Approximation Algorithms (ADM III) 5- Random Sampling & Randomized Rounding

Guillaume Sagnol

Definition 5.1

A randomized α -approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose *expected* value is bounded by $\alpha \cdot \text{OPT}$.

Definition 5.1

A randomized α -approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose *expected* value is bounded by $\alpha \cdot \text{OPT}$.

Remarks

 Often, a randomized α-approximation algorithm can be derandomized, i.e., turned into a deterministic α-approximation algorithm.

Definition 5.1

A randomized α -approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose *expected* value is bounded by $\alpha \cdot \text{OPT}$.

Remarks

 Often, a randomized α-approximation algorithm can be derandomized, i.e., turned into a deterministic α-approximation algorithm.

It is usually simpler to state and analyze the randomized algorithm.

Definition 5.1

A randomized α -approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose *expected* value is bounded by $\alpha \cdot \text{OPT}$.

Remarks

- Often, a randomized α-approximation algorithm can be derandomized, i.e., turned into a deterministic α-approximation algorithm.
- It is usually simpler to state and analyze the randomized algorithm.
- Sometimes, the only known way of analyzing a deterministic approximation algorithm is to analyze a randomized version.

Definition 5.1

A randomized α -approximation algorithm is a polynomial-time randomized algorithm which always finds a feasible solution whose *expected* value is bounded by $\alpha \cdot \text{OPT}$.

Remarks

- Often, a randomized α-approximation algorithm can be derandomized, i.e., turned into a deterministic α-approximation algorithm.
- It is usually simpler to state and analyze the randomized algorithm.
- Sometimes, the only known way of analyzing a deterministic approximation algorithm is to analyze a randomized version.
- Sometimes one can show that the performance guarantee of a randomized algorithm holds with high probability.

G. Sagnol

5- Random Sampling & Randomized Rounding 2 / 43

Outline

1 Random sampling for MAX SAT and MAX CUT

- 2 Randomized Rounding for MAX SAT
- 3 Price-Collecting Steiner Tree Problem
- 4 Uncapacited Facility Location Problem
- 5 Minimizing the Weighted Sum of Completion Times
- 6 Minimum-Capacity Multicommodity Flow Problem
- 7 Rounding a semidefinite programming relaxation for MAXCUT

Maximum Satisfiability Problem (MAX SAT)

- Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights $w_1, \ldots, w_m \in \mathbb{R}_{\geq 0}$.
- (Clause is disjunction of Boolean variables or negations, e.g., $x_1 \vee \overline{x_2} \vee x_3$)
- Task: Find a truth assignment to x_1, \ldots, x_n .
- Objective: Maximize the total weight of satisfied clauses.

Maximum Satisfiability Problem (MAX SAT)

- Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights $w_1, \ldots, w_m \in \mathbb{R}_{\geq 0}$.
- (Clause is disjunction of Boolean variables or negations, e.g., $x_1 \vee \overline{x_2} \vee x_3$)
- Task: Find a truth assignment to x_1, \ldots, x_n .
- Objective: Maximize the total weight of satisfied clauses.

Example: $(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2}) \land (x_2 \lor x_3) \land (\overline{x_3})$

Maximum Satisfiability Problem (MAX SAT)

- Given: Boolean variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m with weights $w_1, \ldots, w_m \in \mathbb{R}_{\geq 0}$.
- (Clause is disjunction of Boolean variables or negations, e.g., $x_1 \vee \overline{x_2} \vee x_3$)
- Task: Find a truth assignment to x_1, \ldots, x_n .
- Objective: Maximize the total weight of satisfied clauses.

Example: $(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2}) \land (x_2 \lor x_3) \land (\overline{x_3})$

Remarks:

- A variable x_i or its negation $\overline{x_i}$ is a literal.
- The number of literals ℓ_j in clause C_j is its size or length.
- If $\ell_j = 1$, then C_j is a unit clause.
- W.l.o.g. no literal is repeated in a clause and clauses are distinct.

4/43

■ W.I.o.g. at most one of x_i and x_i appears in a clause. G. Sagnol 5- Random Sampling & Randomized Rounding

Theorem 5.2

- Setting each x_i to true independently with probability 1/2 gives a randomized 1/2-approximation algorithm for MAX SAT.
- **b** If $\ell_j \ge k$ for all j = 1, ..., m, then the above algorithm is a randomized $(1 1/2^k)$ -approximation algorithm.

Theorem 5.2

- Setting each x_i to true independently with probability 1/2 gives a randomized 1/2-approximation algorithm for MAX SAT.
- **b** If $\ell_j \ge k$ for all j = 1, ..., m, then the above algorithm is a randomized $(1 1/2^k)$ -approximation algorithm.

Proof:...

Theorem 5.2

- Setting each x_i to true independently with probability 1/2 gives a randomized 1/2-approximation algorithm for MAX SAT.
- **b** If $\ell_j \ge k$ for all j = 1, ..., m, then the above algorithm is a randomized $(1 1/2^k)$ -approximation algorithm.

Proof:...

Maximum Exactly 3SAT (MAX E 3SAT): The special case of MAX SAT where $\ell_j = 3$ for all j = 1, ..., m is called MAX E 3SAT.

Theorem 5.2

- Setting each x_i to true independently with probability 1/2 gives a randomized 1/2-approximation algorithm for MAX SAT.
- **b** If $\ell_j \ge k$ for all j = 1, ..., m, then the above algorithm is a randomized $(1 1/2^k)$ -approximation algorithm.

Proof:...

Maximum Exactly 3SAT (MAX E 3SAT): The special case of MAX SAT where $\ell_j = 3$ for all j = 1, ..., m is called MAX E 3SAT.

We state the following theorem without proof.

Theorem 5.2

- Setting each x_i to true independently with probability 1/2 gives a randomized 1/2-approximation algorithm for MAX SAT.
- **b** If $\ell_j \ge k$ for all j = 1, ..., m, then the above algorithm is a randomized $(1 1/2^k)$ -approximation algorithm.

Proof:...

Maximum Exactly 3SAT (MAX E 3SAT): The special case of MAX SAT where $\ell_j = 3$ for all j = 1, ..., m is called MAX E 3SAT.

We state the following theorem without proof.

Theorem 5.3

Unless P = NP, there is no $(7/8 + \varepsilon)$ -approximation algorithm for MAX E 3SAT for any constant $\varepsilon > 0$.

Maximum Cut Problem (MAX CUT)

Given: Undirected Graph G = (V, E) with edge weights $w_e \ge 0$, $e \in E$.

Task: Find $S \subset V$ maximizing $\sum_{e \in \delta(S)} w_e$.

Maximum Cut Problem (MAX CUT)

Given: Undirected Graph G = (V, E) with edge weights $w_e \ge 0$, $e \in E$.

Task: Find $S \subset V$ maximizing $\sum_{e \in \delta(S)} w_e$.

Theorem 5.4

Placing each node $v \in V$ into *S* independently at random with probability 1/2 gives a randomized 1/2-approximation algorithm for MAX CUT.

