
Approximation Algorithms (ADM III)
6- The primal dual method

Guillaume Sagnol

G. Sagnol 6- The primal dual method 1 / 24

Outline

1 Warm-up: Set Cover

2 The Feedback Vertex Set Problem

3 Shortest s-t-Path problem

4 Steiner Forest Problem

5 Uncapacitated Facility Location Problem

G. Sagnol 6- The primal dual method 2 / 24

Set Cover Problem
Given: A set of elements E = {e1, . . . , en}, a family of subsets

{S1, . . . ,Sm} ⊆ 2
E , and a weight wj ≥ 0 for each j ∈ {1, . . . ,m}.

Task: Find I ⊆ {1, . . . ,m} minimizing
∑
j∈I

wj such that
⋃
j∈I

Sj = E .

LP relaxation: min
m∑
j=1

wj · xj

s.t.
∑

j :ei∈Sj

xj ≥ 1 for all i = 1, . . . , n

xj ≥ 0 for all j = 1, . . . ,m

Dual LP: max
n∑

i=1

yi

s.t.
∑
ei∈Sj

yi ≤ wj for all j = 1, . . . ,m

yi ≥ 0 for all i = 1, . . . , n

G. Sagnol 6- The primal dual method 3 / 24

Set Cover Problem
Given: A set of elements E = {e1, . . . , en}, a family of subsets

{S1, . . . ,Sm} ⊆ 2
E , and a weight wj ≥ 0 for each j ∈ {1, . . . ,m}.

Task: Find I ⊆ {1, . . . ,m} minimizing
∑
j∈I

wj such that
⋃
j∈I

Sj = E .

LP relaxation: min
m∑
j=1

wj · xj

s.t.
∑

j :ei∈Sj

xj ≥ 1 for all i = 1, . . . , n

xj ≥ 0 for all j = 1, . . . ,m

Dual LP: max
n∑

i=1

yi

s.t.
∑
ei∈Sj

yi ≤ wj for all j = 1, . . . ,m

yi ≥ 0 for all i = 1, . . . , n

G. Sagnol 6- The primal dual method 3 / 24

Set Cover Problem
Given: A set of elements E = {e1, . . . , en}, a family of subsets

{S1, . . . ,Sm} ⊆ 2
E , and a weight wj ≥ 0 for each j ∈ {1, . . . ,m}.

Task: Find I ⊆ {1, . . . ,m} minimizing
∑
j∈I

wj such that
⋃
j∈I

Sj = E .

LP relaxation: min
m∑
j=1

wj · xj

s.t.
∑

j :ei∈Sj

xj ≥ 1 for all i = 1, . . . , n

xj ≥ 0 for all j = 1, . . . ,m

Dual LP: max
n∑

i=1

yi

s.t.
∑
ei∈Sj

yi ≤ wj for all j = 1, . . . ,m

yi ≥ 0 for all i = 1, . . . , n

G. Sagnol 6- The primal dual method 3 / 24

Set Cover Problem
Given: A set of elements E = {e1, . . . , en}, a family of subsets

{S1, . . . ,Sm} ⊆ 2
E , and a weight wj ≥ 0 for each j ∈ {1, . . . ,m}.

Task: Find I ⊆ {1, . . . ,m} minimizing
∑
j∈I

wj such that
⋃
j∈I

Sj = E .

LP relaxation: min
m∑
j=1

wj · xj

s.t.
∑

j :ei∈Sj

xj ≥ 1 for all i = 1, . . . , n

xj ≥ 0 for all j = 1, . . . ,m

Dual LP: max
n∑

i=1

yi

s.t.
∑
ei∈Sj

yi ≤ wj for all j = 1, . . . ,m

yi ≥ 0 for all i = 1, . . . , n

G. Sagnol 6- The primal dual method 3 / 24

Primal-Dual Algorithm Set Cover (see Ch. 1)
1 set y :≡ 0 and I := ∅;
2 while ∃ek 6∈

⋃
j∈I

Sj

3 increase yk until ∃j with ek ∈ Sj such that
∑

i :ei∈Sj

yi = wj ;
4 set I := I ∪ {j};

Theorem 6.1 (recap of Theorem 1.10)
The primal-dual algorithm is an f -approximation algorithm for the Set
Cover Problem where f := max

i=1,...,n
|{j | ei ∈ Sj}|.

Proof: ∑
j∈I

wj =
∑
j∈I

∑
i :ei∈Sj

yi =
n∑

i=1

yi · |{j ∈ I | ei ∈ Sj}|

≤ f ·
n∑

i=1

yi ≤ f · OPT LP ≤ f · OPT

G. Sagnol 6- The primal dual method 4 / 24

Primal-Dual Algorithm Set Cover (see Ch. 1)
1 set y :≡ 0 and I := ∅;
2 while ∃ek 6∈

⋃
j∈I

Sj

3 increase yk until ∃j with ek ∈ Sj such that
∑

i :ei∈Sj

yi = wj ;
4 set I := I ∪ {j};

Theorem 6.1 (recap of Theorem 1.10)
The primal-dual algorithm is an f -approximation algorithm for the Set
Cover Problem where f := max

i=1,...,n
|{j | ei ∈ Sj}|.

Proof: ∑
j∈I

wj =
∑
j∈I

∑
i :ei∈Sj

yi =
n∑

i=1

yi · |{j ∈ I | ei ∈ Sj}|

≤ f ·
n∑

i=1

yi ≤ f · OPT LP ≤ f · OPT

G. Sagnol 6- The primal dual method 4 / 24

Primal-Dual Algorithm Set Cover (see Ch. 1)
1 set y :≡ 0 and I := ∅;
2 while ∃ek 6∈

⋃
j∈I

Sj

3 increase yk until ∃j with ek ∈ Sj such that
∑

i :ei∈Sj

yi = wj ;
4 set I := I ∪ {j};

Theorem 6.1 (recap of Theorem 1.10)
The primal-dual algorithm is an f -approximation algorithm for the Set
Cover Problem where f := max

i=1,...,n
|{j | ei ∈ Sj}|.

