y_{j t}\left(t-\frac{1}{2}\right)+\frac{1}{2} p_{j} & \text { for } j=1, \ldots, n, \\
& y_{j t} \in\{0,1\} & \text { for } j=1, \ldots, n, t=1, \ldots, T .
\end{array}
$$

Remarks.
■ Notice that in a feasible IP solution jobs might be preempted.

Integer Programming Relaxation

$$
\begin{array}{lll}
\min & \sum_{j=1}^{n} w_{j} \cdot C_{j} & \\
\text { s.t. } & \sum_{j=1}^{n} y_{j t} \leq 1 & \text { for } t=1, \ldots, T \\
& \sum_{t=1}^{T} y_{j t}=p_{j} & \text { for } j=1, \ldots, n, \\
& y_{j t}=0 & \text { for } j=1, \ldots, n, t=1, \ldots, r_{j}, \\
& C_{j}=\frac{1}{p_{j}} \sum_{t=1}^{T} y_{j t}\left(t-\frac{1}{2}\right)+\frac{1}{2} p_{j} & \text { for } j=1, \ldots, n, \\
& y_{j t} \in\{0,1\} & \text { for } j=1, \ldots, n, t=1, \ldots, T .
\end{array}
$$

Remarks.
■ Notice that in a feasible IP solution jobs might be preempted.
■ In this case, C_{j} underestimates the actual completion time of job j.

Randomized Rounding

1 compute optimal IP solution (y^{*}, C^{*});
[2 for $j=1$ to n set random variable X_{j} to $t-\frac{1}{2}$ with probability $y_{j t}^{*} / p_{j} ;$
3 sort the jobs such that $X_{1} \leq X_{2} \leq \cdots \leq X_{n}$;
4 schedule all jobs nonpreemptively and as early as possible in this order;

Randomized Rounding

1 compute optimal IP solution $\left(y^{*}, C^{*}\right)$;
2 for $j=1$ to n set random variable X_{j} to $t-\frac{1}{2}$ with probability $y_{j t}^{*} / p_{j} ;$
3 sort the jobs such that $X_{1} \leq X_{2} \leq \cdots \leq X_{n}$;
4 schedule all jobs nonpreemptively and as early as possible in this order;

Lemma 5.16

If the random variables X_{j} are independent, then
$\mathrm{E}\left[C_{j} \mid X_{j}=x\right] \leq p_{j}+2 x$.

Randomized Rounding

1 compute optimal IP solution $\left(y^{*}, C^{*}\right)$;
2 for $j=1$ to n set random variable X_{j} to $t-\frac{1}{2}$ with probability $y_{j t}^{*} / p_{j} ;$
3 sort the jobs such that $X_{1} \leq X_{2} \leq \cdots \leq X_{n}$;
4 schedule all jobs nonpreemptively and as early as possible in this order;

Lemma 5.16

If the random variables X_{j} are independent, then
$\mathrm{E}\left[C_{j} \mid X_{j}=x\right] \leq p_{j}+2 x$.

Theorem 5.17

The expected performance ratio of the randomized algorithm is at most 2.

Computing an Optimum IP Solution

11 sort the jobs such that $w_{1} / p_{1} \geq w_{2} / p_{2} \geq \cdots \geq w_{n} / p_{n}$;
2 construct a preemptive schedule:
$3 \rightarrow$ always schedule the first available job which is not yet completed;
4 implicitely assign the variables $y_{j t}$ (and C_{j}) accordingly;

Computing an Optimum IP Solution

1 sort the jobs such that $w_{1} / p_{1} \geq w_{2} / p_{2} \geq \cdots \geq w_{n} / p_{n}$;
2 construct a preemptive schedule:
$3 \rightarrow$ always schedule the first available job which is not yet completed;
4 implicitely assign the variables $y_{j t}$ (and C_{j}) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

Computing an Optimum IP Solution

1 sort the jobs such that $w_{1} / p_{1} \geq w_{2} / p_{2} \geq \cdots \geq w_{n} / p_{n}$;
2 construct a preemptive schedule:
$3 \rightarrow$ always schedule the first available job which is not yet completed;
4 implicitely assign the variables $y_{j t}$ (and C_{j}) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.
Proof: Exchange argument...

