
Approximation Algorithms (ADM III)
7- Hardness of Approximation

Guillaume Sagnol

G. Sagnol 7- Proving the Hardness of Approximation 1 / 20

Outline

1 Reduction from NP-complete problems

2 Approximation-preserving Reductions

3 The PCP theorem

G. Sagnol 7- Proving the Hardness of Approximation 2 / 20

Reduction from an NP-complete problem
Assume we can reduce an NP-complete problem Π into a set of instances
of a minimization problem, such that

Π Yes-Instance ⇐⇒ OPT ≤ a

Π No-Instance ⇐⇒ OPT ≥ b

Then, the existence of an approximation algorithm with performance
guarantee strictly better than b

a
implies P = NP .

We already encountered this idea to show hardness-of-approximation
results: Unless, P=NP, the best approximation ratio is bounded by

2 for k-center (reduction from Dominating set)

3/2 for Bin-Packing (reduction from Partition)
O(2n) for the (non-metric) TSP (reduction from Hamiltonian Cycle)
4/3 for edge-coloring (reduction from 3-coloring the edges of a

graph with node degrees at most 3)

G. Sagnol 7- Proving the Hardness of Approximation 3 / 20

Reduction from an NP-complete problem
Assume we can reduce an NP-complete problem Π into a set of instances
of a minimization problem, such that

Π Yes-Instance ⇐⇒ OPT ≤ a

Π No-Instance ⇐⇒ OPT ≥ b

Then, the existence of an approximation algorithm with performance
guarantee strictly better than b

a
implies P = NP .

We already encountered this idea to show hardness-of-approximation
results: Unless, P=NP, the best approximation ratio is bounded by

2 for k-center (reduction from Dominating set)
3/2 for Bin-Packing (reduction from Partition)
O(2n) for the (non-metric) TSP (reduction from Hamiltonian Cycle)
4/3 for edge-coloring (reduction from 3-coloring the edges of a

graph with node degrees at most 3)

G. Sagnol 7- Proving the Hardness of Approximation 3 / 20

Reduction from an NP-complete problem
Assume we can reduce an NP-complete problem Π into a set of instances
of a minimization problem, such that

Π Yes-Instance ⇐⇒ OPT ≤ a

Π No-Instance ⇐⇒ OPT ≥ b

Then, the existence of an approximation algorithm with performance
guarantee strictly better than b

a
implies P = NP .

We already encountered this idea to show hardness-of-approximation
results: Unless, P=NP, the best approximation ratio is bounded by

2 for k-center (reduction from Dominating set)
3/2 for Bin-Packing (reduction from Partition)
O(2n) for the (non-metric) TSP (reduction from Hamiltonian Cycle)
4/3 for edge-coloring (reduction from 3-coloring the edges of a

graph with node degrees at most 3)
G. Sagnol 7- Proving the Hardness of Approximation 3 / 20

Hardness of approximation of R ||Cmax

Remember that in the unrelated parallel machines environment, denoted
by “R”, the processing time of job j depends on the machine i on which it
is executed.

Definition 7.1 (Scheduling on unrelated machines)
Given some pij ≥ 0, ∀j ∈ [n],∀i ∈ [m], the problem R||Cmax asks to assign
each job j to a machine i ∈ [n], in order to minimize the quantity
Cmax = max

i∈[m]

∑
j∈Ji

pij , where Ji ⊆ [n] is the subset of jobs assigned to i .

G. Sagnol 7- Proving the Hardness of Approximation 4 / 20

Hardness of approximation of R ||Cmax

Remember that in the unrelated parallel machines environment, denoted
by “R”, the processing time of job j depends on the machine i on which it
is executed.

Definition 7.1 (Scheduling on unrelated machines)
Given some pij ≥ 0, ∀j ∈ [n], ∀i ∈ [m], the problem R||Cmax asks to assign
each job j to a machine i ∈ [n], in order to minimize the quantity
Cmax = max

i∈[m]

∑
j∈Ji

pij , where Ji ⊆ [n] is the subset of jobs assigned to i .

G. Sagnol 7- Proving the Hardness of Approximation 4 / 20

Hardness of approximation of R ||Cmax

Definition 7.2 (3-dimensional matching)
Given: A, B , C , 3 disjoint sets of n elements, along with a family of m
triples of the form Tk = (aik , bjk , c`k) ∈ A× B × C with one element from
each of A, B , and C .
The 3-dimensional matching problem asks whether there exists a
subset of n triples covering all 3n elements of A ∪ B ∪ C .

Theorem 7.3
It is NP-complete to decide whether there exists a schedule of length at
most , given an input of R||Cmax where each .

Corollary 7.4
There is no α-approximation algorithm with for R||Cmax, unless P = NP .

