Approximation Algorithms (ADM III) 7- Hardness of Approximation

Guillaume Sagnol

Outline

1 Reduction from NP-complete problems

2 Approximation-preserving Reductions

3 The PCP theorem

Reduction from an NP-complete problem

Assume we can reduce an NP-complete problem Π into a set of instances of a minimization problem, such that

$$
\begin{aligned}
\Pi \text { Yes-Instance } & \Longleftrightarrow O P T \leq a \\
\Pi \text { No-Instance } & \Longleftrightarrow O P T \geq b
\end{aligned}
$$

Reduction from an NP-complete problem

Assume we can reduce an NP-complete problem Π into a set of instances of a minimization problem, such that

$$
\begin{aligned}
\Pi \text { Yes-Instance } & \Longleftrightarrow O P T \leq a \\
\Pi \text { No-Instance } & \Longleftrightarrow O P T \geq b
\end{aligned}
$$

Then, the existence of an approximation algorithm with performance guarantee strictly better than $\frac{b}{a}$ implies $P=N P$.

Reduction from an NP-complete problem

Assume we can reduce an NP-complete problem Π into a set of instances of a minimization problem, such that

$$
\begin{aligned}
\Pi \text { Yes-Instance } & \Longleftrightarrow O P T \leq a \\
\Pi \text { No-Instance } & \Longleftrightarrow O P T \geq b
\end{aligned}
$$

Then, the existence of an approximation algorithm with performance guarantee strictly better than $\frac{b}{a}$ implies $P=N P$.

We already encountered this idea to show hardness-of-approximation results: Unless, $\mathrm{P}=\mathrm{NP}$, the best approximation ratio is bounded by

- 2 for k-center (reduction from Dominating set)
- $3 / 2$ for Bin-Packing (reduction from Partition)
- $O\left(2^{n}\right)$ for the (non-metric) TSP (reduction from Hamiltonian Cycle)
- 4/3 for edge-coloring (reduction from 3-coloring the edges of a graph with node degrees at most 3)

Hardness of approximation of $R \| C_{\max }$

Remember that in the unrelated parallel machines environment, denoted by " R ", the processing time of job j depends on the machine i on which it is executed.

Hardness of approximation of $R \| C_{\max }$

Remember that in the unrelated parallel machines environment, denoted by " R ", the processing time of job j depends on the machine i on which it is executed.

Definition 7.1 (Scheduling on unrelated machines)

Given some $p_{i j} \geq 0, \forall j \in[n], \forall i \in[m]$, the problem $R \| C_{\max }$ asks to assign each job j to a machine $i \in[n]$, in order to minimize the quantity $C_{\max }=\max _{i \in[m]} \sum_{j \in J_{i}} p_{i j}$, where $J_{i} \subseteq[n]$ is the subset of jobs assigned to i.

Hardness of approximation of $R \| C_{\max }$

Definition 7.2 (3-dimensional matching)

Given: $A, B, C, 3$ disjoint sets of n elements, along with a family of m triples of the form $T_{k}=\left(a_{i_{k}}, b_{j_{k}}, c_{\ell_{k}}\right) \in A \times B \times C$ with one element from each of A, B, and C.
The 3-dimensional matching problem asks whether there exists a subset of n triples covering all $3 n$ elements of $A \cup B \cup C$.

Hardness of approximation of $R \| C_{\max }$

Definition 7.2 (3-dimensional matching)

Given: $A, B, C, 3$ disjoint sets of n elements, along with a family of m triples of the form $T_{k}=\left(a_{i_{k}}, b_{j_{k}}, c_{\ell_{k}}\right) \in A \times B \times C$ with one element from each of A, B, and C.
The 3-dimensional matching problem asks whether there exists a subset of n triples covering all $3 n$ elements of $A \cup B \cup C$.

Theorem 7.3

It is NP-complete to decide whether there exists a schedule of length at most 3 , given an input of $R \| C_{\max }$ where each $p_{i j} \in\{1,3\}$.

Corollary 7.4

There is no α-approximation algorithm with $\alpha<4 / 3$ for $R \| C_{\max }$, unless $P=N P$.

