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Chapter XIII: Robust Optimization

1 Introduction

In many real-world applications, optimization problems depend on some data which cannot be known with

certainty. This arises in different situations:

(i) The data collection can be a source of errors. For example, when the sensors collecting the data lack

of accuracy, or when the data is entered manually.

(ii) In some cases, the system to be optimized contains some data which is not known, and had to be

estimated based on historical data.

(iii) Sometimes, the uncertain data is even intrisically stochastic, and comes from a probability distribution

which is either known or estimated from historical data.

Robust optimization is an important subfield of optimization that deals with uncertainty in the data.

The constraints and objective are assumed to belong to some uncertainty set, and robust optimization asks

to protect against the uncertainty, by taking decisions that are optimal for the worst-case, and that are

feasible for all realizations of the uncertainty. Formally, we assume the problem to solve has the form

minimize
x∈X

f(x,θ) (P)

s.t. g(x,θ) ≤ 0,

where x ∈ X ⊆ Rn is the decision variable and θ ∈ Rk is some uncertain parameter. Then, the robust

counterpart of (P) over the uncertainty set Θ ⊆ Rk is

minimize
x∈X

(
sup
θ∈Θ

f(x,θ)

)
(RP)

s.t. g(x,θ) ≤ 0, ∀θ ∈ Θ.

In the sitation (iii) evoked above, when the uncertain data is stochastic, robust optimization provides an

alternative to the Stochastic Programming paradigm, where θ is a random variable and we try to solve

minimize
x∈X

Eθ[f(x,θ)] (SP)

s.t. g(x,θ) ≤ 0 almost surely.

The worst-case nature of the robust counterpart is often criticized, because it tends to produce overcon-

servatism, that is, solutions that are robust to extreme scenarios, but may perform rather poorly for the

average scenarios. However, robust optimization remains a very good option to handle uncertainty:

• First, it does not require distributional information on the unkown parameter θ, which may be hard

to obtain in practice.

• Second, the robust problem (RP) is often much easier to solve than the stochastic program (SP).

• Third, when the uncertainty set Θ is chosen wisely (e.g., a reasonable confidence region of the random

variable θ), the robust counterpart generally produces solutions which perform quite well on average,

too.
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2 Robust Linear Programming

We introduce the robust counterpart of a linear program in this section, and we will see in the next section

that it can be reformulated as a compact conic optimization problem for a large class of uncertainty models.

The basic problem we study is as follows:

minimize
x∈Rn

(
sup
θ∈Θ

c(θ)Tx
)

(1)

s.t. A(θ)x ≤ b(θ), ∀θ ∈ Θ,

where c(θ) ∈ Rn, b(θ) ∈ Rm, and A(θ) ∈ Rm×n.

By using the epigraph form, and by introducing an auxiliary variable, we can assume w.l.o.g. that the

uncertainty only occurs in the constraint matrix. That is, we restrict our study to problems of the form

minimize
x∈X

cTx (2)

s.t. A(θ)x ≤ b, ∀θ ∈ Θ.

To see this, note that Problem (1) is equivalent to

minimize
x∈Rn, t,u∈R

t (3)

s.t. A(θ)x− b(θ)u ≤ 0, ∀θ ∈ Θ,

c(θ)Tx− t ≤ 0, ∀θ ∈ Θ

u = 1.

which has the same form as (2) if we change the data as follows: x′T = [xT , u, t], c′T = [0T , 0, 1]T ,

A′(θ) =


A(θ) −b(θ) 0

c(θ)T 0 −1

0T 1 0

0T −1 0

 and b′ =


0

0

1

−1

 .

Now, we consider Problem (2) again, and we denote by ai(θ)
T the ith row of A(θ). Since all constraints

must be satisfied for all possible values of the uncertain parameter θ, the robust LP is equivalent to

minimize
x∈X

cTx (LP)

s.t. ai(θ)
Tx ≤ bi, ∀θ ∈ Θ, ∀i ∈ [m].

In other words, we can handle the uncertainty of each row separately. We say that the robust counterpart

acts constraint-wise. We are thus left with the study of linear problems with constraints of the form

a(θ)Tx ≤ b, ∀θ ∈ Θ. (4)

Such problems are known as semi-infinite linear optimization problems, because they involved a finite

number of variables, but an infinite number of linear constraints (indexed by the continuous variable θ ∈ Θ).

