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Randomized Approximation Algorithm

Definition 5.1

A randomized «-approximation algorithm is a polynomial-time
randomized algorithm which always finds a feasible solution
whose expected value is bounded by « - OPT.
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Randomized Approximation Algorithm

Definition 5.1

A randomized a-approximation algorithm is a polynomial-time
randomized algorithm which always finds a feasible solution
whose expected value is bounded by « - OPT.

Remarks

m Often, a randomized «-approximation algorithm can be
derandomized, i.e., turned into a deterministic
o-approximation algorithm.

m It is usually simpler to state and analyze the randomized
algorithm.

m Sometimes, the only known way of analyzing a deterministic
approximation algorithm is to analyze a randomized version.

m Sometimes one can show that the performance guarantee of
a randomized algorithm holds with high probability.
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Outline

Random sampling for MAX SAT and MAX CUT
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Maximum Satisfiability Problem (MAX SAT)
Given: Boolean variables xq, ..., x, and clauses G, ..., C,, with
weights wy, ..., w, € Rq.

(Clause is disjunction of Boolean variables or negations, e.g.,
X1 V X_2 V X3)

Task: Find a truth assignment to xq, .. ., x,.

Objective: Maximize the total weight of satisfied clauses.
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Maximum Satisfiability Problem (MAX SAT)

Given: Boolean variables xq, ..., x, and clauses G, ..., C,, with
weights wy, ..., w, € Rq.

(Clause is disjunction of Boolean variables or negations, e.g.,
X1V X_2 V X3)

Task: Find a truth assignment to xq, .. ., x,.
Objective: Maximize the total weight of satisfied clauses.

Example: (x V3 Vx3) ATV xe V) AT V) A (xVx3) A (X3)

Remarks:
m A variable x; or its negation X; is a literal.
m The number of literals ¢; in clause C; is its size or length.
m If {; = 1, then C; is a unit clause.
m W.l.o.g. no literal is repeated in a clause and clauses are
distinct.

m W.l.o.g. at most one of x; and x; appears in a clause.
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Randomized Truth Assignment

Theorem 5.2

B Setting each x; to true independently with probability 1/2 gives
a randomized 1/2-approximation algorithm for MAX SAT.

B If{; > kforall j=1,..., m, then the above algorithm is a
randomized (1 — 1/2%)-approximation algorithm.
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Randomized Truth Assignment

Theorem 5.2

B Setting each x; to true independently with probability 1/2 gives
a randomized 1/2-approximation algorithm for MAX SAT.

B If{; > kforall j=1,..., m, then the above algorithm is a
randomized (1 — 1/2%)-approximation algorithm.

Proof:... ]

Maximum Exactly 3SAT (MAX E 3SAT): The special case of
MAXSAT where ¢; =3 forall j =1,..., mis called MAXE 3SAT.

We state the following theorem without proof.

Theorem 5.3

Unless P = NP, there is no (7/8 + ¢)-approximation algorithm for
MAX E 3SAT for any constant ¢ > 0.
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Maximum Cut Problem (MAX CUT)

Given: Undirected Graph G = (V, E) with edge weights w. > 0,
ecE.

Task: Find S C V maximizing Z We.
e€d(S)
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Maximum Cut Problem (MAX CUT)

Given: Undirected Graph G = (V, E) with edge weights w, > 0,
ec E.

Task: Find S C V maximizing Z We.
e€d(S)

Theorem 5.4

Placing each node v € V into S independently at random with
probability 1/2 gives a randomized 1/2-approximation algorithm
for MAX CUT.
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Derandomization: Method of Conditional Expectations

Basic Idea:
m Consider random decisions sequentially one after another.
m Take next decision deterministically optimizing the expected
solution value assuming that all remaining decisions are taken
randomly.
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Derandomization: Method of Conditional Expectations

Basic Idea:
m Consider random decisions sequentially one after another.
m Take next decision deterministically optimizing the expected
solution value assuming that all remaining decisions are taken
randomly.

Example: Derandomized version of randomized
MAX SATalgorithm
Let W denote the total weight of satisfied clauses in final solution.

fori=1ton

. E[W]Xlzbl,...,x,-_l:b,-_l,x,-:true]
if ZE[W’Xl:bl,...,X,',l:b,',l,X,':false]
then set b; := true;

else set b; := false;

return x:=b;
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Method of Conditional Expectations: Analysis

Theorem 5.5
The value of the solution computed by the deterministic MAX SAT
algorithm is at least the expected value of the randomized solution.
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Theorem 5.5
The value of the solution computed by the deterministic MAX SAT
algorithm is at least the expected value of the randomized solution.