Hardness of approximation of $R \| C_{\max }$

Definition 7.2 (3-dimensional matching)

Given: $A, B, C, 3$ disjoint sets of n elements, along with a family of m triples of the form $T_{k}=\left(a_{i_{k}}, b_{j_{k}}, c_{l_{k}}\right) \in A \times B \times C$ with one element from each of A, B, and C.
The 3-dimensional matching problem asks whether there exists a subset of n triples covering all $3 n$ elements of $A \cup B \cup C$.

Theorem 7.3 (Stronger version)

It is NP-complete to decide whether there exists a schedule of length at most 2 , given an input of $R \| C_{\max }$ where each $p_{i j} \in\{1,2,3\}$.

Corollary 7.4 (Stronger version)

There is no α-approximation algorithm with $\alpha<3 / 2$ for $R \| C_{\max }$, unless $P=N P$.

Hardness of approximation for edge-disjoint paths

Given: directed graph $G=(V, E)$ with k source-sink pairs $s_{i}, t_{i} \in V$.
Goal: find a subset of $S \subseteq\{1, \ldots, k\}$ of maximum cardinality, together with a path P_{i} for each $i \in S$, and for any $i, j \in S, i \neq j, P_{i} \cap P_{j}=\emptyset$.

Hardness of approximation for edge-disjoint paths

Given: directed graph $G=(V, E)$ with k source-sink pairs $s_{i}, t_{i} \in V$.
Goal: find a subset of $S \subseteq\{1, \ldots, k\}$ of maximum cardinality, together with a path P_{i} for each $i \in S$, and for any $i, j \in S, i \neq j, P_{i} \cap P_{j}=\emptyset$.

We will use the following claim, without proving it:
When $k=2$, it is NP-complete to decide whether there exists 2 edge-disjoint paths from s_{1} to t_{1} and s_{2} to t_{2}.

Hardness of approximation for edge-disjoint paths

Given: directed graph $G=(V, E)$ with k source-sink pairs $s_{i}, t_{i} \in V$.
Goal: find a subset of $S \subseteq\{1, \ldots, k\}$ of maximum cardinality, together with a path P_{i} for each $i \in S$, and for any $i, j \in S, i \neq j, P_{i} \cap P_{j}=\emptyset$.

We will use the following claim, without proving it:
When $k=2$, it is NP-complete to decide whether there exists 2 edge-disjoint paths from s_{1} to t_{1} and s_{2} to t_{2}.

Corollary 7.5

There is no α-approximation algorithm with $\alpha>\frac{1}{2}$ for the edge disjoint paths problem, unless $P=N P$.

Hardness of approximation for edge-disjoint paths

Given: directed graph $G=(V, E)$ with k source-sink pairs $s_{i}, t_{i} \in V$.
Goal: find a subset of $S \subseteq\{1, \ldots, k\}$ of maximum cardinality, together with a path P_{i} for each $i \in S$, and for any $i, j \in S, i \neq j, P_{i} \cap P_{j}=\emptyset$.

We will use the following claim, without proving it:
When $k=2$, it is NP-complete to decide whether there exists 2 edge-disjoint paths from s_{1} to t_{1} and s_{2} to t_{2}.

Corollary 7.5

There is no α-approximation algorithm with $\alpha>\frac{1}{2}$ for the edge disjoint paths problem, unless $P=N P$.

Corollary 7.6

For any $\epsilon>0$, there is no $\Omega\left(m^{-\frac{1}{2}+\epsilon}\right)$-approximation for the edge disjoint paths problem, unless $P=N P$.

Outline

1 Reduction from NP-complete problems

2 Approximation-preserving Reductions

3 The PCP theorem

Approximation-Preserving Reductions

It is sometimes possible to construct a reduction showing that if there exists an α-approximation-algorithm for \mathcal{P}^{\prime}, then an $f(\alpha)$-approximation algorithm for \mathcal{P} can be constructed.

Approximation-Preserving Reductions

It is sometimes possible to construct a reduction showing that if there exists an α-approximation-algorithm for \mathcal{P}^{\prime}, then an $f(\alpha)$-approximation algorithm for \mathcal{P} can be constructed.

Then, if we know it is hard to approximate \mathcal{P} within a factor $f(\alpha)$, we deduce it is hard to approximate \mathcal{P}^{\prime} within α.

Reduction from MAXE 3SAT to MAX 2SAT

Recall that MAX 2SAT is the maximum satisfiability problem reduced to clauses with at most 2 literals, while MAXE 3SAT has clauses with exactly 3 literals.

