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Reduction from an NP-complete problem

Assume we can reduce an NP-complete problem 1 into a set of instances
of a minimization problem, such that

1 Yes-Instance < OPT < a
T No-Instance < OPT > b
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Reduction from an NP-complete problem
Assume we can reduce an NP-complete problem 1 into a set of instances
of a minimization problem, such that

1 Yes-Instance < OPT < a
T No-Instance < OPT > b

Then, the existence of an approximation algorithm with performance

guarantee strictly better than — implies P = NP.
a
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Reduction from an NP-complete problem
Assume we can reduce an NP-complete problem 1 into a set of instances
of a minimization problem, such that
1 Yes-Instance < OPT < a
T No-Instance < OPT > b
Then, the existence of an approximation algorithm with performance

. b, .
guarantee strictly better than — implies P = NP.
a

We already encountered this idea to show hardness-of-approximation
results: Unless, P=NP, the best approximation ratio is bounded by

m 2 for k-center (reduction from Dominating set)
m 3/2 for Bin-Packing (reduction from Partition)
m O(2") for the (non-metric) TSP (reduction from Hamiltonian Cycle)

m 4/3 for edge-coloring (reduction from 3-coloring the edges of a
graph with node degrees at most 3)
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Hardness of approximation of R||C.x

Remember that in the unrelated parallel machines environment, denoted
by “R” the processing time of job j depends on the machine / on which it
is executed.
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Hardness of approximation of R||C.x

Remember that in the unrelated parallel machines environment, denoted
by “R”, the processing time of job j depends on the machine i/ on which it
is executed.

Definition 7.1 (Scheduling on unrelated machines)

Given some p;; > 0, V) € [n],Vi € [m], the problem R||C.. asks to assign
each job j to a machine i € [n], in order to minimize the quantity

Cnax = _m[ax] Z pij> where J; C [n] is the subset of jobs assigned to i.
1€lm

JEJi
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Hardness of approximation of R||C.x

Definition 7.2 (3-dimensional matching)

Given: A, B, C, 3 disjoint sets of n elements, along with a family of m
triples of the form Ty = (a;,, bj,, c;,) € A x B x C with one element from
each of A, B, and C.

The 3-dimensional matching problem asks whether there exists a
subset of n triples covering all 3n elements of AU B U C.
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Hardness of approximation of R||C.x

Definition 7.2 (3-dimensional matching)

Given: A, B, C, 3 disjoint sets of n elements, along with a family of m
triples of the form T = (a;,, bj,, ¢z, ) € A x B x C with one element from
each of A, B, and C.

The 3-dimensional matching problem asks whether there exists a
subset of n triples covering all 3n elements of AU B U C.

Theorem 7.3

It is NP-complete to decide whether there exists a schedule of length at
most 3, given an input of R||C.« where each p;; € {1,3}.

Corollary 7.4

There is no a-approximation algorithm with o < 4/3 for R||Cyax, unless
P = NP.
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Hardness of approximation of R||C.x

Definition 7.2 (3-dimensional matching)

Given: A, B, C, 3 disjoint sets of n elements, along with a family of m
triples of the form T, = (a;,, bj,, ¢/, ) € A x B x C with one element from
each of A, B, and C.

The 3-dimensional matching problem asks whether there exists a
subset of n triples covering all 3n elements of AU B U C.

Theorem 7.3 (Stronger version)

It is NP-complete to decide whether there exists a schedule of length at
most 2, given an input of R|| .« where each p;; € {1,2,3}.

Corollary 7.4 (Stronger version)

There is no a-approximation algorithm with « < 3/2 for R||Cyax, unless
P = NP.

G. Sagnol 7- Proving the Hardness of Approximation 5/20



Hardness of approximation for edge-disjoint paths
Given: directed graph G = (V/, E) with k source-sink pairs s;, t; € V.

Goal: find a subset of S C {1, ..., k} of maximum cardinality, together
with a path P; foreach i € S,and forany i,j € S,i# j, PN P; = 0.

G. Sagnol 7- Proving the Hardness of Approximation 6/20



Hardness of approximation for edge-disjoint paths
Given: directed graph G = (V/, E) with k source-sink pairs s;, t; € V.