G. Sagnol 7- Proving the Hardness of Approximation 5 / 20

Hardness of approximation of R ||Cmax

Definition 7.2 (3-dimensional matching)
Given: A, B , C , 3 disjoint sets of n elements, along with a family of m
triples of the form Tk = (aik , bjk , c`k) ∈ A× B × C with one element from
each of A, B , and C .
The 3-dimensional matching problem asks whether there exists a
subset of n triples covering all 3n elements of A ∪ B ∪ C .

Theorem 7.3
It is NP-complete to decide whether there exists a schedule of length at
most 3, given an input of R||Cmax where each pij ∈ {1, 3} .

Corollary 7.4
There is no α-approximation algorithm with α < 4/3 for R||Cmax, unless
P = NP .

G. Sagnol 7- Proving the Hardness of Approximation 5 / 20

Hardness of approximation of R ||Cmax

Definition 7.2 (3-dimensional matching)
Given: A, B , C , 3 disjoint sets of n elements, along with a family of m
triples of the form Tk = (aik , bjk , c`k) ∈ A× B × C with one element from
each of A, B , and C .
The 3-dimensional matching problem asks whether there exists a
subset of n triples covering all 3n elements of A ∪ B ∪ C .

Theorem 7.3 (Stronger version)
It is NP-complete to decide whether there exists a schedule of length at
most 2, given an input of R||Cmax where each pij ∈ {1, 2, 3}.

Corollary 7.4 (Stronger version)
There is no α-approximation algorithm with α < 3/2 for R||Cmax, unless
P = NP .

G. Sagnol 7- Proving the Hardness of Approximation 5 / 20

Hardness of approximation for edge-disjoint paths
Given: directed graph G = (V ,E) with k source-sink pairs si , ti ∈ V .

Goal: find a subset of S ⊆ {1, . . . , k} of maximum cardinality, together
with a path Pi for each i ∈ S , and for any i , j ∈ S , i 6= j , Pi ∩ Pj = ∅.

We will use the following claim, without proving it:
When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint
paths from s1 to t1 and s2 to t2.

Corollary 7.5
There is no α−approximation algorithm with α > 1

2
for the edge disjoint

paths problem, unless P = NP .

Corollary 7.6
For any ε > 0, there is no Ω(m−

1

2
+ε)−approximation for the edge disjoint

paths problem, unless P = NP .

G. Sagnol 7- Proving the Hardness of Approximation 6 / 20

Hardness of approximation for edge-disjoint paths
Given: directed graph G = (V ,E) with k source-sink pairs si , ti ∈ V .

Goal: find a subset of S ⊆ {1, . . . , k} of maximum cardinality, together
with a path Pi for each i ∈ S , and for any i , j ∈ S , i 6= j , Pi ∩ Pj = ∅.

We will use the following claim, without proving it:
When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint
paths from s1 to t1 and s2 to t2.

Corollary 7.5
There is no α−approximation algorithm with α > 1

2
for the edge disjoint

paths problem, unless P = NP .

Corollary 7.6
For any ε > 0, there is no Ω(m−

1

2
+ε)−approximation for the edge disjoint

paths problem, unless P = NP .

G. Sagnol 7- Proving the Hardness of Approximation 6 / 20

Hardness of approximation for edge-disjoint paths
Given: directed graph G = (V ,E) with k source-sink pairs si , ti ∈ V .

Goal: find a subset of S ⊆ {1, . . . , k} of maximum cardinality, together
with a path Pi for each i ∈ S , and for any i , j ∈ S , i 6= j , Pi ∩ Pj = ∅.

We will use the following claim, without proving it:
When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint
paths from s1 to t1 and s2 to t2.

Corollary 7.5
There is no α−approximation algorithm with α > 1

2
for the edge disjoint

paths problem, unless P = NP .

Corollary 7.6
For any ε > 0, there is no Ω(m−

1

2
+ε)−approximation for the edge disjoint

paths problem, unless P = NP .

G. Sagnol 7- Proving the Hardness of Approximation 6 / 20

Hardness of approximation for edge-disjoint paths
Given: directed graph G = (V ,E) with k source-sink pairs si , ti ∈ V .

Goal: find a subset of S ⊆ {1, . . . , k} of maximum cardinality, together
with a path Pi for each i ∈ S , and for any i , j ∈ S , i 6= j , Pi ∩ Pj = ∅.

We will use the following claim, without proving it:
When k = 2, it is NP-complete to decide whether there exists 2 edge-disjoint
paths from s1 to t1 and s2 to t2.

Corollary 7.5
There is no α−approximation algorithm with α > 1

2
for the edge disjoint

paths problem, unless P = NP .

Corollary 7.6
For any ε > 0, there is no Ω(m−

1

2
+ε)−approximation for the edge disjoint

paths problem, unless P = NP .
G. Sagnol 7- Proving the Hardness of Approximation 6 / 20

Outline

1 Reduction from NP-complete problems

2 Approximation-preserving Reductions

3 The PCP theorem

G. Sagnol 7- Proving the Hardness of Approximation 7 / 20

Approximation-Preserving Reductions

It is sometimes possible to construct a reduction showing that if there
exists an α-approximation-algorithm for P ′, then an f (α)−approximation
algorithm for P can be constructed.

