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Chapter X: Interior Point Methods

This is a crash course on interior point methods for convex optimization. We will not make rigorous

proofs for all statements in this handout, as it would take too much time, but we will try to understand the

general behaviour of these optimization algorithms. This material is based on the following references [3,

Chapters 2–4], [1, Chapters 9–11], [2, Lectures 16–17].

1 General Idea

Consider a convex optimization problem

min
x∈X
Ax=b

f(x) (P )

where X ⊆ Rn is a closed convex set with a nonempty interior (Note: we can always reduce to this case).

The idea of interior point methods (IPMs) is to equip intX with a barrier function F satisfying:

(i) F is smooth and strongly convex∗, i.e., ∃ν > 0 : ∇2F (x) � νI for all x ∈ X .

(ii) F (xk)→∞ for all sequences of points xk ∈ intX converging to a boundary point x̄ ∈ ∂X.

Then, for all t ≥ 0, the equality-constrained penalized problem

min
x

t f(x) + F (x) (Pt)

s.t. Ax = b

has a unique solution, satisfying x∗(t) ∈ intX and Ax∗(t) = b. The set of points {x∗(t) : t ≥ 0} is called

the central path, and (under mild conditions) it converges to a point in the optimal set of (P ) as t→∞.

Path-following algorithms typically work as follows: Given a current iterate (tk > 0,x(k) ∈ intX ), with

Ax(k) = b and x(k) reasonably close to x∗(tk),

1. replace the current value of tk by a new, larger value tk+1 > tk;

2. use an equality-constrained minimization algorithm to solve (approximately) Problem (Ptk+1
), starting

from the initial guess x(k), to obtain a point x(k+1) reasonably close to x∗(tk+1)

Advandages:

• Can use methods of unconstrained (or equality-constrained) optimization, such as Newton’s method;

• For certain class of barrier functions (theory of self-concordance), we can prove that the above path-

following scheme returns an ε−suboptimal solution in polynomial time (w.r.t. input size of the problem

and log(1/ε));

• IPMs are good for both theoretical and practical purpose.

We are next going to study how to solve unconstrained optimization problems (and the same method

can easily be generalized to equality-constrained optimization, see Section 4), and give some details on the

steps 1. and 2. above, in order to control the speed of convergence.

∗the definition of strong-convexity can be extended to non-smooth functions: we say that F is ν-strictly convex iff x 7→
F (x)− ν/2‖x‖2 is convex.
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2 Newton’s Method for unconstrained optimization

We consider an unconstrained optimization problem p∗ = infx f(x), where f is twice differentiable (in par-

ticular, dom f is open), and strongly convex (in particular, the Hessian matrix ∇2f(x) is always invertible).

One way to present Newton’s method is via successive quadratic approximations: Given a current iterate

x(k) ∈ dom f , we can use Taylor expansion to obtain a 2d order approximation of f around x(k): f(x(k) +

u) ' f̂(x(k) +u) := f(x(k)) +∇f(x(k))Tu+ 1
2u

T∇2f(x(k))u. The basic Newton’s method sets x(k+1) equal

to the unique minimizer of f̂ :

x(k+1) := x(k) + ∆x, where ∆x = −∇2f(x(k))−1∇f(x(k)).

In practice however, this method can fail to converge, in particular one can have x(k+1) /∈ dom f . To

circumvent this issue, one can take damped Newton steps, x(k+1) := x(k)+δ∆x, where the step size 0 < δ ≤ 1

is found by performing a backtracking line search: Given search parameters 0 < α ≤ 1
2 and 0 < β < 1, we

start at δ = 1, and we shrink δ := βδ until the criterion f(x(k+1)) ≤ f(x(k)) + αδ∇f(x(k))T∆x is fulfilled.

As a stopping criterion, one can use 1
2λ(x(k))2 ≤ ε, where ε is a tolerance parameter. Here, the function

λ(x) is the Newton decrement :

λ(x) =
√
∇f(x)T ∇2f(x)−1 ∇f(x).

The quantity 1
2λ(x)2 is equal to f(x)− infy f̂(y), where f̂ is the quadratic approximation of f at x. Hence

1
2λ(x(k))2 is an estimate of f(x(k))− p∗.

