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Chapter II: Convex Geometry

1 Convex, Affine, and Conic hulls

We will first introduce the concept of lines, segments, and rays, which play a central role for the definition

of affine, convex, and conic sets. The construction of these three notions is similar to the construction of

a vector space (which, as you should recall, relies on the possibility to take linear combinations of points∑
i λixi), except that here we will put some constraints on the coefficients λi, leading to what we call affine,

convex, or conic combinations of points. We will present these constructions in parallel, since they only differ

by the constraints imposed on the coefficients of the combinations.

Definition 1. (Lines, segments, rays). Let x1,x2 ∈ Rn.

• The line through x1 and x2 is {θx1 + (1− θ)x2 : θ ∈ R}.

• The segment between x1 and x2 is {θx1 + (1− θ)x2 : θ ∈ [0, 1]}.

• The ray through x1 is { θx1 : θ ≥ 0}.

Note that the ray through x is in fact the half-line with end-point 0 that goes through x.

Definition 2. (Affine, Convex, and Conic sets). Let S be a subset of Rn.

• We say that S is an affine set if it contains the line through any 2 points of S:

x1,x2 ∈ S, θ ∈ R =⇒ θx1 + (1− θ)x2 ∈ S.

• We say that S is convex if it contains the segment through any 2 points of S:

x1,x2 ∈ S, θ ∈ [0, 1] =⇒ θx1 + (1− θ)x2 ∈ S.

• We say that S is a cone if it contains the ray through any point of S:

x ∈ S, θ ≥ 0 =⇒ θx ∈ S.

By combining the last 2 points of the above definition, it is easy to see that a set C is a convex cone if

and only if

∀x1,x2 ∈ C,∀λ1, λ2 ∈ R+, λ1x1 + λ2x2 ∈ C.

In fact, we can also show that the above definitions can be extended by taking affine (convex, convex

conic) combinations of more than just two points. This yields the following

Proposition 1. A set S ⊆ Rn is affine (or convex, or a convex cone) iff it is stable by affine (or convex,

or conic) combinations. More precisely,
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• S is affine ⇐⇒ ∀k ∈ N,∀x1, . . . ,xk ∈ S, ∀λ ∈ Rk with
∑k

i=1 λi = 1,
∑k

i=1 λixi ∈ S.

• S is convex ⇐⇒ ∀k ∈ N,∀x1, . . . ,xk ∈ S, ∀λ ∈ Rk
+ with

∑k
i=1 λi = 1,

∑k
i=1 λixi ∈ S.

• S is a convex cone ⇐⇒ ∀k ∈ N,∀x1, . . . ,xk ∈ S, ∀λ ∈ Rk
+,

∑k
i=1 λixi ∈ S.

Proof. We only handle the “convex” case, the other two are similiar. The implication ⇐= is just the case k = 2.

For =⇒ , we proceed by induction on k ∈ N. The case k = 1 is clear. Now, let S be a convex set, and assume that

the induction hypothesis is true up to order k. Let x1, . . . ,xk+1 ∈ Rn and let λ ∈ Rk+1
+ satisfy

∑k+1
i=1 λi = 1. We can

write
k+1∑
i=1

λixi = (1− λk+1)

k∑
i=1

λixi

1− λk+1︸ ︷︷ ︸
x0

+λk+1xk+1

Now, observe that the coefficients µi = λi
1−λk+1

(i = 1, . . . , k) sum to 1, so by the induction hypothesis we have

x0 ∈ S. It follows that
∑k+1

i=1 λixi = (1− λk+1)x0 + λk+1xk+1 ∈ S by convexity of S.

Note: The vector
∑k

i=1 λixi is called an affine combination of the xi’s when the λi’s sum to one, a convex

combination of the xi’s when the λi’s are nonnegative and sum to one, and a conic combination when the

λi’s are nonnegative (without restriction on their sum).

Now we can define the notions of affine, convex, and conic hull of a set S, which correspond to the

smallest (in the sense of inclusion) affine set (convex set, convex cone) that contain S. In other words, the

affine (convex, conic) hull of S is the intersection of all affine (convex, convex conic) supersets of S. This

definition can be useful, but is not really practical, since we are talking about taking the intersection of

an infinite family of supersets of S. Fortunately, there is an equivalent definition, which gives an explicit

construction: the hulls are obtained by taking all possible affine (convex, conic) combinations of points in S.

Definition 3. (Affine, Convex, and Conic hull). Let S be a subset of Rn.

• The vector space spanned by S is:

spanS := {
k∑

i=1

λixi : k ∈ N, ∀i ∈ [k],xi ∈ S, λ ∈ Rk}.