Computing an Optimum IP Solution

1 sort the jobs such that $w_{1} / p_{1} \geq w_{2} / p_{2} \geq \cdots \geq w_{n} / p_{n}$;
2 construct a preemptive schedule:
$3 \rightarrow$ always schedule the first available job which is not yet completed;
4 implicitely assign the variables $y_{j t}$ (and C_{j}) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.
Proof: Exchange argument...
Remarks.
■ This schedule consists of at most $2 n$ intervals of time.

Computing an Optimum IP Solution

1 sort the jobs such that $w_{1} / p_{1} \geq w_{2} / p_{2} \geq \cdots \geq w_{n} / p_{n}$;
2 construct a preemptive schedule:
$3 \rightarrow$ always schedule the first available job which is not yet completed;
4 implicitely assign the variables $y_{j t}$ (and C_{j}) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.
Proof: Exchange argument...
Remarks.
■ This schedule consists of at most $2 n$ intervals of time.

- Randomized rounding can be implemented to run in polytime.

Computing an Optimum IP Solution

1 sort the jobs such that $w_{1} / p_{1} \geq w_{2} / p_{2} \geq \cdots \geq w_{n} / p_{n}$;
2 construct a preemptive schedule:
$3 \rightarrow$ always schedule the first available job which is not yet completed;
4 implicitely assign the variables $y_{j t}$ (and C_{j}) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.
Proof: Exchange argument...
Remarks.
■ This schedule consists of at most $2 n$ intervals of time.

- Randomized rounding can be implemented to run in polytime.

■ Derandomization (of a variant) of this algo by method of conditional expectations.

Outline

1 Random sampling for MAX SAT and MAX CUT
$\overline{2}$ Randomized Rounding for MAXSAT
3 Price-Collecting Steiner Tree Problem
4 Uncapacited Facility Location Problem
5 Minimizing the Weighted Sum of Completion Times
6 Minimum-Capacity Multicommodity Flow Problem
7 Rounding a semidefinite programming relaxation for MAXCUT

Minimum-Capacity Multicommodity Flow Problem

Given: Undirected graph $G=(V, E)$ and k pairs $s_{i}, t_{i} \in V, i=1, \ldots, k$. Task: Find single s_{i} - t_{i}-path in G, for $i=1, \ldots, k$.

Objective: Minimize maximum number of paths containing same edge.

Minimum-Capacity Multicommodity Flow Problem

Given: Undirected graph $G=(V, E)$ and k pairs $s_{i}, t_{i} \in V, i=1, \ldots, k$.
Task: Find single $s_{i}-t_{i}$-path in G, for $i=1, \ldots, k$.
Objective: Minimize maximum number of paths containing same edge.
Path-based IP formulation: Let $\mathcal{P}_{i}:=\left\{P \mid P\right.$ is $s_{i}-t_{i}$-path $\}$. $\min W$

$$
\begin{aligned}
& \text { s.t. } \quad \sum x_{P}=1 \quad \text { for all } i=1, \ldots, k \text {, } \\
& \sum_{P: e \in P} x_{P} \leq W \quad \text { for all } e \in E \text {, } \\
& x_{P} \in\{0,1\} \quad \text { for all } P \in \mathcal{P}_{i}, i=1, \ldots, k \text {. }
\end{aligned}
$$

Minimum-Capacity Multicommodity Flow Problem

Given: Undirected graph $G=(V, E)$ and k pairs $s_{i}, t_{i} \in V, i=1, \ldots, k$.
Task: Find single $s_{i}-t_{i}$-path in G, for $i=1, \ldots, k$.
Objective: Minimize maximum number of paths containing same edge.
Path-based IP formulation: Let $\mathcal{P}_{i}:=\left\{P \mid P\right.$ is $s_{i}-t_{i}$-path $\}$. $\min W$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{P \in \mathcal{P}_{i}} x_{P}=1 \\
& \text { for all } i=1, \ldots, k, \\
& \sum_{P: e \in P} x_{P} \leq W
\end{array} \text { for all } e \in E, .
$$

LP relaxation: Replace $x_{P} \in\{0,1\}$ with $x_{P} \geq 0$.