Proof: ∑
j∈I

wj =
∑
j∈I

∑
i :ei∈Sj

yi =
n∑

i=1

yi · |{j ∈ I | ei ∈ Sj}|

≤ f ·
n∑

i=1

yi ≤ f · OPT LP ≤ f · OPT
G. Sagnol 6- The primal dual method 4 / 24

Approximate Complementary Slackness

Remark. The pair of feasible solutions (x , y) to the primal and dual
LP found by the algorithm satisfies

xj > 0 =⇒
∑
ei∈Sj

yi = wj (compl . slackness)

yi > 0 =⇒
∑
j :ei∈Sj

xj ≤ f (approx . compl . slackness)

The analysis on the previous slide only relies on these two
properties!

G. Sagnol 6- The primal dual method 5 / 24

Approximate Complementary Slackness

Remark. The pair of feasible solutions (x , y) to the primal and dual
LP found by the algorithm satisfies

xj > 0 =⇒
∑
ei∈Sj

yi = wj (compl . slackness)

yi > 0 =⇒
∑
j :ei∈Sj

xj ≤ f (approx . compl . slackness)

The analysis on the previous slide only relies on these two
properties!

G. Sagnol 6- The primal dual method 5 / 24

Outline

1 Warm-up: Set Cover

2 The Feedback Vertex Set Problem

3 Shortest s-t-Path problem

4 Steiner Forest Problem

5 Uncapacitated Facility Location Problem

G. Sagnol 6- The primal dual method 6 / 24

Feedback Vertex Set Problem
Given: Undirected graph G = (V ,E) with node weights wi ≥ 0, i ∈ V .
Task: Find S ⊆ V minimizing

∑
i∈S

wi such that G [V \ S] is acyclic.

Integer programming formulation: Let C denote the set of all cycles in G .
min

∑
i∈V

wi · xi

s.t.
∑
i∈C

xi ≥ 1 for all C ∈ C,

xi ∈ {0, 1} for all i ∈ V .
Dual of LP relaxation (x ≥ 0):

max
∑
C∈C

yC

s.t.
∑

C∈C: i∈C
yC ≤ wi for all i ∈ V ,

yC ≥ 0 for all C ∈ C.

G. Sagnol 6- The primal dual method 7 / 24

Feedback Vertex Set Problem
Given: Undirected graph G = (V ,E) with node weights wi ≥ 0, i ∈ V .
Task: Find S ⊆ V minimizing

∑
i∈S

wi such that G [V \ S] is acyclic.

Integer programming formulation: Let C denote the set of all cycles in G .
min

∑
i∈V

wi · xi

s.t.
∑
i∈C

xi ≥ 1 for all C ∈ C,

xi ∈ {0, 1} for all i ∈ V .

Dual of LP relaxation (x ≥ 0):
max

∑
C∈C

yC

s.t.
∑

C∈C: i∈C
yC ≤ wi for all i ∈ V ,

yC ≥ 0 for all C ∈ C.

G. Sagnol 6- The primal dual method 7 / 24

Feedback Vertex Set Problem
Given: Undirected graph G = (V ,E) with node weights wi ≥ 0, i ∈ V .
Task: Find S ⊆ V minimizing

∑
i∈S

wi such that G [V \ S] is acyclic.

Integer programming formulation: Let C denote the set of all cycles in G .
min

∑
i∈V

wi · xi

s.t.
∑
i∈C

xi ≥ 1 for all C ∈ C,

xi ∈ {0, 1} for all i ∈ V .
Dual of LP relaxation (x ≥ 0):

max
∑
C∈C

yC

s.t.
∑

C∈C: i∈C
yC ≤ wi for all i ∈ V ,

yC ≥ 0 for all C ∈ C.
G. Sagnol 6- The primal dual method 7 / 24

Primal-Dual Algo for Feedback Vertex Set Problem
1 set y := 0 and S := ∅;
2 while there is a cycle C in G

3 increase yC until there is an i ∈ C with
∑

C ′:i∈C ′

yC ′ = wi ;
4 set S := S ∪ {i} and delete i from G ;
5 repeatedly remove nodes of degree one from G ;

Analysis: ∑
i∈S

wi =
∑
i∈S

∑
C : i∈C

yC =
∑
C∈C
|S ∩ C | · yC

Idea: If |S ∩ C | ≤ α whenever yC > 0, we get performance ratio α.
But: If we choose arbitrary C in each iteration, |S ∩ C | can be large.
Idea: Always choose short cycle C with |C | ≤ α.
But: This is not always possible (e.g., if graph is one large cycle).
Obs.: From path of nodes of degree two, algorithm chooses ≤ 1 node.

G. Sagnol 6- The primal dual method 8 / 24

Primal-Dual Algo for Feedback Vertex Set Problem
1 set y := 0 and S := ∅;
2 while there is a cycle C in G

3 increase yC until there is an i ∈ C with
∑

C ′:i∈C ′

yC ′ = wi ;
4 set S := S ∪ {i} and delete i from G ;
5 repeatedly remove nodes of degree one from G ;

Analysis: ∑
i∈S

wi =
∑
i∈S

∑
C : i∈C

yC =
∑
C∈C
|S ∩ C | · yC

Idea: If |S ∩ C | ≤ α whenever yC > 0, we get performance ratio α.
But: If we choose arbitrary C in each iteration, |S ∩ C | can be large.
Idea: Always choose short cycle C with |C | ≤ α.
But: This is not always possible (e.g., if graph is one large cycle).
Obs.: From path of nodes of degree two, algorithm chooses ≤ 1 node.

G. Sagnol 6- The primal dual method 8 / 24

Primal-Dual Algo for Feedback Vertex Set Problem
1 set y := 0 and S := ∅;
2 while there is a cycle C in G

3 increase yC until there is an i ∈ C with
∑

C ′:i∈C ′

yC ′ = wi ;
4 set S := S ∪ {i} and delete i from G ;
5 repeatedly remove nodes of degree one from G ;

Analysis: ∑
i∈S

wi =
∑
i∈S

∑
C : i∈C

yC =
∑
C∈C
|S ∩ C | · yC

Idea: If |S ∩ C | ≤ α whenever yC > 0, we get performance ratio α.