Goal: find a subset of S C {1, ..., k} of maximum cardinality, together
with a path P; foreach i € S,and forany i,j € S,i# j, PN P; = 0.

We will use the following claim, without proving it:

When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint
paths from s; to t; and s, to t,.
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Hardness of approximation for edge-disjoint paths
Given: directed graph G = (V/, E) with k source-sink pairs s;, t; € V.

Goal: find a subset of S C {1, ..., k} of maximum cardinality, together
with a path P; foreach i € S,and forany i,j € S, i # j, Pin P; = 0.

We will use the following claim, without proving it:
When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint
paths from s; to t; and s, to t,.

Corollary 7.5

‘

There is no a—approximation algorithm with o > 5 for the edge disjoint
paths problem, unless P = NP.
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Hardness of approximation for edge-disjoint paths
Given: directed graph G = (V/, E) with k source-sink pairs s;, t; € V.

Goal: find a subset of S C {1, ..., k} of maximum cardinality, together
with a path P; foreach i € S,and forany i,j € S, i # j, Pin P; = 0.

We will use the following claim, without proving it:
When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint
paths from s; to t; and s, to t,.

Corollary 7.5

‘

There is no a—approximation algorithm with o > 5 for the edge disjoint
paths problem, unless P = NP.

Corollary 7.6

For any € > 0, there is no Q(m_%+5)—approximation for the edge disjoint
paths problem, unless P = NP.
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Outline

Approximation-preserving Reductions
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Approximation-Preserving Reductions

It is sometimes possible to construct a reduction showing that if there
exists an a-approximation-algorithm for P/, then an f(a)—approximation
algorithm for P can be constructed.
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Approximation-Preserving Reductions

It is sometimes possible to construct a reduction showing that if there
exists an a-approximation-algorithm for P/, then an f(a)—approximation
algorithm for P can be constructed.

Then, if we know it is hard to approximate P within a factor f(«a), we
deduce it is hard to approximate P’ within a.
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Reduction from MAX E 3SAT to MAX 2SAT

Recall that MAX 2SAT is the maximum satisfiability problem reduced to
clauses with at most 2 literals, while MAX E 3SAT has clauses with

exactly 3 literals.
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Reduction from MAX E 3SAT to MAX 2SAT
Recall that MAX 2SAT is the maximum satisfiability problem reduced to
clauses with at most 2 literals, while MAX E 3SAT has clauses with

exactly 3 literals.
m Consider an instance / of MAX E 3SAT, and assume that the jth

clause is of the form x; V x2 V x3
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Reduction from MAX E 3SAT to MAX 2SAT

Recall that MAX 2SAT is the maximum satisfiability problem reduced to
clauses with at most 2 literals, while MAX E 3SAT has clauses with

exactly 3 literals.
m Consider an instance / of MAX E 3SAT, and assume that the jth
clause is of the form x; V x2 V x3
m We create an instance /" of MAX 2SAT by replacing C; with the
following 8 clauses, involving the new variable y;:

x1Vxs xxVxs xxVy; xiVy; x3aVy, x3Vy; xxVy xVy;
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Reduction from MAX E 3SAT to MAX 2SAT

Recall that MAX 2SAT is the maximum satisfiability problem reduced to
clauses with at most 2 literals, while MAX E 3SAT has clauses with
exactly 3 literals.

m Consider an instance / of MAX E 3SAT, and assume that the jth
clause is of the form x; V x2 V x3

m We create an instance /" of MAX 2SAT by replacing C; with the
following 8 clauses, involving the new variable y;:

x1Vxs xxVxs xxVy; xiVy; x3aVy, x3Vy; xxVy xVy;

Number of satisfied clauses, for each assignment of x;, x2, x3, yj:

x1 x2 x3|y=0 y=1
0 0 0 5 5
0 0 1 5 7
0 1 0 7 5
0 1 1 7 7
1 0 0 5 7
1 0 1 3 7
1 1 0 7 7
1 1 1 5 7
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Reduction from MAX E 3SAT to MAX 2SAT

