
G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

Chapter XII: First Order Methods for

Large Scale Problems

In the previous chapter, we have seen that many problems that arise in the fields of machine learning

and signal processing can be formulated as unconstrained optimization problems of the form

minimize
x∈Rn

F (x), (1)

where F is a non-smooth convex function. For example, this is the case of the lasso problem

minimize
θ∈Rn

‖Xθ − y‖2 + λ‖θ‖1,

or the soft-margin SVM:

minimize
w∈Rn,b∈R

m∑
i=1

max(0, 1− yi(wTxi − b)) + λ‖w‖2.

In the same vein, we could cite the low-rank matrix completion problem. Here, the input is an incomplete

matrix X ∈ (R ∪ {?})m×n, with a subset of defined entries Ω = {(i, j) : Xij 6= ?}, and the goal is to find

a matrix Y ∈ Rm×n of lowest possible rank, such that the Yij ’s approximate the Xij ’s for all (i, j) ∈ Ω. A

convex relaxation of this problem (leading to accurate data reconstruction, cf. [1]) is as follows:

minimize
Y ∈Rm×n

∑
(i,j)∈Ω

(Xij − Yij)2 + λ‖Y ‖∗,

where ‖Y ‖∗ is the nuclear norm of Y , a non-smooth convex function that gives the sum of the singular values

of Y .

While interior point methods are very efficient (and the method of choice) to solve such problems with

up to a few tens of thousands of variables, Newton iterations become too costly for very large problems

(with millions of variables). For problems involving big-data, we need algorithms that make use of first-order

information only, in order to have cheap iterations. This comes at the price of a much slower convergence,

but fortunately, near-optimal solutions can often be obtained after a reasonable amount of time. Anyway,

when large datasets are involved, the data is often faulty, so solving a model to (true) optimality does not

really make sense.

1 Gradient & Subgradient Methods

The most basic (and intuitive) idea to solve a problem of the form (1) is to use the gradient descent, which

dates back to Cauchy (mid of 19th century): The idea is to start from x(0) ∈ Rn, and at each iteration, we

move in the direction of the gradient:

x(k) = x(k−1) − tk∇F (x(k−1)),

where tk is a suitable step size, which can be fixed over the iterations, or computed by backtracking line

search. We defer the analysis of this algorithm to a later section, as it will be the special case of another,

more general algorithm, which can also handle non-smooth functions F .

Page 1 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

1.1 Subgradients

The gradient method raises the problem of non-smoothness: how can we even define a first-order method if

the gradient of the function to minimize is not defined everywhere? For this, we must appeal to the concept

of subgradients, which generalizes the concept of gradients to non-smooth functions:

Definition 1. (Subgradient). We say that a vector g is a subgradient of f : Rn → R at x ∈ dom f , if

f(z) ≥ f(x) + gT (z − x), ∀z ∈ dom f.

Geometrically, this means that the vector [g,−1]T defines a supporting hyperplane to epi f at (x, f(x)).

A function f is called subdifferentiable at x if its subdifferential

∂f(x) := {g ∈ Rn : g is a subgradient of f at x} =
⋂

z∈dom f

{g : f(z) ≥ f(x) + gT (z − x)}

is nonempty. A basic property is that when a convex function f is differentiable at x, then it is also

subdifferentiable at x, and its subdifferential is a singleton: ∂f(x) = {∇f(x)}. From the definition, we also

see that ∂f is always a convex closed set, because it is the intesection of (infinitely many) halfspaces.

Example:

Let f : R→ R, f(x) = |x|. Then, the subdifferential of f is given by

∂f(x) =


{−1} if x < 0;

[− 1, 1] if x = 0;

{1} if x > 0.

#1

Another important property, which is a simple consequence from the supporting hyperplane theorem, is

that if the function f is convex, then it is subdifferentiable at all x ∈ int dom f .

Theorem 1. Let f be convex. Then, x∗ minimizes f over Rn if and only if 0 ∈ ∂f(x∗).

Proof. This is straightforward from the definition of a subgradient: 0 ∈ ∂f(x∗) ⇐⇒ f(z) ≥ f(x∗), ∀z ∈ dom f .

We conclude this section on subgradient with basic calculus rules for subdifferentials:

Proposition 2. Let f ,f1, . . . , fm be convex functions. Then,

(i) [Nonnegative scaling]: ∂(αf)(x) = α∂f(x), for all α ≥ 0.

(ii) [Sum]: ∂(f1 + . . .+ fm)(x) = ∂f1(x) + . . .+ ∂fm(x).

(Note that the sum of the right hand side is a Minkowski sum of convex sets.

(iii) [Affine transformation]: ∂
(
z 7→ f(Az + b)

)
(x) = AT∂f(Ax+ b).