Minimum-Capacity Multicommodity Flow Problem

Given: Undirected graph $G=(V, E)$ and k pairs $s_{i}, t_{i} \in V, i=1, \ldots, k$.
Task: Find single $s_{i}-t_{i}$-path in G, for $i=1, \ldots, k$.
Objective: Minimize maximum number of paths containing same edge.
Path-based IP formulation: Let $\mathcal{P}_{i}:=\left\{P \mid P\right.$ is $s_{i}-t_{i}$-path $\}$. $\min W$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{P \in \mathcal{P}_{i}} x_{P}=1 \\
& \text { for all } i=1, \ldots, k, \\
& \sum_{P: e \in P} x_{P} \leq W
\end{array} \text { for all } e \in E, .
$$

LP relaxation: Replace $x_{P} \in\{0,1\}$ with $x_{P} \geq 0$.

- Despite exponential number of variables, LP relaxation can be solved in polynomial time!

Randomized Rounding

1 compute optimal LP solution $\left(x^{*}, W^{*}\right)$;
2 for $i=1$ to k
3 independently choose one path $P \in \mathcal{P}_{i}$ with probability x_{P}^{*};

Randomized Rounding

1 compute optimal LP solution (x^{*}, W^{*});
2 for $i=1$ to k
3 independently choose one path $P \in \mathcal{P}_{i}$ with probability x_{P}^{*};

Definition 5.19

A probabilistic event happens with high probability if the probability that it does not occur is at most n^{-c} for some constant $c \geq 1$.

Theorem 5.20

If $W^{*} \geq c \cdot \ln n$ for a large enough constant c, then with high probability, the total number of paths using any edge is at most $W^{*}+\sqrt{c \cdot W^{*} \ln n}$.

Markov's Inequality and Chernoff Bound

Lemma 5.21 (Markov's Inequality)

If $X \geq 0$ is a random variable, then $\operatorname{Pr}[X \geq a] \leq \mathrm{E}[X] /$ a for $a>0$.

Markov's Inequality and Chernoff Bound

Lemma 5.21 (Markov's Inequality)

If $X \geq 0$ is a random variable, then $\operatorname{Pr}[X \geq a] \leq \mathrm{E}[X] /$ a for $a>0$.
Proof:

Markov's Inequality and Chernoff Bound

Lemma 5.21 (Markov's Inequality)

If $X \geq 0$ is a random variable, then $\operatorname{Pr}[X \geq a] \leq \mathrm{E}[X] /$ a for $a>0$. Proof:

Theorem 5.22 (Chernoff Bound)

Let X_{1}, \ldots, X_{k} be independent 0-1 random variables. Then for
$X:=\sum_{i=1}^{k} X_{i}, \mu \geq \mathrm{E}[X]$, and $0<\delta \leq 1$

$$
\operatorname{Pr}[X \geq(1+\delta) \cdot \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \leq e^{-\mu \cdot \delta^{2} / 3}
$$

Proof idea: Apply Markov inequality to the event $\operatorname{Pr}\left[e^{t X} \geq e^{t(1+\delta) \mu}\right]$ for a well-chosen value of t.

Performance Guarantees

Corollary 5.23

a If $W^{*} \geq c \cdot \ln n$, then randomized rounding with high probability produces a solution of value at most $2 W^{*}$.
b If $W^{*} \geq 1$, then with high probability the total number of paths using any edge is $O(\log n) \cdot W^{*}$.