Reduction from MAXE 3SAT to MAX 2SAT

Recall that MAX 2SAT is the maximum satisfiability problem reduced to clauses with at most 2 literals, while MAX E 3SAT has clauses with exactly 3 literals.

■ Consider an instance I of MAXE 3SAT, and assume that the j th clause is of the form $x_{1} \vee x_{2} \vee x_{3}$

Reduction from MAX E 3SAT to MAX 2SAT

Recall that MAX 2SAT is the maximum satisfiability problem reduced to clauses with at most 2 literals, while MAX E 3SAT has clauses with exactly 3 literals.

■ Consider an instance I of MAXE 3SAT, and assume that the j th clause is of the form $x_{1} \vee x_{2} \vee x_{3}$
$■$ We create an instance I^{\prime} of MAX 2 SAT by replacing C_{j} with the following 8 clauses, involving the new variable y_{j} :

$$
x_{1} \vee x_{3} \quad \overline{x_{1}} \vee \overline{x_{3}} \quad x_{1} \vee \overline{y_{j}} \quad \overline{x_{1}} \vee y_{j} \quad x_{3} \vee \overline{y_{j}} \quad \overline{x_{3}} \vee y_{j} \quad x_{2} \vee y_{j} \quad x_{2} \vee y_{j}
$$

Reduction from MAX E 3SAT to MAX 2SAT

Recall that MAX 2SAT is the maximum satisfiability problem reduced to clauses with at most 2 literals, while MAX E 3SAT has clauses with exactly 3 literals.

■ Consider an instance I of MAXE 3SAT, and assume that the j th clause is of the form $x_{1} \vee x_{2} \vee x_{3}$

■ We create an instance I^{\prime} of MAX 2 SAT by replacing C_{j} with the following 8 clauses, involving the new variable y_{j} :

$$
x_{1} \vee x_{3} \quad \overline{x_{1}} \vee \overline{x_{3}} \quad x_{1} \vee \bar{y}_{j} \quad \overline{x_{1}} \vee y_{j} \quad x_{3} \vee \overline{y_{j}} \quad \overline{x_{3}} \vee y_{j} \quad x_{2} \vee y_{j} \quad x_{2} \vee y_{j}
$$

Number of satisfied clauses, for each assignment of $x_{1}, x_{2}, x_{3}, y_{j}$:

$\qquad$$x_{1}$$x_{2}$	x_{3}	$y_{j}=0$	$y_{j}=1$		
	0	0	0	5	5
0	0	1	5	7	
0	1	0	7	5	
0	1	1	7	7	
	1	0	0	5	7
	1	0	1	3	7
	1	1	0	7	7
	1	1	1	5	7

Reduction from MAX E 3SAT to MAX 2SAT

Observation

■ For any assignment of the variables x_{1}, x_{2}, x_{3}
C_{j} satisfied $\Longleftrightarrow \exists y_{j}: 7$ clauses of this group satisfied in I^{\prime}
$\neg C_{j}$ satisfied $\Longleftrightarrow \forall y_{j}, 5$ clauses of this group satisfied in I^{\prime}

Reduction from MAX E 3SAT to MAX 2SAT

Observation

■ For any assignment of the variables x_{1}, x_{2}, x_{3}
C_{j} satisfied $\Longleftrightarrow \exists y_{j}: 7$ clauses of this group satisfied in I^{\prime}
$\neg C_{j}$ satisfied $\Longleftrightarrow \forall y_{j}, 5$ clauses of this group satisfied in I^{\prime}
■ Moreover, we know that $\mathrm{OPT}(I) \geq 7 / 8 \cdot m$.

Reduction from MAX E 3SAT to MAX 2SAT

Observation

■ For any assignment of the variables x_{1}, x_{2}, x_{3}
C_{j} satisfied $\Longleftrightarrow \exists y_{j}: 7$ clauses of this group satisfied in I^{\prime}
$\neg C_{j}$ satisfied $\Longleftrightarrow \forall y_{j}, 5$ clauses of this group satisfied in I^{\prime}
■ Moreover, we know that OPT $(I) \geq 7 / 8 \cdot m$.