Maximum Cut Problem (MAX CUT)

Given: Undirected Graph G = (V, E) with edge weights $w_e \ge 0$, $e \in E$.

Task: Find $S \subset V$ maximizing $\sum_{e \in \delta(S)} w_e$.

Theorem 5.4

Placing each node $v \in V$ into *S* independently at random with probability 1/2 gives a randomized 1/2-approximation algorithm for MAX CUT.

Proof:...

Derandomization: Method of Conditional Expectations

Basic Idea:

- Consider random decisions sequentially one after another.
- Take next decision deterministically optimizing the expected solution value assuming that all remaining decisions are taken randomly.

Derandomization: Method of Conditional Expectations

Basic Idea:

- Consider random decisions sequentially one after another.
- Take next decision deterministically optimizing the expected solution value assuming that all remaining decisions are taken randomly.

Example: Derandomized version of randomized MAX SATalgorithm

Let *W* denote the total weight of satisfied clauses in final solution.

Derandomization: Method of Conditional Expectations

Basic Idea:

- Consider random decisions sequentially one after another.
- Take next decision deterministically optimizing the expected solution value assuming that all remaining decisions are taken randomly.

Example: Derandomized version of randomized MAX SATalgorithm

Let W denote the total weight of satisfied clauses in final solution.

1 for
$$i = 1$$
 to n

$$E[W \mid x_1 = b_1, \dots, x_{i-1} = b_{i-1}, x_i = true]$$
2 if $\geq E[W \mid x_1 = b_1, \dots, x_{i-1} = b_{i-1}, x_i = false]$
3 then set $b_i := true;$
4 else set $b_i := false;$

5 return x:=b;

Theorem 5.5

The value of the solution computed by the deterministic MAX SAT algorithm is at least the expected value of the randomized solution.

Theorem 5.5

The value of the solution computed by the deterministic MAX SAT algorithm is at least the expected value of the randomized solution.

Remarks.

The crucial step of the derandomized algorithm is to compute the conditional expectations.

Theorem 5.5

The value of the solution computed by the deterministic MAX SAT algorithm is at least the expected value of the randomized solution.

Remarks.

- The crucial step of the derandomized algorithm is to compute the conditional expectations.
- Notice that $E[W | x_1 = b_1, \dots, x_i = b_i]$

$$=\sum_{j=1}^{m}w_j\cdot\Pr\left[C_j=\mathsf{true}\mid x_1=b_1,\ldots,x_i=b_i\right]$$

Theorem 5.5

The value of the solution computed by the deterministic MAX SAT algorithm is at least the expected value of the randomized solution.

Remarks.

- The crucial step of the derandomized algorithm is to compute the conditional expectations.
- Notice that $E[W | x_1 = b_1, \dots, x_i = b_i]$

$$= \sum_{j=1}^{m} w_j \cdot \Pr\left[C_j = \text{true} \mid x_1 = b_1, \dots, x_i = b_i\right]$$

and
$$\Pr\left[C_j = \text{true} \mid x_1 = b_1, \dots, x_i = b_i\right]$$
$$= \begin{cases} 1 & \text{if } x_1 = b_1, \dots, x_i = b_i \text{ satisfies } C_j, \\ 1 - 1/2^k & \text{else,} \end{cases}$$

where k is the number of remaining literals in clause C_j .

G. Sagnol

5- Random Sampling & Randomized Rounding 8 / 43

We first restrict to MAX SAT instances with no negated unit clause.

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_i is independently set to true with probability p > 1/2, then the probability that a clause is satisfied is at least min $\{p, 1 - p^2\}$.

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_i is independently set to true with probability p > 1/2, then the probability that a clause is satisfied is at least min $\{p, 1 - p^2\}$.

Proof:...

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_i is independently set to true with probability p > 1/2, then the probability that a clause is satisfied is at least min $\{p, 1 - p^2\}$.

Proof:...

Theorem 5.7

For $1/2 this gives a randomized <math>\min\{p, 1-p^2\}$ -approximation algorithm for MAX SAT.

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_i is independently set to true with probability p > 1/2, then the probability that a clause is satisfied is at least min $\{p, 1 - p^2\}$.

Proof:...

Theorem 5.7

For $1/2 this gives a randomized <math>\min\{p, 1-p^2\}$ -approximation algorithm for MAX SAT.

Notice: For $p = (\sqrt{5} - 1)/2$ we get min $\{p, 1 - p^2\} = (\sqrt{5} - 1)/2 \approx 0.618$.

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x_i is independently set to true with probability p > 1/2, then the probability that a clause is satisfied is at least min $\{p, 1 - p^2\}$.

Proof:...

Theorem 5.7

For $1/2 this gives a randomized <math>\min\{p, 1-p^2\}$ -approximation algorithm for MAX SAT.

Notice: For $p = (\sqrt{5} - 1)/2$ we get min $\{p, 1 - p^2\} = (\sqrt{5} - 1)/2 \approx 0.618$. Remark:

The initial assumption on the absence of negated unit clauses holds w.l.o.g. !

G. Sagnol

5- Random Sampling & Randomized Rounding 9 / 43

Outline

1 Random sampling for MAX SAT and MAX CUT

2 Randomized Rounding for MAX SAT

- 3 Price-Collecting Steiner Tree Problem
- 4 Uncapacited Facility Location Problem
- 5 Minimizing the Weighted Sum of Completion Times
- 6 Minimum-Capacity Multicommodity Flow Problem
- 7 Rounding a semidefinite programming relaxation for MAXCUT

Integer Programming Formulation for MAX SAT

For j = 1, ..., m let $P_j := \{i \mid \text{literal } x_i \text{ occurs in } C_j\}$ and $N_j := \{i \mid \text{literal } \overline{x_i} \text{ occurs in } C_j\}.$

That is, $C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \overline{x_i}.$

Integer Programming Formulation for MAX SATFor $j = 1, \ldots, m$ let
and $P_j := \{i \mid \text{literal } x_i \text{ occurs in } C_j\}$ $N_j := \{i \mid \text{literal } \overline{x_i} \text{ occurs in } C_j\}.$

That is,
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \overline{x_i}.$$

IP formulation:

$$\begin{array}{ll} \max & \sum_{j=1}^m w_j \cdot z_j \\ \text{s.t.} & \sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \geq z_j & \text{for all } j = 1, \dots, m, \\ & y_i \in \{0, 1\} & \text{for all } i = 1, \dots, n, \\ & 0 \leq z_j \leq 1 & \text{for all } j = 1, \dots, m. \end{array}$$

Integer Programming Formulation for MAX SATFor $j = 1, \ldots, m$ let
and $P_j := \{i \mid \text{literal } x_i \text{ occurs in } C_j\}$ $N_j := \{i \mid \text{literal } \overline{x_i} \text{ occurs in } C_j\}.$

That is,
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \overline{x_i}.$$

IP formulation:

$$\begin{array}{ll} \max & \sum_{j=1}^{m} w_j \cdot z_j \\ \text{s.t.} & \sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \ge z_j & \text{for all } j = 1, \dots, m, \\ & y_i \in \{0, 1\} & \text{for all } i = 1, \dots, n, \\ & 0 \le z_j \le 1 & \text{for all } j = 1, \dots, m. \end{array}$$

LP relaxation: Replace $y_i \in \{0, 1\}$ with $0 \le y_i \le 1$ for all i = 1, ..., n.