3 Convergence Analysis of Newton’s Method

There are two main frameworks that can be used to control the convergence of Newton’s method. The first

one relies on regularity parameters of the function f . The first approach has the disavantage that it depends

on some parameters m,L and H that are, in general, unknwon. Instead, a parameter-free analysis has been

proposed by Nesterov and Nemirovski for self-concordant functions. The class of functions of this second

approach is thus restricted, but this is exactly the class of functions we need to analyze LP, SOCP, and

SDPs.

We give below the main result for these two approaches, starting with the standard analysis based on

strong convexity.

3.1 Convergence analysis for regular functions

Assume that f is strongly convex with parameter ν, ∇f is Lipschitz with parameter M , and ∇2f is Lipschitz

with parameter L, i.e., ‖∇f(x)−∇f(y)‖ ≤M‖x−y‖, ‖∇2f(x)−∇2f(y)‖F ≤ L‖x−y‖, and we use Newton’s

method with backtracking line search (with parameters α and β). Then, there exists 2 numbers η and γ,

which depend on the parameters α, β, ν,M and L, such that:

• In a first phase (as long as ‖∇f(x(k))‖ ≥ η), the criterion is decreased by at least γ ≥ 0 at each

iteration:

f(x(k))− f(x(k+1)) ≥ γ. (1)

• In a second phase (for all iterations k ≥ `, where k = ` is the first iterate satisfying ‖∇f(x(k))‖ < η),

the backtracking line search always returns the step size δ = 1, and it holds:

f(x(k))− p∗ ≤ 2ν3

L2

(
1

2

)2k−`+1

. (2)
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We can use (1) to bound the number of iterations in the first phase by f(x(0))−p∗
γ , and Equation (2) shows

that the convergence is locally quadratic, that is, when we are close to the solution, the number of accurate

digits typically doubles at each iteration. For all practical purposes, 5 or 6 iterations of the second phase

ensure that we have found an extremely accurate solution.

One drawback of the above approach is that the analysis is not affine invariant : For example, the

parameters M and L change if we make a change of variable y = αx + β, although the Newton method is

affine invariant. The analysis of Newton’s method based on self-concordance circumvents this issue.

3.2 Convergence analysis for self-concordant functions

We introduce a class of functions that satisfy certain regularity assumptions. The next definition may look a

bit strange, but it turns out that when working with conic programming problems, we can use self-concordant

penalty functions to follow the central path (cf. Section 5.2).

Definition 1 (Self-concordant function). A function f : Rn → R is called self-concordant if

• dom f is an open convex set;

• ∇2f(x) � 0 for all x ∈ dom f (in particular, f is strictly convex);

• f(xi) → ∞ along every sequence {xi ∈ dom f} converging (as i → ∞) to a boundary point of

dom f (we call this the barrier property);

• f is C3 and for all x ∈ dom f, h ∈ Rn, the restriction F to the line x+ th, i.e., F : t 7→ f(x+ th)

satisfies

|F ′′′(t)| ≤ 2F ′′(t)3/2, ∀t ∈ domF. (3)

Recall that in the standard case, 1
2λ(x)2 is only an estimate of f(x) − p∗, but here (when f is self-

concordant), multiplying this estimate by 2 yields a provable upper bound on the gap to optimality.

Proposition 1. If f is self-concordant and the Newton decrement is λ(x) ≤ 0.68, then it holds

f(x)− p∗ ≤ λ(x)2.

Proof. First, we can show that the self-concordance inequality (3) is equivalent to∣∣∣∣ ddtF ′′(t)−1/2

∣∣∣∣ ≤ 1, ∀t ∈ domF. (4)

This implies: F ′′(t)−1/2 ≤ F ′′(0)−1/2 + t for all t ≥ 0, i.e.,

F ′′(t) ≥ 1

(F ′′(0)−1/2 + t)2
=

F ′′(0)

(1 + tF ′′(0)1/2)2
.