Lemma 7.7

If there is an α approximation algorithm for MAX 2SAT, then there is a
$1-\frac{27}{7}(1-\alpha)$-approximation algorithm for MAX E 3SAT

Reduction from MAXE 3SAT to MAX 2SAT

Observation

■ For any assignment of the variables x_{1}, x_{2}, x_{3}
C_{j} satisfied $\Longleftrightarrow \exists y_{j}: 7$ clauses of this group satisfied in I^{\prime}
$\neg C_{j}$ satisfied $\Longleftrightarrow \forall y_{j}, 5$ clauses of this group satisfied in I^{\prime}
■ Moreover, we know that OPT $(I) \geq 7 / 8 \cdot m$.

Lemma 7.7

If there is an α approximation algorithm for MAX 2SAT, then there is a
$1-\frac{27}{7}(1-\alpha)$-approximation algorithm for MAX E 3SAT
We will see in the next section that there is no α-approximation algorithm for MAXE 3SAT with $\alpha>7 / 8$, unless $\mathrm{P}=$ NP. Therefore, we get:

Theorem 7.8

There is no α-approximation algorithm for MAX 2SAT for constant $\alpha>209 / 216 \simeq 0.968$ unless $\mathrm{P}=$ NP.

L-Reductions

Consider two optimization problems \mathcal{P} and \mathcal{P}^{\prime} with corresponding sets of instances $X_{\mathcal{P}}$ and $X_{\mathcal{P}^{\prime}}$, respectively.

Definition 7.9 (L-Reduction)

An L-reduction from \mathcal{P} to \mathcal{P}^{\prime} with parameters $a, b>0$ is a map $f: X_{\mathcal{P}} \rightarrow X_{\mathcal{P}^{\prime}}$ such that for all $I \in X_{\mathcal{P}}$:
i $I^{\prime}:=f(I)$ can be computed in time polynomial in the size of I;
iii $\mathrm{OPT}\left(I^{\prime}\right) \leq a \cdot \mathrm{OPT}(I)$;
开 given a solution of value V^{\prime} to I^{\prime}, one can compute in polynomial time a solution of value V to I such that

$$
|\mathrm{OPT}(I)-V| \leq b \cdot\left|\mathrm{OPT}\left(I^{\prime}\right)-V^{\prime}\right| .
$$

L-Reductions

Consider two optimization problems \mathcal{P} and \mathcal{P}^{\prime} with corresponding sets of instances $X_{\mathcal{P}}$ and $X_{\mathcal{P}^{\prime}}$, respectively.

Definition 7.9 (L-Reduction)

An L-reduction from \mathcal{P} to \mathcal{P}^{\prime} with parameters $a, b>0$ is a map $f: X_{\mathcal{P}} \rightarrow X_{\mathcal{P}^{\prime}}$ such that for all $I \in X_{\mathcal{P}}$:
i $I^{\prime}:=f(I)$ can be computed in time polynomial in the size of I;
iii $\mathrm{OPT}\left(I^{\prime}\right) \leq a \cdot \mathrm{OPT}(I)$;
开 given a solution of value V^{\prime} to I^{\prime}, one can compute in polynomial time a solution of value V to I such that

$$
|\mathrm{OPT}(I)-V| \leq b \cdot\left|\mathrm{OPT}\left(I^{\prime}\right)-V^{\prime}\right| .
$$

Example: The reduction from MAX E 3SAT to MAX 2SAT in the previous proof is an L-reduction with parameters $a=\frac{54}{7}$ and $b=\frac{1}{2}$.

Approximation-Preserving Reductions

Theorem 7.10

For maximization problems \mathcal{P} and \mathcal{P}^{\prime}, if there is an L-reduction from \mathcal{P} to \mathcal{P}^{\prime}, and there is an α-approximation algorithm for \mathcal{P}^{\prime}, then there is an $(1-a b(1-\alpha))$-approximation algorithm for \mathcal{P}.

Approximation-Preserving Reductions

Theorem 7.10

For maximization problems \mathcal{P} and \mathcal{P}^{\prime}, if there is an L-reduction from \mathcal{P} to \mathcal{P}^{\prime}, and there is an α-approximation algorithm for \mathcal{P}^{\prime}, then there is an $(1-a b(1-\alpha))$-approximation algorithm for \mathcal{P}.

Proof:...

Approximation-Preserving Reductions

Theorem 7.10

For maximization problems \mathcal{P} and \mathcal{P}^{\prime}, if there is an L-reduction from \mathcal{P} to \mathcal{P}^{\prime}, and there is an α-approximation algorithm for \mathcal{P}^{\prime}, then there is an $(1-a b(1-\alpha))$-approximation algorithm for \mathcal{P}.