(iv) [Pointwise maximum]: Denote by g the pointwise maximum of the fi’s, i.e.,

g(x) = max
i=1,...,m

fi(x).

Then, ∂g(x) = conv
(⋃

j∈A(x) ∂fj(x)
)
, where A(x) is the set of active functions at x, i.e.,

A(x) := {j ∈ [m] : fj(x) = g(x)}. This property can be extended to pointwise supremums of infinitely

many functions, provided mild additional technical condition hold.

Page 2 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

1.2 The subgradient method

The subgradient method is a direct adaptation of the gradient method, where the gradient ∇F (x) is replaced

by any subgradient g ∈ ∂F (x):

x(k) = x(k−1) − αkg(k−1), for some g(k−1) ∈ ∂F (x(k−1)).

We give several properties on this method, without proving it:

• Contrarily to the gradient method, the subgradient method is not a descent method, i.e., it is possible

that F (x(k)) > F (x(k−1)), even for arbitrarily small step sizes.

• If exact or backtracking line search is used, the method can converge to a suboptimal point.

• However, convergence can be proved for several offline rules that select the step sizes αk, e.g. constant

step sizes (αk = α > 0,∀k ∈ N) or nonsummable diminishing (αk ≥ 0, lim
k→∞

αk = 0,
∑∞
k=1 αk = ∞,

such as e.g. αk = 1/k).

• The convergence is slow: after k iteration, the best iterate seen so far typically satisfies

f(x
(k)
best) ≤ f(x∗) +O(

1√
k

),

which means that we need O(ε2) iterations to find an ε−suboptimal solution.

In the next section, we will see how to generalize the gradient method so it can handle non-smooth

functions, while keeping its O(1/k)-convergence property.

2 The Proximal map

The proximal map of a convex function was defined by Moreau in 1965, and plays an important role in

first-order methods for nonsmooth optimization.

Definition 2. (Prox operator). Let g : Rn → R ∪ {∞} be a proper closed convex function (recall that

g is closed if epi g is closed; proper means that dom g 6= ∅). We define the proximal mapping of g by

prox g(x) := argmin
u∈Rn

g(u) +
1

2
‖x− u‖2.

In particular, we should note that the proximal operator generalizes the notion of projection over a convex

set. Indeed, if IC is the convex indicator function of a closed convex set C (i.e., IC(x) = 0 if x ∈ C, and

IC(x) =∞ otherwise), then it is easy to see that prox IC (x) coincides with the projection of x onto C:

prox IC (x) = PC(x) = argmin
u∈C

‖u− x‖.

This definition requires some justification. Indeed, we must show that the minimizer of h : u 7→ g(u) +
1
2‖x−u‖

2 exists and is unique. Recall that a function f is ν−strongly convex for some ν > 0 if f(·)− ν
2‖ · ‖

2

is convex. To prove that the prox operator is well defined, we are going to use the fact that h is is strongly

convex with parameter ν = 1, which is true because h(u)− 1
2‖u‖

2 = g(u)− xTu+ constant.

Lemma 3. Let f be a ν−strongly convex function, and let g ∈ ∂f(x0). Then, for all x ∈ dom f ,

f(x) ≥ f(x0) + 〈g,x− x0〉+
ν

2
‖x− x0‖2.

Page 3 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

Proof. Define the function F := f−ν/2‖·‖2. This function is convex (by ν-strong convexity of f), so f = F+ν/2‖·‖2

is the sum of two convex functions, and we can use the rule for the subdifferentials: ∂f(x0) = ∂F (x0) + νx0. This

shows that the vector g − νx0 is a subgradient of F at x0, so for all x ∈ domF = dom f , it holds

F (x) ≥ F (x0) + 〈g − νx0,x− x0〉
⇐⇒ f(x)− ν/2‖x‖2 ≥ f(x0)− ν/2‖x0‖2 + (g − νx0)T (x− x0)

⇐⇒ f(x) ≥ f(x0) + gT (x− x0) +
ν

2
‖x− x0‖2.

Remark: The converse statement is also valid: we can prove that a function is ν-strongly convex if and

only if the inequality of the lemma holds for all x0 ∈ dom ∂f and for all g ∈ ∂f(x0).

Then, we will need the following theorem to guarantee that the prox-opertor is well defined:

Theorem 4. Let f be a proper closed, ν−strongly convex function. Then f has a unique minimizer x∗,

and

f(x) ≥ f(x∗) +
ν

2
‖x− x∗‖2, ∀x ∈ dom f.