Then, if we know it is hard to approximate P within a factor f (α), we
deduce it is hard to approximate P ′ within α.

G. Sagnol 7- Proving the Hardness of Approximation 8 / 20

Approximation-Preserving Reductions

It is sometimes possible to construct a reduction showing that if there
exists an α-approximation-algorithm for P ′, then an f (α)−approximation
algorithm for P can be constructed.

Then, if we know it is hard to approximate P within a factor f (α), we
deduce it is hard to approximate P ′ within α.

G. Sagnol 7- Proving the Hardness of Approximation 8 / 20

Reduction from MAXE3SAT to MAX2SAT
Recall that MAX2SAT is the maximum satisfiability problem reduced to
clauses with at most 2 literals, while MAXE3SAT has clauses with
exactly 3 literals.

Consider an instance I of MAXE3SAT, and assume that the jth
clause is of the form x1 ∨ x2 ∨ x3

We create an instance I ′ of MAX2SAT by replacing Cj with the
following 8 clauses, involving the new variable yj :

x1 ∨ x3 x̄1 ∨ x̄3 x1 ∨ ȳj x̄1 ∨ yj x3 ∨ ȳj x̄3 ∨ yj x2 ∨ yj x2 ∨ yj

Number of satisfied clauses, for each assignment of x1, x2, x3, yj :
x1 x2 x3 yj = 0 yj = 1

0 0 0 5 5

0 0 1 5 7

0 1 0 7 5

0 1 1 7 7

1 0 0 5 7

1 0 1 3 7

1 1 0 7 7

1 1 1 5 7

G. Sagnol 7- Proving the Hardness of Approximation 9 / 20

Reduction from MAXE3SAT to MAX2SAT
Recall that MAX2SAT is the maximum satisfiability problem reduced to
clauses with at most 2 literals, while MAXE3SAT has clauses with
exactly 3 literals.

Consider an instance I of MAXE3SAT, and assume that the jth
clause is of the form x1 ∨ x2 ∨ x3

We create an instance I ′ of MAX2SAT by replacing Cj with the
following 8 clauses, involving the new variable yj :

x1 ∨ x3 x̄1 ∨ x̄3 x1 ∨ ȳj x̄1 ∨ yj x3 ∨ ȳj x̄3 ∨ yj x2 ∨ yj x2 ∨ yj

Number of satisfied clauses, for each assignment of x1, x2, x3, yj :
x1 x2 x3 yj = 0 yj = 1

0 0 0 5 5

0 0 1 5 7

0 1 0 7 5

0 1 1 7 7

1 0 0 5 7

1 0 1 3 7

1 1 0 7 7

1 1 1 5 7

G. Sagnol 7- Proving the Hardness of Approximation 9 / 20

Reduction from MAXE3SAT to MAX2SAT
Recall that MAX2SAT is the maximum satisfiability problem reduced to
clauses with at most 2 literals, while MAXE3SAT has clauses with
exactly 3 literals.

Consider an instance I of MAXE3SAT, and assume that the jth
clause is of the form x1 ∨ x2 ∨ x3

We create an instance I ′ of MAX2SAT by replacing Cj with the
following 8 clauses, involving the new variable yj :

x1 ∨ x3 x̄1 ∨ x̄3 x1 ∨ ȳj x̄1 ∨ yj x3 ∨ ȳj x̄3 ∨ yj x2 ∨ yj x2 ∨ yj

Number of satisfied clauses, for each assignment of x1, x2, x3, yj :
x1 x2 x3 yj = 0 yj = 1

0 0 0 5 5

0 0 1 5 7

0 1 0 7 5

0 1 1 7 7

1 0 0 5 7

1 0 1 3 7

1 1 0 7 7

1 1 1 5 7

G. Sagnol 7- Proving the Hardness of Approximation 9 / 20

Reduction from MAXE3SAT to MAX2SAT
Recall that MAX2SAT is the maximum satisfiability problem reduced to
clauses with at most 2 literals, while MAXE3SAT has clauses with
exactly 3 literals.

Consider an instance I of MAXE3SAT, and assume that the jth
clause is of the form x1 ∨ x2 ∨ x3

We create an instance I ′ of MAX2SAT by replacing Cj with the
following 8 clauses, involving the new variable yj :

x1 ∨ x3 x̄1 ∨ x̄3 x1 ∨ ȳj x̄1 ∨ yj x3 ∨ ȳj x̄3 ∨ yj x2 ∨ yj x2 ∨ yj

Number of satisfied clauses, for each assignment of x1, x2, x3, yj :
x1 x2 x3 yj = 0 yj = 1

0 0 0 5 5

0 0 1 5 7

0 1 0 7 5

0 1 1 7 7

1 0 0 5 7

1 0 1 3 7

1 1 0 7 7

1 1 1 5 7

G. Sagnol 7- Proving the Hardness of Approximation 9 / 20

Reduction from MAXE3SAT to MAX2SAT
Observation

For any assignment of the variables x1, x2, x3
Cj satisfied ⇐⇒ ∃yj : 7 clauses of this group satisfied in I ′

¬Cj satisfied ⇐⇒ ∀yj , 5 clauses of this group satisfied in I ′

Moreover, we know that OPT (I) ≥ 7/8 ·m.