Proof:...

Theorem 7.11

For minimization problems \mathcal{P} and \mathcal{P}^{\prime}, if there is an L-reduction from \mathcal{P} to \mathcal{P}^{\prime}, and there is an α-approximation algorithm for \mathcal{P}^{\prime}, then there is an $(a b(\alpha-1)+1)$-approximation algorithm for \mathcal{P}.

MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph $G=(V, E)$.
Task: Find $V^{\prime} \subseteq V$ maximizing $\left|V^{\prime}\right|$ with all nodes in V^{\prime} pairwise adjacent.

MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph $G=(V, E)$.
Task: Find $V^{\prime} \subseteq V$ maximizing $\left|V^{\prime}\right|$ with all nodes in V^{\prime} pairwise adjacent. Notation: The size of a largest clique $V^{\prime} \subseteq V$ in G is denoted by $\omega(G)$.

MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph $G=(V, E)$.
Task: Find $V^{\prime} \subseteq V$ maximizing $\left|V^{\prime}\right|$ with all nodes in V^{\prime} pairwise adjacent.
Notation: The size of a largest clique $V^{\prime} \subseteq V$ in G is denoted by $\omega(G)$.
Maximum Independent Set
Given: Undirected graph $G=(V, E)$.
Task: Find $V^{\prime} \subseteq V$ maximizing $\left|V^{\prime}\right|$ with V^{\prime} an independent set (or a stable), i.e., all nodes of V^{\prime} are pairwise non-adjacent.
Notation: The size of a largest stable $V^{\prime} \subseteq V$ in G is denoted by $\alpha(G)$.

MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph $G=(V, E)$.
Task: Find $V^{\prime} \subseteq V$ maximizing $\left|V^{\prime}\right|$ with all nodes in V^{\prime} pairwise adjacent.
Notation: The size of a largest clique $V^{\prime} \subseteq V$ in G is denoted by $\omega(G)$.
Maximum Independent Set
Given: Undirected graph $G=(V, E)$.
Task: Find $V^{\prime} \subseteq V$ maximizing $\left|V^{\prime}\right|$ with V^{\prime} an independent set (or a stable), i.e., all nodes of V^{\prime} are pairwise non-adjacent.
Notation: The size of a largest stable $V^{\prime} \subseteq V$ in G is denoted by $\alpha(G)$.

MaxClique Problem and Maximum Independent Set

MaxClique
Given: Undirected graph $G=(V, E)$.
Task: Find $V^{\prime} \subseteq V$ maximizing $\left|V^{\prime}\right|$ with all nodes in V^{\prime} pairwise adjacent.
Notation: The size of a largest clique $V^{\prime} \subseteq V$ in G is denoted by $\omega(G)$.
Maximum Independent Set
Given: Undirected graph $G=(V, E)$.
Task: Find $V^{\prime} \subseteq V$ maximizing $\left|V^{\prime}\right|$ with V^{\prime} an independent set (or a stable), i.e., all nodes of V^{\prime} are pairwise non-adjacent.
Notation: The size of a largest stable $V^{\prime} \subseteq V$ in G is denoted by $\alpha(G)$.

Observation: MaxClique and Maximum Independent Set are fundamentally equivalent, as $\omega(G)=\alpha(\bar{G})$.

Examples of L-Reductions

Lemma 7.12

There is an L-reduction with parameters $a=1$ and $b=1$ from MAXE 3SAT to MaxClique.

Examples of L-Reductions

Lemma 7.12

There is an L-reduction with parameters $a=1$ and $b=1$ from MAXE 3SAT to MaxClique.

```
Proof: ...
```


Examples of L-Reductions

Lemma 7.12

There is an L-reduction with parameters $a=1$ and $b=1$ from MAXE 3SAT to MaxClique.

Proof: ...

Lemma 7.13

There is an L-reduction with parameters $a=2 \Delta$ and $b=1$ from Vertex Cover in bounded degree graphs to the Steiner Tree Problem.

Examples of L-Reductions

Lemma 7.12

There is an L-reduction with parameters $a=1$ and $b=1$ from MAX E 3SAT to MaxClique.

Proof: ...