Proof. For the existence of a minimizer, take a subgradient g ∈ ∂f(x0), where x0 ∈ dom f . From the previous

lemma, we know that f(x) ≥ f(x0) + gT (x − x0) + ν
2
‖x − x0‖2, ∀x ∈ dom f . So, we can restrict our search for a

minimizer within the sublevel set at level f(x0) of this underestimator, which is a compact set. Finally, it is known

that every closed convex function is lower-semicontinuous, and every lower-semicontinuous function has a minimizer

over a compact set.

Now, we use the same subgradient inequality as above, but evaluated at a minimizer x∗, where we can take the

subgradient g = 0 ∈ ∂f(x∗), so f(x) ≥ f(x∗) + 0T (x − x∗) + ν
2
‖x − x∗‖2 = f(x∗) + ν

2
‖x − x∗‖2 holds for all

x ∈ dom f . This inequality can be used to show the uniqueness of the minimizer: If x̃ is also a minimizer of f , then,

f(x̃) = f(x∗) ≥ f(x∗) + ν
2
‖x̃− x∗‖2 =⇒ ‖x̃− x∗‖2 ≤ 0 =⇒ x̃ = x∗.

Theorem 5. Let g : Rn → R ∪ {∞} be a proper closed convex function. Then,

(i) prox g(x) ∈ Rn is well defined (i.e., it is a singleton) for all x ∈ dom g.

(ii) u = prox g(x) ⇐⇒ x− u ∈ ∂g(u) ⇐⇒ ∃gu ∈ ∂g(u) : u+ gu = x

(iii) x∗ is a minimizer of g iff x∗ = prox g(x
∗).

Proof. (i) follows from the previous theorem and the strong convexity of h : u 7→ g(u) + 1
2
‖x − u‖2. For (ii),

we have that u = prox g(x) iff 0 ∈ ∂h(u) = ∂g(u) + u − x ⇐⇒ x − u ∈ ∂g(u). From this, we get (iii) from

x∗ = prox g(x
∗) ⇐⇒ x∗ − x∗ = 0 ∈ ∂g(x∗), which occurs iff x∗ is a minimizer of g.

The last statement of shows that x∗ satisfies a fixed-point property, which can be useful for the analysis

of some algorithms.

In general computing the proximal operator can be a quite difficult task (it can be as hard as solving

the problem of minimizing g itself). But the prox-operator is available in closed-form for many interesting

cases; for an catalog, cf. the website [2]. This includes the case of indicator functions for the following convex

sets: boxes, hyperplanes, the unit simplex and the probability simplex, `1,`2 and `∞ balls, and the cones

Rn+,Ln+,Sn+ and Kexp (as already mentioned, in these cases, the proximal operator is in fact a projection over

a convex set). The proximal operator is also known, e.g., for the following functions:

• f(x) = ‖x‖p, for p ∈ {1, 2,∞}.

Page 4 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

• f(x) = xTQx+ pTx, where Q � 0 [convex quadratic]

• f(x) =
∑
i max(xi, 0) [Hinge loss]

• f(x) =
∑
i xi log xi [Entropy]

• f(x,y) =
∑
i xi log(xi/yi) [Kullback-Leibler divergence]

• f(x) = −
∑
i log(xi) [Logarithmic barrier]

To derive the formula of prox f (x) for many of the above functions, we can use the following rule for

separable sums:

if f(x1, . . . ,xn) =
∑
i

fi(xi), then prox f (x) =

 prox f1(x1)
...

prox fn(xn)


Hence, the derivarion of prox f (x) is particularly easy when f is a separable sum of functions of one

variable.
Example:

Let f(x) = ‖x‖1 =
∑
i |xi|, and let t > 0. To compute the proximal operator of t · f , it suffices to compute

the proximal operator of the function of one variable x 7→ t|x|.
So we must find the minimizer u∗ of h(u) = t|u|+ 1

2 (x− u)2. From the expression of ∂| · | (see Example #1)

and the previous theorem, this point must satisfy one of the following conditions:(
x− u∗ = −t and u∗ < 0

)
or

(
x− u∗ ∈ [−t, t] and u∗ = 0

)
or

(
x− u∗ = t and u∗ > 0

)
.

This system can be solved as follows:

prox x 7→t|x| (x) = u∗ = Tt(x) :=


x+ t if x < −t
0 if x ∈ [−t, t]
x− t if x > t

= [|x| − t]+ sign(x),

where [u]+ is a shorthand notation for max(0, u) and sign(x) takes the value −1, 0, or 1 for negative, zero, and

positive values of x, respectively. The function Tt is called the soft thresholding operator (at level t). Finally,

we obtain the proximal operator of t · f by applying the the soft thresholding operator componentwise:

prox tf (x) = Tt(x)

where the (multivariate) soft thresholding operator Tt evaluated at x is the vector with components Tt(xi) =

[|xi| − t]+ sign(xi). In vector notation, we can write prox tf (x) = Tt(x) = [|x| − t1]+ � sign(x), where all

operations are elementwise, and u� v denotes the elementwise product, i.e., (u� v)i = uivi.