Remarks.
m The crucial step of the derandomized algorithm is to compute the
conditional expectations.
m Noticethat E[W | x; = b1,...,x = bj]

ZZWJ"PI'[CJ':U'UG|X1:bl,...,X,'—b,']
j=1
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Method of Conditional Expectations: Analysis

Theorem 5.5

The value of the solution computed by the deterministic MAX SAT
algorithm is at least the expected value of the randomized solution.

Remarks.
m The crucial step of the derandomized algorithm is to compute the
conditional expectations.
m Noticethat E[W | x; = b1,...,x = bj]

ZZWJ"PI'[CJ':U'UG|X1:bl,...,X,':b,']

j=1
and Pr[Cj:true|x1:b1,...,x,-:b,-]
)1 if x1 = b1,...,x; = b; satisfies C;,
Cl1-1/2% else,

where k is the number of remaining literals in clause C;.
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Flipping Biased Coins

We first restrict to MAX SAT instances with no negated unit clause.
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If each x; is independently set to true with probability p > 1/2, then
the probability that a clause is satisfied is at least min{p, 1 — p*}.
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Proof:... O
Theorem 5.7

For 1/2 < p < 1 this gives a randomized

min{p, 1 — p}-approximation algorithm for MAX SAT. O

Notice: For p = (v/5 —1)/2 we get min{p,1 — p?} = (v/56 —1)/2 ~ 0.618.
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Flipping Biased Coins

We first restrict to MAX SAT instances with no negated unit clause.

Lemma 5.6

If each x; is independently set to true with probability p > 1/2, then
the probability that a clause is satisfied is at least min{p, 1 — p*}.

Proof:... O
Theorem 5.7

For 1/2 < p < 1 this gives a randomized

min{p, 1 — p}-approximation algorithm for MAX SAT. O

Notice: For p = (v/5 —1)/2 we get min{p,1 — p?} = (v/56 —1)/2 ~ 0.618.
Remark:
The initial assumption on the absence of negated unit clauses holds

w.l.o.g.!
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Outline

Randomized Rounding for MAX SAT
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Integer Programming Formulation for MAX SAT
Forj—1.....mlet P; = {:. | I!teral X; occurs !n G}
and N, :={i| literal X; occurs in C;}.

That is, G=\xv\V=
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Integer Programming Formulation for MAX SAT
P; := {i | literal x; occurs in C;}

Forj=1,...,mlet o .
and N, :={i| literal X; occurs in C;}.
That is, G=\xv\V=
i€p; ieN;

IP formulation:

m
max E w; - Z;
J=1

s.t. Zy,-JrZ(l—y,-)sz forallj=1,...,m,

i€P; ieN;
y; € {0,1} foralli=1,...,n,
0<z<1 forallj=1,..., m.
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Integer Programming Formulation for MAX SAT
P; := {i | literal x; occurs in C;}

Forj=1,....,mlet o )
and N, :={i| literal X; occurs in C;}.

That is, G=\xv\V=

IP formulation:

m
max E w; - Z;
J=1

s.t. Zy,-JrZ(l—y,-)sz forallj=1,...,m,

i€P; ieN;
y; € {0,1} foralli=1,...,n,
0<z<1 forallj=1,..., m.

LP relaxation: Replace y; € {0,1} with0 <y, < 1foralli=1,...,n.
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Randomized Rounding

compute an optimal solution (y*, z*) to the LP relaxation;
fori=1tondo
set x; to true independently at random with probability y;';
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Randomized Rounding

compute an optimal solution (y*, z*) to the LP relaxation;

fori=1tondo
set x; to true independently at random with probability y;';

Theorem 5.8

Randomized rounding gives a randomized (1 — 1/e)-approximation
algorithm for MAX SAT.
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Randomized Rounding

compute an optimal solution (y*, z*) to the LP relaxation;

fori=1tondo
set x; to true independently at random with probability y;';

Theorem 5.8

Randomized rounding gives a randomized (1 — 1/e)-approximation
algorithm for MAX SAT.

Proof:... ]

Remark.
Algorithm can be derandomized by method of conditional
expectations.
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Choosing the Better of Two Solutions

Theorem 5.9

Running either the unbiased randomized 1/2-approximation
algorithm or the randomized rounding algorithm, both with
probability 1/2, yields a randomized 3/4-approximation algorithm.
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Choosing the Better of Two Solutions

Theorem 5.9

Running either the unbiased randomized 1/2-approximation
algorithm or the randomized rounding algorithm, both with
probability 1/2, yields a randomized 3/4-approximation algorithm.

Proof: Consider clause C; of length /;:
m 1st algorithm: Pr[C; = true] = 1 — 1/25.
m 2nd algorithm: Pr[C; = true] > (1 — (1 —1/¢))%) z'.
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Choosing the Better of Two Solutions

Theorem 5.9

Running either the unbiased randomized 1/2-approximation
algorithm or the randomized rounding algorithm, both with
probability 1/2, yields a randomized 3/4-approximation algorithm.