Lemma 7.13

There is an L-reduction with parameters $a=2 \Delta$ and $b=1$ from Vertex Cover in bounded degree graphs to the Steiner Tree Problem.

Moreover, it is known that for all Δ large enough, there exists $\epsilon>0$ s.t. the existence of a $(1+\epsilon)$-approximation algorithm for vertex cover in bounded degree graphs $(\leq \Delta)$ would imply $\mathrm{P}=\mathrm{NP}$.

Corollary 7.14

There is no PTAS for the Steiner tree problem, unless $\mathrm{P}=\mathrm{NP}$.

Outline

1 Reduction from NP-complete problems

2 Approximation-preserving Reductions

3 The PCP theorem

Another Characterization of NP

Another Characterization of NP

Another Characterization of NP

Another Characterization of NP

correct answer is "Yes" $\quad \exists \quad$ certificate $C: \operatorname{Pr}(V$ outputs "Yes" $)=1$.

Another Characterization of NP

correct answer is "Yes" $\quad \Longrightarrow \quad \exists$ certificate $C: \operatorname{Pr}(V$ outputs "Yes" $)=1$.
correct answer is "No" $\quad \Longrightarrow \quad \forall$ certificates $C: \operatorname{Pr}(V$ outputs "Yes" $) \leq \frac{1}{2}$.

Another Characterization of NP

correct answer is "Yes" $\Longrightarrow \exists$ certificate $C: \operatorname{Pr}(V$ outputs "Yes" $)=1$. correct answer is "No" $\quad \Longrightarrow \quad \forall$ certificates C : $\operatorname{Pr}(V$ outputs "Yes" $) \leq \frac{1}{2}$.

Definition 7.15

The class of decision problems that admit such probabilitically checkable proofs is called PCP $\equiv \mathrm{PCP}_{1, \frac{1}{2}}[O(\log (n)), O(1)]$.

Another Characterization of NP

correct answer is "Yes" $\Longrightarrow \exists$ certificate $C: \operatorname{Pr}(V$ outputs "Yes" $) \geq c$. correct answer is "No" $\Longrightarrow \quad \forall$ certificates $C: \operatorname{Pr}(V$ outputs "Yes") $\leq s$.

Definition 7.15

The class of decision problems that admit such probabilitically checkable proofs is called PCP $\equiv \mathrm{PCP}_{1, \frac{1}{2}}[O(\log (n)), O(1)]$.

More generally, we can define the class $\mathrm{PCP}_{c, s}[r(n), q(n)]$, so that the standard definition of NP reads: NP=PCP $1,0[0$, poly $(n)]$.

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Arora, Lund, Motwani, Sudan \& Sregedy 92]

$N P=P C P$.

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Avora, Lund, Motwani, Sudan \& Sregesey 92

NP=PCP. In words, this means that every decision problem in NP has a probabilistically checkable proof of constant query complexity and logarithmic randomness complexity.

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Avora, Lund, Mowani, Sudan \& Seregedy 92]

NP=PCP. In words, this means that every decision problem in NP has a probabilistically checkable proof of constant query complexity and logarithmic randomness complexity.

Proving PCP \subseteq NP is easy. The converse inclusion is much more involved.

Hardness of Approximation

Theorem 7.16 (PCP Theorem) [Avora, Lund, Motwani, Sudan \& Sregesey 92

NP=PCP. In words, this means that every decision problem in NP has a probabilistically checkable proof of constant query complexity and logarithmic randomness complexity.

Proving PCP \subseteq NP is easy. The converse inclusion is much more involved. The following theorem shows it can also be viewed as a result of hardness of approximation:

Theorem 7.17

$(\mathrm{NP} \subseteq \mathrm{PCP})$ if and only if there exists $\epsilon>0$ such that the problem of distinguishing between MAX E 3SAT instances for which there is a variable assignment satisfying all clauses, from instances in which at most a (1- ϵ) fraction of all clauses can be satisfied simultaneously, is NP-hard.

