Approximation Algorithms (ADM III) 7- Hardness of Approximation

Guillaume Sagnol

Outline

1 Reduction from NP-complete problems

2 Approximation-preserving Reductions

3 The PCP theorem

Reduction from an NP-complete problem

Assume we can reduce an NP-complete problem Π into a set of instances of a minimization problem, such that

 $\Pi \text{ Yes-Instance } \iff OPT \leq a$

 $\Pi \text{ No-Instance } \iff OPT \ge b$

Reduction from an NP-complete problem

Assume we can reduce an NP-complete problem Π into a set of instances of a minimization problem, such that

 $\Pi \text{ Yes-Instance } \iff OPT \leq a$

 $\Pi \text{ No-Instance } \iff OPT \geq b$

Then, the existence of an approximation algorithm with performance guarantee strictly better than $\frac{b}{a}$ implies P = NP.

Reduction from an NP-complete problem

Assume we can reduce an NP-complete problem Π into a set of instances of a minimization problem, such that

 $\Pi \text{ Yes-Instance } \iff OPT \leq a$

 $\Pi \text{ No-Instance } \iff OPT \geq b$

Then, the existence of an approximation algorithm with performance guarantee strictly better than $\frac{b}{a}$ implies P = NP.

We already encountered this idea to show hardness-of-approximation results: Unless, P=NP, the best approximation ratio is bounded by

- 2 for k-center (reduction from Dominating set)
- 3/2 for Bin-Packing (reduction from Partition)
- $O(2^n)$ for the (non-metric) TSP (reduction from Hamiltonian Cycle)
- 4/3 for edge-coloring (reduction from 3-coloring the edges of a graph with node degrees at most 3)

G. Sagnol

Remember that in the unrelated parallel machines environment, denoted by "R", the processing time of job *j* depends on the machine *i* on which it is executed.

Remember that in the unrelated parallel machines environment, denoted by "R", the processing time of job *j* depends on the machine *i* on which it is executed.

Definition 7.1 (Scheduling on unrelated machines)

Given some $p_{ij} \ge 0$, $\forall j \in [n], \forall i \in [m]$, the problem $R || C_{\max}$ asks to assign each job j to a machine $i \in [n]$, in order to minimize the quantity $C_{\max} = \max_{i \in [m]} \sum_{j \in J_i} p_{ij}$, where $J_i \subseteq [n]$ is the subset of jobs assigned to i.

Definition 7.2 (3-dimensional matching)

Given: A, B, C, 3 disjoint sets of *n* elements, along with a family of *m* triples of the form $T_k = (a_{i_k}, b_{j_k}, c_{\ell_k}) \in A \times B \times C$ with one element from each of A, B, and C.

The 3-dimensional matching problem asks whether there exists a subset of *n* triples covering all 3n elements of $A \cup B \cup C$.

Definition 7.2 (3-dimensional matching)

Given: *A*, *B*, *C*, 3 disjoint sets of *n* elements, along with a family of *m* triples of the form $T_k = (a_{i_k}, b_{j_k}, c_{\ell_k}) \in A \times B \times C$ with one element from each of *A*, *B*, and *C*.

The 3-dimensional matching problem asks whether there exists a subset of *n* triples covering all 3n elements of $A \cup B \cup C$.

Theorem 7.3

It is NP-complete to decide whether there exists a schedule of length at most 3, given an input of $R || C_{max}$ where each $p_{ij} \in \{1, 3\}$.

Corollary 7.4

There is no α -approximation algorithm with $\alpha < 4/3$ for $R||C_{max}$, unless P = NP.

G. Sagnol

Definition 7.2 (3-dimensional matching)

Given: *A*, *B*, *C*, 3 disjoint sets of *n* elements, along with a family of *m* triples of the form $T_k = (a_{i_k}, b_{j_k}, c_{\ell_k}) \in A \times B \times C$ with one element from each of *A*, *B*, and *C*.

The 3-dimensional matching problem asks whether there exists a subset of *n* triples covering all 3n elements of $A \cup B \cup C$.

Theorem 7.3 (Stronger version)

It is NP-complete to decide whether there exists a schedule of length at most 2, given an input of $R||C_{max}$ where each $p_{ij} \in \{1,2,3\}$.