#2

3 The proximal gradient method

Throughout this section (and the next one), we consider a composite convex model

minimize
x∈Rn

F (x) := f(x) + g(x), (P)

where:

• f : Rn → R ∪ {∞} is convex, continuously differentiable, and ∃L ≥ 0:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ dom f,

i.e., the gradient of f has Lipschitz constant L ≥ 0: We say that f is L-smooth.

Page 5 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

• g : Rn → R ∪ {∞} is a poper closed, nonsmooth convex function with a cheap proximal operator. In

practice, this means that ∃k ∈ N such that we can compute prox tg(x) in O(n logk(n)), for all x ∈ Rn

and t ≥ 0.

This is a simple model, but it contains as special cases many basic problems encountered in machine

learning or signal processing. In particular, the case g = 0 corresponds to an unconstrained, smooth convex

optimization problem, and the case g = IC (for some “simple” convex set C with a cheap projection operator)

corresponds to the constrained optimization of a smooth convex function over C.

Lemma 6. If f is L-smooth for some L ≥ 0, then

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L

2
‖x− y‖2, ∀x,y ∈ dom f.

Proof. From the fundamental theorem of calculus,

f(y) = f(x) +

∫ 1

t=0

〈∇f(x + t(y − x)),y − x〉 dt.

Then, we can write

|f(y)− f(x)− 〈∇f(x),y − x〉| =
∣∣∣∣∫ 1

t=0

〈∇f(x + t(y − x))−∇f(x),y − x〉 dt
∣∣∣∣ ,

and we can use the Cauchy-Schwarz inequality to bound the RHS by∫ 1

t=0

‖∇f(x + t(y − x))−∇f(x)‖ · ‖y − x‖ dt ≤
∫ 1

t=0

Lt‖y − x‖2 dt =
L

2
‖y − x‖2.

Remark This inequality is essentially the reversed version of the inequality of Lemma 3: The strong

convexity parameter ν gives a quadratic underestimator of a convex function, while the smoothness constant

L gives a quadratic overestimator.

It can also be proved that the converse statement holds if f is convex: A convex function f is L-smooth

iff the inequality of Lemma 6 holds for all x,y ∈ dom f . Moreover, if f is twice differentiable, the best

constant is L = supx λmax∇2f(x).

The basic idea of the proximal gradient method is to minimize a quadratic overestimator of F = f + g

at each iteration. We do this by taking an overestimator of f , but we keep the exact expression of g. Then,

the minimization of the this overestimator reduces to evaluating the prox-operator of (a scaling of) g.

Formally, given our current iterate x(k) ∈ dom f and a step size 0 < tk ≤ 1
L , the function

F̂ (y) = f(x(k)) + 〈∇f(x(k)),y − x(k)〉+
1

2tk
‖y − x(k)‖2 + g(y)

Page 6 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

is an overestimator of F (y). So, the next iterate is determined by computing

x(k+1) := argmin
y

F̂ (y)

= argmin
y

g(y) + yT∇f(x(k)) +
1

2tk
‖y − x(k)‖2

= argmin
y

g(y) + yT∇f(x(k)) +
1

2tk
(‖y‖2 − 2yTx(k))

= argmin
y

tk g(y) +
1

2
‖y‖2 − yT (x(k) − tk∇f(x(k)))

= argmin
y

tk g(y) +
1

2
‖y − (x(k) − tk∇f(x(k)))‖2

=prox tkg(x
(k) − tk∇f(x(k)))

This is what we call the Proximal Gradient Iteration:

x(k+1) := prox tkg(x
(k) − tk∇f(x(k)))

It should be observed that the above iteration generalizes the gradient method (which is obtained when

g = 0, in which case the prox-operator is the identity), and the projected gradient method for constrained

optimization over a convex set C (this method is obtained when g is an indicator funcion IC ; in this case,

the proximal operator projects the temptative iterate x(k) − tk∇f(x(k)) onto the feasible set C).

The analysis of the proximal gradient method relies on the following theorem:

Theorem 7. Let x ∈ int dom f denote the current iterate, and x+ be the next iterate, obtained after a

step of size t > 0, i.e., x+ = prox tg(x− t∇f(x)). If the new iterate satisfies

f(x+) ≤ f(x) +∇f(x)T (x+ − x) +
1

2t
‖x+ − x‖2, (2)

(note that by Lemma 6, the above is always satisfied if t ≤ 1
L), then for all ξ ∈ Rn it holds:

F (ξ)− F (x+) ≥ 1

2t

(
‖ξ − x+‖2 − ‖ξ − x‖2

)
.

