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Warm-up: Set Cover

G. Sagnol 6- The primal dual method 2/24



Set Cover Problem

Given: A set of elements E = {ey, ..., ey}, a family of subsets
{S1,...,Sm} C 25, and a weight w; > 0 for each j € {1,..., m}.
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Set Cover Problem

Given: A set of elements E = {ey, ..., ey}, a family of subsets
{S1,...,Sm} C 25, and a weight w; > 0 for each j € {1,..., m}.

Task: Find / C {1,. m} minimizing Z w; such that U S;=E.
Jjel jel
ZWJ Xj

s.t. ij > 1 foralli=1,...,n
J:&€S;
xi > 0 forallj=1,....m

LP relaxation:
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ZWJ Xj

s.t. ij > 1 foralli=1,...,n

LP relaxation:

J:&€S;
xi > 0 forallj=1,....m

) .

Dual LP: max Zy
Sy < w forallj=1,...,m

e,-ESJ-

yi =2 0 foralli=1,...,n
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Primal-Dual Algorithm Set Cover (see Ch. 1)
sety :=0and / := 0;
while Je, ¢ | J S

jel
increase yj until 3j with e, € Sj suchthat >~ y; = w;
set | := U {j}; irei€S;
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Primal-Dual Algorithm Set Cover (see Ch. 1)

sety :=0and / := 0;
while 3e, # | S;

jel
increase y; until 3j with e, € S; such that Z Yi = wj;
set/:=1U{j}; e

Theorem 6.1 (recap of Theorem 1.10)

The primal-dual algorithm is an f-approximation algorithm for the Set
Cover Problem where f := e {Jj| e € 5}
i
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Primal-Dual Algorithm Set Cover (see Ch. 1)
sety :=0and / := 0;
while 3e, # | S;

jel
increase y; until 3j with e, € S; such that z Yi = wj;
set/:=1U{j}; i€ €S

Theorem 6.1 (recap of Theorem 1.10)

The primal-dual algorithm is an f-approximation algorithm for the Set
Cover Problem where f := e {Jj| e € 5}
i

Proof: ZWJ:Z Z yi=zy,.]{jel|e,-€5j}|

Jjel J€El i:e€S; i=1

n
<f-Y y; <f-O0PT.p<f-OPT
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Approximate Complementary Slackness

Remark. The pair of feasible solutions (x, y) to the primal and dual
LP found by the algorithm satisfies

x>0 = Z Yi=w; (compl. slackness)
e,-65j

yi>0 — Z xi <f (approx. compl. slackness)

Je€S;
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Approximate Complementary Slackness

Remark. The pair of feasible solutions (x, y) to the primal and dual
LP found by the algorithm satisfies

x>0 = Z Yi=w; (compl. slackness)
e,-65j

yi>0 — Z xi <f (approx. compl. slackness)

Je€S;

The analysis on the previous slide only relies on these two
properties!
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The Feedback Vertex Set Problem
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Feedback Vertex Set Problem

Given: Undirected graph G = (V, E) with node weights w; > 0,/ € V.

Task: Find S C V minimizing > _ w; such that G[V'\ S] is acyclic.
ics
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Feedback Vertex Set Problem

Given: Undirected graph G = (V, E) with node weights w; > 0,/ € V.
Task: Find S C V minimizing > _ w; such that G[V'\ S] is acyclic.

ies
Integer programming formulation: Let C denote the set of all cycles in G.

min E Wi - X

iev
s.t. Zx,- >1 forall C €C,

ieC

xi € {0,1} forallie V.
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Feedback Vertex Set Problem
Given: Undirected graph G = (V, E) with node weights w; > 0,/ € V.

Task: Find S C V minimizing > _ w; such that G[V'\ S] is acyclic.
ies
Integer programming formulation: Let C denote the set of all cycles in G.

min E Wi - X

iev
s.t. Zx,- >1 forall C €C,

ieC

xi € {0,1} forallie V.