Corollary 7.4 (Stronger version)

There is no α -approximation algorithm with $\alpha < 3/2$ for $R || C_{max}$, unless P = NP.

G. Sagnol

Given: directed graph G = (V, E) with k source-sink pairs $s_i, t_i \in V$.

Goal: find a subset of $S \subseteq \{1, ..., k\}$ of maximum cardinality, together with a path P_i for each $i \in S$, and for any $i, j \in S$, $i \neq j$, $P_i \cap P_j = \emptyset$.

Given: directed graph G = (V, E) with k source-sink pairs $s_i, t_i \in V$.

Goal: find a subset of $S \subseteq \{1, ..., k\}$ of maximum cardinality, together with a path P_i for each $i \in S$, and for any $i, j \in S$, $i \neq j$, $P_i \cap P_j = \emptyset$.

We will use the following claim, without proving it: When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint paths from s_1 to t_1 and s_2 to t_2 .

Given: directed graph G = (V, E) with k source-sink pairs $s_i, t_i \in V$.

Goal: find a subset of $S \subseteq \{1, ..., k\}$ of maximum cardinality, together with a path P_i for each $i \in S$, and for any $i, j \in S$, $i \neq j$, $P_i \cap P_j = \emptyset$.

We will use the following claim, without proving it: When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint paths from s_1 to t_1 and s_2 to t_2 .

Corollary 7.5

There is no α -approximation algorithm with $\alpha > \frac{1}{2}$ for the edge disjoint paths problem, unless P = NP.

Given: directed graph G = (V, E) with k source-sink pairs $s_i, t_i \in V$.

Goal: find a subset of $S \subseteq \{1, ..., k\}$ of maximum cardinality, together with a path P_i for each $i \in S$, and for any $i, j \in S$, $i \neq j$, $P_i \cap P_j = \emptyset$.

We will use the following claim, without proving it: When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint paths from s_1 to t_1 and s_2 to t_2 .

Corollary 7.5

There is no α -approximation algorithm with $\alpha > \frac{1}{2}$ for the edge disjoint paths problem, unless P = NP.

Corollary 7.6

For any $\epsilon > 0$, there is no $\Omega(m^{-\frac{1}{2}+\epsilon})$ -approximation for the edge disjoint paths problem, unless P = NP.

Outline

1 Reduction from NP-complete problems

2 Approximation-preserving Reductions

3 The PCP theorem

It is sometimes possible to construct a reduction showing that if there exists an α -approximation-algorithm for \mathcal{P}' , then an $f(\alpha)$ -approximation algorithm for \mathcal{P} can be constructed.

- It is sometimes possible to construct a reduction showing that if there exists an α -approximation-algorithm for \mathcal{P}' , then an $f(\alpha)$ -approximation algorithm for \mathcal{P} can be constructed.
- Then, if we know it is hard to approximate \mathcal{P} within a factor $f(\alpha)$, we deduce it is hard to approximate \mathcal{P}' within α .

Recall that MAX 2SAT is the maximum satisfiability problem reduced to clauses with at most 2 literals, while MAX E 3SAT has clauses with exactly 3 literals.

Recall that MAX 2SAT is the maximum satisfiability problem reduced to clauses with at most 2 literals, while MAX E 3SAT has clauses with exactly 3 literals.

Consider an instance *I* of MAX E 3SAT, and assume that the *j*th clause is of the form $x_1 \lor x_2 \lor x_3$

Recall that MAX 2SAT is the maximum satisfiability problem reduced to clauses with at most 2 literals, while MAX E 3SAT has clauses with exactly 3 literals.

- Consider an instance *I* of MAX E 3SAT, and assume that the *j*th clause is of the form $x_1 \lor x_2 \lor x_3$
- We create an instance I' of MAX 2SAT by replacing C_j with the following 8 clauses, involving the new variable y_j:

 $x_1 \lor x_3 \quad \bar{x_1} \lor \bar{x_3} \quad x_1 \lor \bar{y_j} \quad \bar{x_1} \lor y_j \quad x_3 \lor \bar{y_j} \quad \bar{x_3} \lor y_j \quad x_2 \lor y_j \quad x_2 \lor y_j$

Recall that MAX 2SAT is the maximum satisfiability problem reduced to clauses with at most 2 literals, while MAX E 3SAT has clauses with exactly 3 literals.