Lemma 7.7
If there is an α approximation algorithm for MAX2SAT, then there is a
1− 27

7
(1− α)-approximation algorithm for MAXE3SAT

We will see in the next section that there is no α-approximation
algorithm for MAXE3SAT with α > 7/8, unless P=NP. Therefore, we get:

Theorem 7.8
There is no α−approximation algorithm for MAX2SAT for constant
α > 209/216 ' 0.968 unless P=NP.

G. Sagnol 7- Proving the Hardness of Approximation 10 / 20

Reduction from MAXE3SAT to MAX2SAT
Observation

For any assignment of the variables x1, x2, x3
Cj satisfied ⇐⇒ ∃yj : 7 clauses of this group satisfied in I ′

¬Cj satisfied ⇐⇒ ∀yj , 5 clauses of this group satisfied in I ′

Moreover, we know that OPT (I) ≥ 7/8 ·m.

Lemma 7.7
If there is an α approximation algorithm for MAX2SAT, then there is a
1− 27

7
(1− α)-approximation algorithm for MAXE3SAT

We will see in the next section that there is no α-approximation
algorithm for MAXE3SAT with α > 7/8, unless P=NP. Therefore, we get:

Theorem 7.8
There is no α−approximation algorithm for MAX2SAT for constant
α > 209/216 ' 0.968 unless P=NP.

G. Sagnol 7- Proving the Hardness of Approximation 10 / 20

Reduction from MAXE3SAT to MAX2SAT
Observation

For any assignment of the variables x1, x2, x3
Cj satisfied ⇐⇒ ∃yj : 7 clauses of this group satisfied in I ′

¬Cj satisfied ⇐⇒ ∀yj , 5 clauses of this group satisfied in I ′

Moreover, we know that OPT (I) ≥ 7/8 ·m.

Lemma 7.7
If there is an α approximation algorithm for MAX2SAT, then there is a
1− 27

7
(1− α)-approximation algorithm for MAXE3SAT

We will see in the next section that there is no α-approximation
algorithm for MAXE3SAT with α > 7/8, unless P=NP. Therefore, we get:

Theorem 7.8
There is no α−approximation algorithm for MAX2SAT for constant
α > 209/216 ' 0.968 unless P=NP.

G. Sagnol 7- Proving the Hardness of Approximation 10 / 20

Reduction from MAXE3SAT to MAX2SAT
Observation

For any assignment of the variables x1, x2, x3
Cj satisfied ⇐⇒ ∃yj : 7 clauses of this group satisfied in I ′

¬Cj satisfied ⇐⇒ ∀yj , 5 clauses of this group satisfied in I ′

Moreover, we know that OPT (I) ≥ 7/8 ·m.

Lemma 7.7
If there is an α approximation algorithm for MAX2SAT, then there is a
1− 27

7
(1− α)-approximation algorithm for MAXE3SAT

We will see in the next section that there is no α-approximation
algorithm for MAXE3SAT with α > 7/8, unless P=NP. Therefore, we get:

Theorem 7.8
There is no α−approximation algorithm for MAX2SAT for constant
α > 209/216 ' 0.968 unless P=NP.

G. Sagnol 7- Proving the Hardness of Approximation 10 / 20

L-Reductions
Consider two optimization problems P and P ′ with corresponding sets of
instances XP and XP ′ , respectively.

Definition 7.9 (L-Reduction)
An L-reduction from P to P ′ with parameters a, b > 0 is a map
f : XP → XP ′ such that for all I ∈ XP :

i I ′ := f (I) can be computed in time polynomial in the size of I ;
ii OPT (I ′) ≤ a · OPT (I);
iii given a solution of value V ′ to I ′, one can compute in polynomial

time a solution of value V to I such that
|OPT (I)− V | ≤ b · |OPT (I ′)− V ′| .

Example: The reduction from MAXE3SAT to MAX2SAT in the previous
proof is an L-reduction with parameters a =

54

7
and b =

1

2
.

G. Sagnol 7- Proving the Hardness of Approximation 11 / 20

L-Reductions
Consider two optimization problems P and P ′ with corresponding sets of
instances XP and XP ′ , respectively.

Definition 7.9 (L-Reduction)
An L-reduction from P to P ′ with parameters a, b > 0 is a map
f : XP → XP ′ such that for all I ∈ XP :

i I ′ := f (I) can be computed in time polynomial in the size of I ;
ii OPT (I ′) ≤ a · OPT (I);
iii given a solution of value V ′ to I ′, one can compute in polynomial

time a solution of value V to I such that
|OPT (I)− V | ≤ b · |OPT (I ′)− V ′| .