• The affine hull of S is:

aff S := {
k∑

i=1

λixi : k ∈ N, ∀i ∈ [k],xi ∈ S, λ ∈ Rk, 1Tλ = 1}.

• The convex hull of S is:

convS := {
k∑

i=1

λixi : k ∈ N, ∀i ∈ [k],xi ∈ S, λ ∈ Rk
+, 1Tλ = 1}.

• The conic hull of S is:

coneS := {
k∑

i=1

λixi : k ∈ N, ∀i ∈ [k],xi ∈ S, λ ∈ Rk
+}.

Proof. There is nothing to show for span , the definition is just given here for the sake of completeness, and to

emphasize the parallel with the three hull-definitions.
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We need to show that the above statements are indeed equivalent to the original definition of the different hulls

(as intersection of all affine/convex/convex conic supersets). We’ll do this for the convex case only, the other two are

similar. Let R denote the set on the right hand side of the definition, and let S′ denote an arbitrary convex superset

of S. For any element x =
∑

i λixi of R (with
∑

i λi = 1), we have that xi ∈ S′, so by convexity of S′ it holds x ∈ S′.

This shows R ⊆ S′, and hence R ⊆ convS because S′ was arbitrary. For the converse inclusion, it is sufficient to

show that R is a convex superset of S. For all x ∈ S we can write x as a convex combination of itself (i.e., with

k = 1), so S ⊆ R. It remains to show that R is convex. To do so, let x =
∑

i λixi ∈ R and y =
∑

j µjyj ∈ R (with∑
i λi =

∑
j µj = 1). For some α ∈ [0, 1] we will show that convex combination z = αx+ (1− α)y is an element of

R. Indeed,

z =
∑
i

αλixi +
∑
j

(1− α)µjyj , with
∑
i

αλi +
∑
j

(1− α)µj = α+ (1− α) = 1,

so z is a convex combination of the xi’s and the yj ’s, and z ∈ R. This shows that R is convex, and we have shown

convS ⊆ R.

As intuition suggests, an affine set is just a vector space shifted by some constant vector. Indeed, let

x1, . . . ,xk ∈ Rn and consider the affine set L = {
∑k

i=1 λixi : λ ∈ Rk, 1Tλ = 1}. By using the relation

λ1 = 1−
∑k

i=2 λi, we can rewrite L as

L = {xk +

k−1∑
i=1

λi(xi − xk) : λ ∈ Rk−1} = xk + span {x1 − xk,x2 − xk, . . . ,xk−1 − xk},

where spanS denote the vector space spanned by the vectors of S. More generally, the following proposition

shows that every affine space can be written as the sum of a subspace and a constant vector (also called

offset), or equivalently as the set of solutions of a linear equation:

Proposition 2. Let L be an affine space. Then, we have L = x0 + V , where x0 is any element of L,

and V is a vector space. The subspace V = L − x0 does not depend on the choice of x0 ∈ L. Thus, we

can define the dimension of L as the dimension of its associated subspace V .

If L is an affine space of Rn of dimension m ∈ N, then there exists a full-column-rank matrix A ∈ Rn×m

and a vector b ∈ Rn such that

L = {Ay + b : y ∈ Rm}.

Alternatively, there exists a full-row-rank matrix F ∈ Rm×n and a vector g ∈ Rm such that

L = {x ∈ Rn : Fx = g}.

Proof. Let x0 ∈ L. We first show that V = L − x0 := {x − x0 : x ∈ L} is a vector space. To do this, we select

x1,x2 ∈ L and λ ∈ R, we let y1 = x1 − x0 ∈ V, y2 = x2 − x0 ∈ V , and we show that λy1 + y2 ∈ V :

λy1 + y2 ∈ V ⇐⇒ λy1 + y2 + x0 ∈ L

⇐⇒ λ(x1 − x0) + (x2 − x0) + x0 ∈ L

⇐⇒ λx1 − λx0 + x2 ∈ L

The last statement is true, because λ− λ+ 1 = 1, so λx1 − λx0 +x2 is an affine combination of x0,x1, and x2, and

L is stable by affine combinations, cf. Proposition 1.

Now, we show that V does not depend on the choice of the element x0 ∈ L. Let V1 = L− x1 and V2 = L− x2.

We take an element x0 ∈ L and we define y1 = x0 −x1 ∈ V1. Now, observe that y1 +x2 = x0 −x1 +x2 is an affine

combination of x0,x1,x2 ∈ L, so y1 + x2 ∈ L, and y1 ∈ V2. This shows V1 ⊆ V2, and the same reasonning can be

used to show the converse inclusion: V1 = V2.