- Consider an instance *I* of MAX E 3SAT, and assume that the *j*th clause is of the form $x_1 \lor x_2 \lor x_3$
- We create an instance I' of MAX 2SAT by replacing C_j with the following 8 clauses, involving the new variable y_j:

 $x_1 \vee x_3 \quad \bar{x_1} \vee \bar{x_3} \quad x_1 \vee \bar{y_j} \quad \bar{x_1} \vee y_j \quad x_3 \vee \bar{y_j} \quad \bar{x_3} \vee y_j \quad x_2 \vee y_j \quad x_2 \vee y_j$

Number of satisfied clauses, for each assignment of x_1, x_2, x_3, y_j :

	x_1	<i>x</i> 2	X3	$y_j = 0$	$y_j = 1$	
	0	0	0	5	5	
	0	0	1	5	7	
	0	1	0	7	5	
	0	1	1	7	7	
	1	0	0	5	7	
	1	0	1	3	7	
	1	1	0	7	7	
	1	1	1	5	7	
7- Proving the Hardness of A						of An

G. Sagnol

7- Proving the Hardness of Approximation 9 / 20

Observation

• For any assignment of the variables x_1, x_2, x_3

 C_j satisfied $\iff \exists y_j : \mathsf{7}$ clauses of this group satisfied in I'

 $\neg C_j$ satisfied $\iff \forall y_j$, 5 clauses of this group satisfied in I'

Observation

• For any assignment of the variables x_1, x_2, x_3

 C_j satisfied $\iff \exists y_j : \mathsf{7}$ clauses of this group satisfied in I'

 $\neg C_j$ satisfied $\iff \forall y_j$, 5 clauses of this group satisfied in I'

■ Moreover, we know that $OPT(I) \ge 7/8 \cdot m$.

Observation

• For any assignment of the variables x_1, x_2, x_3

 C_j satisfied $\iff \exists y_j : \mathsf{7}$ clauses of this group satisfied in I'

 $\neg C_j$ satisfied $\iff \forall y_j$, 5 clauses of this group satisfied in I'

■ Moreover, we know that $OPT(I) \ge 7/8 \cdot m$.

Lemma 7.7

If there is an α approximation algorithm for MAX 2SAT, then there is a $1 - \frac{27}{7}(1 - \alpha)$ -approximation algorithm for MAX E 3SAT

Observation

• For any assignment of the variables x_1, x_2, x_3

 C_j satisfied $\iff \exists y_j : \mathsf{7}$ clauses of this group satisfied in I'

 $\neg C_j$ satisfied $\iff \forall y_j$, 5 clauses of this group satisfied in I'

■ Moreover, we know that $OPT(I) \ge 7/8 \cdot m$.

Lemma 7.7

If there is an α approximation algorithm for MAX 2SAT, then there is a $1 - \frac{27}{7}(1 - \alpha)$ -approximation algorithm for MAX E 3SAT

We will see in the next section that there is no α -approximation algorithm for MAX E 3SAT with $\alpha > 7/8$, unless P=NP. Therefore, we get:

Theorem 7.8

There is no α -approximation algorithm for MAX 2SAT for constant $\alpha > 209/216 \simeq 0.968$ unless P=NP.

L-Reductions

Consider two optimization problems \mathcal{P} and \mathcal{P}' with corresponding sets of instances $X_{\mathcal{P}}$ and $X_{\mathcal{P}'}$, respectively.

Definition 7.9 (L-Reduction)

An L-reduction from \mathcal{P} to \mathcal{P}' with parameters a, b > 0 is a map $f : X_{\mathcal{P}} \to X_{\mathcal{P}'}$ such that for all $I \in X_{\mathcal{P}}$:

I' := f(I) can be computed in time polynomial in the size of I;
□ OPT(I') ≤ a · OPT(I);

iii given a solution of value V' to I', one can compute in polynomial time a solution of value V to I such that $|OPT(I) - V| \le b \cdot |OPT(I') - V'|$.