Observation
m For any assignment of the variables x{, x>, x3

Cj satisfied <= 3Jy;: 7 clauses of this group satisfied in /'
—C; satisfied <= Vy;, 5 clauses of this group satisfied in /'
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Reduction from MAX E 3SAT to MAX 2SAT

Observation
m For any assignment of the variables x{, x>, x3

Cj satisfied <= 3Jy;: 7 clauses of this group satisfied in /'
—C; satisfied <= Vy;, 5 clauses of this group satisfied in /'
m Moreover, we know that OPT (/) > 7/8 - m.
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Reduction from MAX E 3SAT to MAX 2SAT

Observation
m For any assignment of the variables x{, x>, x3

Cj satisfied <= 3Jy;: 7 clauses of this group satisfied in /'
—C; satisfied <= Vy;, 5 clauses of this group satisfied in /'
m Moreover, we know that OPT (/) > 7/8 - m.

Lemma 7.7
If there is an « approximation algorithm for MAX 2SAT, then there is a
1-— 27—7(1 — «)-approximation algorithm for MAX E 3SAT
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Reduction from MAX E 3SAT to MAX 2SAT

Observation
m For any assignment of the variables x{, x>, x3

Cj satisfied <= 3Jy;: 7 clauses of this group satisfied in /'
—C; satisfied <= Vy;, 5 clauses of this group satisfied in /'
m Moreover, we know that OPT (/) > 7/8 - m.

Lemma 7.7
If there is an « approximation algorithm for MAX 2SAT, then there is a
1-— 27—7(1 — «)-approximation algorithm for MAX E 3SAT

We will see in the next section that there is no a-approximation
algorithm for MAX E 3SAT with a > 7/8, unless P=NP. Therefore, we get:

Theorem 7.8

There is no a—approximation algorithm for MAX 2SAT for constant
a > 209/216 ~ 0.968 unless P=NP.
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L-Reductions

Consider two optimization problems P and P’ with corresponding sets of
instances Xp and Xp/, respectively.

Definition 7.9 (L-Reduction)

An L-reduction from P to P’ with parameters a, b > 0 is a map
f : Xp — Xps such that for all | € Xp:

| /' := f(/) can be computed in time polynomial in the size of /;
H opT (/') < a-0PT(/);
M given a solution of value V' to I’, one can compute in polynomial
time a solution of value V to / such that
|oPT (/) — V| < b-|OPT (/') — V'] .
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L-Reductions

Consider two optimization problems P and P’ with corresponding sets of
instances Xp and Xp/, respectively.

Definition 7.9 (L-Reduction)

An L-reduction from P to P’ with parameters a, b > 0 is a map
f : Xp — Xps such that for all | € Xp:

| /' := f(/) can be computed in time polynomial in the size of /;
H opT (/') < a-0PT(/);

M given a solution of value V' to I’, one can compute in polynomial
time a solution of value V to / such that

|oPT (/) — V| < b-|OPT (/') — V'] .

Example: The reduction from MAX E 3SAT to MAX 2SAT in the previous

. . . 54 1
proof is an L-reduction with parameters a = — and b = ~.

2
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Approximation-Preserving Reductions

Theorem 7.10

For maximization problems P and P, if there is an L-reduction
from P to P/, and there is an a-approximation algorithm for P/,
then there is an (1 — ab(1 — a))-approximation algorithm for P.
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Approximation-Preserving Reductions

Theorem 7.10

For maximization problems P and P, if there is an L-reduction
from P to P/, and there is an a-approximation algorithm for P/,
then there is an (1 — ab(1 — a))-approximation algorithm for P.

Proof:... O
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Approximation-Preserving Reductions

Theorem 7.10

For maximization problems P and P, if there is an L-reduction
from P to P/, and there is an a-approximation algorithm for P/,
then there is an (1 — ab(1 — a))-approximation algorithm for P.

Proof:... O

Theorem 7.11

For minimization problems P and P, if there is an L-reduction from
P to P/, and there is an a-approximation algorithm for P/, then
there is an (ab(a — 1) + 1)-approximation algorithm for P. O
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MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph G = (V, E).