But: If we choose arbitrary C in each iteration, |S ∩ C | can be large.
Idea: Always choose short cycle C with |C | ≤ α.
But: This is not always possible (e.g., if graph is one large cycle).
Obs.: From path of nodes of degree two, algorithm chooses ≤ 1 node.

G. Sagnol 6- The primal dual method 8 / 24

Primal-Dual Algo for Feedback Vertex Set Problem
1 set y := 0 and S := ∅;
2 while there is a cycle C in G

3 increase yC until there is an i ∈ C with
∑

C ′:i∈C ′

yC ′ = wi ;
4 set S := S ∪ {i} and delete i from G ;
5 repeatedly remove nodes of degree one from G ;

Analysis: ∑
i∈S

wi =
∑
i∈S

∑
C : i∈C

yC =
∑
C∈C
|S ∩ C | · yC

Idea: If |S ∩ C | ≤ α whenever yC > 0, we get performance ratio α.
But: If we choose arbitrary C in each iteration, |S ∩ C | can be large.

Idea: Always choose short cycle C with |C | ≤ α.
But: This is not always possible (e.g., if graph is one large cycle).
Obs.: From path of nodes of degree two, algorithm chooses ≤ 1 node.

G. Sagnol 6- The primal dual method 8 / 24

Primal-Dual Algo for Feedback Vertex Set Problem
1 set y := 0 and S := ∅;
2 while there is a cycle C in G

3 increase yC until there is an i ∈ C with
∑

C ′:i∈C ′

yC ′ = wi ;
4 set S := S ∪ {i} and delete i from G ;
5 repeatedly remove nodes of degree one from G ;

Analysis: ∑
i∈S

wi =
∑
i∈S

∑
C : i∈C

yC =
∑
C∈C
|S ∩ C | · yC

Idea: If |S ∩ C | ≤ α whenever yC > 0, we get performance ratio α.
But: If we choose arbitrary C in each iteration, |S ∩ C | can be large.
Idea: Always choose short cycle C with |C | ≤ α.

But: This is not always possible (e.g., if graph is one large cycle).
Obs.: From path of nodes of degree two, algorithm chooses ≤ 1 node.

G. Sagnol 6- The primal dual method 8 / 24

Primal-Dual Algo for Feedback Vertex Set Problem
1 set y := 0 and S := ∅;
2 while there is a cycle C in G

3 increase yC until there is an i ∈ C with
∑

C ′:i∈C ′

yC ′ = wi ;
4 set S := S ∪ {i} and delete i from G ;
5 repeatedly remove nodes of degree one from G ;

Analysis: ∑
i∈S

wi =
∑
i∈S

∑
C : i∈C

yC =
∑
C∈C
|S ∩ C | · yC

Idea: If |S ∩ C | ≤ α whenever yC > 0, we get performance ratio α.
But: If we choose arbitrary C in each iteration, |S ∩ C | can be large.
Idea: Always choose short cycle C with |C | ≤ α.
But: This is not always possible (e.g., if graph is one large cycle).
Obs.: From path of nodes of degree two, algorithm chooses ≤ 1 node.

G. Sagnol 6- The primal dual method 8 / 24

Refined Primal-Dual Algorithm for Feedback Vertex Set

Lemma 6.2
In any graph G that has no nodes of degree one, there is a cycle with
≤ 2dlog2 ne nodes of degree 3 or more, and it can be found in linear time.

Proof:. . .

Theorem 6.3
If the primal-dual algorithm chooses in each iteration a cycle with at most
≤ 2dlog2 ne nodes of degree 3 or more, it has performance ratio 4dlog2 ne.

Proof:. . .
Remarks.

The LP relaxation has an integrality gap of Ω(log n).
There is a primal-dual 2-approximation algorithm based on a more
sophisticated integer programming formulation

G. Sagnol 6- The primal dual method 9 / 24

Refined Primal-Dual Algorithm for Feedback Vertex Set

Lemma 6.2
In any graph G that has no nodes of degree one, there is a cycle with
≤ 2dlog2 ne nodes of degree 3 or more, and it can be found in linear time.

Proof:. . .

Theorem 6.3
If the primal-dual algorithm chooses in each iteration a cycle with at most
≤ 2dlog2 ne nodes of degree 3 or more, it has performance ratio 4dlog2 ne.

Proof:. . .
Remarks.

The LP relaxation has an integrality gap of Ω(log n).
There is a primal-dual 2-approximation algorithm based on a more
sophisticated integer programming formulation

G. Sagnol 6- The primal dual method 9 / 24

Refined Primal-Dual Algorithm for Feedback Vertex Set

Lemma 6.2
In any graph G that has no nodes of degree one, there is a cycle with
≤ 2dlog2 ne nodes of degree 3 or more, and it can be found in linear time.

Proof:. . .

Theorem 6.3
If the primal-dual algorithm chooses in each iteration a cycle with at most
≤ 2dlog2 ne nodes of degree 3 or more, it has performance ratio 4dlog2 ne.

Proof:. . .
Remarks.

The LP relaxation has an integrality gap of Ω(log n).
There is a primal-dual 2-approximation algorithm based on a more
sophisticated integer programming formulation

G. Sagnol 6- The primal dual method 9 / 24

Refined Primal-Dual Algorithm for Feedback Vertex Set

Lemma 6.2
In any graph G that has no nodes of degree one, there is a cycle with
≤ 2dlog2 ne nodes of degree 3 or more, and it can be found in linear time.

Proof:. . .

Theorem 6.3
If the primal-dual algorithm chooses in each iteration a cycle with at most
≤ 2dlog2 ne nodes of degree 3 or more, it has performance ratio 4dlog2 ne.

Proof:. . .

Remarks.

The LP relaxation has an integrality gap of Ω(log n).
There is a primal-dual 2-approximation algorithm based on a more
sophisticated integer programming formulation

G. Sagnol 6- The primal dual method 9 / 24

Refined Primal-Dual Algorithm for Feedback Vertex Set

Lemma 6.2
In any graph G that has no nodes of degree one, there is a cycle with
≤ 2dlog2 ne nodes of degree 3 or more, and it can be found in linear time.

Proof:. . .

Theorem 6.3
If the primal-dual algorithm chooses in each iteration a cycle with at most
≤ 2dlog2 ne nodes of degree 3 or more, it has performance ratio 4dlog2 ne.