Proof: Consider clause C; of length /;:
m 1st algorithm: Pr[C; = true] = 1 — 1/25.
m 2nd algorithm: Pr[C; = true] > (1 — (1 —1/¢))%) z'.

Derandomizing the initial coin flip yields:
Corollary 5.10

Running both algorithms and choosing the better of the two
solutions is a randomized 3/4-approximation algorithm. O
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Visualization of Proof of Theorem 5.9
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Non-linear Randomized Rounding

Consider a function f : [0,1] — [0, 1].
compute an optimal solution (y*, z*) to the LP relaxation;
fori=1tondo

set x; to true independently at random with probability f(y);
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Non-linear Randomized Rounding
Consider a function f : [0,1] — [0, 1].
compute an optimal solution (y*, z*) to the LP relaxation;

fori=1tondo
set x; to true independently at random with probability f(y);

Theorem 5.11

Let f : [0,1] — [0,1] with 1 — 47 < f(x) < 4 ' for all x € [0,1].
Then non-linear randomized rounding with function f is a
randomized 3/4-approximation algorithm.
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Non-linear Randomized Rounding
Consider a function f : [0,1] — [0, 1].
compute an optimal solution (y*, z*) to the LP relaxation;

fori=1tondo
set x; to true independently at random with probability f(y);

Theorem 5.11

Let f : [0,1] — [0,1] with 1 — 47 < f(x) < 4 ' for all x € [0,1].
Then non-linear randomized rounding with function f is a
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Proof:... ]

Remark:
m The integrality gap of the LP relaxation for MAX SAT is 3/4.
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Non-linear Randomized Rounding
Consider a function f : [0,1] — [0, 1].
compute an optimal solution (y*, z*) to the LP relaxation;

fori=1tondo
set x; to true independently at random with probability f(y);

Theorem 5.11

Let f : [0,1] — [0,1] with 1 — 47 < f(x) < 4 ' for all x € [0,1].
Then non-linear randomized rounding with function f is a
randomized 3/4-approximation algorithm.

Proof:... ]

Remark:
m The integrality gap of the LP relaxation for MAX SAT is 3/4.

m Thus, 3/4 is best performance ratio one can prove based on
the LP.
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Visualization of Lower and Upper Bound on f
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Outline

Price-Collecting Steiner Tree Problem
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Randomized Algo for Prize-Collecting Steiner Trees

Idea:

m Obtain randomized variant of deterministic LP rounding
algorithm from Chapter 4 by choosing o randomly.
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Randomized Algo for Prize-Collecting Steiner Trees

Idea:

m Obtain randomized variant of deterministic LP rounding
algorithm from Chapter 4 by choosing o randomly.

m For some fixed v > 0 choose « uniformly at random from [, 1].

m That is, choose « from [y, 1] with constant density function

1/(1—7).
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Randomized Algo for Prize-Collecting Steiner Trees

Idea:
m Obtain randomized variant of deterministic LP rounding
algorithm from Chapter 4 by choosing o randomly.

m For some fixed v > 0 choose «a uniformly at random from [v, 1].
m That is, choose « from [y, 1] with constant density function

1/(1— 7).
Lemma 5.12

The tree T returned by the randomized algorithm has expected

cost
E Z Ce In—Zce

ecE(T) -7
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m That is, choose « from [y, 1] with constant density function
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Randomized Algo for Prize-Collecting Steiner Trees

Lemma 5.13

The expected penalty costs are

A S DI e

ieV\V(T) iev
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The expected penalty costs are
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Randomized Algo for Prize-Collecting Steiner Trees

Lemma 5.13

The expected penalty costs are

A S DI e

ieV\V(T) iev

Proof:....

Theorem 5.14

~1/2 the expected cost of the solution is

E Z Col |- Z T Sﬁ/\/g'OPTLP-

ecE(T) ieV\V(T)

Fory:=e

Thus, we have a randomized 2.54-approximation algorithm.
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Derandomization and Integrality Gap

Derandomization.
m There are at most n := |V/| distinct values of y;".
m Consider nsets Uj:={i e V |y >y}, forj=1,...,n.
m Any possible value of o corresponds to one of these n sets.

m Derandomize by trying each set U; and choosing the best solution.
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Derandomization and Integrality Gap

Derandomization.

m There are at most n := |V/| distinct values of y;".
m Considernsets U :={ie V | y; >y}, forj=1,...,n
m Any possible value of o corresponds to one of these n sets.

m Derandomize by trying each set U; and choosing the best solution.
Integrality gap.
- oy . 2
m There exist instances with integrality gap 2 — —.
n

m By Theorem 5.14 the integrality gap is at most ~ 2.54,

1
1-1/ye
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Derandomization and Integrality Gap

Derandomization.
m There are at most n := |V/| distinct values of y;".
m Considernsets U :={ie V | y; >y}, forj=1,...,n
m Any possible value of o corresponds to one of these n sets.

m Derandomize by trying each set U; and choosing the best solution.