Now, we consider a semi-line x + th, t ≥ 0 of Rn, and we consider the function F : t 7→ f(x + th), which is

self-concordant by definition. Integrating the above inequality, we obtain:

F ′(t) ≥ F ′(0) +
F ′′(0)t

1 + tF ′′(0)1/2
= F ′(0) + F ′′(0)1/2 − F ′′(0)1/2

1 + tF ′′(0)1/2
.

Then, we integrate a second time, to obtain:

F (t) ≥ F (0) + t(F ′(0) + F ′′(0)1/2)− log(1 + tF ′′(0)1/2).
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The right-hand side of the above expression is a convex function, which reaches its minimum at t∗ = −F ′(0)/[F ′′(0)+

F ′′(0)1/2F ′(0)]. Evaluating this expression at t∗, we obtain:

∀t ∈ domF ∩ R+, F (t) ≥ F (0) + t∗(F ′(0) + F ′′(0)1/2)− log(1 + t∗F ′′(0)1/2)

= F (0)− F ′(0)F ′′(0)−1/2 + log
(
1 + F ′(0)F ′′(0)−1/2)

= F (0) + ρ
(
− F ′(0)F ′′(0)−1/2

)
, (5)

where ρ(u) := u+ log(1− u) = −(x2/2 + x3/3 + x4/4 + . . .).

Now, we replace the values of F and its derivatives at t = 0 by their respective expressions, i.e.,

F (0) = f(x), F ′(0) = hT∇f(x), F ′′(0) = hT∇2f(x)h.

In particular, this yields

F ′(0)F ′′(0)−1/2 =
hT∇f(x)√
hT∇2f(x)h

=

〈
h,
(
∇2f(x)

)−1 ∇f(x)
〉
x√

〈h,h〉x
,

where the inner product is 〈a, b〉x = aT∇2f(x)b. Hence, Cauchy-Schwartz inequality shows that |F ′(0)F ′′(0)−1/2| ≤√
∇f(x)T ∇2f(x)−1 ∇f(x) = λ(x). In particular, this shows that the expression (5) is well defined for λ(x) < 1.

In this case, since one can show that ρ(u) ≥ ρ(a) for all |u| ≤ a, we obtain:

∀t ∈ domF ∩ R+, F (t) ≥ f(x) + ρ(λ(x))

Finally, since the direction h was chosen arbitrarily, it holds

p∗ ≥ f(x) + ρ(λ(x)) ⇐⇒ f(x)− p∗ ≤ −ρ(λ(x)),

and a straightforward analysis shows that −ρ(λ) ≤ λ2 whenever 0 ≤ λ ≤ 0.683803.

Now, we consider damped Newton steps x+ := x+δ∆x, where the step sizes δ = 1
1+λ(x(k))

are controlled

by the Newton decrement λ(x).

Proposition 2. Let x ∈ int dom f . Then, the iterate x+ of the damped Newton step satisfies:

1. x+ ∈ int dom f ;

2. f(x)− f(x+) ≥
(
λ(x)− log

(
1 + λ(x))

))
.

In particular, if λ(x) ≥ 1
4 , then f(x)− f(x+) ≥ ( 1

4 − log 5
4 ) = 0.026856;

3. If λ(x) ≤ 1
4 , then we are in the region of quadratic convergence, and 2λ(x+) ≤ (2λ(x))2.

Proof. 1. Consider the function F : t 7→ f(x + th) on the half line x + th, t ≥ 0, where h = ∆x is the Newton

direction. This function satisfies F ′(0) = −λ(x)2 and F ′′(0) = λ(x)2. From the self-concordance of F , we have

F ′′(t)−1/2 ≥ F ′′(0)−1/2 − t for t ≥ 0, cf. (4), that is,

∀t ∈ domF ∩ [0, F ′′(0)−1/2), F ′′(t) ≤ 1

(F ′′(0)−1/2 − t)2
=

F ′′(0)

(1− tF ′′(0)1/2)2
.

We integrate this relation twice:

F ′(t) ≤ F ′(0) +
F ′′(0)t

1− tF ′′(0)1/2
.