Example: The reduction from MAXE3SAT to MAX2SAT in the previous
proof is an L-reduction with parameters a =

54

7
and b =

1

2
.

G. Sagnol 7- Proving the Hardness of Approximation 11 / 20

Approximation-Preserving Reductions

Theorem 7.10
For maximization problems P and P ′, if there is an L-reduction
from P to P ′, and there is an α-approximation algorithm for P ′,
then there is an

(
1− ab(1− α)

)
-approximation algorithm for P .

Proof:. . .

Theorem 7.11
For minimization problems P and P ′, if there is an L-reduction from
P to P ′, and there is an α-approximation algorithm for P ′, then
there is an

(
ab(α− 1) + 1

)
-approximation algorithm for P .

G. Sagnol 7- Proving the Hardness of Approximation 12 / 20

Approximation-Preserving Reductions

Theorem 7.10
For maximization problems P and P ′, if there is an L-reduction
from P to P ′, and there is an α-approximation algorithm for P ′,
then there is an

(
1− ab(1− α)

)
-approximation algorithm for P .

Proof:. . .

Theorem 7.11
For minimization problems P and P ′, if there is an L-reduction from
P to P ′, and there is an α-approximation algorithm for P ′, then
there is an

(
ab(α− 1) + 1

)
-approximation algorithm for P .

G. Sagnol 7- Proving the Hardness of Approximation 12 / 20

Approximation-Preserving Reductions

Theorem 7.10
For maximization problems P and P ′, if there is an L-reduction
from P to P ′, and there is an α-approximation algorithm for P ′,
then there is an

(
1− ab(1− α)

)
-approximation algorithm for P .

Proof:. . .

Theorem 7.11
For minimization problems P and P ′, if there is an L-reduction from
P to P ′, and there is an α-approximation algorithm for P ′, then
there is an

(
ab(α− 1) + 1

)
-approximation algorithm for P .

G. Sagnol 7- Proving the Hardness of Approximation 12 / 20

MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph G = (V ,E).

Task: Find V ′ ⊆ V maximizing |V ′| with all nodes in V ′ pairwise adjacent.

Notation: The size of a largest clique V ′ ⊆ V in G is denoted by ω(G).

Maximum Independent Set
Given: Undirected graph G = (V ,E).

Task: Find V ′ ⊆ V maximizing |V ′| with V ′ an independent set (or a
stable), i.e., all nodes of V ′ are pairwise non-adjacent.
Notation: The size of a largest stable V ′ ⊆ V in G is denoted by α(G).

G. Sagnol 7- Proving the Hardness of Approximation 13 / 20

MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph G = (V ,E).

Task: Find V ′ ⊆ V maximizing |V ′| with all nodes in V ′ pairwise adjacent.

Notation: The size of a largest clique V ′ ⊆ V in G is denoted by ω(G).

Maximum Independent Set
Given: Undirected graph G = (V ,E).

Task: Find V ′ ⊆ V maximizing |V ′| with V ′ an independent set (or a
stable), i.e., all nodes of V ′ are pairwise non-adjacent.
Notation: The size of a largest stable V ′ ⊆ V in G is denoted by α(G).

G. Sagnol 7- Proving the Hardness of Approximation 13 / 20

MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph G = (V ,E).

Task: Find V ′ ⊆ V maximizing |V ′| with all nodes in V ′ pairwise adjacent.

Notation: The size of a largest clique V ′ ⊆ V in G is denoted by ω(G).

Maximum Independent Set
Given: Undirected graph G = (V ,E).

Task: Find V ′ ⊆ V maximizing |V ′| with V ′ an independent set (or a
stable), i.e., all nodes of V ′ are pairwise non-adjacent.
Notation: The size of a largest stable V ′ ⊆ V in G is denoted by α(G).

G. Sagnol 7- Proving the Hardness of Approximation 13 / 20

MaxClique Problem and Maximum Independent Set
MaxClique
Given: Undirected graph G = (V ,E).
Task: Find V ′ ⊆ V maximizing |V ′| with all nodes in V ′ pairwise adjacent.
Notation: The size of a largest clique V ′ ⊆ V in G is denoted by ω(G).

Maximum Independent Set
Given: Undirected graph G = (V ,E).
Task: Find V ′ ⊆ V maximizing |V ′| with V ′ an independent set (or a
stable), i.e., all nodes of V ′ are pairwise non-adjacent.
Notation: The size of a largest stable V ′ ⊆ V in G is denoted by α(G).

G. Sagnol 7- Proving the Hardness of Approximation 13 / 20

MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph G = (V ,E).

Task: Find V ′ ⊆ V maximizing |V ′| with all nodes in V ′ pairwise adjacent.

Notation: The size of a largest clique V ′ ⊆ V in G is denoted by ω(G).

Maximum Independent Set
Given: Undirected graph G = (V ,E).