Proof. We have x+ = prox tg(x− t∇f(x)), so it follows from Theorem 5 that x− t∇f(x)−x+ ∈ ∂(tg)(x+). Hence,

for all ξ ∈ Rn,

tg(ξ) ≥ tg(x+) + 〈x− t∇f(x)− x+, ξ − x+〉

⇐⇒ g(ξ)− g(x+) ≥ 1

t
〈x− x+, ξ − x+〉 − ∇f(x)T (ξ − x+).

On the other hand,

f(ξ)− f(x+) = f(ξ)− f(x) + f(x)− f(x+)

≥ f(ξ)− f(x)−∇f(x)T (x+ − x)− 1

2t
‖x+ − x‖2

Summing the above inequalities, we obtain

F (ξ)− F (x+) ≥ f(ξ)− f(x)−∇f(x)T (ξ − x)︸ ︷︷ ︸
εf (x,ξ)

+
1

t
〈x− x+, ξ − x+〉 − 1

2t
‖x+ − x‖2. (3)

Page 7 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

In the above expression, εf (x, ξ) represents the error between f(ξ) and the first order approximation f(x)+∇f(x)T (ξ−
x), which must be nonnegative by convexity of f . Finally, we obtain

F (ξ)− F (x+) ≥ 1

2t

(
2〈x− x+, ξ − x+〉 − ‖x+ − x‖2

)
,

and simple calculus shows that this lower bound coincides with the desired bound, 1
2t

(
‖ξ − x+‖2 − ‖ξ − x‖2

)
.

An immediate corollary of this theorem (obtained by setting ξ = x) is a bound on the function’s decrement

between two successive iterations:

Corollary 8. If the step size t is chosen such that Equation (2) holds, then

F (x)− F (x+) ≥ 1

2t
‖x− x+‖2.

We next present an analysis of the proximal gradient method, for the case where the Lipschitz constant

L is known, and constant step sizes are used: tk = 1
L ,∀k ∈ N. If L is not known, a common technique is to

use a backtracking line search in order to find step sizes satisfying Equation (2); our analysis can easily be

adapted to handle this case, cf. [3].

Theorem 9. We consider the proximal gradient method with x(0) ∈ int dom f and constant step sizes:

x(k+1) := prox 1
L g

(x(k) − 1

L
∇f(x(k))).

Then, for any optimal solution x∗ of Problem (P),

F (x(k))− F (x∗) ≤ L

2k
‖x(0) − x∗‖2, ∀k ≥ 1.

Remark It can also be shown that the sequence (x(k))k∈N converges to one solution of Problem (P).

Proof. Let i ∈ N. By Theorem 7 at ξ = x∗,

F (x∗)− F (x(i+1)) ≥ L

2

(
‖x∗ − x(i+1)‖2 − ‖x∗ − x(i)‖2

)
.

Summing over i = 0, . . . , k − 1,

k F (x∗)−
k−1∑
i=0

F (x(i+1)) ≥ L

2

(
‖x∗ − x(k)‖2 − ‖x∗ − x(0)‖2

)
≥ −L

2
‖x∗ − x(0)‖2

⇐⇒
k∑
i=1

F (x(i))− k F (x∗) ≤ L

2
‖x∗ − x(0)‖2. (4)

We know from Corrolary 8 that the proximal gradient method is a descent method, i.e.,

F (x(0)) ≥ F (x(1)) ≥ F (x(2)) ≥ . . .

Therefore, we have
∑k
i=1 F (x(i)) ≥ k F (x(k)). Combining this inequality with (4) yields

k F (x(k))− k F (x∗) ≤ L

2
‖x∗ − x(0)‖2 ⇐⇒ F (x(k))− F (x∗) ≤ L

2k
‖x(0) − x∗‖2.

Page 8 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

If we have an upper bound R on the distance between x(0) and any optimal solution x∗, the above theorem

guarantees that the proximal gradient method finds an ε-suboptimal solution after k ≤ dLR
2

ε e iterations.

This cannot be considered as a polynomial algorithm, since ε is typically part of the input of the problem. If

we are interested in finding a solution with n accurate digits in the objective value (i.e., ε = 10−n), then we

need O(10n) iterations, which is exponential in the numer of bits required to store ε.