Dual of LP relaxation (x > 0):

max Z yc

ceC
s.t. Z yc < w; foralli € V,
CeC:ieC
yc >0 forall C eC.
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Primal-Dual Algo for Feedback Vertex Set Problem

sety:=0and S := 0
while thereis acycle Cin G
increase yc until there is an i € C with Z yor = w;;

set S := SU{i} and delete i from G; €<
repeatedly remove nodes of degree one from G;
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Primal-Dual Algo for Feedback Vertex Set Problem
sety:=0and S := (;
while thereis acycle Cin G
increase yc until there is an i € C with Z yor = w;
set S := SuU{i} and delete i from G; criec
repeatedly remove nodes of degree one from G;

Analysis:

ZW":Z Z YC:Z\SQC\'YC

i€S ies C:ieC cec

Idea: If |S N C| < a whenever y¢ > 0, we get performance ratio a.
But: If we choose arbitrary C in each iteration, |S N C| can be large.
Idea: Always choose short cycle C with |C| < a.

But: This is not always possible (e.g., if graph is one large cycle).

Obs.: From path of nodes of degree two, algorithm chooses < 1 node.
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Refined Primal-Dual Algorithm for Feedback Vertex Set

Lemma 6.2

In any graph G that has no nodes of degree one, there is a cycle with
< 2[log, n] nodes of degree 3 or more, and it can be found in linear time.
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If the primal-dual algorithm chooses in each iteration a cycle with at most
< 2[log, n] nodes of degree 3 or more, it has performance ratio 4[log, n].
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Refined Primal-Dual Algorithm for Feedback Vertex Set

Lemma 6.2

In any graph G that has no nodes of degree one, there is a cycle with
< 2[log, n] nodes of degree 3 or more, and it can be found in linear time.

Proof:... O
Theorem 6.3

If the primal-dual algorithm chooses in each iteration a cycle with at most
< 2[log, n] nodes of degree 3 or more, it has performance ratio 4[log, n].

Proof:.... O
Remarks.

m The LP relaxation has an integrality gap of Q(log n).

m There is a primal-dual 2-approximation algorithm based on a more
sophisticated integer programming formulation
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Shortest s-t-Path problem
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Shortest s-t-Path Problem

Given: Undir. graph G = (V, E) with edge costs ¢, > 0,e € E;s,t € V
Task: Find minimum-cost s-t-path.
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Shortest s-t-Path Problem

Given: Undir. graph G = (V, E) with edge costs ¢, > 0,e € E;s,t € V

Task: Find minimum-cost s-t-path.
IP formulation: (letS:={SC V |seS,te V\S})

min g Ce * Xe

ecE
s.t. Z xe > 1 forallSe S,
ecd(S)
xe €{0,1} foralle € E.
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Shortest s-t-Path Problem

Given: Undir. graph G = (V, E) with edge costs ¢, > 0,e € E;s,t € V
Task: Find minimum-cost s-t-path.
IP formulation: (letS:={SC V |seS,te V\S})

min g Ce * Xe

ecE

s.t. Z xe > 1 forallSe S,
ecd(S)
xe €{0,1} foralle € E.

Dual of LP relaxation (x > 0):

max Z Vs

ses

s.t. Z ys < Ce forall e € E,
SeS:ecs(S)
ys >0 forall S € S.
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Primal-Dual Algorithm for Shortest s-t-Path Problem

sety :=0and F := ();
while there is no s-t-path in F
let C be the connected component of (V, F) containing s;

increase yc until thereis an e € 6(C) with Z Ys = Ce;

Se8S:ecH(S
set F = FU {e); €5:ec(s)

B delete edges from F that do not lie on s-t-path in F;
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Primal-Dual Algorithm for Shortest s-t-Path Problem

sety :=0and F := ();
while there is no s-t-path in F
let C be the connected component of (V, F) containing s;

increase yc until there is an e € §(C) with Z ¥Ys = Ce;

Se8S:ecH(S
set F = FU {e); €5:ec(s)

B delete edges from F that do not lie on s-t-path in F;