Task: Find V ′ ⊆ V maximizing |V ′| with V ′ an independent set (or a
stable), i.e., all nodes of V ′ are pairwise non-adjacent.
Notation: The size of a largest stable V ′ ⊆ V in G is denoted by α(G).

Observation: MaxClique and Maximum Independent Set are
fundamentally equivalent, as ω(G) = α(Ḡ).

G. Sagnol 7- Proving the Hardness of Approximation 13 / 20

Examples of L-Reductions

Lemma 7.12
There is an L-reduction with parameters a = 1 and b = 1 from
MAXE3SAT to MaxClique.

Proof: . . .

Lemma 7.13
There is an L-reduction with parameters a = 2∆ and b = 1 from Vertex
Cover in bounded degree graphs to the Steiner Tree Problem.

Moreover, it is known that for all ∆ large enough, there exists ε > 0 s.t.
the existence of a (1 + ε)-approximation algorithm for vertex cover in
bounded degree graphs (≤ ∆) would imply P=NP.

Corollary 7.14
There is no PTAS for the Steiner tree problem, unless P=NP.

G. Sagnol 7- Proving the Hardness of Approximation 14 / 20

Examples of L-Reductions

Lemma 7.12
There is an L-reduction with parameters a = 1 and b = 1 from
MAXE3SAT to MaxClique.

Proof: . . .

Lemma 7.13
There is an L-reduction with parameters a = 2∆ and b = 1 from Vertex
Cover in bounded degree graphs to the Steiner Tree Problem.

Moreover, it is known that for all ∆ large enough, there exists ε > 0 s.t.
the existence of a (1 + ε)-approximation algorithm for vertex cover in
bounded degree graphs (≤ ∆) would imply P=NP.

Corollary 7.14
There is no PTAS for the Steiner tree problem, unless P=NP.

G. Sagnol 7- Proving the Hardness of Approximation 14 / 20

Examples of L-Reductions

Lemma 7.12
There is an L-reduction with parameters a = 1 and b = 1 from
MAXE3SAT to MaxClique.

Proof: . . .

Lemma 7.13
There is an L-reduction with parameters a = 2∆ and b = 1 from Vertex
Cover in bounded degree graphs to the Steiner Tree Problem.

Moreover, it is known that for all ∆ large enough, there exists ε > 0 s.t.
the existence of a (1 + ε)-approximation algorithm for vertex cover in
bounded degree graphs (≤ ∆) would imply P=NP.

Corollary 7.14
There is no PTAS for the Steiner tree problem, unless P=NP.

G. Sagnol 7- Proving the Hardness of Approximation 14 / 20

Examples of L-Reductions

Lemma 7.12
There is an L-reduction with parameters a = 1 and b = 1 from
MAXE3SAT to MaxClique.

Proof: . . .

Lemma 7.13
There is an L-reduction with parameters a = 2∆ and b = 1 from Vertex
Cover in bounded degree graphs to the Steiner Tree Problem.

Moreover, it is known that for all ∆ large enough, there exists ε > 0 s.t.
the existence of a (1 + ε)-approximation algorithm for vertex cover in
bounded degree graphs (≤ ∆) would imply P=NP.

Corollary 7.14
There is no PTAS for the Steiner tree problem, unless P=NP.

G. Sagnol 7- Proving the Hardness of Approximation 14 / 20

Outline

1 Reduction from NP-complete problems

2 Approximation-preserving Reductions

3 The PCP theorem

G. Sagnol 7- Proving the Hardness of Approximation 15 / 20

Another Characterization of NP

VI

C

Yes / No

O(1)q(n)
O(log n)
r(n)

G. Sagnol 7- Proving the Hardness of Approximation 16 / 20

Another Characterization of NP

VI

C

Yes / No

O(1)

q(n)
O(log n)
r(n)

G. Sagnol 7- Proving the Hardness of Approximation 16 / 20

Another Characterization of NP

VI

C

Yes / No

O(1)

q(n)

O(log n)

r(n)

G. Sagnol 7- Proving the Hardness of Approximation 16 / 20

Another Characterization of NP

VI

C

Yes / No

O(1)

q(n)

O(log n)

r(n)

correct answer is “Yes” =⇒ ∃ certificate C : Pr(V outputs “Yes”)= 1.

G. Sagnol 7- Proving the Hardness of Approximation 16 / 20

Another Characterization of NP

VI

C

Yes / No

O(1)

q(n)

O(log n)

r(n)

correct answer is “Yes” =⇒ ∃ certificate C : Pr(V outputs “Yes”)= 1.
correct answer is “No” =⇒ ∀ certificates C : Pr(V outputs “Yes”)≤ 1

2
.

G. Sagnol 7- Proving the Hardness of Approximation 16 / 20

Another Characterization of NP

VI

C

Yes / No

O(1)

q(n)

O(log n)

r(n)

correct answer is “Yes” =⇒ ∃ certificate C : Pr(V outputs “Yes”)= 1.
correct answer is “No” =⇒ ∀ certificates C : Pr(V outputs “Yes”)≤ 1

2
.