Performance Guarantees

Corollary 5.23

a If $W^{*} \geq c \cdot \ln n$, then randomized rounding with high probability produces a solution of value at most $2 W^{*}$.
b If $W^{*} \geq 1$, then with high probability the total number of paths using any edge is $O(\log n) \cdot W^{*}$.

Proof:...

Performance Guarantees

Corollary 5.23

a If $W^{*} \geq c \cdot \ln n$, then randomized rounding with high probability produces a solution of value at most $2 W^{*}$.
b If $W^{*} \geq 1$, then with high probability the total number of paths using any edge is $O(\log n) \cdot W^{*}$.

Proof:...
Remarks.
■ The statement of
Corollary 5.23 can be sharpened by replacing the term $O(\log n)$ with $O(\log n / \log \log n)$.

Performance Guarantees

Corollary 5.23

a If $W^{*} \geq c \cdot \ln n$, then randomized rounding with high probability produces a solution of value at most $2 W^{*}$.
b If $W^{*} \geq 1$, then with high probability the total number of paths using any edge is $O(\log n) \cdot W^{*}$.

Proof:...
Remarks.
■ The statement of
Corollary 5.23 can be sharpened by replacing the term $O(\log n)$ with $O(\log n / \log \log n)$.
■ On the other hand, the integrality gap of the IP formulation is in $\Omega(\log n / \log \log n)$.

Outline

1 Random sampling for MAX SAT and MAX CUT
2 Randomized Rounding for MAX SAT
3 Price-Collecting Steiner Tree Problem
4 Uncapacited Facility Location Problem
5 Minimizing the Weighted Sum of Completion Times
6 Minimum-Capacity Multicommodity Flow Problem
7 Rounding a semidefinite programming relaxation for MAXCUT

Semidefinite Matrices

Definition 5.24

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is positive semidefinite if $y^{T} \cdot X \cdot y \geq 0$ for all $y \in \mathbb{R}^{n}$. In this case we write $X \succeq 0$.

Semidefinite Matrices

Definition 5.24

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is positive semidefinite if $y^{\top} \cdot X \cdot y \geq 0$ for all $y \in \mathbb{R}^{n}$. In this case we write $X \succeq 0$.

Theorem 5.25

For a symmetric $X \in \mathbb{R}^{n \times n}$ the following statements are equivalent:
i X is positive semidefinite;
iii all eigenvalues of X are non-negative;
四 $X=V^{T}$. V for some $V \in \mathbb{R}^{m \times n}$ where $m \leq n$;
iv $X=\sum_{i=1}^{n} \lambda_{i}\left(w_{i} \cdot w_{i}^{T}\right)$ for some $\lambda_{i} \geq 0$ and $w_{i} \in \mathbb{R}^{n}$ such that
$w_{i}^{T} \cdot w_{i}=1$ and $w_{i}^{T} \cdot w_{j}=0$ for $i \neq j$.

Semidefinite Programs (SDPs)

Definition 5.26

A semidefinite program is a linear program with the additional constraint that a square symmetric matrix of variables must be positive semidefinite.

Semidefinite Programs (SDPs)

Definition 5.26

A semidefinite program is a linear program with the additional constraint that a square symmetric matrix of variables must be positive semidefinite.

Example.

$$
\begin{array}{rll}
\min / \max & \sum_{i, j} c_{i j} x_{i j} & \\
\text { s.t. } & \sum_{i, j} a_{i j k} x_{i j}=b_{k} & \text { for all } k, \\
& x_{i j}=x_{j i} & \text { for all } i, j, \\
& X=\left(x_{i j}\right) \succeq 0 &
\end{array}
$$

Semidefinite Programs (SDPs)

Definition 5.26

A semidefinite program is a linear program with the additional constraint that a square symmetric matrix of variables must be positive semidefinite.

Example.

$$
\begin{array}{rll}
\min / \max & \sum_{i, j} c_{i j} x_{i j} & \\
\text { s.t. } & \sum_{i, j} a_{i j k} x_{i j}=b_{k} & \text { for all } k, \\
& x_{i j}=x_{j i} & \text { for all } i, j, \\
& X=\left(x_{i j}\right) \succeq 0 &
\end{array}
$$

Remark. The set of feasible solutions of a semidefinite program is convex.