Integrality gap.
- oy . 2
m There exist instances with integrality gap 2 — —.
n

m By Theorem 5.14 the integrality gap is at most ~ 2.54,

1
1-1/ye

m We will prove later that the integrality gap is at most 2.
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Outline

Uncapacited Facility Location Problem
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Randomized Algo for Uncapacitated Facility Location

In Chapter 4 we obtained an LP-based 4-approximation algorithm
which computes a solution of cost at most

jzjﬁ‘.%*+‘3‘§£:V7 :

icF jeb
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Randomized Algo for Uncapacitated Facility Location

In Chapter 4 we obtained an LP-based 4-approximation algorithm
which computes a solution of cost at most

Zﬁ‘Yi*+3‘Z‘/j* :

icF jeb

Notation.

Let C = Z c;j - x; denote the assignment cost of j paid by the LP,
icF

ie.,

OPTp=> fi-yi+> C .

icF jeb
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Randomized Algo for Uncapacitated Facility Location

In Chapter 4 we obtained an LP-based 4-approximation algorithm
which computes a solution of cost at most

Zﬁ‘Yi*+3‘Z‘/j* :

icF jeb
Notation.
Let C = Z c;j - x; denote the assignment cost of j paid by the LP,
icF
ie.,
BT =3 TG
icF jeD
Idea:

m Include the assignment cost C;" in the analysis.

m Instead of bounding only the facility cost by OPT ; p, bound both the
facility cost and part of the assignment cost by OPT ; p.
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Randomized Algorithm for Uncapacitated Facility
Location

Randomized algorithm for Uncapacitated Facility Location Problem

compute optimal LP solutions (x*, y*) and (v*, w*);
while D # ()

choose j := argmin; (v + C1);
choose i € N(j) according to probability distribution x;;
assign all unassigned clients in N?(j) to facility i;

(6] set D := D\ N%(j);
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Randomized Algorithm for Uncapacitated Facility
Location

Randomized algorithm for Uncapacitated Facility Location Problem

compute optimal LP solutions (x*, y*) and (v*, w™);
while D # ()

choose j := argmin; (v + C1);
choose i € N(j) according to probability distribution x;;
assign all unassigned clients in N?(j) to facility i;

(6] set D := D\ N?(j);

Theorem 5.15

The algorithm above is a randomized 3-approximation algorithm
for the Uncapacitated Facility Location Problem.
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Randomized Algorithm for Uncapacitated Facility
Location

Randomized algorithm for Uncapacitated Facility Location Problem

compute optimal LP solutions (x*, y*) and (v*, w™);
while D # ()

choose j := argmin; (v + C1);
choose i € N(j) according to probability distribution x;;
assign all unassigned clients in N?(j) to facility i;

(6] set D := D\ N?(j);

Theorem 5.15

The algorithm above is a randomized 3-approximation algorithm
for the Uncapacitated Facility Location Problem.

Proof:... ]
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Minimizing the Weighted Sum of Completion Times
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Min Weighted Sum of Completion Times 1|r;| Z w; G

Given: jobs with processing time p; € Z-, weight w; > 0,
and release date r; € Z>o,j =1,...,n.

Task: Schedule the jobs nonpreemptively on a single machine;

minimize the total weighted completion time Z w; - G.
j=1
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Min Weighted Sum of Completion Times 1|r;| Z w; G

Given: jobs with processing time p; € Z-, weight w; > 0,
and release date r; € Z>o,j =1,...,n.

Task: Schedule the jobs nonpreemptively on a single machine;

minimize the total weighted completion time Z w; - G.
j=1

Let T := maxr; + Z p; (upper bound on all completion times).
J .
j=1
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Min Weighted Sum of Completion Times 1|r;| Z w; G

Given: jobs with processing time p; € Z-, weight w; > 0,
and release date r; € Z>o,j =1,...,n.

Task: Schedule the jobs nonpreemptively on a single machine;
minimize the total weighted completion time Z w; - G.
j=1
Let T := maxr; + Z p; (upper bound on all completion times).
J -
j=1

Consider an integer programming relaxation with variables

1 if jobjis processed in time [t — 1, t),
Vit = .
0 otherwise

forj=1,....,nt=1,...,T.
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Integer Programming Relaxation

s.t.

iwf' C
j=1

n

Zyjt <1
j=1

.