Proof:. . .
Remarks.

The LP relaxation has an integrality gap of Ω(log n).
There is a primal-dual 2-approximation algorithm based on a more
sophisticated integer programming formulation

G. Sagnol 6- The primal dual method 9 / 24

Outline

1 Warm-up: Set Cover

2 The Feedback Vertex Set Problem

3 Shortest s-t-Path problem

4 Steiner Forest Problem

5 Uncapacitated Facility Location Problem

G. Sagnol 6- The primal dual method 10 / 24

Shortest s-t-Path Problem
Given: Undir. graph G = (V ,E) with edge costs ce ≥ 0, e ∈ E ; s, t ∈ V

Task: Find minimum-cost s-t-path.

IP formulation: (let S := {S ⊆ V | s ∈ S , t ∈ V \ S})

min
∑
e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 for all S ∈ S ,

xe ∈ {0, 1} for all e ∈ E .

Dual of LP relaxation (x ≥ 0):
max

∑
S∈S

yS

s.t.
∑

S∈S: e∈δ(S)

yS ≤ ce for all e ∈ E ,

yS ≥ 0 for all S ∈ S .

G. Sagnol 6- The primal dual method 11 / 24

Shortest s-t-Path Problem
Given: Undir. graph G = (V ,E) with edge costs ce ≥ 0, e ∈ E ; s, t ∈ V

Task: Find minimum-cost s-t-path.
IP formulation: (let S := {S ⊆ V | s ∈ S , t ∈ V \ S})

min
∑
e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 for all S ∈ S ,

xe ∈ {0, 1} for all e ∈ E .

Dual of LP relaxation (x ≥ 0):
max

∑
S∈S

yS

s.t.
∑

S∈S: e∈δ(S)

yS ≤ ce for all e ∈ E ,

yS ≥ 0 for all S ∈ S .

G. Sagnol 6- The primal dual method 11 / 24

Shortest s-t-Path Problem
Given: Undir. graph G = (V ,E) with edge costs ce ≥ 0, e ∈ E ; s, t ∈ V

Task: Find minimum-cost s-t-path.
IP formulation: (let S := {S ⊆ V | s ∈ S , t ∈ V \ S})

min
∑
e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 for all S ∈ S ,

xe ∈ {0, 1} for all e ∈ E .

Dual of LP relaxation (x ≥ 0):
max

∑
S∈S

yS

s.t.
∑

S∈S: e∈δ(S)

yS ≤ ce for all e ∈ E ,

yS ≥ 0 for all S ∈ S .
G. Sagnol 6- The primal dual method 11 / 24

Primal-Dual Algorithm for Shortest s-t-Path Problem

1 set y := 0 and F := ∅;
2 while there is no s-t-path in F

3 let C be the connected component of (V ,F) containing s;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};
6 delete edges from F that do not lie on s-t-path in F ;

Lemma 6.4
Throughout the algorithm, the set of edges in F always forms a tree
containing node s .

Theorem 6.5
The algorithm finds a shortest s-t-path.

G. Sagnol 6- The primal dual method 12 / 24

Primal-Dual Algorithm for Shortest s-t-Path Problem

1 set y := 0 and F := ∅;
2 while there is no s-t-path in F

3 let C be the connected component of (V ,F) containing s;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};
6 delete edges from F that do not lie on s-t-path in F ;

Lemma 6.4
Throughout the algorithm, the set of edges in F always forms a tree
containing node s .

Theorem 6.5
The algorithm finds a shortest s-t-path.

G. Sagnol 6- The primal dual method 12 / 24

Primal-Dual Algorithm for Shortest s-t-Path Problem

1 set y := 0 and F := ∅;
2 while there is no s-t-path in F

3 let C be the connected component of (V ,F) containing s;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};
6 delete edges from F that do not lie on s-t-path in F ;

Lemma 6.4
Throughout the algorithm, the set of edges in F always forms a tree
containing node s .

Theorem 6.5
The algorithm finds a shortest s-t-path.

G. Sagnol 6- The primal dual method 12 / 24

Outline

1 Warm-up: Set Cover

2 The Feedback Vertex Set Problem

3 Shortest s-t-Path problem

4 Steiner Forest Problem

5 Uncapacitated Facility Location Problem

G. Sagnol 6- The primal dual method 13 / 24

Steiner Forest Problem
Given: Graph G = (V ,E) with costs ce ≥ 0, e ∈ E ; k pairs si , ti ∈ V .
Task: Find F ⊆ E minimizing c(F) and connecting si and ti , for all i .

IP formulation: (let Si := {S ⊆ V | |S ∩ {si , ti}| = 1} and S :=
k⋃

i=1

Si)

min
∑
e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 for all S ∈ S ,

xe ∈ {0, 1} for all e ∈ E .

Dual of LP relaxation (x ≥ 0):
max

∑
S∈S

yS

s.t.
∑

S∈S: e∈δ(S)

yS ≤ ce for all e ∈ E ,

yS ≥ 0 for all S ∈ S .

G. Sagnol 6- The primal dual method 14 / 24

Steiner Forest Problem
Given: Graph G = (V ,E) with costs ce ≥ 0, e ∈ E ; k pairs si , ti ∈ V .
Task: Find F ⊆ E minimizing c(F) and connecting si and ti , for all i .

t
1

s
2

s
3

t
3

t
4

s
5

s
5

s
6

t
6

s
1
t
2

s
4

IP formulation: (let Si := {S ⊆ V | |S ∩ {si , ti}| = 1} and S :=
k⋃

i=1

Si)

min
∑
e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 for all S ∈ S ,

xe ∈ {0, 1} for all e ∈ E .

Dual of LP relaxation (x ≥ 0):
max

∑
S∈S

yS

s.t.
∑

S∈S: e∈δ(S)

yS ≤ ce for all e ∈ E ,

yS ≥ 0 for all S ∈ S .

G. Sagnol 6- The primal dual method 14 / 24

Steiner Forest Problem
Given: Graph G = (V ,E) with costs ce ≥ 0, e ∈ E ; k pairs si , ti ∈ V .
Task: Find F ⊆ E minimizing c(F) and connecting si and ti , for all i .