L-Reductions

Consider two optimization problems \mathcal{P} and \mathcal{P}' with corresponding sets of instances $X_{\mathcal{P}}$ and $X_{\mathcal{P}'}$, respectively.

Definition 7.9 (L-Reduction)

An L-reduction from \mathcal{P} to \mathcal{P}' with parameters a, b > 0 is a map $f : X_{\mathcal{P}} \to X_{\mathcal{P}'}$ such that for all $I \in X_{\mathcal{P}}$:

I' := f(I) can be computed in time polynomial in the size of I;
OPT(I') < a · OPT(I);

iii given a solution of value V' to I', one can compute in polynomial time a solution of value V to I such that $|OPT(I) - V| \le b \cdot |OPT(I') - V'|$

Example: The reduction from MAX E 3SAT to MAX 2SAT in the previous proof is an L-reduction with parameters $a = \frac{54}{7}$ and $b = \frac{1}{2}$.

G. Sagnol

Theorem 7.10

For maximization problems \mathcal{P} and \mathcal{P}' , if there is an L-reduction from \mathcal{P} to \mathcal{P}' , and there is an α -approximation algorithm for \mathcal{P}' , then there is an $(1 - ab(1 - \alpha))$ -approximation algorithm for \mathcal{P} .

Theorem 7.10

For maximization problems \mathcal{P} and \mathcal{P}' , if there is an L-reduction from \mathcal{P} to \mathcal{P}' , and there is an α -approximation algorithm for \mathcal{P}' , then there is an $(1 - ab(1 - \alpha))$ -approximation algorithm for \mathcal{P} .

Proof:...

Theorem 7.10

For maximization problems \mathcal{P} and \mathcal{P}' , if there is an L-reduction from \mathcal{P} to \mathcal{P}' , and there is an α -approximation algorithm for \mathcal{P}' , then there is an $(1 - ab(1 - \alpha))$ -approximation algorithm for \mathcal{P} .

Proof:...

Theorem 7.11

For minimization problems \mathcal{P} and \mathcal{P}' , if there is an L-reduction from \mathcal{P} to \mathcal{P}' , and there is an α -approximation algorithm for \mathcal{P}' , then there is an $(ab(\alpha - 1) + 1)$ -approximation algorithm for \mathcal{P} .

MaxClique **Given:** Undirected graph G = (V, E).

Task: Find $V' \subseteq V$ maximizing |V'| with all nodes in V' pairwise adjacent.

MaxClique Given: Undirected graph G = (V, E).

Task: Find $V' \subseteq V$ maximizing |V'| with all nodes in V' pairwise adjacent.

Notation: The size of a largest clique $V' \subseteq V$ in *G* is denoted by $\omega(G)$.

MaxClique

Given: Undirected graph G = (V, E).

Task: Find $V' \subseteq V$ maximizing |V'| with all nodes in V' pairwise adjacent.

Notation: The size of a largest clique $V' \subseteq V$ in *G* is denoted by $\omega(G)$.

Maximum Independent Set

Given: Undirected graph G = (V, E).

Task: Find $V' \subseteq V$ maximizing |V'| with V' an independent set (or a stable), i.e., all nodes of V' are pairwise non-adjacent. **Notation:** The size of a largest stable $V' \subseteq V$ in *G* is denoted by $\alpha(G)$.

MaxClique

Given: Undirected graph G = (V, E).

Task: Find $V' \subseteq V$ maximizing |V'| with all nodes in V' pairwise adjacent.

Notation: The size of a largest clique $V' \subseteq V$ in *G* is denoted by $\omega(G)$.

Maximum Independent Set

G. Sagnol

Given: Undirected graph G = (V, E).

Task: Find $V' \subseteq V$ maximizing |V'| with V' an independent set (or a stable), i.e., all nodes of V' are pairwise non-adjacent.

Notation: The size of a largest stable $V' \subseteq V$ in *G* is denoted by $\alpha(G)$.

MaxClique

Given: Undirected graph G = (V, E).

Task: Find $V' \subseteq V$ maximizing |V'| with all nodes in V' pairwise adjacent.

Notation: The size of a largest clique $V' \subseteq V$ in *G* is denoted by $\omega(G)$.