Vector Programs

A semidefinite program can be stated equivalently as a vector program and vice versa (see Theorem 5.25(iii)):

$$
\begin{array}{rll}
\min / \max & \sum_{i, j} c_{i j}\left(v_{i}^{\top} \cdot v_{j}\right) & \\
\text { s.t. } & \sum_{i, j} a_{i j k}\left(v_{i}^{\top} \cdot v_{j}\right)=b_{k} & \text { for all } k=1, \ldots, K, \\
& v_{i} \in \mathbb{R}^{n} & \text { for all } i=1, \ldots, n .
\end{array}
$$

Vector Programs

A semidefinite program can be stated equivalently as a vector program and vice versa (see Theorem 5.25(iii)):

$$
\begin{array}{rll}
\min / \max & \sum_{i, j} c_{i j}\left(v_{i}^{\top} \cdot v_{j}\right) & \\
\text { s.t. } & \sum_{i, j} a_{i j k}\left(v_{i}^{\top} \cdot v_{j}\right)=b_{k} & \text { for all } k=1, \ldots, K, \\
& v_{i} \in \mathbb{R}^{n} & \text { for all } i=1, \ldots, n .
\end{array}
$$

Remark.

■ Under mild technical conditions, semidefinite programs can be solved within additive error ε in time polynomial in input size and $\log (1 / \varepsilon)$.

Vector Programs

A semidefinite program can be stated equivalently as a vector program and vice versa (see Theorem 5.25(iii)):

$$
\begin{array}{rll}
\min / \max & \sum_{i, j} c_{i j}\left(v_{i}^{\top} \cdot v_{j}\right) & \\
\text { s.t. } & \sum_{i, j} a_{i j k}\left(v_{i}^{\top} \cdot v_{j}\right)=b_{k} & \text { for all } k=1, \ldots, K, \\
& v_{i} \in \mathbb{R}^{n} & \text { for all } i=1, \ldots, n .
\end{array}
$$

Remark.

■ Under mild technical conditions, semidefinite programs can be solved within additive error ε in time polynomial in input size and $\log (1 / \varepsilon)$.

- For simplicity, we assume in the following that we can efficiently obtain an optimal solution.

SDP Relaxation of MAX CUT

Integer quadratic programming formulation of MAX CUT

$$
\begin{array}{rll}
\max & \frac{1}{2} \sum_{i j \in E} w_{i j}\left(1-y_{i} y_{j}\right) & \\
\text { s.t. } & y_{i} \in\{-1,1\} & \text { for all } i \in V .
\end{array}
$$

SDP Relaxation of MAX CUT

Integer quadratic programming formulation of MAX CUT

$$
\begin{array}{rll}
\max & \frac{1}{2} \sum_{i j \in E} w_{i j}\left(1-y_{i} y_{j}\right) & \\
\text { s.t. } & y_{i} \in\{-1,1\} & \text { for all } i \in V .
\end{array}
$$

Semidefinite programming relaxation of MAX CUT

$$
\begin{array}{lll}
\max & \frac{1}{2} \sum_{i j \in E} w_{i j}\left(1-v_{i}^{T} \cdot v_{j}\right) & \\
\text { s.t. } & v_{i}^{T} \cdot v_{i}=1 & \text { for all } i \in V, \\
& v_{i} \in \mathbb{R}^{n} & \text { for all } i \in V .
\end{array}
$$

The above SDP is a relaxation of MAXCUT, therefore OPT \leq SDP.