A much better convergence result can be achieved when the function f is ν−strongly convex. In that

case, we obtain a polynomial-time algorithm (linear convergence rate):

Theorem 10. If f is ν-strongly convex, then the proximal gradient method with constant step sizes

(tk = 1
L) generates a sequence of points satisfying

(i) ‖x(k) − x∗‖2 ≤
(
1− ν

L

)k ‖x(0) − x∗‖2;

(ii) F (x(k))− F (x∗) ≤ L
2

(
1− ν

L

)k ‖x(0) − x∗‖2,

where x∗ denotes the unique optimal solution to Problem P. Consequently, an ε−suboptimal solution is

found after k =
⌈

log(LR2/2ε)
logL/(L−ν)

⌉
= O

(
L
ν log(LR2/ε)

)
iterations, where R is an upper bound on ‖x(0) − x∗‖.

Proof. (Sketch). As f is strongly convex, we can refine the bound of Theorem 7, by noting that εf (x, ξ) ≥ ν
2
‖ξ−x‖2

in Eq. (3) (this follows from Lemma 3). Applied to the points ξ = x∗ and x = x(i), the refined bound gives

F (x∗)− F (x(i+1)) ≥ L

2

(
‖x∗ − x(i+1)‖2 − ‖x∗ − x(i)‖2

)
+
ν

2
‖x∗ − x(i)‖2

=
L

2
‖x∗ − x(i+1)‖2 − L− ν

2
‖x∗ − x(i)‖2.

Now, we know that F (x∗)− F (x(i+1)) ≤ 0, so we obtain

L

2
‖x∗ − x(i+1)‖2 ≤ L− ν

2
‖x∗ − x(i)‖2 ⇐⇒ ‖x∗ − x(i+1)‖2 ≤

(
1− ν

L

)
‖x∗ − x(i)‖2.

Then, the first statement of the proof is obtained by elementary induction on k. For the second statement, we rewrite

the second inequality of this proof as

F (x(k))− F (x∗) ≤ L− ν
2
‖x∗ − x(k−1)‖2 − L

2
‖x∗ − x(k)‖2 ≤ L− ν

2
‖x∗ − x(k−1)‖2

≤ L− ν
2

(
1− ν

L

)k−1

‖x∗ − x(0)‖2

=
L

2

(
1− ν

L

)k
‖x(0) − x∗‖2.

4 The FISTA accelarated method

Accelerated gradient methods were discovered in the 80’s by Nesterov [4], and allow to improve the con-

vergence rate of the gradient method from O(1
k) to O(1

k2). The technique was generalized by Beck and

Teboulle [5] in 2009 to handle composite models like (P) with a non-smooth (but proximable) part. The result-

ing algorithm was called FISTA by its authors: the name comes from “Fast iterative shrinkage-thresholding

algorithm”, and describes the proximal gradient steps in the case of a lasso-penalty, g(x) = ‖x‖1.

The idea is to take a proximal gradient step from a point y(k), i.e., x(k+1) := prox tkg(y
(k)−tk∇f(y(k))),

where the point y(k) is a (well chosen) linear combination of the two previous iterates x(k) and x(k−1). We

Page 9 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

next present the FISTA method for the case of constant step sizes, tk = 1
L ,∀k. As in the previous section,

we point out that the analysis can be adapted to handle backtracking line search.

FISTA

Initialization: y(0) = x(0) ∈ int dom f , τ0 = 1.

For k = 0, 1, 2, . . . ,

1. x(k+1) = prox 1
L g

(y(k) − 1
L∇f(y(k)))

2. τk+1 =
1+
√

1+4τ2
k

2

3. y(k+1) = x(k+1) +
(
τk−1
τk+1

)
(x(k+1) − x(k))

Note The funny formula for the sequence τk actually corresponds to the positive root of the equation

τ2
k+1 − τk+1 = τ2

k . An easy induction shows that

τk ≥
k + 2

2
≥ 1, ∀k. (5)

Theorem 11. Consider the sequence of iterates x(k) generated by FISTA (with constant step sizes tk =
1
L ,∀k). Then, for any optimal solution x∗ to Problem (P), it holds

F (x(k))− F (x∗) ≤ 2L‖x(0) − x∗‖2

(k + 1)2
.

Proof. Let k ≥ 1. We introduce the notation

δk = F (x(k))− F (x∗) and u(k) = (τk−1 − 1)x(k−1) + x∗ − τk−1x
(k), ∀k.