Lemma 6.4
Throughout the algorithm, the set of edges in F always forms a tree
containing node s. O

Theorem 6.5
The algorithm finds a shortest s-t-path.
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Steiner Forest Problem
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Steiner Forest Problem
Given: Graph G = (V, E) with costs c. > 0, e € E; k pairs s;, t; € V.
Task: Find F C E minimizing c¢(F) and connecting s; and t;, for all .
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k
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Given: Graph G = (V, E) with costs c. > 0, e € E; k pairs s;, t; € V.
Task: Find F C E minimizing c¢(F) and connecting s; and t;, for all .

k
IP formulation: (let S; .= {SC V | |SN{s;, t;}| =1} and S := U Si)

) i=1
min g Ce * Xe

ecE

s.t. Z xe > 1 forallSe S,
ecd(S)
xe €{0,1} foralle € E.

Dual of LP relaxation (x > 0):

max Zys

ses

s.t. Z ys < Ce forall e € E,
SeS:ecs(S)
ys >0 forall S ¢ S.
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Primal-Dual Algorithm for Steiner Forest Problem

sety:=0and F :=
while not all s;-t; pairs are connected in (V, F)
let C connected comp. of (V, F) with |C N {s;, t;}| = 1 for some i;

increase yc until thereis an e € 6(C) with Z Vs = Ce;
set F:= FU{e}; SeS:ecs(S)

G. Sagnol 6- The primal dual method 15/ 24



Primal-Dual Algorithm for Steiner Forest Problem

sety:=0and F :=
while not all s;-t; pairs are connected in (V, F)
let C connected comp. of (V, F) with |C N {s;, t;}| = 1 for some i;

increase yc until thereis an e € 6(C) with Z Vs = Ce;
set F:= FU{e}; SeS:ecs(S)

Analysis: Z Ce = Z Z ys = Z |0(S)NF|-ys

ecF ecF SeS: ecH(S) ses

G. Sagnol 6- The primal dual method 15/ 24



Primal-Dual Algorithm for Steiner Forest Problem
sety:=0and F :=
while not all s;-t; pairs are connected in (V, F)
let C connected comp. of (V, F) with |C N {s;, t;}| = 1 for some i;
increase yc until thereis an e € 6(C) with Z ¥s = Ce;
set F:= FU {e}; Ses:eco(s)

Analysis: Z Ce = Z Z ys = Z |0(S)NF|-ys

ecF ecF SeS: ecH(S) ses

1
Problem: It can happen that |§(S) N F| = k for ys > 0 and Z ys < ;DPT:
ses

B G = Ky (complete
graph) (1 _*@

. ’ g
ms  =sfori=1,...k Vs

mc :=1forallecE
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Refined Primal-Dual Algo for Steiner Forest Problem

sety :=0and F := (;

while not all s;-t; pairs are connected in (V, F)

let C := {conn. comp. C of (V, F): |C N {s;, t;}| =1 for some i};
increase y¢ for all C € C uniformly until for some e € §(C), C € C

Z Ys = Ce

Se8:ecd(S)
set F:= FU{e};
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Refined Primal-Dual Algo for Steiner Forest Problem

sety :=0and F := (;

while not all s;-t; pairs are connected in (V, F)

let C := {conn. comp. C of (V, F): |C N {s;, t;}| =1 for some i};
increase y¢ for all C € C uniformly until for some e € §(C), C € C

Z Ys = Ce

Se8:ecd(S)
set F:= FU{e};

B For all e € F (in reverse of the order in which they were added)

if F\ {e} is a feasible solution, then remove e from F;
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Example

S1 S2

G. Sagnol 6- The primal dual method 17/ 24



Example

G. Sagnol 6- The primal dual method 17/ 24



Example

G. Sagnol 6- The primal dual method 17 /24



Example

G. Sagnol 6- The primal dual method 17 /24



Example

G. Sagnol 6- The primal dual



Example




Example

G. Sagnol 6- The primal dual



Example

G. Sagnol 6- The primal dual



Analysis

Observation. At any point in the algorithm, the set of edges F is a forest.
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Analysis
Observation. At any point in the algorithm, the set of edges F is a forest.

