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Chapter I: Preliminaries

Organization

• Contact:

– Email: sagnol -at- math.tu-berlin.de

– Office: MA 518

– Assistant: Daniel Schmidt gen. W., MA 524

• Timing:

– Monday 10-12, MA649

– Thursday 14-16, MA550

– Lecture every Monday

– Lecture or Exercises every second week on Thursday

– Occasionally: Programming exercises with python notebooks

• Resources:

– There will be a handout, put online as and when the corresponding chapters are finished

– The course is mainly based on the book “Convex Optimization”, S. Boyd & L. Vandenberghe,

2004, freely available online at http://stanford.edu/ boyd/cvxbook/.

– Selected chapters are also based on the following references:

∗ “Lecture on Modern Convex Optimization”, A. Ben-Tal & A. Nemirovski, 2001.

∗ “Topics in Convex Optimisation”, Lecture notes of H. Fawzi at Cambridge.

∗ “Approximation Algorithms and Semidefinite Programming”, Lecture notes of B. Gärtner &

J. Matoušek at ETH Zurich.

∗ “Semidefinite Optimization”, Lecture notes of M. Laurent & F. Vallentin at Utrecht.

• Evaluation:

– Exercises will be given on week in advance. At the beginning of exercise sessions, check the

exercises you’ve prepared. One student will be asked to explain his solution. You need 50% of all

exercises checked to take the exam.

– Oral examination. You should not learn everything by heart, but rather know which result exists

and be able to find it in your handout if needed. You will not be asked to prove results from the

course, but rather to solve some new exercises & show your modelling skills.

– Mathematical rigor: the handout contains precise mathematical statements. On the blackboard

however, I will handwavy sometimes. IMHO it’s OK to handwavy as long as:

∗ You are aware that you’re not handling all small details of the problem;

∗ You have an idea of how to solve the problem is a rigorous manner.
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• Objectives:

– Understand the concept of duality in convex optimization, for both the “standard” nonlinear

programming approach and the “modern” conic programming approach.

– Learn to recognize convexity in a mathematical optimization problem, and modelling tricks to

represent or reformulate a problem as a linear program (LP), second-order cone program (SOCP),

semidefinite program (SDP), or geometric program (GP).

– Review many applications of convex optimization, in particular in the fields of engineering, data

analysis and combinatorial optimization.

– Learn to use modern interface such as PICOS or CVXPY, to formulate conic optimization prob-

lems in python and solve them with state-of-the-art solvers.

– Understand the algorithms (interior point methods).

Notation for scalars, vectors, and matrices

In this script, we use the following standard notation:

• [n] := {1, . . . , n}

• Scalar numbers are denoted by plain lower case letters, e.g. c ∈ R.

• Vectors are denoted by boldface lower case letters, e.g. v ∈ Rn, with elements v1, . . . , vn. Unless

stated otherwise, the symbol v always denote a column vector. The associated row vector is vT . On

the blackboard, we’ll make no distinction between plain and boldface letters, but it should be clear

from the context whether the symbol x denotes a scalar or a vector.

• Matrices are denoted by upper case letters, e.g. A ∈ Rm×n, with elements Aij (i ∈ [m], j ∈ [n]).

• Sometimes, we will write A = [a1, . . . ,an] ∈ Rm×n, which means that A is a matrix with columns

aj ∈ Rm (∀j ∈ [n]).

• Similarly, A = [a1, . . . ,am]T ∈ Rm×n, means that A is a matrix with rows ai ∈ Rn (∀i ∈ [m]).

• R+ = {x ∈ R : x ≥ 0}.

• R++ = {x ∈ R : x > 0}.

• Sn = {X ∈ Rn×n : X = XT }.

• Sn+ = {X ∈ Sn : X is positive semidefinite }.

• Sn++ = {X ∈ Sn : X is positive definite }.

The inequalities between vectors are elementwise, that is, if A = [a1, . . . ,am]T ∈ Rm×n is a matrix with

rows aT
i ’s, then Ax ≤ b means

aT
i x ≤ bi (∀i ∈ [m]).

The ith vector of the (canonical) basis of Rn is ei = [0, . . . , 0, 1, 0, . . . , 0]T , with the 1 in ith position.

Example:

For a vector v ∈ Rn, we have eTi v = vi.

For a vector A ∈ Rm×n, we have eTi Aej = Aij . (here, it is implicit that the vectors ei and ej are of

appropriate size, that is, ei ∈ Rm and ej ∈ Rn.

The matrix Eij = eie
T
j is a matrix (whose size depend on the dimensions of ei and ej , and should be clear

from the context) with zeroes everywere, except for a one in position (i, j).

#1
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The vector of all ones is 1 =
∑

i ei. We sometimes write 1n to make it clear that 1n ∈ Rn.

The matrix of all ones is J = 11T . When the dimension is not clear from the context, we can write

Jn = 1n1
T
n Jm,n = 1m1T

n .

The identity matrix is I (or In ∈ Sn).
Let u ∈ Rn. The diagonal matrix with elements u1, . . . , un is denoted by Diag(u).