We will also need the point ξ = x∗

τk
+ (1− 1

τk
)x(k), which satisfies

τk(ξ − x(k+1)) = x∗ + (τk − 1)x(k) − τkx(k+1) = u(k+1). (6)

By definition, we have y(k) = x(k) +
τk−1−1

τk
(x(k)−x(k−1)), i.e., τk(x(k)−y(k)) = (τk−1−1)(x(k−1)−x(k)). Therefore,

τk(ξ − y(k)) = x∗ + (τk − 1)x(k) − τky(k)

= x∗ − x(k) + τk(x(k) − y(k))

= x∗ − x(k) + (τk−1 − 1)(x(k−1) − x(k))

= x∗ + (τk−1 − 1)x(k−1) − τk−1x
(k)

= u(k) (7)

We apply Theorem 7 to the point ξ, when the current iterate is x = y(k). Note that the proximal step evaluated

at y(k) yields the new iterate x+ = x(k+1), so the theorem simply gives

F (ξ)− F (x(k+1)) ≥ L

2

(
‖ξ − x(k+1)‖2 − ‖ξ − y(k)‖2

)
=

L

2τ2k

(
‖u(k+1)‖2 − ‖u(k)‖2

)
.

Now, we use the convexity of F . Since τk ≥ 1, the point ξ is a convex combination of x(k) ans x∗, and it holds

F (ξ)− F (x(k+1)) ≤ 1

τk
F (x∗) + (1− 1

τk
)F (x(k))− F (x(k+1)) = (1− 1

τk
)δk − δk+1.

Page 10 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

Combining the above two inequalities yields

(1− 1

τk
)δk − δk+1 ≥

L

2τ2k

(
‖u(k+1)‖2 − ‖u(k)‖2

)
⇐⇒ 2

L
[(τ2k − τk)δk − τ2k δk+1] ≥ ‖u(k+1)‖2 − ‖u(k)‖2.

By construction of the sequence (τk), we have τ2k − τk = (τk−1)2. We have thus shown that

2

L
[(τk−1)2δk − τ2k δk+1] ≥ ‖u(k+1)‖2 − ‖u(k)‖2.

The above reasonning was for an arbitrary index k ≥ 1. So it holds

‖u(k+1)‖2 +
2

L
τ2k δk+1 ≤ ‖u(k)‖2 +

2

L
τ2k−1δk, ∀k ≥ 1.

This means that the sequence vk = ‖u(k)‖2 + 2
L
τ2k−1δk is nonincreasing, so we can write

2

L
τ2k−1δk ≤ ‖u(k)‖2 +

2

L
τ2k−1δk ≤ ‖u(1)‖2 +

2

L
τ20 δ1 = ‖x∗ − x(1)‖2 +

2

L
δ1.

To conclude the proof, we apply Theorem 7 to the point x∗, when the proximal step is evaluated at x = y(0), yielding

the next iterate x+ = x(1):

F (x∗)− F (x(1)) ≥ L

2

(
‖x∗ − x(1)‖2 − ‖x∗ − x(0)‖2

)
⇐⇒ ‖x∗ − x(1)‖2 +

2

L
δ1 ≤ ‖x∗ − x(0)‖2.

Finally, we obtain the desired result by combining the last 2 inequalities and τk−1 ≥ (k + 1)/2 (see eq. (5)):

2

L
τ2k−1δk ≤ ‖x∗ − x(0)‖2 ⇐⇒ δk ≤

2L‖x∗ − x(0)‖2

(k + 1)2
,

Page 11 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

Example:

The following plot shows the evolution of the gap to optimality δk = F (x(k)) − F (x∗), for the standard

proximal gradient algorithm (upper curve), and the accelerated FISTA method (lower curve). The problem

solved is a Lasso regression problem:

minimize
x∈Rn

λ‖Ax− y‖2︸ ︷︷ ︸
f(x)

+ ‖x‖1︸ ︷︷ ︸
g(x)

.

The data (A,y) was randomly generated, with components of A ∈ R5000×1000 drawn independently at

random in [0, 1], and y was set to Ax0 + ε for a sparse vector x0 and a vector of noise ε.

In this example, the gradient of f is ∇f(x) = 2λAT (Ax − y), so f is L-smooth for L = 2λ · λmax(ATA).

The proximity operator of g is the soft thresholding operator, cf. Example #2. Therefore, with constant

stepsizes tk = 1
L , the proximal steps take the form

x+ ← T 1
L

(
x− 2λ

L
AT (Ax− y)

)
.

• On this example, FISTA converges much more quickly. The total time to run k = 104 iterations was

45 s. for the proximal gradient algorithm, and about 60s. for FISTA. Although FISTA iterations are

a bit more expensive, the convergence is several orders of magnitude faster.

• We see on the picture that FISTA is not a descent method, the function value shows typical oscillations.

• The bounds given by Theorems 9 and 11 are pessimistic. After k = 104 iterations, the proximal

gradient method has a gap of δk = 30.99� LR2

2k = 1397.7, and FISTA has a gap of δk = 2.22 · 10−5 �
2LR2

(k+1)2 = 0.558.