F (t) ≤ F (0) + tF ′(0)− F ′′(0)1/2t− log(1− tF ′′(0)1/2).
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Substituting the values of F and its derivatives at t = 0,

F (t) = f(x+ th) ≤ f(x)− tλ(x)2 − tλ(x)− log(1− tλ(x)), (6)

which is valid for all t ∈ domF such that 0 ≤ t < F ′′(0)−1/2 = 1
λ(x)

. Assume (by contradiction) that δ /∈ int domF .

Then, the segment [x,x+δh] intersects the boundary of dom f . Hence, there is a sequence {ti} such that xi = x+tih

converges to a boundary point of dom f , with ti ∈ domF and 0 ≤ ti ≤ δ < 1
λ(x)

, ∀i ∈ N. By (6), the sequence {F (ti)}
is bounded, but this contradicts the barrier property of the self-concordant function f . This shows δ ∈ int domF ,

that is, x+ ∈ int dom f .

2. Now, let us evaluate the inequality (6) at t = δ = 1
1+λ(x)

:

f(x+) ≤ f(x)− λ(x)2

1 + λ(x)
− λ(x)

1 + λ(x)
− log(1− λ(x)

1 + λ(x)
)

= f(x)− λ(x) + log(1 + λ(x)).

3. We skip the proof of this fact, which requires additional technical lemmas. The idea is to show that self-

concordance implies a bound on the Hessian matrix at x+, and as usual we must integrate this bound twice.

We are now ready to prove the main result on the convergence of the damped Newton’s method for

self-concordant functions:

Theorem 3. Given an initial guess x(0) ∈ int dom f , the number of damped Newton steps

x(k+1) ← x(k) +
1

1 + λ(x(k))
∇2f(x(k))−1∇f(x(k))

required to find an ε−suboptimal solution to the problem of minimizing f(x) is upper bounded by

O(1)[f(x0)− p∗] + log2 log2

1

ε
,

where the hidden constant does not depend on f , and is less than 38.

Proof. By Proposition 2 (2.), the number of iteration of the first phase, during which λ(x(k)) ≥ 1
4
, is upper bounded

by C(f(x0)− p∗), where C ' 1
0.026856

, hence C−1 < 38.

Let ` be the index of the first iterate such that λ(x(`)) < 1
4
. By using the results of Propositions 1 and Proposition 2

(3.), an induction over k ≥ ` shows that

f(x(k))− p∗ ≤ λ(x(k))2 ≤
(

1

2

)2k−`+1

, ∀k ≥ `.

Hence, we reach the desired precision after at most log2 log2
1
ε

iterations of the second phase.

4 Newton’s method for equality constrained problems

Newton’s method can be adapted to the case of equality constrained problems p∗ = inf{f(x) : Ax = b}. To

this end, we must chose feasible Newton directions. To this end, given a current iterate x satisfying Ax = b,

we minimize the quadratic approximation f̂ of f around x:

min
u

f̂(x+ u) := f(x) +∇f(x)Tu+
1

2
uT∇2f(x)u

s.t. A(x+ u) = b.
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The constraint of this problem rewrites Au = 0, and the (necessary and sufficient) KKT conditions for this

problem are: ∃µ :

Au = 0 (primal feasibility)

∇f(x) +∇2f(x)u+ATµ = 0 (gradient of Lagrangian vanishes).

Hence, at iteration k, the Newton direction ∆x is found by solving the following KKT system:[
∇2f(x(k)) AT

A 0

] [
∆x

µ

]
=

[
−∇f(x(k))

0

]
Then, the convergence analysis of damped newton method is similar as in the unconstrained case.

Remark 4. In fact, we know that equality constrained can be removed for a problem, by expressing the

feasible affine space as

Ax = b ⇐⇒ ∃z ∈ Rr : x = Uz + x0,

for some matrix U ∈ Rn×r and a vector x0 ∈ Rn. Then, it can be shown that the Newton method for the

equivalent unconstrained problem

minimize
z∈Rr

f(Uz + x0)

produces the same iterates as the Newton method for the above equality constrained problem.

5 Path following algorithm

As stated in the introduction, at each iteration of the basic IPM algorithm, we increasse the penalty parameter

t, and we then perform a centering, which consists in using Newton’s method to come close to the central

path x∗(t).