Finally, the last part of the proposition is a consequence from the basis fact that any subspace of dimension m in

Rn can be writen as V = ImA for some matrix A ∈ Rn×m, or as V = KerF for some matrix F ∈ Rm×n.
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In particular, the above proposition tells us that the affine hull L of a set S ⊆ Rn is the set of all affine

combinations of at most m + 1 points of S, where the number m := dim(aff S) ≤ n is called the affine

dimension of S. A similar result gives an upper bound for the number of points of S we need to “combine”

to get any point in the convex or conic hull of S, and is due to Caratheodory:

Theorem 3 (Caratheodory). Let S ⊆ Rn be of affine dimension m ≤ n, and let x ∈ convS. Then, x

can be expressed as a convex combination of k ≤ m+ 1 ≤ n+ 1 points of S.

Proof. We know that x =
∑k

i=1 λixi for some positive λi’s summing to 1, and some xi ∈ S. If k ≤ m + 1, there

is nothing to prove. So, let k > m + 1. We will construct another convex combination of the form x =
∑k−1

i=1 λ′
ix

′
i.

This can be iterated until x is expressed as a combination of at most m+ 1 points.

The vectors x2 −x1, . . . ,xk −x1 must be linearly dependent (this is family of k− 1 > m vectors in the subspace

V = L − x1, which has dimension m), so there exists some µi(i = 2, . . . , k), not all equal to zero, such that∑k
i=2 µi(xi − x1) = 0. Letting µ1 = −

∑k
i=2 µi, we have

∑k
i=1 µi = 0 and

k∑
i=1

µixi = 0.

And for all α ∈ R, it holds
k∑

i=1

(λi − αµi)xi = x and

k∑
i=1

(λi − αµi) = 1.

The above defines a new convex combination of the xi’s if ∀i, λi − αµi ≥ 0. This is the case if

α ≤ α∗ := min{λi

µi
: i ∈ [k], µi > 0}.

Moreover, for the value α∗ = α, at least one of the new coefficient λ′
i = λi − α∗µi is equal to zero, i.e., we have

expressed x as a convex combination of ≤ k − 1 points.

The conic version of Caratheodory’s theorem is as follows. Contrarily to the convex-hull case, this time

n points are sufficient. The proof is similar to the proof of the standard version of the theorem and is left as

an exercise.

Theorem 4 (Caratheodory – conic version). Let S ⊆ Rn, such that dim(spanS) = m ≤ n, and let

x ∈ coneS. Then, x can be expressed as a conic combination of k ≤ m ≤ n points of S.

2 Simple examples of convex sets and cones

• The set {x ∈ Rn : aTx = b}, where a ∈ Rn, b ∈ R, is called a hyperplane. It is affine and hence

convex.

• The set {x ∈ Rn : aTx ≤ b}, where a ∈ Rn, b ∈ R, is called a halfspace. It is convex, but not affine.

• The set {x ∈ Rn : ∥x − x0∥ ≤ r}, where x0 ∈ Rn, r ∈ R+ and ∥ · ∥ is any norm, is called a ball and

is convex. (We recall that ∥ · ∥ is a norm if it is absolutely homogeneous (∥αu∥ = |α| ∥u∥), it satisfies
the triangle inequality (∥u+ v∥ ≤ ∥u∥+ ∥v∥), and it is nonnegative definite (∥u∥ ≥ 0, with ∥u∥ = 0

iff u = 0).)

• The set conv {x1, . . . ,xk}, where the xi’s are elements of Rn, is called a polytope. It is convex.

• The set {x : Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm, is the intersection of m halfspaces, and is called

a polyhedron. It is convex.
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• The set {(x, t) ∈ Rn ×R : ∥x− x0∥ ≤ t}, where x0 ∈ Rn and ∥ · ∥ is any norm is called a norm cone.

It is a convex cone. When ∥ · ∥ is the Euclidean norm, this set is reffered as the Lorentz cone, or the

second-order cone.

• The set ∆n := {x ∈ Rn : x ≥ 0, 1Tx ≤ 1} is called the unit simplex of Rn. It is is convex. It is

possible to show that the unit simplex is also a polytope. Indeed,

∆n = conv {0, e1, e2, . . . , en}.

• The set ∆=
n := {x ∈ Rn : x ≥ 0, 1Tx = 1} is called the probability simplex of Rn. It is is convex. It

is possible to show that the probability simplex is also a polytope. Indeed,

∆=
n = conv {e1, e2, . . . , en}.

This set is of affine dimension n − 1, hence some authors use n − 1 instead of n as a subscript in the

notation for this set. In this course, we’ll stick to n in order to emphasize that ∆=
n is a subset of Rn.