3 Robust counterpart of LPs under common uncertainty models

In this section, we will show how to reformulate semi-infinite constraints (4) as equivalent compact conic

inequalities, for several uncertainty models. An uncertainty model gives the form of the function a(θ) and of
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the uncertainty set Θ. Note that if we introduce the set A := {a(θ)| θ ∈ Θ}, the semi-infinite constraint (4)

is equivalent to

aTx ≤ b, ∀a ∈ A.

Hence an uncertainty model can be specified either by the set A or by the set Θ and the description of a(·).
In this lecture, we refer as uncertainty set both the sets Θ and A. It is often more natural to introduce a

parameter θ which represents the uncertainty. Then, Θ represents the set of plausible scenarios, and A is

the image of Θ by a(·).

3.1 Polyhedral uncertainty

In the polyhedral uncertainty model, the vector a(θ) is assumed to lie in a polyhedron, given by its vertices

v1, . . . ,vk. That is,

A = conv {v1, . . . ,vk}.

Equivalently,

a(θ) =
∑
j∈[k]

θjvj for some θ ∈ Θ := {θ ≥ 0| 1Tθ = 1}.

Proposition 1. In the polyhedral uncertainty model, the semi-infinite constraint (4) is equivalent to

vT
j x ≤ b, ∀j ∈ [k].

Proof. Let x satisfy the semi-infinite constraint, that is, aTx ≤ b, ∀a ∈ A. Then, we have vT
j x ≤ b for all j,

because vj ∈ A. Assume conversely that vT
j x ≤ b, ∀j ∈ [k]. Consider an arbitrary convex combination of the vj ’s:

a =
∑

j θjvj for some θ ≥ 0 satisfying 1Tθ = 1. Multiplying each inequality by θj ≥ 0 and summing, we obtain∑
j

θjv
T
j x ≤

∑
j

θjb ⇐⇒ xT (
∑
j

θjvj︸ ︷︷ ︸
=a

) ≤ b
∑
j

θj︸ ︷︷ ︸
=1

.

This shows: aTx ≤ b, ∀a ∈ A.

3.2 Conic uncertainty

In the conic uncertainty model, a(θ) is an affine function of θ, and θ belongs to a set defined by conic

inequalities:

A =
{
ā+ Pθ︸ ︷︷ ︸

a(θ)

| θ ∈ Θ := {θ ∈ Rk : Fθ ⪯K h}
}

(5)

for some ā ∈ Rn, P ∈ Rn×k, F ∈ Rℓ×k, h ∈ Rℓ, and K ⊂ Rℓ a proper cone.

The following result shows that we can use the duality theory to reformulate the semi-infinite con-

straint (4) under the conic uncertainty model:

Theorem 2. Assume that the relative interior of Θ is nonempty, or more generally that the conic

inequality

Fθ ⪯K h

is essentially strictly feasible. Then, in the conic uncertainty model (5), the semi-infinite constraint (4)

can be replaced by a system of conic inequalities which involves an additional variable z ∈ Rℓ:

(
a(θ)Tx ≤ b, ∀θ ∈ Θ

)
⇐⇒ ∃z ∈ Rℓ :


āTx+ hTz ≤ b

FTz = PTx

z ⪰K∗ 0.
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Proof. We first rewrite the semi-infinite constraint as

sup
θ∈Θ

(ā+ Pθ)Tx ≤ b

⇐⇒ sup
θ∈Θ

θTPTx ≤ b− āTx

The expression on the LHS of the equality sign is a conic program with respect to the variable θ. This program is

(essentially) strictly feasible by assumption, so strong duality holds, and

sup
θ

θTPTx = inf
z

zTh

s.t. Fθ ⪯K h s.t. FTz = PTx, z ⪰K∗ 0.

(Note that x is treated as a constant here, because the decision variable is θ). We have thus shown that the

semi-infinite constraint (4) is equivalent to

∃z ⪰K∗ 0 :

{
FTz = PTx

zTh ≤ b− āTx.

The conic uncertainty model contains two very important special cases, which we present next.

3.2.1 Budgeted Uncertainty

In the budgeted uncertainty model, we specify a nominal value ā for the vector a ∈ A, as well as a vector

of maximal deviations δ ≥ 0, so that for all i ∈ [n], the deviation from the nominal scenario satisfies:

|ai − āi| ≤ δi.

In addition, we give a scalar Γ ∈ [0, n] so that the sum of standardized deviations is ≤ Γ:

n∑
i=1

|ai − āi|
δi

≤ Γ

If we denote by θ the vector of standardized deviations, the budgeted uncertainty model is thus defined as

follows:

A =
{
ā+Diag(δ)θ︸ ︷︷ ︸

a(θ)

| θ ∈ Θ := {θ ∈ Rn : ∥θ∥∞ ≤ 1, ∥θ∥1 ≤ Γ}
}
.