G. Sagnol

5- Random Sampling & Randomized Rounding 11 / 43

Randomized Rounding

- **1** compute an optimal solution (y^*, z^*) to the LP relaxation;
- **2** for i = 1 to n do
- 3 set x_i to true independently at random with probability y_i^* ;
Randomized Rounding

- **1** compute an optimal solution (y^*, z^*) to the LP relaxation;
- 2 for i = 1 to n do
- 3 set x_i to true independently at random with probability y_i^* ;

Theorem 5.8

Randomized rounding gives a randomized (1 - 1/e)-approximation algorithm for MAX SAT.

Randomized Rounding

- **1** compute an optimal solution (y^*, z^*) to the LP relaxation;
- 2 for i = 1 to n do
- 3 set x_i to true independently at random with probability y_i^* ;

Theorem 5.8

Randomized rounding gives a randomized (1 - 1/e)-approximation algorithm for MAX SAT.

Proof:...

Randomized Rounding

- **1** compute an optimal solution (y^*, z^*) to the LP relaxation;
- 2 for i = 1 to n do
- 3 set x_i to true independently at random with probability y_i^* ;

Theorem 5.8

Randomized rounding gives a randomized (1 - 1/e)-approximation algorithm for MAX SAT.

Proof:...

Remark.

Algorithm can be derandomized by method of conditional expectations.

G. Sagnol

Choosing the Better of Two Solutions

Theorem 5.9

Running either the unbiased randomized 1/2-approximation algorithm or the randomized rounding algorithm, both with probability 1/2, yields a randomized 3/4-approximation algorithm.

Choosing the Better of Two Solutions

Theorem 5.9

Running either the unbiased randomized 1/2-approximation algorithm or the randomized rounding algorithm, both with probability 1/2, yields a randomized 3/4-approximation algorithm.

Proof: Consider clause C_j of length ℓ_j :

- 1st algorithm: $\Pr[C_j = \text{true}] = 1 1/2^{\ell_j}$.
- 2nd algorithm: $\Pr[C_j = \text{true}] \ge (1 (1 1/\ell_j)^{\ell_j}) z_j^*$.

Choosing the Better of Two Solutions

Theorem 5.9

Running either the unbiased randomized 1/2-approximation algorithm or the randomized rounding algorithm, both with probability 1/2, yields a randomized 3/4-approximation algorithm.

Proof: Consider clause C_j of length ℓ_j :

- 1st algorithm: $\Pr[C_j = \text{true}] = 1 1/2^{\ell_j}$.
- 2nd algorithm: $\Pr[C_j = \text{true}] \ge (1 (1 1/\ell_j)^{\ell_j}) z_j^*$.

Derandomizing the initial coin flip yields:

Corollary 5.10

. . .

Running both algorithms and choosing the better of the two solutions is a randomized 3/4-approximation algorithm.

Visualization of Proof of Theorem 5.9

G. Sagnol

⁵⁻ Random Sampling & Randomized Rounding 14 / 43

Consider a function $f : [0, 1] \rightarrow [0, 1]$.

- **1** compute an optimal solution (y^*, z^*) to the LP relaxation;
- 2 for i = 1 to n do
- 3 set x_i to true independently at random with probability $f(y_i^*)$;

Consider a function $f : [0, 1] \rightarrow [0, 1]$.

- **1** compute an optimal solution (y^*, z^*) to the LP relaxation;
- 2 for i = 1 to n do
- set x_i to true independently at random with probability $f(y_i^*)$;

Theorem 5.11

Let $f : [0,1] \rightarrow [0,1]$ with $1 - 4^{-x} \le f(x) \le 4^{x-1}$ for all $x \in [0,1]$. Then non-linear randomized rounding with function f is a randomized 3/4-approximation algorithm.

Consider a function $f : [0, 1] \rightarrow [0, 1]$.

- **1** compute an optimal solution (y^*, z^*) to the LP relaxation;
- 2 for i = 1 to n do
- 3 set x_i to true independently at random with probability $f(y_i^*)$;

Theorem 5.11

Let $f : [0,1] \rightarrow [0,1]$ with $1 - 4^{-x} \le f(x) \le 4^{x-1}$ for all $x \in [0,1]$. Then non-linear randomized rounding with function f is a randomized 3/4-approximation algorithm.

Proof:...

Consider a function $f : [0, 1] \rightarrow [0, 1]$.

- **1** compute an optimal solution (y^*, z^*) to the LP relaxation;
- 2 for i = 1 to n do
- 3 set x_i to true independently at random with probability $f(y_i^*)$;

Theorem 5.11

Let $f : [0, 1] \rightarrow [0, 1]$ with $1 - 4^{-x} \le f(x) \le 4^{x-1}$ for all $x \in [0, 1]$. Then non-linear randomized rounding with function f is a randomized 3/4-approximation algorithm.

Proof:...

Remark:

■ The integrality gap of the LP relaxation for MAX SAT is 3/4.

Consider a function $f : [0, 1] \rightarrow [0, 1]$.

- **1** compute an optimal solution (y^*, z^*) to the LP relaxation;
- 2 for i = 1 to n do
- set x_i to true independently at random with probability $f(y_i^*)$;

Theorem 5.11

Let $f : [0, 1] \rightarrow [0, 1]$ with $1 - 4^{-x} \le f(x) \le 4^{x-1}$ for all $x \in [0, 1]$. Then non-linear randomized rounding with function f is a randomized 3/4-approximation algorithm.

Proof:...

Remark:

■ The integrality gap of the LP relaxation for MAX SAT is 3/4.

Thus, 3/4 is best performance ratio one can prove based on the LP. G. Sagnol 5- Random Sampling & Randomized Rounding 15/43

Visualization of Lower and Upper Bound on f

Outline

- 1 Random sampling for MAX SAT and MAX CUT
- 2 Randomized Rounding for MAX SAT
- 3 Price-Collecting Steiner Tree Problem
- 4 Uncapacited Facility Location Problem
- 5 Minimizing the Weighted Sum of Completion Times
- 6 Minimum-Capacity Multicommodity Flow Problem
- 7 Rounding a semidefinite programming relaxation for MAXCUT

Idea:

 Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing *α* randomly.

Idea:

- Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing *α* randomly.
- For some fixed $\gamma > 0$ choose α uniformly at random from $[\gamma, 1]$.

Idea:

- Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing *α* randomly.
- For some fixed $\gamma > 0$ choose α uniformly at random from $[\gamma, 1]$.
- That is, choose α from $[\gamma, 1]$ with constant density function $1/(1-\gamma)$.

Idea:

- Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing α randomly.
- For some fixed $\gamma > 0$ choose α uniformly at random from $[\gamma, 1]$.
- That is, choose α from $[\gamma, 1]$ with constant density function $1/(1-\gamma)$.