The vector of diagonal elements of a matrix X ∈ Rn×n is denoted by diagX.

The image space of A ∈ Rm×n, i.e., the space spanned by the columns of A, is denoted by

ImA := {Ax : x ∈ Rn} ⊆ Rm.

The nullspace of A is denoted by

KerA := {y ∈ Rn : Ay = 0}.

We also recall that the rank of A ∈ Rm×n is the dimension of ImA, and we say that A has full column rank

whenever rankA = n, which means that the n columns of A are linearly independent. Similarly, we say

that A has full row rank if AT has full column rank, i.e., if the m rows of A are linearly independent.

Scalar products and norms

The scalar product of two vectors u,v ∈ Rn is

⟨u,v⟩ := uTv =

n∑
i=1

uivi

The scalar product of two matrices of the same size is

⟨A,B⟩ := traceATB =
∑
j

(ATB)jj =
∑
i,j

AijBij .

In particular, note that when A and B are symmetric, we simply have ⟨A,B⟩ = traceAB.

Example:

The sum of all entries of a vector v ∈ Rn is
∑n

i=1 vi = 1Tv.

The sum of all entries of a matrix A ∈ Rm×n is
∑m

i=1

∑n
j=1 Aij = ⟨J,A⟩.

#2

Unless stated otherwise, the symbol ∥v∥ denotes the Euclidean norm of the vector v ∈ Rn:

∥v∥ :=
√
vTv = (

n∑
i=1

v2i )
1/2

When there might be an ambiguity, we use ∥v∥2 to denote the Euclidean norm of v. For all p ≥ 1, the

Lp−norm of v is ∥v∥p := (
∑

i v
p
i )

1/p.

The Frobenius norm of a matrix is

∥A∥F :=
√
⟨A,A⟩ = (

∑
i,j

A2
ij)

1/2.
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The vectorization of a matrix A = [a1, . . . ,an] ∈ Rm×n with columns a′
js is

vec(A) :=

 a1

...

an

 ∈ Rmn.

In particular, note that ⟨A,B⟩ = vec(A)T vec(B) and ∥A∥F = ∥ vec(A)∥.

Linear and Quadratic functions

A function f : Rn → R is said to be affine if it is of the form x 7→
∑n

i=1 aixi + b. In vector notation, an

affine function can always be written as

x 7→ aTx+ b.

where a ∈ Rn and b ∈ R. More generally, an affine function mapping Rm to Rn has the form

f(x) = Ax+ b

for some matrix A ∈ Rm×n and a vector b ∈ Rm. We sometimes abuse the language and say that f is linear,

although this term is normally reserved for functions of the form x 7→ Ax (without the constant b). To

emphasize that a linear function has no constant part (b = 0), we will speak of a linear form.

Quadratic functions of Rn to R are of the form

x 7→
∑
ij

Qijxixj +
∑
i

aixi + b = xTQx+ aTx+ b.

Note that we can always assume without loss of generality (w.l.o.g.) that Q ∈ Sn, because xTQx =

(xTQx)T = xTQTx, so:

xTQx =
1

2
xT (Q+QT )x.

When a quadratic function has no affine part, i.e., f(x) = xTQx, we speak of a quadratic form. An

alternative formulation shows that any quadratic function can be assimilated with a quadratic form over

Rn × {1}:

xTQx+ aTx+ b =

[
x

1

]T [
Q 1

2a
1
2a

T b

] [
x

1

]
.

The gradient of a differentiable function f : Rn → R is

∇f : x 7→


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ∈ Rn,

and if f is twice differentiable, its Hessian is the function

∇2f : x 7→


∂2f
∂x2

1
(x) · · · ∂2f

∂x1∂xn
(x)

...
. . .

...
∂2f

∂xn∂x1
(x) · · · ∂2f

∂x2
n
(x)

 ∈ Sn,
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In particular, the gradient and Hessian of linear and quadratic forms read

∇(x 7→ aTx) = a

∇2(x 7→ aTx) = O

∇(x 7→ 1

2
xTQx) = Qx

∇2(x 7→ 1

2
xTQx) = Q.

Example:

Let u ∈ Rm and v ∈ Rn.. The function f : Rm×n → R, X 7→ uTXv is a linear function of X. This becomes

obvious if we use the following formula:

uTXv = ⟨X,uvT ⟩. (1)

The above is a simple consequence from the fact that the trace is invariant to cyclic permutations: traceAB =

traceBA. Indeed,

uTXv = traceuTXv (seen as a 1× 1-matrix)

= traceXvuT (from the invariance to cyclic permutations)

= ⟨X,uvT ⟩ (note that uvT is an m× n-matrix)

#3

We also mention the following chain rule: If f is differentiable (resp. twice differentiable), then the

gradient of g : x 7→ f(Ax+ b) (and resp. its hessian) are given by:

∇g : x 7→ AT∇f(Ax+ b)

∇2g : x 7→ AT∇2f(Ax+ b)A.
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