We see that the uncertainty set Θ is a polytope. If we further restrict ourselves to the case of nonnegative

deviations (it is often possible to reduce to this case, the general case with unsigned deviations is left to the

reader), the budgeted uncertainty model can be rewritten to match the conic inequality form (5):

A = {a(θ)|θ ∈ Θ}, where Θ := {θ ∈ Rn : 0 ≤ θ ≤ 1, 1Tθ ≤ Γ}. (6)

The budgeted uncertainty set (6) was first studied by Bertsimas and Sim, who gave a combinatorial

construction of A: it is easy to check that A = conv Â, where

Â = {a ∈ Rn| ai ∈ {āi, āi + δi}, ∀i ∈ [n]; |{i : ai = āi + δi}| ≤ Γ} .

In words, the model (6) protects against all scenarios θ where each element of a(θ) is equal to either the

nominal value ai or the perturbed value ai + δi, and the number of perturbed values is ≤ Γ.
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Example:

Robust knapsack with uncertainty on the weights. Consider the following (continuous) nominal knapsack

problem:

maximize
x∈Rn

+

pTx

s.t. wTx ≤ W,

where wi is the weight of one unit of item i ∈ [n], W is the capacity of the knapsack, and pi is the profit

earned per unit of item i in the knapsack. The goal is to select the quantity xi ≥ 0 of each item to be packed

in the knapsack, so as to maximize the profit.

We are going to construct the robust counterpart of this problem, when we assume that the vector of weights

lies in a budgeted uncertainty set W. This means that some of the items may actually weigh more than in

the nominal scenario, but we look for a packing which is feasible for all w ∈ W, where

W =
{
w̄ +Diag(δ)θ | 0 ≤ θ ≤ 1, 1Tθ ≤ Γ

}
.

We can apply the result of Theorem 2, by setting P = Diag(δ), F = [−I, I,1]T , and h = [0T ,1T , Γ ]T :

(
wTx ≤ W, ∀w ∈ W

)
⇐⇒ ∃(y, z, ζ) ∈ Rn

+ × Rn
+ × R+ :

{
w̄Tx+ 1Tz + Γζ ≤ W

z − y + ζ1 = Diag(δ)x

Finally, we observe that y plays the role of a slack variable, and we can rewrite the robust knapsack problem

as

maximize
x,z,ζ

pTx

s.t. w̄Tx+ 1Tz + Γζ ≤ W

zi + ζ ≥ δixi, ∀i ∈ [n]

x ≥ 0, z ≥ 0, ζ ≥ 0.

#1

3.2.2 Ellipsoidal Uncertainty

Another commonly used uncertainty set is the ellipsoidal uncertainty set:

A =
{
ā+ Pθ︸ ︷︷ ︸

a(θ)

| θ ∈ Θ
}

where Θ := {θ ∈ Rk : ∥θ∥2 ≤ 1} =
{
θ ∈ Rn :

[
−I

0T

]
θ ⪯Ln+1

+

[
0

1

]}
,

which also matches the conic inequality form (5).

The ellipsoidal model naturally arises when we assume that a(θ) is an affine function of θ, i.e., a(θ) =

ā + Bθ, and θ ∼ N (0,Σ) is a random variable drawn from a multivariate normal distribution with zero

mean and variance-covariance matrix Σ ⪰ 0. Then, it can be seen that θ is equal (in distribution) to Hθ′,

where Σ = HHT , and θ′ ∼ N (0, I) is a standard Gaussian vector (with i.i.d. entries). It is a folklore result

from statistics that θ′ lies with probability 1− α in the ball {θ′ ∈ Rk : ∥θ′∥2 ≤ κ}, where κ is a parameter

that depends only1 on the confidence level α ∈ (0, 1). If we choose as uncertainty set the set of all scenarios

in this (1− α)−confidence region, we obtain the uncertainty model

A = {ā+Bθ | θ = Hθ′, ∥θ′∥2 ≤ κ} =
{
ā+

BH

κ
θ′′

∣∣∣ ∥θ′′∥2 ≤ 1
}
.

1κ corresponds to the (1− α)th percentile of the χ-distribution with k degrees of freedom.
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4 Robust Counterpart of SOCP

In this section, we show that it is possible to reformulate the semi-infinite SOC constraint

∥A(θ)x+ b(θ)∥2 ≤ t, ∀θ ∈ Θ := {θ ∈ Rk : ∥θ∥2 ≤ 1} (7)

as an LMI. Here, we assume that A(·) and b(·) are affine functions of the uncertain parameter θ. Also, note

that there is no uncertainty in the RHS of the constraint. There are many other tractable cases of robust

SOCPs and robust SDPs, and we refer the reader to [1] for an exhausitve description of tractable cases.