Lemma 5.12

The tree *T* returned by the randomized algorithm has expected cost

$$\mathsf{E}\left[\sum_{e\in E(T)} c_e\right] \leq \frac{2}{1-\gamma} \ln \frac{1}{\gamma} \sum_{e\in E} c_e \cdot x_e^*$$

Idea:

- Obtain randomized variant of deterministic LP rounding algorithm from Chapter 4 by choosing *α* randomly.
- For some fixed $\gamma > 0$ choose α uniformly at random from $[\gamma, 1]$.
- That is, choose α from $[\gamma, 1]$ with constant density function $1/(1-\gamma)$.

Lemma 5.12

$$\Xi\left[\sum_{e\in E(T)} c_e\right] \leq \frac{2}{1-\gamma} \ln \frac{1}{\gamma} \sum_{e\in E} c_e \cdot x_e^*$$

Proof:...

G. Sagnol

Lemma 5.13

The expected penalty costs are

$$\mathsf{E}\left[\sum_{i\in V\setminus V(T)}\pi_i\right] \leq \frac{1}{1-\gamma}\sum_{i\in V}\pi_i\cdot(1-y_i^*)$$

Lemma 5.13

The expected penalty costs are

$$\mathsf{E}\left[\sum_{i\in V\setminus V(T)}\pi_i
ight]\leq rac{1}{1-\gamma}\sum_{i\in V}\pi_i\cdot (1-y_i^*)\;\;.$$

Proof:...

Lemma 5.13

The expected penalty costs are

$$\mathsf{E}\left[\sum_{i\in V\setminus V(T)}\pi_i\right]\leq \frac{1}{1-\gamma}\sum_{i\in V}\pi_i\cdot(1-y_i^*) \ .$$

Proof:...

Theorem 5.14

For $\gamma := e^{-1/2}$ the expected cost of the solution is

$$\mathsf{E}\left[\sum_{e \in E(T)} c_e + \sum_{i \in V \setminus V(T)} \pi_i\right] \leq \frac{1}{1 - 1/\sqrt{e}} \cdot \mathsf{OPT}_{LP}$$

Thus, we have a randomized 2.54-approximation algorithm.

G. Sagnol

Derandomization.

- There are at most n := |V| distinct values of y_i^* .
- Consider *n* sets $U_j := \{i \in V \mid y_i^* \ge y_j^*\}$, for $j = 1, \dots, n$.
- Any possible value of α corresponds to one of these *n* sets.
- Derandomize by trying each set U_j and choosing the best solution.

Derandomization.

- There are at most n := |V| distinct values of y_i^* .
- Consider *n* sets $U_j := \{i \in V \mid y_i^* \ge y_j^*\}$, for $j = 1, \dots, n$.
- Any possible value of α corresponds to one of these *n* sets.
- Derandomize by trying each set U_j and choosing the best solution.

Integrality gap.

G. Sagnol

• There exist instances with integrality gap
$$2 - \frac{2}{n}$$
.

Derandomization.

- There are at most n := |V| distinct values of y_i^* .
- Consider *n* sets $U_j := \{i \in V \mid y_i^* \ge y_j^*\}$, for $j = 1, \dots, n$.
- Any possible value of α corresponds to one of these *n* sets.
- Derandomize by trying each set U_j and choosing the best solution.

Integrality gap.

There exist instances with integrality gap 2 - 2/n.
 By Theorem 5.14 the integrality gap is at most 1/(1-1/√e) ≈ 2.54.

Derandomization.

- There are at most n := |V| distinct values of y_i^* .
- Consider *n* sets $U_j := \{i \in V \mid y_i^* \ge y_j^*\}$, for $j = 1, \dots, n$.
- Any possible value of α corresponds to one of these *n* sets.
- Derandomize by trying each set U_j and choosing the best solution.

Integrality gap.

There exist instances with integrality gap $2 - \frac{2}{n}$.

By Theorem 5.14 the integrality gap is at most $\frac{1}{1-1/\sqrt{e}} \approx 2.54$.

• We will prove later that the integrality gap is at most 2.

Outline

- 1 Random sampling for MAX SAT and MAX CUT
- 2 Randomized Rounding for MAX SAT
- 3 Price-Collecting Steiner Tree Problem
- 4 Uncapacited Facility Location Problem
- 5 Minimizing the Weighted Sum of Completion Times
- 6 Minimum-Capacity Multicommodity Flow Problem
- 7 Rounding a semidefinite programming relaxation for MAXCUT

Randomized Algo for Uncapacitated Facility Location

In Chapter 4 we obtained an LP-based 4-approximation algorithm which computes a solution of cost at most

$$\sum_{i\in F} f_i\cdot y_i^* + 3\cdot \sum_{j\in D} v_j^*$$
 .

Randomized Algo for Uncapacitated Facility Location

In Chapter 4 we obtained an LP-based 4-approximation algorithm which computes a solution of cost at most

$$\sum_{i\in F} f_i \cdot y_i^* + 3 \cdot \sum_{j\in D} v_j^*$$
 .

Notation.

Let $C_j^* := \sum_{i \in F} c_{ij} \cdot x_{ij}^*$ denote the assignment cost of j paid by the LP, i.e.,

$$ext{DPT}_{LP} = \sum_{i \in \mathcal{F}} f_i \cdot y_i^* + \sum_{j \in D} C_j^* \;\;.$$

Randomized Algo for Uncapacitated Facility Location

In Chapter 4 we obtained an LP-based 4-approximation algorithm which computes a solution of cost at most

$$\sum_{i\in F} f_i \cdot y_i^* + 3 \cdot \sum_{j\in D} v_j^*$$
 .

Notation.

Let $C_j^* := \sum_{i \in F} c_{ij} \cdot x_{ij}^*$ denote the assignment cost of j paid by the LP, i.e.,

$$ext{DPT}_{LP} = \sum_{i \in \mathcal{F}} f_i \cdot y_i^* + \sum_{j \in D} C_j^* \;\;.$$

Idea:

- Include the assignment cost *C*^{*}_{*i*} in the analysis.
- Instead of bounding only the facility cost by OPT LP, bound both the facility cost and part of the assignment cost by OPT LP.

G. Sagnol

Randomized Algorithm for Uncapacitated Facility Location

Randomized algorithm for Uncapacitated Facility Location Problem

- **1** compute optimal LP solutions (x^*, y^*) and (v^*, w^*) ;
- 2 while $D \neq \emptyset$
- 3 choose $j := \operatorname{argmin}_{j' \in D}(v_{j'}^* + C_{j'}^*);$
- 4 choose $i \in N(j)$ according to probability distribution x_{ij}^* ;
- 5 assign all unassigned clients in $N^2(j)$ to facility *i*;
- $\mathsf{set} \ D := D \setminus N^2(j);$

Randomized Algorithm for Uncapacitated Facility Location

Randomized algorithm for Uncapacitated Facility Location Problem

- **1** compute optimal LP solutions (x^*, y^*) and (v^*, w^*) ;
- 2 while $D \neq \emptyset$
- 3 choose $j := \operatorname{argmin}_{j' \in D}(v_{j'}^* + C_{j'}^*);$
- 4 choose $i \in N(j)$ according to probability distribution x_{ij}^* ;
- **5** assign all unassigned clients in $N^2(j)$ to facility *i*;
- $\mathbf{6} \qquad \mathbf{set} \ D := D \setminus N^2(j);$

Theorem 5.15

The algorithm above is a randomized 3-approximation algorithm for the Uncapacitated Facility Location Problem.