> vk =p
t=1

yf't=0

Zyﬂ

Jt 1
yjr € {0,1}

G. Sagnol

fort=1,...,T,

forj=1,...,n,

forj=1,....,n,t=1,...

2pJ forj=1,...,n,

forj=1,....,nt=1,...
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Integer Programming Relaxation

iWrC
j=1

n
st ) yp <1 fore=1,...,T,

Zyjt:pj forj=1,...,n,

yjt:0 forj=1,....nt=1,...,r,
Zy_]t 2pJ forj=1,...,n,
Pit=

yje € {0,1} forj=1,...,n,t=1,...,T.

Remarks.

m Notice that in a feasible IP solution jobs might be preempted.
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Integer Programming Relaxation

iWrC
j=1

n
st ) yp <1 fore=1,...,T,

Zyjt:pj forj=1,...,n,

yjt:0 forj=1,....nt=1,...,r,
Zy_]t 2pJ forj=1,...,n,
Pit=

yje € {0,1} forj=1,...,n,t=1,...,T.

Remarks.

m Notice that in a feasible IP solution jobs might be preempted.

m In this case, C; underestimates the actual completion time of job ;.
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Randomized Rounding

compute optimal IP solution (y*, C*);
. 1 . -
for j =1 to n set random variable X; to t — 3 with probability

Yﬁ/ Pjs

sort the jobs suchthat X; < X, < ... < X,;

schedule all jobs nonpreemptively and as early as possible in
this order;
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Randomized Rounding

compute optimal IP solution (y*, C*);
. 1 -
for j =1 to n set random variable X; to t — 3 with probability

Yie/ Pj;

sort the jobs such that X; < X, <--- < X,;

schedule all jobs nonpreemptively and as early as possible in
this order;

Lemma 5.16

If the random variables X; are independent, then
E[G| X =x] <p+2x
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Randomized Rounding

compute optimal IP solution (y*, C*);
. 1 -
for j =1 to n set random variable X; to t — 3 with probability

Yie/ Pj;
sort the jobs such that X; < X, <--- < X,;
schedule all jobs nonpreemptively and as early as possible in

this order;

Lemma 5.16

If the random variables X; are independent, then
E[G| X =x] <p+2x

Theorem 5.17

The expected performance ratio of the randomized algorithm is at
most 2.
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Computing an Optimum IP Solution

sort the jobs such that wy /py > wa/p > -+ > w,/pp;

construct a preemptive schedule:

— always schedule the first available job which is not yet
completed;

implicitely assign the variables yj, (and C;) accordingly;
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Computing an Optimum IP Solution

sort the jobs such that wy /py > wa/p > -+ > w,/pp;

construct a preemptive schedule:

— always schedule the first available job which is not yet
completed;

implicitely assign the variables y;; (and C;) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.
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sort the jobs such that wy /py > wa/p > -+ > w,/pp;

construct a preemptive schedule:

— always schedule the first available job which is not yet
completed;

implicitely assign the variables y;; (and C;) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument... ]
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Computing an Optimum IP Solution

sort the jobs such that wy /py > wa/p > -+ > w,/pp;

construct a preemptive schedule:

— always schedule the first available job which is not yet
completed;

implicitely assign the variables y;; (and C;) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument... ]
Remarks.

m This schedule consists of at most 2n intervals of time.
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sort the jobs such that wy /py > wa/p > -+ > w,/pp;

construct a preemptive schedule:

— always schedule the first available job which is not yet
completed;

implicitely assign the variables y;; (and C;) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument... ]
Remarks.

m This schedule consists of at most 2n intervals of time.
m Randomized rounding can be implemented to run in polytime.
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Computing an Optimum IP Solution

sort the jobs such that wy /py > wa/p > -+ > w,/pp;

construct a preemptive schedule:

— always schedule the first available job which is not yet
completed;

implicitely assign the variables y;; (and C;) accordingly;

Lemma 5.18

The algorithm finds an optimal IP solution in polynomial time.

Proof: Exchange argument... ]
Remarks.

m This schedule consists of at most 2n intervals of time.

m Randomized rounding can be implemented to run in polytime.

m Derandomization (of a variant) of this algo by method of conditional

expectations.
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B Minimum-Capacity Multicommodity Flow Problem
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Minimum-Capacity Multicommodity Flow Problem

Given: Undirected graph G = (V, E) and k pairs s;,t; € V,i=1,..., k.