Definition 7.15
The class of decision problems that admit such probabilitically checkable
proofs is called PCP ≡ PCP

1, 1
2

[O(log(n)),O(1)].

G. Sagnol 7- Proving the Hardness of Approximation 16 / 20

Another Characterization of NP

VI

C

Yes / No

O(1)

q(n)

O(log n)

r(n)

correct answer is “Yes” =⇒ ∃ certificate C : Pr(V outputs “Yes”)≥ c .
correct answer is “No” =⇒ ∀ certificates C : Pr(V outputs “Yes”)≤ s .

Definition 7.15
The class of decision problems that admit such probabilitically checkable
proofs is called PCP ≡ PCP

1, 1
2

[O(log(n)),O(1)].

More generally, we can define the class PCPc,s [r(n), q(n)], so that the
standard definition of NP reads: NP=PCP1,0[0,poly(n)].

G. Sagnol 7- Proving the Hardness of Approximation 16 / 20

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP.

In words, this means that every decision problem in NP has a
probabilistically checkable proof of constant query complexity and
logarithmic randomness complexity.

Proving PCP ⊆ NP is easy. The converse inclusion is much more involved.
The following theorem shows it can also be viewed as a result of
hardness of approximation:

Theorem 7.17
(NP⊆ PCP) if and only if there exists ε > 0 such that the problem of
distinguishing between MAXE3SAT instances for which there is a
variable assignment satisfying all clauses, from instances in which at most
a (1-ε) fraction of all clauses can be satisfied simultaneously, is NP-hard.

Proof: . . .

G. Sagnol 7- Proving the Hardness of Approximation 17 / 20

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP. In words, this means that every decision problem in NP has a
probabilistically checkable proof of constant query complexity and
logarithmic randomness complexity.

Proving PCP ⊆ NP is easy. The converse inclusion is much more involved.
The following theorem shows it can also be viewed as a result of
hardness of approximation:

Theorem 7.17
(NP⊆ PCP) if and only if there exists ε > 0 such that the problem of
distinguishing between MAXE3SAT instances for which there is a
variable assignment satisfying all clauses, from instances in which at most
a (1-ε) fraction of all clauses can be satisfied simultaneously, is NP-hard.

Proof: . . .

G. Sagnol 7- Proving the Hardness of Approximation 17 / 20

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP. In words, this means that every decision problem in NP has a
probabilistically checkable proof of constant query complexity and
logarithmic randomness complexity.

Proving PCP ⊆ NP is easy. The converse inclusion is much more involved.

The following theorem shows it can also be viewed as a result of
hardness of approximation:

Theorem 7.17
(NP⊆ PCP) if and only if there exists ε > 0 such that the problem of
distinguishing between MAXE3SAT instances for which there is a
variable assignment satisfying all clauses, from instances in which at most
a (1-ε) fraction of all clauses can be satisfied simultaneously, is NP-hard.

Proof: . . .

G. Sagnol 7- Proving the Hardness of Approximation 17 / 20

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan & Szegedy 92]

NP=PCP. In words, this means that every decision problem in NP has a
probabilistically checkable proof of constant query complexity and
logarithmic randomness complexity.

Proving PCP ⊆ NP is easy. The converse inclusion is much more involved.
The following theorem shows it can also be viewed as a result of
hardness of approximation:

Theorem 7.17
(NP⊆ PCP) if and only if there exists ε > 0 such that the problem of
distinguishing between MAXE3SAT instances for which there is a
variable assignment satisfying all clauses, from instances in which at most
a (1-ε) fraction of all clauses can be satisfied simultaneously, is NP-hard.

Proof: . . .
G. Sagnol 7- Proving the Hardness of Approximation 17 / 20

Product Graph

Definition 7.18 (product graph)
For an undirected graph G = (V ,E) let G k = (V k ,Ek) where
V k = V × V × · · · × V is the set of all k-tuples of V and Ek is defined by

Ek := {(u1, . . . , uk)(v1, . . . , vk) | ui = vi or uivi ∈ E for all i} .

Example:

G G 2

Lemma 7.19
It holds ω(G k) = ω(G)k . Moreover, given a clique C of G k , one can
efficiently compute a clique C ′ of G , of size |C ′| ≥ |C |1/k .

G. Sagnol 7- Proving the Hardness of Approximation 18 / 20

Product Graph

Definition 7.18 (product graph)
For an undirected graph G = (V ,E) let G k = (V k ,Ek) where
V k = V × V × · · · × V is the set of all k-tuples of V and Ek is defined by

Ek := {(u1, . . . , uk)(v1, . . . , vk) | ui = vi or uivi ∈ E for all i} .

Example:

G G 2

Lemma 7.19
It holds ω(G k) = ω(G)k . Moreover, given a clique C of G k , one can
efficiently compute a clique C ′ of G , of size |C ′| ≥ |C |1/k .