Randomized Algorithm for Uncapacitated Facility Location

Randomized algorithm for Uncapacitated Facility Location Problem

- **1** compute optimal LP solutions (x^*, y^*) and (v^*, w^*) ;
- 2 while $D \neq \emptyset$
- 3 choose $j := \operatorname{argmin}_{j' \in D}(v_{j'}^* + C_{j'}^*);$
- 4 choose $i \in N(j)$ according to probability distribution x_{ij}^* ;
- **5** assign all unassigned clients in $N^2(j)$ to facility *i*;
- $\mathbf{6} \qquad \mathbf{set} \ D := D \setminus N^2(j);$

Theorem 5.15

The algorithm above is a randomized 3-approximation algorithm for the Uncapacitated Facility Location Problem.

Proof:...

G. Sagnol

Outline

- 1 Random sampling for MAX SAT and MAX CUT
- 2 Randomized Rounding for MAX SAT
- 3 Price-Collecting Steiner Tree Problem
- 4 Uncapacited Facility Location Problem
- 5 Minimizing the Weighted Sum of Completion Times
- 6 Minimum-Capacity Multicommodity Flow Problem
- 7 Rounding a semidefinite programming relaxation for MAXCUT

Min Weighted Sum of Completion Times $1|r_j| \sum w_j C_j$

Given: jobs with processing time $p_j \in \mathbb{Z}_{>0}$, weight $w_j \ge 0$, and release date $r_j \in \mathbb{Z}_{\ge 0}$, j = 1, ..., n.

Task: Schedule the jobs nonpreemptively on a single machine;

minimize the total weighted completion time $\sum_{i=1} w_i \cdot C_i$.

Min Weighted Sum of Completion Times $1|r_j| \sum w_j C_j$

Given: jobs with processing time $p_j \in \mathbb{Z}_{>0}$, weight $w_j \ge 0$, and release date $r_j \in \mathbb{Z}_{\ge 0}$, j = 1, ..., n.

Task: Schedule the jobs nonpreemptively on a single machine; minimize the total weighted completion time $\sum_{j=1}^{n} w_j \cdot C_j$.

Let
$$T := \max_{j} r_{j} + \sum_{j=1}^{n} p_{j}$$
 (upper bound on all completion times).
Min Weighted Sum of Completion Times $1|r_j| \sum w_j C_j$

Given: jobs with processing time $p_j \in \mathbb{Z}_{>0}$, weight $w_j \ge 0$, and release date $r_j \in \mathbb{Z}_{\ge 0}$, j = 1, ..., n.

Task: Schedule the jobs nonpreemptively on a single machine; minimize the total weighted completion time $\sum_{j=1}^{n} w_j \cdot C_j$.

Let
$$T := \max_{j} r_{j} + \sum_{j=1}^{n} p_{j}$$
 (upper bound on all completion times).

Consider an integer programming relaxation with variables

$$y_{jt} = \begin{cases} 1 & \text{if job } j \text{ is processed in time } [t-1, t), \\ 0 & \text{otherwise} \end{cases}$$

25 / 43

for
$$j=1,\ldots,$$
 $n,$ $t=1,\ldots,$ $T.$

Integer Programming Relaxation

$$\begin{array}{ll} \min & \sum_{j=1}^{n} w_{j} \cdot C_{j} \\ \text{s.t.} & \sum_{j=1}^{n} y_{jt} \leq 1 \\ & \sum_{t=1}^{T} y_{jt} = p_{j} \\ & y_{jt} = 0 \\ & C_{j} = \frac{1}{p_{j}} \sum_{t=1}^{T} y_{jt} \left(t - \frac{1}{2} \right) + \frac{1}{2} p_{j} \\ & y_{jt} \in \{0, 1\} \end{array}$$

for
$$t = 1, ..., T$$
,

for j = 1, ..., n,

for
$$j = 1, ..., n, t = 1, ..., r_j$$
,

for j = 1, ..., n,

for
$$j = 1, ..., n$$
, $t = 1, ..., T$.

Integer Programming Relaxation

Remarks.

Notice that in a feasible IP solution jobs might be preempted.

Integer Programming Relaxation

Remarks.

Notice that in a feasible IP solution jobs might be preempted.

In this case, C_j underestimates the actual completion time of job j.
 G. Sagnol
 5- Random Sampling & Randomized Rounding
 26 / 43

- **1** compute optimal IP solution (y^*, C^*) ;
- 2 for j = 1 to *n* set random variable X_j to $t \frac{1}{2}$ with probability y_{jt}^*/p_j ;
- 3 sort the jobs such that $X_1 \leq X_2 \leq \cdots \leq X_n$;
- schedule all jobs nonpreemptively and as early as possible in this order;

- **1** compute optimal IP solution (y^*, C^*) ;
- 2 for j = 1 to *n* set random variable X_j to $t \frac{1}{2}$ with probability y_{jt}^*/p_j ;
- 3 sort the jobs such that $X_1 \leq X_2 \leq \cdots \leq X_n$;
- schedule all jobs nonpreemptively and as early as possible in this order;

Lemma 5.16

If the random variables X_j are independent, then E $[C_j | X_j = x] \le p_j + 2x$.

- **1** compute optimal IP solution (y^*, C^*) ;
- 2 for j = 1 to *n* set random variable X_j to $t \frac{1}{2}$ with probability y_{it}^*/p_j ;
- 3 sort the jobs such that $X_1 \leq X_2 \leq \cdots \leq X_n$;
- schedule all jobs nonpreemptively and as early as possible in this order;

Lemma 5.16

If the random variables X_j are independent, then E $[C_j | X_j = x] \le p_j + 2x$.

Theorem 5.17

The expected performance ratio of the randomized algorithm is at most 2.

G. Sagnol

5- Random Sampling & Randomized Rounding 27 / 43

- 1 sort the jobs such that $w_1/p_1 \ge w_2/p_2 \ge \cdots \ge w_n/p_n$;
- **2** construct a preemptive schedule:
- $\exists \rightarrow$ always schedule the first available job which is not yet completed;
- **4** implicitely assign the variables y_{jt} (and C_j) accordingly;

- 1 sort the jobs such that $w_1/p_1 \ge w_2/p_2 \ge \cdots \ge w_n/p_n$;
- **2** construct a preemptive schedule:
- 3 \rightarrow always schedule the first available job which is not yet completed;
- **4** implicitely assign the variables y_{jt} (and C_j) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

- 1 sort the jobs such that $w_1/p_1 \ge w_2/p_2 \ge \cdots \ge w_n/p_n$;
- 2 construct a preemptive schedule:
- 3 \rightarrow always schedule the first available job which is not yet completed;
- **4** implicitely assign the variables y_{jt} (and C_j) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument...