Lemma 6.6
Let F’ be the final set of edges returned by the algorithm. For any C in
any iteration of the algorithm,

> 1O nF <2 .
cec

Theorem 6.7

The refined primal-dual algorithm is a 2-approximation algorithm for the
Steiner Forest Problem.

Proof:.... O
Corollary 6.8

Integrality gap of the LP relaxation is at most 2. This bound is tight. O
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Uncapacitated Facility Location Problem
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Uncapacitated Facility Location Problem

Given: Set of facilities F with opening costs ; > 0,/ € F;
set of clients D with metric connection costs ¢; > 0,/ € F,j € D.

Task: Choose F’ C F and assign each client to nearest facility in F’.

Objective: Minimize Z fi + Z IrrEuFr) Cjj-
i€eF’ jeD

IP formulation:

min Zﬁ-yi+ Z Cij * Xij

icF ieF.jeD
s.t. Zx,-j =1 forallj € D,

ieF

y,'—X,'J'ZO forallieF,jeD,

xij, yi € {0,1} forallie F,jeD.
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LP Relaxation and Dual LP

primal LP: min Z fi-yi+ Z Cij - Xjj

icF i€F,jeD
s.t. ZX,'J' =1 forall j € D,
icF
yi—xj=>0 forallie F,je D,
xij, ¥i > 0 forallie F,jeD.
dual LP: max > icp Vj
s.t. ZjeD wj < f; forall / € F,
vi — wj < ¢jj forallie F,je D,
wjj >0 forallie F,je D.

Interpretation of dual LP:

m v; is total amount that client j wants to pay for being served.
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LP Relaxation and Dual LP

primal LP: min Z fi-yi+ Z Cij - Xjj

icF i€F,jeD
s.t. ZX,'J' =1 forall j € D,
icF
yi—xj=>0 forallie F,je D,
xij, ¥i > 0 forallie F,jeD.
dual LP: max > icp Vj
s.t. ZjeD wj < f; forall / € F,
vi — wj < ¢jj forallie F,je D,
wjj >0 forallie F,je D.

Interpretation of dual LP:

m v; is total amount that client j wants to pay for being served.
m client j might contribute w;; to facility / for being connected to i.
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Primal-Dual Algo for Uncapacitated Facility Location

Notation & High-level idea:

m For the current feasible dual solution (v, w) and j € D let
NG) :={ieFlv=cj} .
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Notation & High-level idea:
m For the current feasible dual solution (v, w) and j € D let
NG)={ieFlv=>c} .
m If w;; > 0, we say that client j contributes to facility i.

m During the primal-dual algorithm, we maintain dual feasibility, and
we define the set of tight facilities:

T={icF:) w=Ff}.
j€D
m During the algorithm, we increase the v;’s ans w;’s, in a way that
m clientj contributes only to facilities i € N(j);
m we maintain v; = w;; + ¢, Vi € N(j).
m The set S is the set of clients not yet in the neighborhood of a tight
facility; We'll iterate until S = 0.
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Primal-Dual Algo for Uncapacitated Facility Location
Algorithm:

setS:=D,T:=0,vj:=0,w; :=0forallicF,jeD;
while S £ 0

forall j € S increase v; and w;; for all i € N(j) uniformly until
one of the following occurs:

H ) w;=fforsomei¢ T; Then, T« TuU/{i}
jebD
@B vi>cjforsomeicT,;€S; Then S+ S\ {j}

set F/:=1()

while T # () pick i € T;

B F=Fu{i T:=T\{h|3F €D, wj>0, wy >0}
open all facilities in F’; connect each j € D to nearest i € F'.
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Analysis

Lemma 6.9

If a client j does not have a neighbor in F’, then there is a facility
i € F' such that ¢; < 3v;.
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Theorem 6.10

The algorithm is a 3-approximation algorithm for the
uncapacitated facility location problem.
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