G. Sagnol 7- Proving the Hardness of Approximation 18 / 20

MaxClique: Self improvement of approx. ratio

Proposition 7.20
If there is an α-approximation algorithm for MaxClique for some fixed
α < 1, then there is a PTAS.

Proof:. . .
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS
for MAXE3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21
If there is a constant factor approximation algorithm for MaxClique, then
P=NP.

Theorem 7.22 (Zuckerman 2007)
There is no n−1+ε-approximation algorithm for MaxClique, for any ε > 0,
unless P = NP .

Bottomline: MaxClique is one of the hardest problems to approximate!

G. Sagnol 7- Proving the Hardness of Approximation 19 / 20

MaxClique: Self improvement of approx. ratio

Proposition 7.20
If there is an α-approximation algorithm for MaxClique for some fixed
α < 1, then there is a PTAS.

Proof:. . .

But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS
for MAXE3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21
If there is a constant factor approximation algorithm for MaxClique, then
P=NP.

Theorem 7.22 (Zuckerman 2007)
There is no n−1+ε-approximation algorithm for MaxClique, for any ε > 0,
unless P = NP .

Bottomline: MaxClique is one of the hardest problems to approximate!

G. Sagnol 7- Proving the Hardness of Approximation 19 / 20

MaxClique: Self improvement of approx. ratio

Proposition 7.20
If there is an α-approximation algorithm for MaxClique for some fixed
α < 1, then there is a PTAS.

Proof:. . .
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS
for MAXE3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21
If there is a constant factor approximation algorithm for MaxClique, then
P=NP.

Theorem 7.22 (Zuckerman 2007)
There is no n−1+ε-approximation algorithm for MaxClique, for any ε > 0,
unless P = NP .

Bottomline: MaxClique is one of the hardest problems to approximate!

G. Sagnol 7- Proving the Hardness of Approximation 19 / 20

MaxClique: Self improvement of approx. ratio

Proposition 7.20
If there is an α-approximation algorithm for MaxClique for some fixed
α < 1, then there is a PTAS.

Proof:. . .
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS
for MAXE3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21
If there is a constant factor approximation algorithm for MaxClique, then
P=NP.

Theorem 7.22 (Zuckerman 2007)
There is no n−1+ε-approximation algorithm for MaxClique, for any ε > 0,
unless P = NP .

Bottomline: MaxClique is one of the hardest problems to approximate!

G. Sagnol 7- Proving the Hardness of Approximation 19 / 20

MaxClique: Self improvement of approx. ratio

Proposition 7.20
If there is an α-approximation algorithm for MaxClique for some fixed
α < 1, then there is a PTAS.

Proof:. . .
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS
for MAXE3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21
If there is a constant factor approximation algorithm for MaxClique, then
P=NP.

Theorem 7.22 (Zuckerman 2007)
There is no n−1+ε-approximation algorithm for MaxClique, for any ε > 0,
unless P = NP .

Bottomline: MaxClique is one of the hardest problems to approximate!

G. Sagnol 7- Proving the Hardness of Approximation 19 / 20

MaxClique: Self improvement of approx. ratio

Proposition 7.20
If there is an α-approximation algorithm for MaxClique for some fixed
α < 1, then there is a PTAS.

Proof:. . .
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS
for MAXE3SAT, and by the PCP theorem, this would imply P=NP !

Theorem 7.21
If there is a constant factor approximation algorithm for MaxClique, then
P=NP.

Theorem 7.22 (Zuckerman 2007)
There is no n−1+ε-approximation algorithm for MaxClique, for any ε > 0,
unless P = NP .

Bottomline: MaxClique is one of the hardest problems to approximate!
G. Sagnol 7- Proving the Hardness of Approximation 19 / 20

Approximability of MAXE3SAT

Theorem 7.23
For all ε, δ > 0, NP ⊆ PCPparity

1−ε, 1
2
+δ
[O(log(n)), 3], where parity

indicates that the verifyer can only evaluate the parity
(xi1 + xi2 + xi3 mod 2) of the three bits it checks.

Corollary 7.24
There is no α−approximation algorithm for MAXE3SAT for some
fixed α > 7/8, unless P = NP .

G. Sagnol 7- Proving the Hardness of Approximation 20 / 20

Approximability of MAXE3SAT

Theorem 7.23
For all ε, δ > 0, NP ⊆ PCPparity

1−ε, 1
2
+δ
[O(log(n)), 3], where parity

indicates that the verifyer can only evaluate the parity
(xi1 + xi2 + xi3 mod 2) of the three bits it checks.

Corollary 7.24
There is no α−approximation algorithm for MAXE3SAT for some
fixed α > 7/8, unless P = NP .

G. Sagnol 7- Proving the Hardness of Approximation 20 / 20

	Reduction from NP-complete problems
	Approximation-preserving Reductions
	The PCP theorem