- 1 sort the jobs such that $w_1/p_1 \ge w_2/p_2 \ge \cdots \ge w_n/p_n$;
- **2** construct a preemptive schedule:
- 3 \rightarrow always schedule the first available job which is not yet completed;
- **4** implicitely assign the variables y_{jt} (and C_j) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument...

Remarks.

■ This schedule consists of at most 2*n* intervals of time.

- 1 sort the jobs such that $w_1/p_1 \ge w_2/p_2 \ge \cdots \ge w_n/p_n$;
- 2 construct a preemptive schedule:
- 3 \rightarrow always schedule the first available job which is not yet completed;
- **4** implicitely assign the variables y_{jt} (and C_j) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument...

Remarks.

- This schedule consists of at most 2*n* intervals of time.
- Randomized rounding can be implemented to run in polytime.

- **1** sort the jobs such that $w_1/p_1 \ge w_2/p_2 \ge \cdots \ge w_n/p_n$;
- construct a preemptive schedule: 2
- $3 \rightarrow$ always schedule the first available job which is not yet completed;
- 4 implicitly assign the variables y_{it} (and C_i) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument...

Remarks.

- This schedule consists of at most 2n intervals of time.
- Randomized rounding can be implemented to run in polytime.
- Derandomization (of a variant) of this algo by method of conditional expectations. G. Sagnol

Outline

- 1 Random sampling for MAX SAT and MAX CUT
- 2 Randomized Rounding for MAX SAT
- 3 Price-Collecting Steiner Tree Problem
- 4 Uncapacited Facility Location Problem
- 5 Minimizing the Weighted Sum of Completion Times
- 6 Minimum-Capacity Multicommodity Flow Problem
- 7 Rounding a semidefinite programming relaxation for MAXCUT

Given: Undirected graph G = (V, E) and k pairs $s_i, t_i \in V$, i = 1, ..., k. Task: Find single s_i - t_i -path in G, for i = 1, ..., k.

Objective: Minimize maximum number of paths containing same edge.

Given: Undirected graph G = (V, E) and k pairs $s_i, t_i \in V$, i = 1, ..., k. Task: Find single s_i - t_i -path in G, for i = 1, ..., k.

Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let $\mathcal{P}_i := \{P \mid P \text{ is } s_i \text{-} t_i \text{-path}\}.$ min W

s.t.
$$\sum_{P \in \mathcal{P}_i} x_P = 1$$
 for all $i = 1, ..., k$,
$$\sum_{P:e \in P} x_P \le W$$
 for all $e \in E$,
$$x_P \in \{0, 1\}$$
 for all $P \in \mathcal{P}_i, i = 1, ..., k$.

Given: Undirected graph G = (V, E) and k pairs $s_i, t_i \in V$, i = 1, ..., k. Task: Find single s_i - t_i -path in G, for i = 1, ..., k.

Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let $\mathcal{P}_i := \{P \mid P \text{ is } s_i \text{-} t_i \text{-path}\}.$ min W

s.t.
$$\sum_{\substack{P \in \mathcal{P}_i \\ P: e \in P}} x_P = 1 \qquad \text{for all } i = 1, \dots, k,$$
$$\sum_{\substack{P: e \in P \\ x_P \in \{0, 1\}}} x_P \leq W \qquad \text{for all } e \in E,$$
$$\text{for all } P \in \mathcal{P}_i, i = 1, \dots, k.$$

LP relaxation: Replace $x_P \in \{0, 1\}$ with $x_P \ge 0$.

Given: Undirected graph G = (V, E) and k pairs $s_i, t_i \in V$, i = 1, ..., k. Task: Find single s_i - t_i -path in G, for i = 1, ..., k.

Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let $\mathcal{P}_i := \{P \mid P \text{ is } s_i \text{-} t_i \text{-path}\}.$ min W

s.t. $\sum_{\substack{P \in \mathcal{P}_i \\ P: e \in P}} x_P = 1 \qquad \text{for all } i = 1, \dots, k,$ $\sum_{\substack{P: e \in P \\ x_P \in \{0, 1\}}} x_P \leq W \qquad \text{for all } e \in E,$ $\text{for all } P \in \mathcal{P}_i, i = 1, \dots, k.$

LP relaxation: Replace $x_P \in \{0, 1\}$ with $x_P \ge 0$.

Despite exponential number of variables, LP relaxation can be solved in polynomial time!

G. Sagnol

- **1** compute optimal LP solution (x^*, W^*) ;
- 2 for i = 1 to k
- independently choose one path $P \in \mathcal{P}_i$ with probability x_P^* ;

- **1** compute optimal LP solution (x^*, W^*) ;
- 2 for i = 1 to k
- independently choose one path $P \in \mathcal{P}_i$ with probability x_P^* ;

Definition 5.19

A probabilistic event happens with high probability if the probability that it does not occur is at most n^{-c} for some constant $c \ge 1$.

Theorem 5.20

If $W^* \ge c \cdot \ln n$ for a large enough constant c, then with high probability, the total number of paths using any edge is at most $W^* + \sqrt{c \cdot W^* \ln n}$.

Markov's Inequality and Chernoff Bound

Lemma 5.21 (Markov's Inequality)

If
$$X \ge 0$$
 is a random variable, then $\Pr[X \ge a] \le \mathbb{E}[X]/a$ for $a > 0$.

Markov's Inequality and Chernoff Bound

Lemma 5.21 (Markov's Inequality)

If $X \ge 0$ is a random variable, then $\Pr[X \ge a] \le \mathbb{E}[X]/a$ for a > 0.

Proof:

. . .

G. Sagnol

Markov's Inequality and Chernoff Bound

Lemma 5.21 (Markov's Inequality)

If $X \ge 0$ is a random variable, then $\Pr[X \ge a] \le \mathbb{E}[X]/a$ for a > 0.

Proof:

. . .

Theorem 5.22 (Chernoff Bound)

Let
$$X_1, \ldots, X_k$$
 be independent 0-1 random variables. Then for
 $X := \sum_{i=1}^k X_i, \mu \ge \mathsf{E}[X], \text{ and } 0 < \delta \le 1$
 $\mathsf{Pr}[X \ge (1+\delta) \cdot \mu] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \le e^{-\mu \cdot \delta^2/3}$.

Proof idea: Apply Markov inequality to the event $\Pr[e^{tX} \ge e^{t(1+\delta)\mu}]$ for a well-chosen value of *t*. G. Sagnol 5- Random Sampling & Randomized Rounding 32/43

Corollary 5.23

- a If $W^* \ge c \cdot \ln n$, then randomized rounding with high probability produces a solution of value at most $2W^*$.
- **b** If $W^* \ge 1$, then with high probability the total number of paths using any edge is $O(\log n) \cdot W^*$.

Corollary 5.23

- a If $W^* \ge c \cdot \ln n$, then randomized rounding with high probability produces a solution of value at most $2W^*$.
- **b** If $W^* \ge 1$, then with high probability the total number of paths using any edge is $O(\log n) \cdot W^*$.