Our assumption that A(θ) and b(θ) are affine w.r.t. θ means that there exists some matrices A0, . . . , Ak ∈
Rm×n and some vectors b0, . . . , bk ∈ Rm such that

A(θ) = A0 +
∑
j

θjAj , b(θ) = b0 +
∑
j

θjbj .

Hence, A(θ)x+ b(θ) = A0x+ b0 +
∑

j θj(Ajx+ bj) = y0(x) + L(x)θ, where

y0(x) = A0x+ b0 ∈ Rm and L(x) = [A1x+ b1, . . . , Akx+ bk] ∈ Rm×k

are affine functions of x. So, the semi-infinite constraint (7) can be rewritten as

∥y0(x) + L(x)θ∥ ≤ t, ∀∥θ∥ ≤ 1. (8)

To reformulate this constraint as an LMI, we will need two lemmas:

Lemma 3.

inf
∥θ∥≤1

svTLθ = inf
∥z∥≤s

vTLz

Proof. By using the Cauchy-Schwarz inequality, it is easy to see that the optimal values of both problems are the

same, and equal to −∥sLTv∥.

The second lemma is a fundamental result, which gives conditions under which a quadratic inequality is

a consequence of another quadratic inequality. It has many applications, in particular in control theory, and

will be proved in the exercises.

Theorem 4 (S-lemma). Let A,B be symmetric matrices, and assume that ∃x0 : xT
0 Ax0 > 0. Then,(

xTAx ≥ 0 =⇒ xTBx ≥ 0
)

⇐⇒
(
∃λ ≥ 0 : B − λA ⪰ 0

)
. (9)

By using a Schur complement, we can reformulate the semi-infinite constraint (8) as:[
t (y0(x) + L(x)θ)T

y0(x) + L(x)θ t I

]
⪰ 0, ∀∥θ∥ ≤ 1.

Now, we use the definition of positive semidefinite matrices (the associated quadratic form is nonnegative

everywhere). If we evaluate the quadratic form associated with the above matrix at (s,v) ∈ Rm+1, we get:

s2t+ 2s(y0(x) + L(x)θ)Tv + t∥v∥2 ≥ 0, ∀∥θ∥ ≤ 1,∀s ∈ R,∀v ∈ Rm.
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By Lemma 3, we can replace the minimization over ∥θ∥ ≤ 1 by a minimization over ∥z∥ ≤ s:

s2t+ 2sy0(x)
Tv + 2vTL(x)z + t∥v∥2 ≥ 0, ∀s ∈ R,∀v ∈ Rm,∀∥z∥ ≤ s.

Now, we observe that the above constraint means that a quadratic inequality implies another quadratic

inequality: s

v

z

T  1

0

−I

 s

v

z

 ≥ 0 =⇒

 s

v

z

T  t y0(x)
T

y0(x) t I L(x)

L(x)T

 s

v

z

 ≥ 0.

This is the required form to use the S−lemma. Finally, we have proved:

Theorem 5. The semi-infinite SOC constraint (7) is equivalent to the following linear matrix inequality:

(
∥y0(x) + L(x)θ∥ ≤ t, ∀∥θ∥ ≤ 1

)
⇐⇒ ∃λ ≥ 0 :

 t− λ y0(x)
T 0

y0(x) t I L(x)

0 L(x)T λI

 ⪰ 0.

5 Adjustable Robust Counterpart of two-stage problems

In many applications, the decision maker has the possibility to react to the uncertainty, by adjusting her

decision after the uncertainty is revealed. Let the nominal problem be an LP of the form

minimize
x,y

cTx+ pTy (10a)

s.t. Ax ≤ b (10b)

Tx+Wy ≤ h, (10c)

where x are the first stage variables, which represent here-and-now decisions, while y are the second stage

variables, which represent further decisions that can be adjusted after the uncertainty is revealed. The

constraint (10b) defines the polytope X such that x ∈ X , while the constraint (10c) defines a coupling

between x and y, and gives the set Y(x) of allowed second-stage decisions y, as a function of x.