Task: Find V/ C V maximizing |V’| with all nodes in V' pairwise adjacent.
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MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph G = (V, E).

Task: Find V/ C V maximizing |V’| with all nodes in V' pairwise adjacent.

Notation: The size of a largest clique V' C V in G is denoted by w(G).
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MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph G = (V, E).

Task: Find V/ C V maximizing |V’| with all nodes in V' pairwise adjacent.
Notation: The size of a largest clique V' C V in G is denoted by w(G).
Maximum Independent Set

Given: Undirected graph G = (V, E).

Task: Find V/ C V maximizing | V| with V/ an independent set (or a
stable), i.e., all nodes of V/ are pairwise non-adjacent.
Notation: The size of a largest stable V' C V in G is denoted by «(G).
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MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph G = (V, E).

Task: Find V/ C V maximizing |V’| with all nodes in V' pairwise adjacent.
Notation: The size of a largest clique V' C V in G is denoted by w(G).
Maximum Independent Set

Given: Undirected graph G = (V, E).

Task: Find VV/ C V maximizing | V| with V/ an independent set (or a
stable), i.e., all nodes of V/ are pairwise non-adjacent.
Notation: The size of a largest stable V' C V in G is denoted by «(G).

Observation: MaxClique and Maximum Independent Set are

fundamentally equivalent, as w(G) = a(G).
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Examples of L-Reductions

Lemma 7.12

There is an L-reduction with parameters a =1 and b = 1 from
MAX E 3SAT to MaxClique.
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Examples of L-Reductions

Lemma 7.12

There is an L-reduction with parameters a =1 and b = 1 from
MAX E 3SAT to MaxClique.

Proof: ...

G. Sagnol 7- Proving the Hardness of Approximation 14 /20



Examples of L-Reductions

Lemma 7.12

There is an L-reduction with parameters a =1 and b = 1 from
MAX E 3SAT to MaxClique.

Proof: ... O
Lemma 7.13

There is an L-reduction with parameters a = 2A and b = 1 from Vertex
Cover in bounded degree graphs to the Steiner Tree Problem.
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Examples of L-Reductions

Lemma 7.12

There is an L-reduction with parameters a =1 and b = 1 from
MAX E 3SAT to MaxClique.

Proof: ... O
Lemma 7.13

There is an L-reduction with parameters a = 2A and b = 1 from Vertex
Cover in bounded degree graphs to the Steiner Tree Problem.

Moreover, it is known that for all A large enough, there exists ¢ > 0 s.t.
the existence of a (1 + ¢)-approximation algorithm for vertex cover in
bounded degree graphs (< A) would imply P=NP.

Corollary 7.14
There is no PTAS for the Steiner tree problem, unless P=NP.
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Outline

The PCP theorem
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Another Characterization of NP

@—b V F— Yes/No
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Another Characterization of NP

0(1)

@—b V F— Yes/No
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Another Characterization of NP

— Yes / No
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Another Characterization of NP

—> Yes / No

correct answer is “Yes” = Jcertificate C: Pr(V outputs “Yes”")= 1.
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Another Characterization of NP

—> Yes / No

correct answer is “Yes” = Jcertificate C: Pr(V outputs “Yes”)= 1.
. . 1
correct answer is “No” ==V certificates C: Pr(V outputs “Yes”")< 5
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Another Characterization of NP

—> Yes / No

correct answer is “Yes” =  Jcertificate C: Pr(V outputs “Yes”)= 1.
1

correct answer is “No” ==V certificates C: Pr(V outputs “Yes”")< 5
Definition 7.15
The class of decision problems that admit such probabilitically checkable
proofs is called PCP = PCP, 1[O(log(n)), O(1)].

2
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Another Characterization of NP

—> Yes / No

correct answer is “Yes” == 3 certificate C: Pr(V outputs “Yes")> c.
correct answer is “No” ==V certificates C: Pr(V outputs “Yes”")< s.

Definition 7.15

The class of decision problems that admit such probabilitically checkable
proofs is called PCP = PCP, 1[O(log(n)), O(1)].