Proof:...

Corollary 5.23

- a If $W^* \ge c \cdot \ln n$, then randomized rounding with high probability produces a solution of value at most $2W^*$.
- **b** If $W^* \ge 1$, then with high probability the total number of paths using any edge is $O(\log n) \cdot W^*$.

Proof:...

Remarks.

The statement of Corollary 5.23 can be sharpened by replacing the term O(log n) with O(log n/ log log n).

Corollary 5.23

- a If $W^* \ge c \cdot \ln n$, then randomized rounding with high probability produces a solution of value at most $2W^*$.
- **b** If $W^* \ge 1$, then with high probability the total number of paths using any edge is $O(\log n) \cdot W^*$.

Proof:...

Remarks.

- The statement of Corollary 5.23 can be sharpened by replacing the term O(log n) with O(log n/ log log n).
- On the other hand, the integrality gap of the IP formulation is in Ω(log n/ log log n).

G. Sagnol

Outline

- 1 Random sampling for MAX SAT and MAX CUT
- 2 Randomized Rounding for MAX SAT
- 3 Price-Collecting Steiner Tree Problem
- 4 Uncapacited Facility Location Problem
- 5 Minimizing the Weighted Sum of Completion Times
- 6 Minimum-Capacity Multicommodity Flow Problem
- 7 Rounding a semidefinite programming relaxation for MAXCUT

Semidefinite Matrices

Definition 5.24

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is positive semidefinite if $y^T \cdot X \cdot y \ge 0$ for all $y \in \mathbb{R}^n$. In this case we write $X \succeq 0$.

Semidefinite Matrices

Definition 5.24

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is positive semidefinite if $y^T \cdot X \cdot y \ge 0$ for all $y \in \mathbb{R}^n$. In this case we write $X \succeq 0$.

Theorem 5.25

For a symmetric $X \in \mathbb{R}^{n \times n}$ the following statements are equivalent:

- X is positive semidefinite;
- ii all eigenvalues of X are non-negative;

$$X = V^T \cdot V$$
 for some $V \in \mathbb{R}^{m \times n}$ where $m \leq n$;

$$X = \sum_{i=1}^{n} \lambda_i (w_i \cdot w_i^T) \text{ for some } \lambda_i \ge 0 \text{ and } w_i \in \mathbb{R}^n \text{ such that}$$
$$w_i^T \cdot w_i = 1 \text{ and } w_i^T \cdot w_j = 0 \text{ for } i \ne j.$$

G. Sagnol

Semidefinite Programs (SDPs)

Definition 5.26

A semidefinite program is a linear program with the additional constraint that a square symmetric matrix of variables must be positive semidefinite.

Semidefinite Programs (SDPs)

Definition 5.26

A semidefinite program is a linear program with the additional constraint that a square symmetric matrix of variables must be positive semidefinite.

Example.

Semidefinite Programs (SDPs)

Definition 5.26

A semidefinite program is a linear program with the additional constraint that a square symmetric matrix of variables must be positive semidefinite.

Example.

Remark. The set of feasible solutions of a semidefinite program is convex.

G. Sagnol

5- Random Sampling & Randomized Rounding 36 / 43

Vector Programs

A semidefinite program can be stated equivalently as a vector program and vice versa (see Theorem 5.25(iii)):

$$\begin{array}{ll} \min \ / \ \max & \sum_{i,j} c_{ij} \left(v_i^T \cdot v_j \right) \\ \text{s.t.} & \sum_{i,j} a_{ijk} \left(v_i^T \cdot v_j \right) = b_k \qquad \text{for all } k = 1, \dots, K, \\ & v_i \in \mathbb{R}^n \qquad \qquad \text{for all } i = 1, \dots, n. \end{array}$$

Vector Programs

A semidefinite program can be stated equivalently as a vector program and vice versa (see Theorem 5.25(iii)):

$$\begin{array}{ll} \min \ / \ \max & \sum_{i,j} c_{ij} \left(v_i^T \cdot v_j \right) \\ \text{s.t.} & \sum_{i,j} a_{ijk} \left(v_i^T \cdot v_j \right) = b_k \qquad \text{for all } k = 1, \dots, K, \\ & v_i \in \mathbb{R}^n \qquad \qquad \text{for all } i = 1, \dots, n. \end{array}$$

Remark.

■ Under mild technical conditions, semidefinite programs can be solved within additive error ε in time polynomial in input size and log(1/ε).

Vector Programs

A semidefinite program can be stated equivalently as a vector program and vice versa (see Theorem 5.25(iii)):

$$\begin{array}{ll} \min \ / \ \max & \sum_{i,j} c_{ij} \left(v_i^T \cdot v_j \right) \\ \text{s.t.} & \sum_{i,j} a_{ijk} \left(v_i^T \cdot v_j \right) = b_k \qquad \text{for all } k = 1, \dots, K, \\ & v_i \in \mathbb{R}^n \qquad \qquad \text{for all } i = 1, \dots, n. \end{array}$$

Remark.

- Under mild technical conditions, semidefinite programs can be solved within additive error ε in time polynomial in input size and log(1/ε).
- For simplicity, we assume in the following that we can efficiently obtain an optimal solution.

G. Sagnol

⁵⁻ Random Sampling & Randomized Rounding 37 / 43
SDP Relaxation of MAX CUT

Integer quadratic programming formulation of MAX CUT

$$\begin{array}{ll} \max & \frac{1}{2}\sum_{ij\in E}w_{ij}\left(1-y_iy_j\right)\\ \text{s.t.} & y_i\in\{-1,1\} & \qquad \text{for all }i\in V. \end{array}$$

SDP Relaxation of MAX CUT

Integer quadratic programming formulation of MAX CUT

$$\begin{array}{ll} \max & \frac{1}{2}\sum_{ij\in E}w_{ij}\left(1-y_iy_j\right)\\ \text{s.t.} & y_i\in\{-1,1\} & \qquad \text{for all } i\in V. \end{array}$$

Semidefinite programming relaxation of MAX CUT

Lemma 5.27

The above SDP is a relaxation of MAXCUT, therefore <code>OPT</code> \leq <code>SDP</code>.