In this section, we make the simplifying assumptions that (i) an interior point x(0) is given; and (ii) exact

centering is used, that is, at iteration k, we have a penalty parameter tk and we compute x(k) = x∗(tk) by

solving Problem (Ptk) exactly, but we point out that the method can be modified to allow inexact centering,

by imposing a bound on the Newton decrement λtk(x(k)) of the centering Problem (Ptk).

Concerning assumption (i), the barrier method can be applied to another optimization problem, called

phase I optimization problem, for which a strictly feasible solution can easily be found, and whose solution

yields either a strictly feasible point, or a certificate that Problem (7) is not strictly feasible.

5.1 Barrier method for a convex problem with m inequality constraints

We consider a convex optimization problem of the form

p∗ = min f0(x) (7)

s.t. fi(x) ≤ 0 (i = 1, . . . ,m)

Ax = b,

We assume that the fi’s are twice differentiable, and that Problem (7) is strictly feasible and solvable, so

there exists a pair of primal and dual optimal solution : p∗ = f(x∗) = g(λ∗,µ∗)

We study the central path {x∗(t) : t ≥ 0}, where x∗(t) is the unique minimizer (uniqueness can be
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guaranteed if at least one of the fi’s is strongly convex) of:

min Ft(x) := tf0(x) +

m∑
i=1

− log(−fi(x)) (Qt)

Ax = b,

Intuitively, to justify this approach, observe that if we divide the objective by t, we obtain f0(x)+ 1
t

∑m
i=1− log(−fi(x)),

which can be interpreted as an approximation (as t→∞) of the function{
f0(x) if ∀i ≥ 1, fi(x) ≤ 0

+∞ otherwise.

We now show that the central path actually converges to an optimal solution of Problem (7). In fact, we

even obtain a bound on suboptimality of x∗(t) which depends on t.

Proposition 5. Let x∗(t) solve Problem (Qt). Then, x∗(t) is feasible for Problem (7), and

f0(x∗(t))− p∗ ≤ m

t
.

Proof. When we use Newton’s method to solve the equality constrained problem (Qt), we obtain x∗(t) and also the

optimal multiplier µ∗(t) for the equality constraints, which satisfies ∇Ft(x∗(t)) +ATµ∗(t) = 0.

Now, we will prove the following: if we set

λi(t) = − 1

tfi(x∗(t))
(∀i = 1, . . . ,m), µ(t) =

µ∗(t)

t
,

then (λ(t),µ(t)) is dual feasible for the original problem (7), and hence provide a bound. The fact that λ(t) ≥ 0 is

clear, because fi(x
∗(t)) < 0. So the only thing to show is that (λ(t),µ(t)) ∈ dom g, that is, g(λ(t),µ(t)) > −∞,

where g is the Lagrange dual function for Problem (7). The optimality condition ∇Ft(x∗(t)) + ATµ∗(t) = 0 can be

rewritten as

t∇f0(x∗(t))−
m∑
i=1

1

fi(x∗(t))
∇fi(x∗(t)) +ATµ∗(t) = 0

⇐⇒ ∇f0(x∗(t)) +

m∑
i=1

λi(t) ∇fi(x∗(t)) +ATµ(t) = 0

⇐⇒ ∇x L(x∗(t),λ(t),µ(t)) = 0,

where L is the lagrangian of Problem (7). This shows that x∗(t) is a minimizer of x 7→ L(x,λ(t),µ(t)). So:

p∗ ≥ d∗ ≥ g(λ(t),µ(t)) = L(x∗(t),λ(t),µ(t)) = f0(x∗(t)) +

m∑
i=1

λi(t) fi(x
∗(t))︸ ︷︷ ︸

=−m
t

+µ(t)T (Ax∗(t)− b)︸ ︷︷ ︸
=0

.

This shows that f0(x∗(t))− p∗ ≤ m
t

, and hence x∗(t) converges to an optimal solution of Problem (7).

The bound f0(x∗(t))−p∗ ≤ m
t shows that to solve the original problem approximately (within an error ε),

it suffices to solve the equality-constrained problem (Qt) for a t ≥ m
ε . This approach does not work well

in practice, because the function Ft becomes nasty when t grows large. The path following method is an

alternative, in which we minimize Ft(x) for a sequence of increasing values of t, until t ≥ m
ε , by using the

last point found as a starting point for the next equality-constrained problem.