More generally, we can define the class PCP s[r(n), g(n)], so that the
standard definition of NP reads: NP=PCP; ([0, poly(n)].
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Hardness of Approximation

Theorem 716 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]
NP=PCP.
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Hardness of Approximation

Th eorem 716 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP. In words, this means that every decision problem in NP has a
probabilistically checkable proof of constant query complexity and
logarithmic randomness complexity.
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Hardness of Approximation

Th eorem 716 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP. In words, this means that every decision problem in NP has a
probabilistically checkable proof of constant query complexity and
logarithmic randomness complexity.

Proving PCP C NP is easy. The converse inclusion is much more involved.
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Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP. In words, this means that every decision problem in NP has a
probabilistically checkable proof of constant query complexity and
logarithmic randomness complexity.

Proving PCP C NP is easy. The converse inclusion is much more involved.
The following theorem shows it can also be viewed as a result of
hardness of approximation:

Theorem 7.17

(NPC PCP) if and only if there exists ¢ > 0 such that the problem of
distinguishing between MAXE 3SAT instances for which there is a
variable assignment satisfying all clauses, from instances in which at most
a (1-¢) fraction of all clauses can be satisfied simultaneously, is NP-hard.

Proof: ... O
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Product Graph

Definition 7.18 (product graph)

For an undirected graph G = (V, E) let G¥ = (V*, E,) where
VK=V x V x--- x Vis the set of all k-tuples of V and Ej is defined by

E, = {(ul,...,uk)(vl,...,vk) ‘ u; = v or u;v; € E for all i} 5
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Product Graph

Definition 7.18 (product graph)

For an undirected graph G = (V, E) let G¥ = (V*, E,) where
VK=V x V x--- x Vis the set of all k-tuples of V and Ej is defined by

Ey = {(ul, acog uk)(vl, boag Vk) ‘ u; = vj or u;v; € E for all f} 5
Example:
, —
G _\ G
\
Lemma 7.19

It holds w(G*) = w(G)*. Moreover, given a clique C of G¥, one can

efficiently compute a clique C’ of G, of size |C'| > |C|*/*.
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MaxCligue: Self improvement of approx. ratio

Proposition 7.20

If there is an a-approximation algorithm for MaxClique for some fixed
a < 1, then there is a PTAS.
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If there is an a-approximation algorithm for MaxClique for some fixed
a < 1, then there is a PTAS.

Proof:... O
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MaxClique: Self improvement of approx. ratio

Proposition 7.20

If there is an a-approximation algorithm for MaxClique for some fixed
a < 1, then there is a PTAS.

Proof.... ]
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS

for MAX E 3SAT, and by the PCP theorem, this would imply P=NP !
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MaxCligue: Self improvement of approx. ratio

Proposition 7.20

If there is an a-approximation algorithm for MaxClique for some fixed
a < 1, then there is a PTAS.

Proof:... ]
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS
for MAX E 3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21

If there is a constant factor approximation algorithm for MaxClique, then
P=NP.
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MaxCligue: Self improvement of approx. ratio

Proposition 7.20

If there is an a-approximation algorithm for MaxClique for some fixed
a < 1, then there is a PTAS.

Proof:... ]
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS
for MAX E 3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21

If there is a constant factor approximation algorithm for MaxClique, then
P=NP.

Theorem 7.22 (Zuckerman 2007)

There is no n~'**-approximation algorithm for MaxClique, for any £ > 0,
unless P = NP.
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Approximability of MAX E 3SAT

Theorem 7.23
Foralle,6 > 0, NP C PCP;’i”:"lM[O(Iog(n)), 3], where parity

indicates that the verifyer can only evaluate the parity
(x; + x;, + x;; mod 2) of the three bits it checks.
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Approximability of MAX E 3SAT

Theorem 7.23
Foralle,6 > 0, NP C PCP;’i”:"lM[O(Iog(n)), 3], where parity

indicates that the verifyer can only evaluate the parity
(x; + x;, + x;; mod 2) of the three bits it checks.

Corollary 7.24

There is no a—approximation algorithm for MAX E 3SAT for some
fixed o > 7/8, unless P = NP.
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