Maximum Independent Set

Given: Undirected graph G = (V, E).

Task: Find $V' \subseteq V$ maximizing |V'| with V' an independent set (or a stable), i.e., all nodes of V' are pairwise non-adjacent. **Notation:** The size of a largest stable $V' \subseteq V$ in *G* is denoted by $\alpha(G)$.

Observation: MaxClique and Maximum Independent Set are fundamentally equivalent, as $\omega(G) = \alpha(\overline{G})$.

Lemma 7.12

There is an L-reduction with parameters a = 1 and b = 1 from MAX E 3SAT to MaxClique.

Lemma 7.12

There is an L-reduction with parameters a = 1 and b = 1 from MAX E 3SAT to MaxClique.

Proof: ...

Lemma 7.12

There is an L-reduction with parameters a = 1 and b = 1 from MAX E 3SAT to MaxClique.

Proof: ...

Lemma 7.13

There is an L-reduction with parameters $a = 2\Delta$ and b = 1 from Vertex Cover in bounded degree graphs to the Steiner Tree Problem.

Lemma 7.12

There is an L-reduction with parameters a = 1 and b = 1 from MAX E 3SAT to MaxClique.

Proof: ...

Lemma 7.13

There is an L-reduction with parameters $a = 2\Delta$ and b = 1 from Vertex Cover in bounded degree graphs to the Steiner Tree Problem.

Moreover, it is known that for all Δ large enough, there exists $\epsilon > 0$ s.t. the existence of a $(1 + \epsilon)$ -approximation algorithm for vertex cover in bounded degree graphs ($\leq \Delta$) would imply P=NP.

Corollary 7.14

There is no PTAS for the Steiner tree problem, unless P=NP.

G. Sagnol

Outline

1 Reduction from NP-complete problems

2 Approximation-preserving Reductions

3 The PCP theorem

correct answer is "Yes" \implies \exists certificate *C*: Pr(*V* outputs "Yes")= 1.

correct answer is "Yes" $\implies \exists \text{ certificate } C: \Pr(V \text{ outputs "Yes"})=1.$ correct answer is "No" $\implies \forall \text{ certificates } C: \Pr(V \text{ outputs "Yes"}) \le \frac{1}{2}.$

correct answer is "Yes" $\implies \exists \text{ certificate } C: \Pr(V \text{ outputs "Yes"}) = 1.$ correct answer is "No" $\implies \forall \text{ certificates } C: \Pr(V \text{ outputs "Yes"}) \le \frac{1}{2}.$

Definition 7.15

The class of decision problems that admit such probabilitically checkable proofs is called $PCP \equiv PCP_{1,\frac{1}{2}}[O(\log(n)), O(1)].$

correct answer is "Yes" $\implies \exists$ certificate *C*: Pr(*V* outputs "Yes") $\ge c$. correct answer is "No" $\implies \forall$ certificates *C*: Pr(*V* outputs "Yes") $\le s$.

Definition 7.15

The class of decision problems that admit such probabilitically checkable proofs is called $PCP \equiv PCP_{1,\frac{1}{2}}[O(\log(n)), O(1)].$

More generally, we can define the class $PCP_{c,s}[r(n), q(n)]$, so that the standard definition of NP reads: $NP=PCP_{1,0}[0, poly(n)]$.

G. Sagnol

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP.

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP. In words, this means that every decision problem in NP has a probabilistically checkable proof of constant query complexity and logarithmic randomness complexity.

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP. In words, this means that every decision problem in NP has a probabilistically checkable proof of constant query complexity and logarithmic randomness complexity.

Proving $PCP \subseteq NP$ is easy. The converse inclusion is much more involved.

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP. In words, this means that every decision problem in NP has a probabilistically checkable proof of constant query complexity and logarithmic randomness complexity.

Proving $PCP \subseteq NP$ is easy. The converse inclusion is much more involved. The following theorem shows it can also be viewed as a result of hardness of approximation:

Theorem 7.17

(NP \subseteq PCP) if and only if there exists $\epsilon > 0$ such that the problem of distinguishing between MAX E 3SAT instances for which there is a variable assignment satisfying all clauses, from instances in which at most a (1- ϵ) fraction of all clauses can be satisfied simultaneously, is NP-hard.