IP formulation: (let Si := {S ⊆ V | |S ∩ {si , ti}| = 1} and S :=
k⋃

i=1

Si)

min
∑
e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 for all S ∈ S ,

xe ∈ {0, 1} for all e ∈ E .

Dual of LP relaxation (x ≥ 0):
max

∑
S∈S

yS

s.t.
∑

S∈S: e∈δ(S)

yS ≤ ce for all e ∈ E ,

yS ≥ 0 for all S ∈ S .

G. Sagnol 6- The primal dual method 14 / 24

Steiner Forest Problem
Given: Graph G = (V ,E) with costs ce ≥ 0, e ∈ E ; k pairs si , ti ∈ V .
Task: Find F ⊆ E minimizing c(F) and connecting si and ti , for all i .

IP formulation: (let Si := {S ⊆ V | |S ∩ {si , ti}| = 1} and S :=
k⋃

i=1

Si)

min
∑
e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 for all S ∈ S ,

xe ∈ {0, 1} for all e ∈ E .

Dual of LP relaxation (x ≥ 0):
max

∑
S∈S

yS

s.t.
∑

S∈S: e∈δ(S)

yS ≤ ce for all e ∈ E ,

yS ≥ 0 for all S ∈ S .
G. Sagnol 6- The primal dual method 14 / 24

Primal-Dual Algorithm for Steiner Forest Problem
1 set y :≡ 0 and F := ∅;
2 while not all si -ti pairs are connected in (V ,F)

3 let C connected comp. of (V ,F) with |C ∩ {si , ti}| = 1 for some i ;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};

Analysis:
∑
e∈F

ce =
∑
e∈F

∑
S∈S: e∈δ(S)

yS =
∑
S∈S
|δ(S) ∩ F | · yS

Problem: It can happen that |δ(S)∩ F | = k for yS > 0 and
∑
S∈S

yS ≤
1

k
OPT :

G = Kk+1 (complete
graph)

si := s for i = 1, . . . , k

ce := 1 for all e ∈ E

y{s} = 1

|δ({s}) ∩ F | = k∑
S

yS = 1, OPT = k

t1

t2

t3

t4 t5

s

G. Sagnol 6- The primal dual method 15 / 24

Primal-Dual Algorithm for Steiner Forest Problem
1 set y :≡ 0 and F := ∅;
2 while not all si -ti pairs are connected in (V ,F)

3 let C connected comp. of (V ,F) with |C ∩ {si , ti}| = 1 for some i ;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};

Analysis:
∑
e∈F

ce =
∑
e∈F

∑
S∈S: e∈δ(S)

yS =
∑
S∈S
|δ(S) ∩ F | · yS

Problem: It can happen that |δ(S)∩ F | = k for yS > 0 and
∑
S∈S

yS ≤
1

k
OPT :

G = Kk+1 (complete
graph)

si := s for i = 1, . . . , k

ce := 1 for all e ∈ E

y{s} = 1

|δ({s}) ∩ F | = k∑
S

yS = 1, OPT = k

t1

t2

t3

t4 t5

s

G. Sagnol 6- The primal dual method 15 / 24

Primal-Dual Algorithm for Steiner Forest Problem
1 set y :≡ 0 and F := ∅;
2 while not all si -ti pairs are connected in (V ,F)

3 let C connected comp. of (V ,F) with |C ∩ {si , ti}| = 1 for some i ;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};

Analysis:
∑
e∈F

ce =
∑
e∈F

∑
S∈S: e∈δ(S)

yS =
∑
S∈S
|δ(S) ∩ F | · yS

Problem: It can happen that |δ(S)∩ F | = k for yS > 0 and
∑
S∈S

yS ≤
1

k
OPT :

G = Kk+1 (complete
graph)

si := s for i = 1, . . . , k

ce := 1 for all e ∈ E

y{s} = 1

|δ({s}) ∩ F | = k∑
S

yS = 1, OPT = k

t1

t2

t3

t4 t5

s

G. Sagnol 6- The primal dual method 15 / 24

Primal-Dual Algorithm for Steiner Forest Problem
1 set y :≡ 0 and F := ∅;
2 while not all si -ti pairs are connected in (V ,F)

3 let C connected comp. of (V ,F) with |C ∩ {si , ti}| = 1 for some i ;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};

Analysis:
∑
e∈F

ce =
∑
e∈F

∑
S∈S: e∈δ(S)

yS =
∑
S∈S
|δ(S) ∩ F | · yS

Problem: It can happen that |δ(S)∩ F | = k for yS > 0 and
∑
S∈S

yS ≤
1

k
OPT :

G = Kk+1 (complete
graph)

si := s for i = 1, . . . , k

ce := 1 for all e ∈ E

y{s} = 1

|δ({s}) ∩ F | = k∑
S

yS = 1, OPT = k

t1

t2

t3

t4 t5

s

G. Sagnol 6- The primal dual method 15 / 24

Primal-Dual Algorithm for Steiner Forest Problem
1 set y :≡ 0 and F := ∅;
2 while not all si -ti pairs are connected in (V ,F)

3 let C connected comp. of (V ,F) with |C ∩ {si , ti}| = 1 for some i ;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};

Analysis:
∑
e∈F

ce =
∑
e∈F

∑
S∈S: e∈δ(S)

yS =
∑
S∈S
|δ(S) ∩ F | · yS

Problem: It can happen that |δ(S)∩ F | = k for yS > 0 and
∑
S∈S

yS ≤
1

k
OPT :

G = Kk+1 (complete
graph)

si := s for i = 1, . . . , k

ce := 1 for all e ∈ E

y{s} = 1

|δ({s}) ∩ F | = k∑
S

yS = 1, OPT = k

t1

t2

t3

t4 t5

s

G. Sagnol 6- The primal dual method 15 / 24

Primal-Dual Algorithm for Steiner Forest Problem
1 set y :≡ 0 and F := ∅;
2 while not all si -ti pairs are connected in (V ,F)

3 let C connected comp. of (V ,F) with |C ∩ {si , ti}| = 1 for some i ;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};