Task: Find single s;-t;-pathin G, fori=1,... k.
Objective: Minimize maximum number of paths containing same edge.
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Minimum-Capacity Multicommodity Flow Problem

Given: Undirected graph G = (V, E) and k pairs s;,t; € V,i=1,..., k.
Task: Find single s;-t;-pathin G, fori=1,... k.
Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let P; := {P | P is s;-t;-path}.

min W
s.t. ZXle foralli=1,..., k,
PeP;
d xp<W forall e € E,
P:ecP
xp € {0,1} forallPe P, i=1,... k.
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Minimum-Capacity Multicommodity Flow Problem

Given: Undirected graph G = (V, E) and k pairs s;,t; € V,i=1,..., k.
Task: Find single s;-t;-pathin G, fori=1,... k.
Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let P; := {P | P is s;-t;-path}.

min W
s.t. ZXle foralli=1,..., k,
PeP;
d xp<W forall e € E,
P:ecP
xp € {0,1} forallPe P, i=1,... k.

LP relaxation: Replace xp € {0, 1} with xp > 0.

G. Sagnol 5- Random Sampling & Randomized Rounding 30/43



Minimum-Capacity Multicommodity Flow Problem

Given: Undirected graph G = (V, E) and k pairs s;,t; € V,i=1,..., k.
Task: Find single s;-t;-pathin G, fori=1,... k.
Objective: Minimize maximum number of paths containing same edge.

Path-based IP formulation: Let P; := {P | P is s;-t;-path}.

min W
s.t. ZXle foralli=1,..., k,
PeP;
d xp<W forall e € E,
P:ecP
xp € {0,1} forallPe P, i=1,... k.

LP relaxation: Replace xp € {0, 1} with xp > 0.
m Despite exponential number of variables, LP relaxation can be
solved in polynomial time!
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Randomized Rounding

compute optimal LP solution (x*, W*);
fori=1tok
independently choose one path P € P; with probability x7;
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Randomized Rounding

compute optimal LP solution (x*, W*);
fori=1tok
independently choose one path P € P; with probability xz;

Definition 5.19

A probabilistic event happens with high probability if the
probability that it does not occur is at most n~° for some constant
c>1.

Theorem 5.20

If W* > c-Innfor alarge enough constant ¢, then with high
probability, the total number of paths using any edge is at most

W* ++vc- WxInn.
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Markov’s Inequality and Chernoff Bound

Lemma 5.21 (Markov's Inequality)
If X > 0is a random variable, then Pr[X > a] < E[X]/afor a > 0. O
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Markov’s Inequality and Chernoff Bound

Lemma 5.21 (Markov's Inequality)
If X > 0is a random variable, then Pr[X > a] < E[X]/afor a > 0. O

Proof:
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Markov’s Inequality and Chernoff Bound

Lemma 5.21 (Markov’s Inequality)

If X > 0is arandom variable, then Pr[X > a] < E[X]/afor a > 0.

Proof:

‘D

Theorem 5.22 (Chernoff Bound)

Let Xi, ..., Xk be independent 0-1 random variables. Then for
k

X:=) X,p>E[X],and0<5<1
i=1

65 K 2
> (1 : < e /3
PriX > (1+9) u]<((1 6)1+5) <e
Proof idea: Apply Markov inequality to the event Pr[eX > e!(+9)¥] for a

well-chosen value of t.
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Performance Guarantees

Corollary 5.23

B If W* > c-Inn, then randomized rounding with high
probability produces a solution of value at most 2W*.

@A If W* > 1, then with high probability the total number of
paths using any edge is O(log n) - W*.
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Performance Guarantees

Corollary 5.23

B If W* > c-Inn, then randomized rounding with high
probability produces a solution of value at most 2W*.

@A If W* > 1, then with high probability the total number of
paths using any edge is O(log n) - W*.

Proof-... ]
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Performance Guarantees

Corollary 5.23
B If W* > c-Inn, then randomized rounding with high
probability produces a solution of value at most 2W*.

@A If W* > 1, then with high probability the total number of
paths using any edge is O(log n) - W*.

Proof-... ]

Remarks.

m The statement of
Corollary 5.23 can be sharpened by replacing the term

O(log n) with O(log n/ log log n).
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Performance Guarantees

Corollary 5.23

B If W* > c-Inn, then randomized rounding with high
probability produces a solution of value at most 2W*.

@A If W* > 1, then with high probability the total number of
paths using any edge is O(log n) - W*.

Proof-... ]

Remarks.
m The statement of
Corollary 5.23 can be sharpened by replacing the term
O(log n) with O(log n/ log log n).
m On the other hand, the integrality gap of the IP formulation is
in Q(log n/ log log n).
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Rounding a semidefinite programming relaxation for MAXCUT
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Semidefinite Matrices

Definition 5.24

A symmetric matrix X € R"*" is positive semidefinite if
y".X.-y>0forall y € R". In this case we write X > 0.
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Semidefinite Matrices

Definition 5.24

A symmetric matrix X € R"*" is positive semidefinite if
y".X.-y>0forall y € R". In this case we write X > 0.