The basic algorithm starts at t = t0 and increases t as t := ωt at each iteration, so that the accuracy
m
t0ωk is achieved after k iterations. This shows that the desired accuracy level ε is reached after exactly
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k =
⌈
logm/(εt0)

logω

⌉
. Clearly, there is a tradeoff in the choice of the parameters t0 and ω. Typically, a large

ω decreases the number of centering iterations, but each iteration will require a larger amount of Newton

steps, because x∗(t) is not necessarily a good starting point for Problem (Qωt).

In practice, this method works pretty well for values of ω around 10 or 20. However, with this approach

it is hard to prove that the centering problems does not become prohibitively difficult when t becomes large.

But the theory of self-concordance gives an elegant framework, which allows one to bound the total number

of Newton steps needed to reach the accuracy ε.

5.2 Conic Program with a self-concordant barrier

We consider a pair of primal and dual cone programs

min cTx (P ) max gTy + bTz (D)

s.t. Fx = g s.t. FTy +ATz = c

Ax � b z �∗ 0

The generalized inequalities � and �∗ are with respect to a proper cone K and its dual K∗.

Definition 2 (θ−normal barrier). We say that φ is a θ−normal barrier for the cone K if:

• φ is self-concordant on intK

• φ is logarithmically homogeneous with parameter θ:

φ(tx) = φ(x)− θ log t ∀x ∈ intK, t > 0.

Example:

A normal barrier φ can be interpreted as a kind of generalization of the logarithm defined over K. For

example, the following functions are normal barriers for the main cones studied in this lecture:

• φ(x) =
∑
− log xi is a normal barrier for K = Rm+ , with θ = m.

• φ(x) = − log(t2 − ‖x‖22) is a normal barrier for the Lorentz cone K = Lm+ := {(x, t) ∈ Rm−1 × R :

‖x‖2 ≤ t}, with θ = 2.

• φ(X) = − log detX is a normal barrier for K = Sm+ , with θ = m.

• φ(x, y, z) = − log(y log z/y − x) − log z − log y is a normal barrier for the exponential cone Kexp =

cl{(x, y, z)| y > 0, yex/y ≤ z}, with θ = 3.

#1

Also, it is easy to see that if φ1 and φ2 are normal barriers for the cones K1 and K2, of respective

parameters θ1 and θ2, then φ : intK1 × intK2 → R, φ(x,y) = φ1(x) + φ2(y) is a (θ1 + θ2)−normal barrier

for the cone K1 ×K2. Further properties of calculus with θ−normal barriers follow:

Proposition 6. Let φ be a θ−normal barrier function for a proper cone K. Let t > 0, x ∈ intK. Then,

i. ∇φ(tx) = 1
t∇φ(x);

ii. xT∇φ(x) = −θ;

iii. ∇φ(x)T∇2φ(x)−1∇φ(x) = θ
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iv. −∇φ(x) ∈ intK∗;

Proof. i. We differentiate the equality φ(tx) = φ(x)− θ log(t) with respect to x. This gives t∇φ(tx) = ∇φ(x).

ii. Now we differentiate with respect to t, which gives xT∇φ(tx) = −θ/t. The desired equality is obtained by

setting t = 1.

iii. We differentiate the equality of i with respect to t: ∇2φ(tx)x = − 1
t2
∇φ(x). At t = 1, this gives

∇2φ(x)x = −∇φ(x).

Combining this with the property ii., we get xT∇2φ(x)x = θ, and then xT∇2φ(x)x = ∇φ(x)T (∇2φ(x))−1∇φ(x).

iv. We use the first order condition of convexity for φ at points tx and y ∈ intK:

φ(y) ≥ φ(tx) + 〈∇φ(tx),y − tx〉.

By using the properties i and ii above, this gives

φ(y) ≥ φ(x)− θ log(t) +
1

t
∇φ(x)Ty + θ.