G. Sagnol

5- Random Sampling & Randomized Rounding 38 / 43

- **1** compute (near-)optimal solution (v^*) to SDP relaxation;
- 2 pick a random vector $r = (r_1, ..., r_n)^T$ by drawing each component from $\mathcal{N}(0, 1)$, the normal distribution with mean 0 and variance 1;
- 3 for $i = 1, \ldots, n$: if $r^T \cdot v_i^* \ge 0$ then put *i* in *S*;

- **1** compute (near-)optimal solution (v^*) to SDP relaxation;
- 2 pick a random vector $r = (r_1, ..., r_n)^T$ by drawing each component from $\mathcal{N}(0, 1)$, the normal distribution with mean 0 and variance 1;
- 3 for $i = 1, \ldots, n$: if $r^T \cdot v_i^* \ge 0$ then put *i* in *S*;

- **1** compute (near-)optimal solution (v^*) to SDP relaxation;
- 2 pick a random vector $r = (r_1, ..., r_n)^T$ by drawing each component from $\mathcal{N}(0, 1)$, the normal distribution with mean 0 and variance 1;
- 3 for $i = 1, \ldots, n$: if $r^T \cdot v_i^* \ge 0$ then put *i* in *S*;

- **1** compute (near-)optimal solution (v^*) to SDP relaxation;
- 2 pick a random vector $r = (r_1, ..., r_n)^T$ by drawing each component from $\mathcal{N}(0, 1)$, the normal distribution with mean 0 and variance 1;
- 3 for $i = 1, \ldots, n$: if $r^T \cdot v_i^* \ge 0$ then put *i* in *S*;

The random hyperplane with normal vector **r** produces the cut

$$S = \{1, 4, 5\},$$

 $V \setminus S = \{2, 3\}$

- **1** compute (near-)optimal solution (v^*) to SDP relaxation;
- 2 pick a random vector $r = (r_1, ..., r_n)^T$ by drawing each component from $\mathcal{N}(0, 1)$, the normal distribution with mean 0 and variance 1;

3 for
$$i = 1, \ldots, n$$
: if $r^T \cdot v_i^* \ge 0$ then put *i* in *S*;

Remarks.

■ The hyperplane orthogonal to *r* partitions the *n*-dimensional unit sphere into two halves, corresponding to *S* and *V* \ *S*.

- **1** compute (near-)optimal solution (v^*) to SDP relaxation;
- 2 pick a random vector $r = (r_1, ..., r_n)^T$ by drawing each component from $\mathcal{N}(0, 1)$, the normal distribution with mean 0 and variance 1;

3 for
$$i = 1, \ldots, n$$
: if $r^T \cdot v_i^* \ge 0$ then put *i* in *S*;

Remarks.

- The hyperplane orthogonal to *r* partitions the *n*-dimensional unit sphere into two halves, corresponding to *S* and *V* \ *S*.
- The normalization *r*/||*r*|| of *r* is uniformly distributed over the *n*-dimensional unit sphere.

- **1** compute (near-)optimal solution (v^*) to SDP relaxation;
- 2 pick a random vector $r = (r_1, ..., r_n)^T$ by drawing each component from $\mathcal{N}(0, 1)$, the normal distribution with mean 0 and variance 1;

3 for
$$i = 1, \ldots, n$$
: if $r^T \cdot v_i^* \ge 0$ then put i in S ;

Remarks.

- The hyperplane orthogonal to *r* partitions the *n*-dimensional unit sphere into two halves, corresponding to *S* and *V* \ *S*.
- The normalization *r*/||*r*|| of *r* is uniformly distributed over the *n*-dimensional unit sphere.
- The projections of *r* onto two unit vectors *e*₁, *e*₂ are independent and normally distributed if and only if *e*₁ and *e*₂ are orthogonal.

- **1** compute (near-)optimal solution (v^*) to SDP relaxation;
- 2 pick a random vector $r = (r_1, ..., r_n)^T$ by drawing each component from $\mathcal{N}(0, 1)$, the normal distribution with mean 0 and variance 1;

3 for
$$i = 1, \ldots, n$$
: if $r^T \cdot v_i^* \ge 0$ then put i in S ;

Remarks.

- The hyperplane orthogonal to *r* partitions the *n*-dimensional unit sphere into two halves, corresponding to *S* and *V* \ *S*.
- The normalization *r*/||*r*|| of *r* is uniformly distributed over the *n*-dimensional unit sphere.
- The projections of *r* onto two unit vectors *e*₁, *e*₂ are independent and normally distributed if and only if *e*₁ and *e*₂ are orthogonal.

Corollary 5.28

Let r' the projection of r onto a 2-dimensional plane. The normalization r'/||r'|| of r', is uniformly distributed on a unit circle in the plane.

G. Sagnol

5- Random Sampling & Randomized Rounding 39 / 43

Lemma 5.29

The probability that edge
$$ij \in E$$
 is in the cut is $rac{1}{\pi} \arccos(v_i^{\mathcal{T}} \cdot v_j)$.

Lemma 5.29

The probability that edge $ij \in E$ is in the cut is $\frac{1}{\pi} \arccos(v_i^T \cdot v_j)$.

Proof:...

The probability that edge $ij \in E$ is in the cut is $\frac{1}{\pi} \arccos(v_i^T \cdot v_j)$.Proof:...Lemma 5.30For $x \in [-1, 1]$ it holds that $\frac{1}{\pi} \arccos(x) \ge 0.878 \cdot \frac{1}{2}(1 - x)$.

Lemma 5.29

Lemma 5.29The probability that edge $ij \in E$ is in the cut is $\frac{1}{\pi} \arccos(v_i^T \cdot v_j)$.Proof:...Lemma 5.30For $x \in [-1, 1]$ it holds that $\frac{1}{\pi} \arccos(x) \ge 0.878 \cdot \frac{1}{2}(1 - x)$.

Theorem 5.31 (Goemans & Williamson)

SDP-based randomized rounding is a randomized 0.878-approximation algorithm for MAX CUT.

Lemma 5.29 The probability that edge $ij \in E$ is in the cut is $\frac{1}{\pi} \arccos(v_i^T \cdot v_j)$. Proof:... Lemma 5.30 For $x \in [-1, 1]$ it holds that $\frac{1}{\pi} \arccos(x) \ge 0.878 \cdot \frac{1}{2}(1 - x)$.

Theorem 5.31 (Goemans & Williamson)

SDP-based randomized rounding is a randomized 0.878-approximation algorithm for MAX CUT.

Proof:...

Lemma 5.29

The probability that edge $ij \in E$ is in the cut is $\frac{1}{\pi} \arccos(v_i^T \cdot v_j)$.

Proof:...

Lemma 5.30 For $x \in [-1, 1]$ it holds that $\frac{1}{\pi} \arccos(x) \ge 0.878 \cdot \frac{1}{2}(1-x)$.

Theorem 5.31 (Goemans & Williamson)

SDP-based randomized rounding is a randomized 0.878-approximation algorithm for MAX CUT.

Proof:...

Remark. The algorithm can be derandomized by using a sophisticated application of the method of conditional expectations. G. Sagnol 5- Random Sampling & Randomized Rounding 40 / 43

Illustration of Lemma 5.30

G. Sagnol

Illustration of Lemma 5.30 (Cont.)

Inapproximability Results for MAX CUT

We state the following results without proof.

Theorem 5.32

If there is an α -approximation algorithm for MAX CUT with $\alpha > 16/17 \approx 0.941$, then P = NP.

Inapproximability Results for MAX CUT

We state the following results without proof.

Theorem 5.32

If there is an α -approximation algorithm for MAX CUT with $\alpha > 16/17 \approx 0.941$, then P = NP.

Theorem 5.33

Given the Unique Games Conjecture there is no α -approximation algorithm for MAX CUT with constant

$$\alpha > \min_{-1 \le x \le 1} \frac{\frac{1}{\pi} \arccos(x)}{\frac{1}{2}(1-x)} \approx 0.878$$

unless P = NP.

G. Sagnol