Analysis:
∑
e∈F

ce =
∑
e∈F

∑
S∈S: e∈δ(S)

yS =
∑
S∈S
|δ(S) ∩ F | · yS

Problem: It can happen that |δ(S)∩ F | = k for yS > 0 and
∑
S∈S

yS ≤
1

k
OPT :

G = Kk+1 (complete
graph)

si := s for i = 1, . . . , k

ce := 1 for all e ∈ E

y{s} = 1

|δ({s}) ∩ F | = k

∑
S

yS = 1, OPT = k

t1

t2

t3

t4 t5

s

G. Sagnol 6- The primal dual method 15 / 24

Primal-Dual Algorithm for Steiner Forest Problem
1 set y :≡ 0 and F := ∅;
2 while not all si -ti pairs are connected in (V ,F)

3 let C connected comp. of (V ,F) with |C ∩ {si , ti}| = 1 for some i ;
4 increase yC until there is an e ∈ δ(C) with

∑
S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};

Analysis:
∑
e∈F

ce =
∑
e∈F

∑
S∈S: e∈δ(S)

yS =
∑
S∈S
|δ(S) ∩ F | · yS

Problem: It can happen that |δ(S)∩ F | = k for yS > 0 and
∑
S∈S

yS ≤
1

k
OPT :

G = Kk+1 (complete
graph)

si := s for i = 1, . . . , k

ce := 1 for all e ∈ E

y{s} = 1

|δ({s}) ∩ F | = k∑
S

yS = 1, OPT = k

t1

t2

t3

t4 t5

s

G. Sagnol 6- The primal dual method 15 / 24

Refined Primal-Dual Algo for Steiner Forest Problem

1 set y :≡ 0 and F := ∅;
2 while not all si -ti pairs are connected in (V ,F)

3 let C := {conn. comp. C of (V ,F): |C ∩ {si , ti}| = 1 for some i};
4 increase yC for all C ∈ C uniformly until for some e ∈ δ(C), C ∈ C∑

S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};

6 For all e ∈ F (in reverse of the order in which they were added)
7 if F \ {e} is a feasible solution, then remove e from F ;

G. Sagnol 6- The primal dual method 16 / 24

Refined Primal-Dual Algo for Steiner Forest Problem

1 set y :≡ 0 and F := ∅;
2 while not all si -ti pairs are connected in (V ,F)

3 let C := {conn. comp. C of (V ,F): |C ∩ {si , ti}| = 1 for some i};
4 increase yC for all C ∈ C uniformly until for some e ∈ δ(C), C ∈ C∑

S∈S: e∈δ(S)

yS = ce ;

5 set F := F ∪ {e};
6 For all e ∈ F (in reverse of the order in which they were added)
7 if F \ {e} is a feasible solution, then remove e from F ;

G. Sagnol 6- The primal dual method 16 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Example

s1

t1

s2 t2

s3

t3

G. Sagnol 6- The primal dual method 17 / 24

Analysis
Observation. At any point in the algorithm, the set of edges F is a forest.

Lemma 6.6
Let F ′ be the final set of edges returned by the algorithm. For any C in
any iteration of the algorithm,∑

C∈C
|δ(C) ∩ F ′| ≤ 2|C| .

Theorem 6.7
The refined primal-dual algorithm is a 2-approximation algorithm for the
Steiner Forest Problem.

Proof:. . .

Corollary 6.8
Integrality gap of the LP relaxation is at most 2. This bound is tight.

G. Sagnol 6- The primal dual method 18 / 24

Analysis
Observation. At any point in the algorithm, the set of edges F is a forest.

Lemma 6.6
Let F ′ be the final set of edges returned by the algorithm. For any C in
any iteration of the algorithm,∑

C∈C
|δ(C) ∩ F ′| ≤ 2|C| .

Theorem 6.7
The refined primal-dual algorithm is a 2-approximation algorithm for the
Steiner Forest Problem.

Proof:. . .

Corollary 6.8
Integrality gap of the LP relaxation is at most 2. This bound is tight.

G. Sagnol 6- The primal dual method 18 / 24

Analysis
Observation. At any point in the algorithm, the set of edges F is a forest.

Lemma 6.6
Let F ′ be the final set of edges returned by the algorithm. For any C in
any iteration of the algorithm,∑

C∈C
|δ(C) ∩ F ′| ≤ 2|C| .

Theorem 6.7
The refined primal-dual algorithm is a 2-approximation algorithm for the
Steiner Forest Problem.

Proof:. . .

Corollary 6.8
Integrality gap of the LP relaxation is at most 2. This bound is tight.

G. Sagnol 6- The primal dual method 18 / 24

Analysis
Observation. At any point in the algorithm, the set of edges F is a forest.

Lemma 6.6
Let F ′ be the final set of edges returned by the algorithm. For any C in
any iteration of the algorithm,∑

C∈C
|δ(C) ∩ F ′| ≤ 2|C| .

Theorem 6.7
The refined primal-dual algorithm is a 2-approximation algorithm for the
Steiner Forest Problem.

Proof:. . .

Corollary 6.8
Integrality gap of the LP relaxation is at most 2. This bound is tight.

G. Sagnol 6- The primal dual method 18 / 24

Analysis
Observation. At any point in the algorithm, the set of edges F is a forest.

Lemma 6.6
Let F ′ be the final set of edges returned by the algorithm. For any C in
any iteration of the algorithm,∑

C∈C
|δ(C) ∩ F ′| ≤ 2|C| .

Theorem 6.7
The refined primal-dual algorithm is a 2-approximation algorithm for the
Steiner Forest Problem.

Proof:. . .

Corollary 6.8
Integrality gap of the LP relaxation is at most 2. This bound is tight.

G. Sagnol 6- The primal dual method 18 / 24

Outline

1 Warm-up: Set Cover

2 The Feedback Vertex Set Problem

3 Shortest s-t-Path problem

4 Steiner Forest Problem

5 Uncapacitated Facility Location Problem

G. Sagnol 6- The primal dual method 19 / 24

Uncapacitated Facility Location Problem
Given: Set of facilities F with opening costs fi ≥ 0, i ∈ F ;

set of clients D with metric connection costs cij ≥ 0, i ∈ F , j ∈ D .
Task: Choose F ′ ⊆ F and assign each client to nearest facility in F ′.
Objective: Minimize

∑
i∈F ′

fi +
∑
j∈D

min
i∈F ′

cij .