Proof: ...

Product Graph

Definition 7.18 (product graph)

For an undirected graph G = (V, E) let $G^k = (V^k, E_k)$ where $V^k = V \times V \times \cdots \times V$ is the set of all *k*-tuples of *V* and E_k is defined by

$$E_k := \{(u_1, \ldots, u_k)(v_1, \ldots, v_k) \mid u_i = v_i \text{ or } u_i v_i \in E \text{ for all } i\}$$
 .

Product Graph

Definition 7.18 (product graph)

For an undirected graph G = (V, E) let $G^k = (V^k, E_k)$ where $V^k = V \times V \times \cdots \times V$ is the set of all *k*-tuples of *V* and E_k is defined by

$$\mathsf{E}_k := \{(u_1,\ldots,u_k)(v_1,\ldots,v_k) \mid u_i = v_i ext{ or } u_iv_i \in E ext{ for all } i\}$$

Lemma 7.19

It holds $\omega(G^k) = \omega(G)^k$. Moreover, given a clique *C* of G^k , one can efficiently compute a clique *C'* of *G*, of size $|C'| \ge |C|^{1/k}$.

G. Sagnol

7- Proving the Hardness of Approximation 18 / 20

Proposition 7.20

If there is an $\alpha\text{-approximation algorithm for MaxClique for some fixed <math display="inline">\alpha<$ 1, then there is a PTAS.

Proposition 7.20

If there is an $\alpha\text{-approximation algorithm for MaxClique for some fixed <math display="inline">\alpha<$ 1, then there is a PTAS.

Proof:...

Proposition 7.20

If there is an $\alpha\text{-approximation}$ algorithm for MaxClique for some fixed $\alpha<$ 1, then there is a PTAS.

Proof:...

But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS for MAX E 3SAT, and by the PCP theorem, this would imply P=NP !

Proposition 7.20

If there is an $\alpha\text{-approximation}$ algorithm for MaxClique for some fixed $\alpha<$ 1, then there is a PTAS.

Proof:...

But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS for MAX E 3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21

If there is a constant factor approximation algorithm for MaxClique, then P=NP.

Proposition 7.20

If there is an $\alpha\text{-approximation}$ algorithm for MaxClique for some fixed $\alpha<$ 1, then there is a PTAS.

Proof:...

But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS for MAX E 3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21

If there is a constant factor approximation algorithm for MaxClique, then P=NP.

Theorem 7.22 (Zuckerman 2007)

There is no $n^{-1+\varepsilon}$ -approximation algorithm for MaxClique, for any $\varepsilon > 0$, unless P = NP.

G. Sagnol

Proposition 7.20

If there is an $\alpha\text{-approximation}$ algorithm for MaxClique for some fixed $\alpha<$ 1, then there is a PTAS.

Proof:...

But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS for MAX E 3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21

If there is a constant factor approximation algorithm for MaxClique, then P=NP.

Theorem 7.22 (Zuckerman 2007)

There is no $n^{-1+\varepsilon}$ -approximation algorithm for MaxClique, for any $\varepsilon > 0$, unless P = NP.

G. Sagnol

Approximability of MAX E 3SAT

Theorem 7.23

For all $\epsilon, \delta > 0$, NP \subseteq PCP^{parity}_{$1-\epsilon, \frac{1}{2}+\delta$}[$O(\log(n)), 3$], where *parity* indicates that the verifyer can only evaluate the parity ($x_{i_1} + x_{i_2} + x_{i_3} \mod 2$) of the three bits it checks.

Approximability of MAX E 3SAT

Theorem 7.23

For all $\epsilon, \delta > 0$, NP \subseteq PCP^{parity}_{$1-\epsilon,\frac{1}{2}+\delta$}[$O(\log(n)), 3$], where *parity* indicates that the verifyer can only evaluate the parity ($x_{i_1} + x_{i_2} + x_{i_3} \mod 2$) of the three bits it checks.

Corollary 7.24

There is no α -approximation algorithm for MAX E 3SAT for some fixed $\alpha > 7/8$, unless P = NP.