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v^{*}) to SDP relaxation;
2 pick a random vector $r=\left(r_{1}, \ldots, r_{n}\right)^{T}$ by drawing each component from $\mathcal{N}(0,1)$, the normal distribution with mean 0 and variance 1 ;
3 for $i=1, \ldots, n$: if $r^{T} \cdot v_{i}^{*} \geq 0$ then put i in S;

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v^{*}) to SDP relaxation;
2 pick a random vector $r=\left(r_{1}, \ldots, r_{n}\right)^{T}$ by drawing each component from $\mathcal{N}(0,1)$, the normal distribution with mean 0 and variance 1 ;
3 for $i=1, \ldots, n$: if $r^{T} \cdot v_{i}^{*} \geq 0$ then put i in S;

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v^{*}) to SDP relaxation;
$\sqrt{2}$ pick a random vector $r=\left(r_{1}, \ldots, r_{n}\right)^{T}$ by drawing each component from $\mathcal{N}(0,1)$, the normal distribution with mean 0 and variance 1 ;
3 for $i=1, \ldots, n$: if $r^{T} \cdot v_{i}^{*} \geq 0$ then put i in S;

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v^{*}) to SDP relaxation;
2 pick a random vector $r=\left(r_{1}, \ldots, r_{n}\right)^{T}$ by drawing each component from $\mathcal{N}(0,1)$, the normal distribution with mean 0 and variance 1 ;
3 for $i=1, \ldots, n$: if $r^{T} \cdot v_{i}^{*} \geq 0$ then put i in S;

The random hyperplane with normal vector r produces the cut

$$
\begin{gathered}
S=\{1,4,5\}, \\
V \backslash S=\{2,3\} .
\end{gathered}
$$

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v^{*}) to SDP relaxation;
2 pick a random vector $r=\left(r_{1}, \ldots, r_{n}\right)^{T}$ by drawing each component from $\mathcal{N}(0,1)$, the normal distribution with mean 0 and variance 1 ;
3 for $i=1, \ldots, n$: if $r^{T} \cdot v_{i}^{*} \geq 0$ then put i in S;
Remarks.

- The hyperplane orthogonal to r partitions the n-dimensional unit sphere into two halves, corresponding to S and $V \backslash S$.

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v^{*}) to SDP relaxation;
2 pick a random vector $r=\left(r_{1}, \ldots, r_{n}\right)^{T}$ by drawing each component from $\mathcal{N}(0,1)$, the normal distribution with mean 0 and variance 1 ;
3 for $i=1, \ldots, n$: if $r^{T} \cdot v_{i}^{*} \geq 0$ then put i in S;

Remarks.

■ The hyperplane orthogonal to r partitions the n-dimensional unit sphere into two halves, corresponding to S and $V \backslash S$.
■ The normalization $r /\|r\|$ of r is uniformly distributed over the n-dimensional unit sphere.

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v^{*}) to SDP relaxation;
2 pick a random vector $r=\left(r_{1}, \ldots, r_{n}\right)^{T}$ by drawing each component from $\mathcal{N}(0,1)$, the normal distribution with mean 0 and variance 1 ;
3 for $i=1, \ldots, n$: if $r^{T} \cdot v_{i}^{*} \geq 0$ then put i in S;

Remarks.

■ The hyperplane orthogonal to r partitions the n-dimensional unit sphere into two halves, corresponding to S and $V \backslash S$.
■ The normalization $r /\|r\|$ of r is uniformly distributed over the n-dimensional unit sphere.
■ The projections of r onto two unit vectors e_{1}, e_{2} are independent and normally distributed if and only if e_{1} and e_{2} are orthogonal.

Randomized Rounding of Vector Program

1 compute (near-)optimal solution (v^{*}) to SDP relaxation;
2 pick a random vector $r=\left(r_{1}, \ldots, r_{n}\right)^{T}$ by drawing each component from $\mathcal{N}(0,1)$, the normal distribution with mean 0 and variance 1 ;
3 for $i=1, \ldots, n$: if $r^{T} \cdot v_{i}^{*} \geq 0$ then put i in S;

Remarks.

- The hyperplane orthogonal to r partitions the n-dimensional unit sphere into two halves, corresponding to S and $V \backslash S$.
■ The normalization $r /\|r\|$ of r is uniformly distributed over the n-dimensional unit sphere.
■ The projections of r onto two unit vectors e_{1}, e_{2} are independent and normally distributed if and only if e_{1} and e_{2} are orthogonal.