Product Graph

Definition 7.18 (product graph)

For an undirected graph $G=(V, E)$ let $G^{k}=\left(V^{k}, E_{k}\right)$ where $V^{k}=V \times V \times \cdots \times V$ is the set of all k-tuples of V and E_{k} is defined by

$$
E_{k}:=\left\{\left(u_{1}, \ldots, u_{k}\right)\left(v_{1}, \ldots, v_{k}\right) \mid u_{i}=v_{i} \text { or } u_{i} v_{i} \in E \text { for all } i\right\} .
$$

Product Graph

Definition 7.18 (product graph)

For an undirected graph $G=(V, E)$ let $G^{k}=\left(V^{k}, E_{k}\right)$ where $V^{k}=V \times V \times \cdots \times V$ is the set of all k-tuples of V and E_{k} is defined by

$$
E_{k}:=\left\{\left(u_{1}, \ldots, u_{k}\right)\left(v_{1}, \ldots, v_{k}\right) \mid u_{i}=v_{i} \text { or } u_{i} v_{i} \in E \text { for all } i\right\}
$$

Example:

Lemma 7.19

It holds $\omega\left(G^{k}\right)=\omega(G)^{k}$. Moreover, given a clique C of G^{k}, one can efficiently compute a clique C^{\prime} of G, of size $\left|C^{\prime}\right| \geq|C|^{1 / k}$.

MaxClique: Self improvement of approx. ratio

Proposition 7.20

If there is an α-approximation algorithm for MaxClique for some fixed $\alpha<1$, then there is a PTAS.

MaxClique: Self improvement of approx. ratio

Proposition 7.20

If there is an α-approximation algorithm for MaxClique for some fixed $\alpha<1$, then there is a PTAS.

Proof:...

MaxClique: Self improvement of approx. ratio

Proposition 7.20

If there is an α-approximation algorithm for MaxClique for some fixed $\alpha<1$, then there is a PTAS.

Proof:...
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS for MAX E 3SAT, and by the PCP theorem, this would imply $\mathrm{P}=\mathrm{NP}$!

MaxClique: Self improvement of approx. ratio

Proposition 7.20

If there is an α-approximation algorithm for MaxClique for some fixed $\alpha<1$, then there is a PTAS.

Proof:...
But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS for MAX E 3SAT, and by the PCP theorem, this would imply $\mathrm{P}=\mathrm{NP}$!

Theorem 7.21

If there is a constant factor approximation algorithm for MaxClique, then $P=N P$.

MaxClique: Self improvement of approx. ratio

Proposition 7.20

If there is an α-approximation algorithm for MaxClique for some fixed $\alpha<1$, then there is a PTAS.

Proof:...

But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS for MAX E 3SAT, and by the PCP theorem, this would imply $\mathrm{P}=\mathrm{NP}$!

Theorem 7.21

If there is a constant factor approximation algorithm for MaxClique, then $P=N P$.

Theorem 7.22 (Zuckerman 2007)

There is no $n^{-1+\varepsilon}$-approximation algorithm for MaxClique, for any $\varepsilon>0$, unless $P=N P$.

MaxClique: Self improvement of approx. ratio

Proposition 7.20

If there is an α-approximation algorithm for MaxClique for some fixed $\alpha<1$, then there is a PTAS.

Proof:...

But by Lemma 7.12, if there is a PTAS for MaxClique, there is also a PTAS for MAX E 3SAT, and by the PCP theorem, this would imply $\mathrm{P}=\mathrm{NP}$!

Theorem 7.21

If there is a constant factor approximation algorithm for MaxClique, then $P=N P$.

Theorem 7.22 (Zuckerman 2007)

There is no $n^{-1+\varepsilon}$-approximation algorithm for MaxClique, for any $\varepsilon>0$, unless $P=N P$.

Approximability of MAX E 3SAT

Theorem 7.23

For all $\epsilon, \delta>0, \mathrm{NP} \subseteq \mathrm{PCP}_{1-\epsilon, \frac{1}{2}+\delta}^{\text {parity }}[O(\log (n)), 3]$, where parity indicates that the verifyer can only evaluate the parity $\left(x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \bmod 2\right)$ of the three bits it checks.

Approximability of MAX E 3SAT

Theorem 7.23

For all $\epsilon, \delta>0, \mathrm{NP} \subseteq \mathrm{PCP}_{1-\epsilon, \frac{1}{2}+\delta}^{\text {parity }}[O(\log (n)), 3]$, where parity indicates that the verifyer can only evaluate the parity $\left(x_{i_{1}}+x_{i_{2}}+x_{i_{3}} \bmod 2\right)$ of the three bits it checks.

Corollary 7.24

There is no α-approximation algorithm for MAXE 3SAT for some fixed $\alpha>7 / 8$, unless $P=N P$.