IP formulation:

min
∑
i∈F

fi · yi +
∑

i∈F ,j∈D
cij · xij

s.t.
∑
i∈F

xij = 1 for all j ∈ D ,

yi − xij ≥ 0 for all i ∈ F , j ∈ D ,

xij , yi ∈ {0, 1} for all i ∈ F , j ∈ D .

G. Sagnol 6- The primal dual method 20 / 24

LP Relaxation and Dual LP

primal LP: min
∑
i∈F

fi · yi +
∑

i∈F , j∈D
cij · xij

s.t.
∑
i∈F

xij = 1 for all j ∈ D ,

yi − xij ≥ 0 for all i ∈ F , j ∈ D ,
xij , yi ≥ 0 for all i ∈ F , j ∈ D .

dual LP: max
∑

j∈D vj

s.t.
∑

j∈D wij ≤ fi for all i ∈ F ,
vj − wij ≤ cij for all i ∈ F , j ∈ D ,
wij ≥ 0 for all i ∈ F , j ∈ D .

Interpretation of dual LP:
vj is total amount that client j wants to pay for being served.

client j might contribute wij to facility i for being connected to i .

G. Sagnol 6- The primal dual method 21 / 24

LP Relaxation and Dual LP

primal LP: min
∑
i∈F

fi · yi +
∑

i∈F , j∈D
cij · xij

s.t.
∑
i∈F

xij = 1 for all j ∈ D ,

yi − xij ≥ 0 for all i ∈ F , j ∈ D ,
xij , yi ≥ 0 for all i ∈ F , j ∈ D .

dual LP: max
∑

j∈D vj

s.t.
∑

j∈D wij ≤ fi for all i ∈ F ,
vj − wij ≤ cij for all i ∈ F , j ∈ D ,
wij ≥ 0 for all i ∈ F , j ∈ D .

Interpretation of dual LP:
vj is total amount that client j wants to pay for being served.
client j might contribute wij to facility i for being connected to i .

G. Sagnol 6- The primal dual method 21 / 24

Primal-Dual Algo for Uncapacitated Facility Location
Notation & High-level idea:

For the current feasible dual solution (v ,w) and j ∈ D let
N(j) := {i ∈ F | vj ≥ cij} .

If wij > 0, we say that client j contributes to facility i .

During the primal-dual algorithm, we maintain dual feasibility, and
we define the set of tight facilities:

T = {i ∈ F :
∑
j∈D

wij = fi} .

During the algorithm, we increase the vj ’s ans wij ’s, in a way that
client j contributes only to facilities i ∈ N(j);
we maintain vj = wij + cij , ∀i ∈ N(j).

The set S is the set of clients not yet in the neighborhood of a tight
facility; We’ll iterate until S = ∅.

Algorithm:
1 set S := D , T := ∅, vj := 0, wij := 0 for all i ∈ F , j ∈ D;
2 while S 6= ∅
3 for all j ∈ S increase vj and wij for all i ∈ N(j) uniformly until

one of the following occurs:
i

∑
j∈D

wij = fi for some i /∈ T ; Then, T ← T ∪ {i}

ii vj ≥ cij for some i ∈ T , j ∈ S ; Then, S ← S \ {j}

4 set F ′ := ∅
5 while T 6= ∅ pick i ∈ T ;
6 F ′ := F ′ ∪ {i}; T := T \ {h | ∃j ∈ D, wij > 0, whj > 0};
7 open all facilities in F ′; connect each j ∈ D to nearest i ∈ F ′.

G. Sagnol 6- The primal dual method 22 / 24

Primal-Dual Algo for Uncapacitated Facility Location
Notation & High-level idea:

For the current feasible dual solution (v ,w) and j ∈ D let
N(j) := {i ∈ F | vj ≥ cij} .

If wij > 0, we say that client j contributes to facility i .

During the primal-dual algorithm, we maintain dual feasibility, and
we define the set of tight facilities:

T = {i ∈ F :
∑
j∈D

wij = fi} .

During the algorithm, we increase the vj ’s ans wij ’s, in a way that
client j contributes only to facilities i ∈ N(j);
we maintain vj = wij + cij , ∀i ∈ N(j).

The set S is the set of clients not yet in the neighborhood of a tight
facility; We’ll iterate until S = ∅.

Algorithm:
1 set S := D , T := ∅, vj := 0, wij := 0 for all i ∈ F , j ∈ D;
2 while S 6= ∅
3 for all j ∈ S increase vj and wij for all i ∈ N(j) uniformly until

one of the following occurs:
i

∑
j∈D

wij = fi for some i /∈ T ; Then, T ← T ∪ {i}

ii vj ≥ cij for some i ∈ T , j ∈ S ; Then, S ← S \ {j}

4 set F ′ := ∅
5 while T 6= ∅ pick i ∈ T ;
6 F ′ := F ′ ∪ {i}; T := T \ {h | ∃j ∈ D, wij > 0, whj > 0};
7 open all facilities in F ′; connect each j ∈ D to nearest i ∈ F ′.

G. Sagnol 6- The primal dual method 22 / 24

Primal-Dual Algo for Uncapacitated Facility Location
Notation & High-level idea:

For the current feasible dual solution (v ,w) and j ∈ D let
N(j) := {i ∈ F | vj ≥ cij} .

If wij > 0, we say that client j contributes to facility i .

During the primal-dual algorithm, we maintain dual feasibility, and
we define the set of tight facilities:

T = {i ∈ F :
∑
j∈D

wij = fi} .

During the algorithm, we increase the vj ’s ans wij ’s, in a way that
client j contributes only to facilities i ∈ N(j);
we maintain vj = wij + cij , ∀i ∈ N(j).

The set S is the set of clients not yet in the neighborhood of a tight
facility; We’ll iterate until S = ∅.