This implies ∇φ(x)Ty < 0, as otherwise −θ log(t) + 1
t
∇φ(x)Ty would tend to +∞ as t→ 0, a contradiction. Hence,

we have: ∀y ∈ intK,−∇φ(x)Ty > 0, that is, −∇φ(x) ∈ K∗. To conclude, assume (by contradiction) that ∇φ(x)

lies on the boundary of −K∗. Then, there exists v 6= 0 such that ∇φ(x) + tv /∈ −K∗, ∀t > 0. But we know that

∇2φ(x) � 0, so we can define u := ∇2φ(x)−1v. Then, the first order expansion of ∇φ yields

∇φ(x+ tu) = ∇φ(x) + t∇2φ(x)u+ o(t) = ∇φ(x) + t(v + o(1)).

The right hand side does not belong to −K∗ for t > 0 small enough, and the existence of a t > 0 such that

∇φ(x+ tu) /∈ −K∗ is a contradiction.

Given a θ−normal barrier for the cone K, we can show that ψ(x) := φ(Ax − b) is self-concordant on

{x : Ax � b}. Then, to solve Problem (P ), we use the path-following algorithm along the central path

{x∗(t) : t ≥ 0}, where x∗(t) solves the equality-constrained problem

min t cTx+ φ(Ax− b) (Pt)

s.t. Fx = g.

We want to prove an analog of Proposition 5 for the case of a conic programming problem with a normal

barrier. This time, we will obtain a bound on suboptimality based on the parameter of the barrier φ: the

parameter θ plays the role of the number m of inequalities in the general case.

Proposition 7. Let x∗(t) solve Problem (Pt). Then, x∗(t) is feasible for Problem (P ), and

cTx∗(t)− p∗ ≤ θ

t
.

Proof. We consider a point x∗(t) on the central path, associated with a Lagrange multiplier µ∗(t) for the equality

constraint Fx = g. The KKT optimality conditions for Problem (Pt) read

tc+AT∇φ(Ax∗(t)− b) + FTµ∗(t) = 0, [stationarity];

Fx∗(t) = g, [primal feasibility].

Now, define y = − 1
t
µ∗(t), z = − 1

t
∇φ(Ax∗(t)− b). We will show that (y,z) is feasible for (D). Indeed, dividing the

stationarity equation by t yields:

c−ATz − FTy = 0,
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and z �∗ 0 follows from Ax∗(t)−b � 0 and the property iv. of Proposition 6. Hence, we obtain a dual bound for p∗:

p∗ ≥ d∗ ≥ gTy + bTz = 〈Fx∗(t),y〉+ bTz.

= 〈Fx∗(t),y〉+ 〈x∗(t), ATz〉 − 〈x∗(t), ATz〉+ bTz

= 〈x∗(t), FTy +ATz〉 − 〈z, Ax∗(t)− b〉,

where the first equality follows from primal feasibility. Then, the first term above is equal to cTx∗, and the second

term is

−zT (Ax∗ − b) =
1

t
(Ax∗ − b)T∇φ(Ax∗ − b) = −θ

t
,

by property ii. of Proposition 6. This shows: p∗ ≥ cTx∗ − θ
t
, as claimed.

To prove polynomial-time convergence of the path-following method, the idea is to take short-steps, i.e.,

we set tk+1 = ωtk at iteration k + 1, where ω is sufficiently small, so x∗(t) lies in the quadratic convergence

region of Problem (Pωt). Then, 5 or 6 Newton steps are sufficient to compute the point x(k+1) = x∗(tk+1).

A parameter ω which satisfies this property is ω = 1 + 1
4
√
θ
.

Proposition 8. Let x∗(t) be a solution of (Pt), and let ω = 1 + 1
4
√
θ

. Then x∗(t) is in the region of

quadratic convergence for problem (Pωt), that is, λωt(x
∗(t)) ≤ 1

4 , where λτ is the Newton decrement for

Problem (Pτ ).

Proof. It suffices to prove the result for unconstrained problems, as every constrained problem can be reduced to an

unconstrained problem, by making a change of variable, and the Newton method for equality constrained problems

produces the same iterates as the Newton method for the reduced unconstrained problem (cf. Remark 4). Hence, the

central point x∗(t) satisfies ∇ft(x∗(t)) = 0, where ft(x) = tcx+ ψ(x) and ψ(x) = φ(Ax− b), that is,

∇ft(x∗(t)) = tc+∇ψ(x∗(t)) = 0.