Now, we assume that the data T , and h is uncertain (note: we assume a fixed recourse matrix, that is,

W is known with certainty). Then, the robust counterpart of (10a) is defined as:

minimize
x

sup
θ∈Θ

inf
y

cTx+ pTy (11)

s.t. Ax ≤ b

T (θ)x+Wy ≤ h(θ), ∀θ ∈ Θ

and can be interpreted as a three-stage game: first, the decision maker selects the vector x ∈ X . Then, an

adversary picks a scenario θ ∈ Θ, and finally the decision maker observes θ and can adjust her strategy, by

selecting the vector y ∈ Y(x,θ) := {y| Wy ≤ h(θ)− T (θ)x}.
Since the second stage decisions depend on θ, it can be seen that this problem is actually equivalent to
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the following problem:

minimize
x, y(θ)

sup
θ∈Θ

cTx+ pTy(θ) (12)

s.t. Ax ≤ b

T (θ)x+Wy(θ) ≤ h(θ), ∀θ ∈ Θ,

where the decision variable y(θ) is now a function of θ ∈ Θ! Optimizing over a set of functions is a

very difficult task, and the above adjustable robust counterpart is unfortunately intractable. However, we

get an approximation to this problem when we restrict our attention to affine decision rules of the form

y(θ) = y0 + Y θ. This yields a simpler, one-stage robust optimization problem in the variables x,y0 and Y :

minimize
x, y0, Y

sup
θ∈Θ

cTx+ pT (y0 + Y θ) (13)

s.t. Ax ≤ b

T (θ)x+W (y0 + Y θ) ≤ h(θ), ∀θ ∈ Θ,

The first-stage solution x∗ of the above affinely adjustable robust counterpart is a conservative solution

to the intractable adjustable robust counterpart (11): It can be used as a safe approximation of the solution

of (11), where safe means that we know that for all realization θ ∈ Θ of the uncertainty, there exists an

adjustment y ∈ Y(x∗,θ). Moreover, x∗ minimizes an upper bound of Problem (11), because restricting to

affine decision rules can be interpreted as a relaxation of Problem (12). This approach has been implemented

succesfully in many applications, in particular in inventory management.

We claim that if T (θ) and h(θ) are affine functions of θ, then the above problem has the same form as

the robust counterpart of the LP studied in Section 2. To see this, look at the ith row of the semi-infinite

coupling constraint:

ti(θ)
Tx+wT

i y0 +wT
i Y θ ≤ hi(θ), ∀θ ∈ Θ, (14)

where ti(θ)
T , wT

i , and hi(θ) are the ith rows of T (θ), W , and h(θ), respectively. We recognize a linear

semi-infinite constraint of the same form as the one studied in Section 3.1 (albeit the dependency w.r.t. θ in

the RHS). So, for example, if Θ = {θ | Fθ ⪯K f} we could use Theorem 2 to reformulate (14) as a compact

system of conic inequalities. We find it simpler to directly derive the counterpart by mimicking the proof of

Theorem 2, which avoids a tedious vectorization of the matrix variable Y . Assume that ti(θ) = ti+Tiθ and

hi(θ) = ηi + gT
i θ. Then, constraint (14) can be rewritten as:

sup
{θ|Fθ⪯Kf}

θT (TT
i x+ Y Twi − gi) ≤ ηi − tTi x−wT

i y0

Then, provided strong duality holds, we get the equivalent constraint

inf
zi

zT
i f ≤ ηi − tTi x−wT

i y0

s.t. FTzi = TT
i x+ Y Twi − gi

zi ⪰K∗ 0.

It remains to handle the supremum w.r.t. θ in the objective function of (13). This can be handled by

using the same reasoning as above:(
sup
θ∈Θ

pTY θ ≤ t

)
⇐⇒ ∃z0 ⪰K∗ 0 :

{
zT
0 f ≤ t

FTz0 = Y Tp.
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Finally, we obtain the following result:

Theorem 6. Let Θ = {θ | Fθ ⪯K f}, and assume that the ith row of T (θ) and the ith component of

h(θ) are affine functions, of the form ti(θ)
T = (ti+Tiθ)

T , and hi(θ) = ηi+gT
i θ, for all i ∈ [m]. Assume

further that the conic inequality Fθ ⪯K f is essentially strictly feasible.

Then, a safe approximation x∗ of Problem (11), that solves the affinely adjustable robust counter-

part (13), can be computed by solving the following conic optimization problem:

minimize
x, y0, Y

z0,z1,...,zm

cTx+ pTy0 + zT
0 f

s.t. Ax ≤ b

tTi x+wT
i y0 + zT

i f ≤ ηi, ∀i ∈ [m]

FTzi = TT
i x+ Y Twi − gi, ∀i ∈ [m]

FTz0 = Y Tp

z0 ⪰K∗ 0, z1 ⪰K∗ 0, . . . , zm ⪰K∗ 0.
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