Theorem 5.25

For a symmetric X € R™" the following statements are equivalent:

H X is positive semidefinite;
H all eigenvalues of X are non-negative;

A X=VT.VforsomeV e R™" where m < n;
n

X = ZA,— (w; - w,-T) for some \; > 0 and w; € R" such that
i=1

W-T'W,'=1andW,-T‘Wj=0f0rl'75j. O

1
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Semidefinite Programs (SDPs)

Definition 5.26

A semidefinite program is a linear program with the additional constraint
that a square symmetric matrix of variables must be positive semidefinite.
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Semidefinite Programs (SDPs)

Definition 5.26

A semidefinite program is a linear program with the additional constraint
that a square symmetric matrix of variables must be positive semidefinite.

Example.

min / max E CjjXij

E ajjkxij = by for all k,
Xjj = Xji forall i, ,
X =(x;5) =0
5- Random Sampling & Randomized Rounding 36/43
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Semidefinite Programs (SDPs)

Definition 5.26

A semidefinite program is a linear program with the additional constraint
that a square symmetric matrix of variables must be positive semidefinite.

Example.

min / max E CjjXij

Z ajjkxij = by for all k,
Xjj = Xji forall i, ,
X =(x;5) =0

Remark. The set of feasible solutions of a semidefinite program is

convex.
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Vector Programs

A semidefinite program can be stated equivalently as a vector
program and vice versa (see Theorem 5.25(iii)):

min / max Zc,-j(v,
s.t. Zauk - v;) = by forallk=1,... K,

v,-ER” foralli=1,...,n
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Vector Programs

A semidefinite program can be stated equivalently as a vector
program and vice versa (see Theorem 5.25(iii)):

min / max j{:CU(V
Zauk - v;) = by forallk=1,... K,
v,-ER” foralli=1,...,n

Remark.

m Under mild technical conditions, semidefinite programs can be
solved within additive error ¢ in time polynomial in input size
and log(1/¢).
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Vector Programs

A semidefinite program can be stated equivalently as a vector
program and vice versa (see Theorem 5.25(iii)):

min / max j{:CU(V
Zauk - v;) = by forallk=1,... K,
v,-ER” foralli=1,...,n

Remark.
m Under mild technical conditions, semidefinite programs can be
solved within additive error ¢ in time polynomial in input size
and log(1/¢).

m For simplicity, we assume in the following that we can
efficiently obtain an optimal solution.
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SDP Relaxation of MAX CUT
Integer quadratic programming formulation of MAX CUT

3y wi (L - i)

jeE

st. ye{-1,1} foralli e V.
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SDP Relaxation of MAX CUT
Integer quadratic programming formulation of MAX CUT

x 3> wi(l-yy)

jeE

st. ye{-1,1} forallie V.

Semidefinite programming relaxation of MAX CUT

max %ZW;J'(].—VI-T'VJ')

ek
st. vy =1 foralli e Vv,
v; € R" foralljie V.

Lemma 5.27
The above SDP is a relaxation of MAXCUT, therefore OPT < SDP.
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Randomized Rounding of Vector Program

compute (near-)optimal solution (v*) to SDP relaxation;

pick a random vector r = (r, ..., rn)T by drawing each component
from N(0, 1), the normal distribution with mean 0 and variance 1;

fori=1,...,mifr" - v >0thenputiin$;
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Randomized Rounding of Vector Program
compute (near-)optimal solution (v*) to SDP relaxation;
pick a random vector r = (n,. .., rn)T by drawing each component
from A/(0, 1), the normal distribution with mean 0 and variance 1;

fori=1,...,mifr” - v >0thenputiins$;

V2

Vi

v3
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Randomized Rounding of Vector Program

compute (near-)optimal solution (v*) to SDP relaxation;

pick a random vector r = (r, ..., r,,)T by drawing each component
from A/(0, 1), the normal distribution with mean 0 and variance 1;

fori=1,...,mifr” - v’ >0thenputiin$;

V2

v3 r

v4
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Randomized Rounding of Vector Program

compute (near-)optimal solution (v*) to SDP relaxation;

pick a random vector r = (r, ..., r,,)T by drawing each component
from A/(0, 1), the normal distribution with mean 0 and variance 1;

fori=1,...,mifr” - v’ >0thenputiin$;

” The random hyperplane

1 with normal vector r
produces the cut

S={1,4,5},
v r V\ 'S = {2,3}.

v4
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Randomized Rounding of Vector Program

compute (near-)optimal solution (v*) to SDP relaxation;

pick a random vector r = (n,. .., r,,)T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

fori=1,...,n: ifrT-v,-* > 0thenputiinS;
Remarks.