Then, recall that the Newton decrement for Problem (Pτ ) at x can be expressed as λτ (x) =
(
∇fτ (x)∇2fτ (x)−1 ∇fτ (x)

)1/2
.

So, for all ω > 1 it holds:

λωt(x
∗(t)) =

( (
ωtc+∇ψ(x∗(t))

)T ∇2ψ(x∗(t))−1 (ωtc+∇ψ(x∗(t))
) )1/2

= ‖ωtc+∇ψ(x∗(t))‖∗ ,

where ‖u‖2∗ = uT∇2ψ(x∗(t))−1u.

Now, we claim the following: ‖∇ψ(x∗(t))‖∗ ≤
(
∇φ(s)T∇2φ(s)−1∇φ(s)

)1/2
=
√
θ, where s = Ax∗(t)−b. The last

equality is nothing but property iii. of Proposition 6. To prove the inequality, we observe that ∇ψ(x∗(t)) = AT∇φ(s)

and ∇2ψ(x∗(t)) = AT∇2φ(s)A. So, if we set v := ∇φ(s) and H = ∇2φ(s) � 0, the inequality to show is equivalent

to

vTA(ATHA)−1ATv ≤ vTH−1v.

In fact, this is true for all vectors v, as we can show the linear matrix inequality A(ATHA)−1AT � H−1 using a

Schur complement:[
H−1 A

AT ATHA

]
=

[
H−1/2

ATH1/2

][
H−1/2

ATH1/2

]T
� 0 ⇐⇒ H−1 −A(ATHA)−1AT � 0.

This proves our claim: ‖∇ψ(x∗(t))‖∗ ≤
√
θ.
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Now, we have

λωt(x
∗(t)) = ‖ωtc+∇ψ(x∗(t))‖∗

=

∥∥∥∥∥∥∥ω (tc+∇ψ(x∗(t)))︸ ︷︷ ︸
=0

−(ω − 1)∇ψ(x∗(t))

∥∥∥∥∥∥∥
∗

= (ω − 1)‖∇ψ(x∗(t))‖∗

≤ (ω − 1)
√
θ.

Finally, for the value ω = 1 + 1

4
√
θ
, it holds:

λωt(x
∗(t)) ≤ 1

4
√
θ

√
θ =

1

4
,

so x∗(t) is in the region of quadratic convergence for Problem (Pωt).

To summarize, (assuming we are given a point x∗(t0) on the central path), the algorithm works as follows:

For k = 1, 2, . . . ,

• tk = (1 + 1
4
√
θ
)tk−1;

• Compute x∗(tk) by using a few (say ≤ 6) Newton steps to solve Problem (Ptk), starting at x∗(tk−1);

• Stop if θ
tk
≤ ε

Hence, the total number of Newton steps needed to solve Problem (P ) within tolerance ε is:

Nnewton = O(1)
log θ/(εt0)

logω
= O(1)

√
θ log

θ

εt0
.

Multiplying by the number of flops per Newton step, we obtain a polynomial-time worst-case complexity

result.

Theorem 9. If a point x∗(t0) on the central path is given, the above path following algorithm computes

an ε−suboptimal solution to Problem (P ) in time polynomial with respect to the input size and log 1
ε .

Again, in practice the value ω = (1 + 1
4
√
θ
) is too small to obtain a quick convergence, this is just a

convenient value for the theoretical analysis of the algorithm. There are many variants of the path following

method presented here. In particular,

• The analysis can be done by using inexact centering, that is, it is sufficient to ensure that the point

x(k) is close enough to the central path x∗(tk), by imposing a bound on λtk(x(k));

• It is also possible to take larger steps, while still guaranteeing convergence. To this end, predictor-

corrector algorithms linearize the central path around the current iterate;

• Last but not least, when the cone K is symmetric (in particular, for LP, SOCP and SDP), state-of-the

art solvers use some primal-dual interior point methods which take Newton steps simultaneously on

both the primal and the dual problem.
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