Corollary 5.28

Let r^{\prime} the projection of r onto a 2-dimensional plane. The normalization $r^{\prime} /\left\|r^{\prime}\right\|$ of r^{\prime}, is uniformly distributed on a unit circle in the plane.

Analysis of the SDP-based Algorithm

Lemma 5.29

The probability that edge $i j \in E$ is in the cut is $\frac{1}{\pi} \arccos \left(v_{i}{ }^{T} \cdot v_{j}\right)$.

Analysis of the SDP-based Algorithm

Lemma 5.29

The probability that edge $i j \in E$ is in the cut is $\frac{1}{\pi} \arccos \left(v_{i}{ }^{T} \cdot v_{j}\right)$.

Proof:...

Analysis of the SDP-based Algorithm

Lemma 5.29

The probability that edge $i j \in E$ is in the cut is $\frac{1}{\pi} \arccos \left(v_{i}^{T} \cdot v_{j}\right)$.
Proof:...

Lemma 5.30

For $x \in[-1,1]$ it holds that $\frac{1}{\pi} \arccos (x) \geq 0.878 \cdot \frac{1}{2}(1-x)$.

Analysis of the SDP-based Algorithm

Lemma 5.29

The probability that edge $i j \in E$ is in the cut is $\frac{1}{\pi} \arccos \left(v_{i}{ }^{T} \cdot v_{j}\right)$. Proof:...

Lemma 5.30

For $x \in[-1,1]$ it holds that $\frac{1}{\pi} \arccos (x) \geq 0.878 \cdot \frac{1}{2}(1-x)$.

Theorem 5.31 (Goemans \& Williamson)

SDP-based randomized rounding is a randomized 0.878 -approximation algorithm for MAXCUT.

Analysis of the SDP-based Algorithm

Lemma 5.29

The probability that edge $i j \in E$ is in the cut is $\frac{1}{\pi} \arccos \left(v_{i}^{T} \cdot v_{j}\right)$. Proof:...

Lemma 5.30

For $x \in[-1,1]$ it holds that $\frac{1}{\pi} \arccos (x) \geq 0.878 \cdot \frac{1}{2}(1-x)$.

Theorem 5.31 (Goemans \& Williamson)

SDP-based randomized rounding is a randomized 0.878 -approximation algorithm for MAXCUT.

Proof:...

Analysis of the SDP-based Algorithm

Lemma 5.29

The probability that edge $i j \in E$ is in the cut is $\frac{1}{\pi} \arccos \left(v_{i}{ }^{T} \cdot v_{j}\right)$.

Proof:...

Lemma 5.30

For $x \in[-1,1]$ it holds that $\frac{1}{\pi} \arccos (x) \geq 0.878 \cdot \frac{1}{2}(1-x)$.

Theorem 5.31 (Goemans \& Williamson)

SDP-based randomized rounding is a randomized 0.878 -approximation algorithm for MAXCUT.

Proof:...
Remark. The algorithm can be derandomized by using a sophisticated application of the method of conditional expectations.

Illustration of Lemma 5.30

Illustration of Lemma 5.30 (Cont.)

Inapproximability Results for MAX CUT

We state the following results without proof.

Theorem 5.32

If there is an α-approximation algorithm for MAX CUT with $\alpha>16 / 17 \approx 0.941$, then $P=N P$.

Inapproximability Results for MAX CUT

We state the following results without proof.

Theorem 5.32

If there is an α-approximation algorithm for MAX CUT with $\alpha>16 / 17 \approx 0.941$, then $P=N P$.

Theorem 5.33

Given the Unique Games Conjecture there is no α-approximation algorithm for MAX CUT with constant

$$
\alpha>\min _{-1 \leq x \leq 1} \frac{\frac{1}{\pi} \arccos (x)}{\frac{1}{2}(1-x)} \approx 0.878
$$

unless $P=N P$.