m The hyperplane orthogonal to r partitions the n-dimensional unit
sphere into two halves, corresponding to S and V' \ S.
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Randomized Rounding of Vector Program

compute (near-)optimal solution (v*) to SDP relaxation;

pick a random vector r = (n,. .., r,,)T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

fori=1,...,n: ifrT-v,-* > 0thenputiinS;
Remarks.

m The hyperplane orthogonal to r partitions the n-dimensional unit
sphere into two halves, corresponding to S and V' \ S.

m The normalization r/||r|| of r is uniformly distributed over the
n-dimensional unit sphere.
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Randomized Rounding of Vector Program

compute (near-)optimal solution (v*) to SDP relaxation;

pick a random vector r = (n,. .., r,,)T by drawing each component
from N (0, 1), the normal distribution with mean 0 and variance 1;

fori=1,...,n: ifrT-v,-* > 0thenputiinS;
Remarks.

m The hyperplane orthogonal to r partitions the n-dimensional unit
sphere into two halves, corresponding to S and V' \ S.

m The normalization r/||r|| of r is uniformly distributed over the
n-dimensional unit sphere.

m The projections of r onto two unit vectors e;, e are independent
and normally distributed if and only if ¢; and e, are orthogonal.
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Randomized Rounding of Vector Program

compute (near-)optimal solution (v*) to SDP relaxation;

pick a random vector r = (n,. .., r,,)T by drawing each component
from A/(0, 1), the normal distribution with mean 0 and variance 1;

fori=1,...,mifr” - v’ >0thenputiin$;
Remarks.
m The hyperplane orthogonal to r partitions the n-dimensional unit
sphere into two halves, corresponding to S and V' \ S.
m The normalization r/||r|| of r is uniformly distributed over the
n-dimensional unit sphere.

m The projections of r onto two unit vectors e, e; are independent
and normally distributed if and only if ¢; and e, are orthogonal.

Corollary 5.28

Let ' the projection of r onto a 2-dimensional plane. The normalization

r'/||r'|| of ', is uniformly distributed on a unit circle in the plane. O
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Analysis of the SDP-based Algorithm

Lemma 5.29

The probability that edge jj € E is in the cut is = arccos(v;” - v;).
™
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Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge jj € E is in the cut is = arccos(v;” - v;).
s

‘

Proof:.... O
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Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge jj € E is in the cut is = arccos(v;” - v;).
s

‘

Proof:...

Lemma 5.30
For x € [-1, 1] it holds that %arccos(x) > 0.878 - %(1 — x).
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Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge jj € E is in the cut is = arccos(v;” - v;).
s

‘

Proof:...

Lemma 5.30
For x € [-1, 1] it holds that %arccos(x) > 0.878 - %(1 — x).

Theorem 5.31 (Goemans & Williamson)

SDP-based randomized rounding is a randomized 0.878-approximation
algorithm for MAX CUT.
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Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge jj € E is in the cut is = arccos(v;” - v;).
s

‘

Proof:...

Lemma 5.30
For x € [-1, 1] it holds that %arccos(x) > 0.878 - %(1 — x).

Theorem 5.31 (Goemans & Williamson)

SDP-based randomized rounding is a randomized 0.878-approximation
algorithm for MAX CUT.

Proof:.... O
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Analysis of the SDP-based Algorithm

Lemma 5.29
The probability that edge jj € E is in the cut is = arccos(v;' - v;).
s

—
-

Proof:...

Lemma 5.30
For x € [-1, 1] it holds that %arccos(x) > 0.878 - %(1 — x).

Theorem 5.31 (Goemans & Williamson)

SDP-based randomized rounding is a randomized 0.878-approximation
algorithm for MAX CUT.

Proof:.... O

Remark. The algorithm can be derandomized by using a sophisticated

appllcatlon of the method of condltlonal expectations.
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[llustration of Lemma 5.30
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[llustration of Lemma 5.30 (Cont.)

1

= arccos(x)
f(x) T
A 5( - X)
2 —,—
15—+
0.878 ~=—— "
05T
i i i — X
-1 —-0.5 0 0.5 1
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Inapproximability Results for MAX CUT

We state the following results without proof.

Theorem 5.32

If there is an a-approximation algorithm for MAX CUT with
a > 16/17 ~ 0.941, then P = NP. O
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Inapproximability Results for MAX CUT

We state the following results without proof.

Theorem 5.32

If there is an a-approximation algorithm for MAX CUT with
a > 16/17 ~ 0.941, then P = NP. O

Theorem 5.33
Given the Unique Games Conjecture there is no a-approximation
algorithm for MAX CUT with constant

< arccos(x)

a > min ~ 0.878

-1<xs1 (1 — x)

unless P = NP. O
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