Algorithm:
1 set S := D , T := ∅, vj := 0, wij := 0 for all i ∈ F , j ∈ D;
2 while S 6= ∅
3 for all j ∈ S increase vj and wij for all i ∈ N(j) uniformly until

one of the following occurs:
i

∑
j∈D

wij = fi for some i /∈ T ; Then, T ← T ∪ {i}

ii vj ≥ cij for some i ∈ T , j ∈ S ; Then, S ← S \ {j}

4 set F ′ := ∅
5 while T 6= ∅ pick i ∈ T ;
6 F ′ := F ′ ∪ {i}; T := T \ {h | ∃j ∈ D, wij > 0, whj > 0};
7 open all facilities in F ′; connect each j ∈ D to nearest i ∈ F ′.

G. Sagnol 6- The primal dual method 22 / 24

Primal-Dual Algo for Uncapacitated Facility Location
Notation & High-level idea:

For the current feasible dual solution (v ,w) and j ∈ D let
N(j) := {i ∈ F | vj ≥ cij} .

If wij > 0, we say that client j contributes to facility i .

During the primal-dual algorithm, we maintain dual feasibility, and
we define the set of tight facilities:

T = {i ∈ F :
∑
j∈D

wij = fi} .

During the algorithm, we increase the vj ’s ans wij ’s, in a way that
client j contributes only to facilities i ∈ N(j);
we maintain vj = wij + cij , ∀i ∈ N(j).

The set S is the set of clients not yet in the neighborhood of a tight
facility; We’ll iterate until S = ∅.

Algorithm:
1 set S := D , T := ∅, vj := 0, wij := 0 for all i ∈ F , j ∈ D;
2 while S 6= ∅
3 for all j ∈ S increase vj and wij for all i ∈ N(j) uniformly until

one of the following occurs:
i

∑
j∈D

wij = fi for some i /∈ T ; Then, T ← T ∪ {i}

ii vj ≥ cij for some i ∈ T , j ∈ S ; Then, S ← S \ {j}

4 set F ′ := ∅
5 while T 6= ∅ pick i ∈ T ;
6 F ′ := F ′ ∪ {i}; T := T \ {h | ∃j ∈ D, wij > 0, whj > 0};
7 open all facilities in F ′; connect each j ∈ D to nearest i ∈ F ′.

G. Sagnol 6- The primal dual method 22 / 24

Primal-Dual Algo for Uncapacitated Facility Location
Notation & High-level idea:

For the current feasible dual solution (v ,w) and j ∈ D let
N(j) := {i ∈ F | vj ≥ cij} .

If wij > 0, we say that client j contributes to facility i .

During the primal-dual algorithm, we maintain dual feasibility, and
we define the set of tight facilities:

T = {i ∈ F :
∑
j∈D

wij = fi} .

During the algorithm, we increase the vj ’s ans wij ’s, in a way that
client j contributes only to facilities i ∈ N(j);
we maintain vj = wij + cij , ∀i ∈ N(j).

The set S is the set of clients not yet in the neighborhood of a tight
facility; We’ll iterate until S = ∅.

Algorithm:
1 set S := D , T := ∅, vj := 0, wij := 0 for all i ∈ F , j ∈ D;
2 while S 6= ∅
3 for all j ∈ S increase vj and wij for all i ∈ N(j) uniformly until

one of the following occurs:
i

∑
j∈D

wij = fi for some i /∈ T ; Then, T ← T ∪ {i}

ii vj ≥ cij for some i ∈ T , j ∈ S ; Then, S ← S \ {j}

4 set F ′ := ∅
5 while T 6= ∅ pick i ∈ T ;
6 F ′ := F ′ ∪ {i}; T := T \ {h | ∃j ∈ D, wij > 0, whj > 0};
7 open all facilities in F ′; connect each j ∈ D to nearest i ∈ F ′.

G. Sagnol 6- The primal dual method 22 / 24

Primal-Dual Algo for Uncapacitated Facility Location
Algorithm:

1 set S := D , T := ∅, vj := 0, wij := 0 for all i ∈ F , j ∈ D;
2 while S 6= ∅
3 for all j ∈ S increase vj and wij for all i ∈ N(j) uniformly until

one of the following occurs:

i
∑
j∈D

wij = fi for some i /∈ T ; Then, T ← T ∪ {i}

ii vj ≥ cij for some i ∈ T , j ∈ S ; Then, S ← S \ {j}

4 set F ′ := ∅
5 while T 6= ∅ pick i ∈ T ;
6 F ′ := F ′ ∪ {i}; T := T \ {h | ∃j ∈ D, wij > 0, whj > 0};
7 open all facilities in F ′; connect each j ∈ D to nearest i ∈ F ′.

G. Sagnol 6- The primal dual method 22 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Example

G. Sagnol 6- The primal dual method 23 / 24

Analysis

Lemma 6.9
If a client j does not have a neighbor in F ′, then there is a facility
i ∈ F ′ such that cij ≤ 3vj .

Proof:. . .

Theorem 6.10
The algorithm is a 3-approximation algorithm for the
uncapacitated facility location problem.

Proof:. . .

G. Sagnol 6- The primal dual method 24 / 24

Analysis

Lemma 6.9
If a client j does not have a neighbor in F ′, then there is a facility
i ∈ F ′ such that cij ≤ 3vj .

Proof:. . .

Theorem 6.10
The algorithm is a 3-approximation algorithm for the
uncapacitated facility location problem.

Proof:. . .

G. Sagnol 6- The primal dual method 24 / 24

Analysis

Lemma 6.9
If a client j does not have a neighbor in F ′, then there is a facility
i ∈ F ′ such that cij ≤ 3vj .

Proof:. . .

Theorem 6.10
The algorithm is a 3-approximation algorithm for the
uncapacitated facility location problem.

Proof:. . .

G. Sagnol 6- The primal dual method 24 / 24

Analysis

Lemma 6.9
If a client j does not have a neighbor in F ′, then there is a facility
i ∈ F ′ such that cij ≤ 3vj .

Proof:. . .

Theorem 6.10
The algorithm is a 3-approximation algorithm for the
uncapacitated facility location problem.

Proof:. . .

G. Sagnol 6- The primal dual method 24 / 24

	Warm-up: Set Cover
	The Feedback Vertex Set Problem
	Shortest s-t-Path problem
	Steiner Forest Problem
	Uncapacitated Facility Location Problem