• In that case, the function f is ν-strongly convex for ν = 2λ · λmin(ATA), but the ratio between L and

ν is so huge that the bound (1 − ν
L) on the convergence rate is useless for a reasonable number of

iterations. After k = 104 iterations, Theorem 10 gives the bound δ ≤ L
2 (1 − ν/L)kR2 = 5 · 106. This

bound becomes better than LR2

2k after about 55.000 iterations, and better than 2LR2

(k+1)2 after 170.000

iterations.

#3

Page 12 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

5 Optimality of accelerated (proximal) gradient methods

We conclude this chapter with a beautiful result, which shows that the accelerated gradient descent (and

hence its proximal gradient version FISTA) are essentially optimal among the class of first order methods:

Unless we know that the function to minimize has a special property (such as ν-strong convexity), no

first-order algorithm can guarantee a convergence better than O(LR2/(k + 1)2) in the worst-case.

Theorem 12. There exists a function f : R2k+1 → R which is twice differentiable and L-smooth, such

that for any sequence (x(i))i∈N satisfying x(i+1) ∈ x(0) + span(∇f(x(0)), . . . ,∇f(x(i))), ∀i ∈ N, it holds

f(x(k))− f(x∗) ≥ 3L‖x(0) − x∗‖2

32(k + 1)2
.

Proof. For all k ∈ N, define fk(x) = L
4

(1
2
xTAx− eT1 x), where

A =


2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2

 ∈ Sk.

One can show that A � 0, and λmax(A) ≤ 4. Hence, fk is convex and the Lipschitz constant of its gradient is
L
4
λmax(A) ≤ L.

The function fk is minimized over Rk at x∗ = A−1e1, and we can show that (x∗)i = 1 − i
k+1

, for i = 1, . . . , k.

Hence, its minimum is fk(x∗) = L
4

(1
2
x∗Te1 − x∗Te1) = −L

8
(1− 1

k+1
).

Now, let f = f2k+1. Let us assume (without loss of generality) that x(0) = 0, and that x(i+1) ∈ span(∇f(x(0)), . . . ,∇f(x(i))),

∀i. Then, a simple induction shows that for all i < 2k + 1,

span(∇f(x(0)), . . . ,∇f(x(i))) ⊆ span(e1, . . . , ei+1).

Indeed, we have ∇f(x(0)) = L
4

(Ax(0) − e1) = −L
4
e1. Then, assuming the induction hypothesis is true for i = j − 1,

we have xj ∈ span(∇f(x(0)), . . . ,∇f(x(j−1))) = span(e1, . . . , ej), i.e., xj has nonzero components on its first j

coordinates only. So ∇f(x(j)) = L
4

(Ax(j) − e1) has nonzero components on its first j + 1 coordinates only, and

span(∇f(x(0)), . . . ,∇f(x(j))) = span(e1, . . . , ej ,∇f(x(j))) ⊆ span(e1, . . . , ej , ej+1).

To obtain the bound of the theorem, we observe that since x(k) ∈ span(e1, . . . , ek), it holds f(x(k)) = fk(x̂(k)),

where x̂(k) is the k-dimensional vector with the first k coordinates of x(k) ∈ R2k+1. Hence,

f(x(k)) ≥ inf
x
fk(x) = −L

8
(1− 1

k + 1
).

We can now conclude:

f(x(k))− f(x∗)

‖x(0) − x∗‖2
≥
−L

8
(1− 1

k+1
) + L

8
(1− 1

2k+2
)

2
3
(k + 1)

=
L

8 · 2
3
(k + 1)

1

2k + 2
=

3L

32(k + 1)2
,

where in the first inequality we have used

‖x∗ − x(0)‖2 = ‖x∗‖2 =

2k+1∑
i=1

(1− i

2k + 2
)2 =

8k2 + 10k + 3

12(1 + k)
≤ 8(k + 1)2

12(1 + k)
=

2

3
(k + 1).

Page 13 of 14

G. Sagnol Convex Optimization: Chapter XII - First Order Methods WS 2019, TU Berlin

References

[1] Candes, E.J., & Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE, 98(6), 925–936.

arXiv:0903.3131.

[2] http://proximity-operator.net/index.html, maintained by Chierchia, G., Chouzenoux, E., Com-

bettes, P.L., & Pesquet, J.C.

[3] Beck, A. (2017). First-Order Methods in Optimization (Vol. 25). SIAM.

[4] Nesterov, Y.E. (1983). A method for solving the convex programming problem with convergence rate

O(1/k2). In Dokl. Akad. Nauk SSSR (Vol. 269, pp. 543-547).

[5] Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM journal on imaging sciences, 2(1), 183-202.

Page 14 of 14