• The set Rn
+ is called the nonnegative orhant. It is a convex cone.

• The set Sn of n× n symmetric matrices is a subspace of Rn×n, of dimension 1
2n(n+ 1).

3 Operations that preserve convexity

We list hereafter some operations on sets that preserve convexity. The proofs of these statements are left as

exercises.

(a) Intersection: The intersection of convex sets is convex (this is also valid for the intersection of an

infinite family of convex sets). For example, the set of positive semidefinite matrices is the intersection

of (infinitely many) halfspaces, hence it is convex:

{X ∈ Sn : ∀x ∈ Rn, xTXx ≥ 0} =
⋂

x∈Rn

{X ∈ Sn : ⟨X,xxT ⟩ ≥ 0}.

(b) Cartesian product: if S ⊆ Rn is convex and T ⊆ Rm is convex, then

S × T = {(x,y) ∈ Rn+m : x ∈ S, y ∈ T}

is convex.

(c) Affine transformation: if S ⊆ Rn is convex, A ∈ Rm×n, b ∈ Rm, then {Ax + b : x ∈ S} is convex.

This includes, as special cases, the following transformation:

• scaling (for A = ρI, b = 0).

• translation (for A = O).

• projection over a subset of coordinates (for A of the form A = [I,O] and b = 0)

• Minkowski sum: if S ⊆ Rn is convex and T ⊆ Rn is convex, then

S + T = {x+ y : x ∈ S, y ∈ T}

is convex. To see this, apply a linear transformation with A = [I, I] over S × T .
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(d) Reverse affine transformation: if S is convex, then {x : Ax+ b ∈ S} is convex. For example, the

ellipsoid {x ∈ Rn : ∥Ax+ b∥ ≤ 1} is the reverse image of the unit ball by some affine transformation,

hence it is convex.

(e) Closure and interior: If S ⊂ Rn is convex, then its closure clS and its interior intS are convex.

(f) Perspective transformation: The perspective function is P : Rn×R++ → Rn, defined by P (x, t) = x
t .

• If C ⊆ Rn × R++ is convex, then P (C) is convex.

• If S ⊆ Rn is convex, then P−1(S) := {(x, t) ∈ Rn × R++ : 1
tx ∈ S} is convex.

For example, the Lorrentz cone {(x, t) : ∥x∥ ≤ t} is the closure of P−1(B), where B is the unit ball.

In the next two subsections, we study two classes of convex sets which will play an important role in this

lecture: ellipsoids, and the cone of positive semidefinite matrices.

4 Positive semidefinite matrices

We now introduce a very important example, the set of positive semidefinite matrices. We recall that a

matrix X ∈ Sn is called positive semidefinite if

∀u ∈ Rn,uTXu ≥ 0.

The next proposition gives important equivalent definitions

Proposition 5. Let X ∈ Sn. The following statements are equivalent:

(i) X ∈ Sn+ (S is positive semidefinite)

(ii) ∀u ∈ Rn,uTXu ≥ 0.

(iii) All eigenvalues of X are nonnegative.

(iv) ∃H ∈ Rn×m,m ∈ N : X = HHT

(v) X ∈ conv {xxT : x ∈ Rn} = cone {xxT : x ∈ Rn}.

Proof. (i) ⇐⇒ (ii): This is the definition.

(ii) =⇒ (iii): Let λ be an eigenvalue of X, and v an associated (normalized) eigenvector. We recall that λ ∈ R,
because X is symmetric. Now, we have vTXv = λvTv = λ∥v∥2 = λ ≥ 0.

(iii) =⇒ (iv): X is symmetric, so it admits an eigendecomposition of the form X = UΛUT , where the matrix U

is orthogonal (i.e., UUT = UTU = I), and Λ = Diag(λ1, . . . , λn) is the diagonal matrix containing the eigenvalues of

X. Setting H = UΛ1/2, where Λ1/2 := Diag(
√
λ1, . . . ,

√
λn), we have X = HHT .

(iv) =⇒ (v): Let X = HHT , and let h1, . . . ,hm ∈ Rn be the columns of H. Then, we have X = HHT =∑m
i=1 hih

T
i , which is a conic combination of the rank-1 matrices hih

T
i , or X =

∑
i

1
m

hi√
m

hi√
m

T
, a convex combination

of matrices of the form xxT , where x ∈ Rn.

(v) =⇒ (ii): Let X =
∑

i λixix
T
i , with λ ∈ Rm

+ and xi ∈ Rn. Then, for all u ∈ Rn we have

uTXu =
∑
i

λiu
T
i xix

T
i ui =

∑
i

λi︸︷︷︸
≥0

(uT
i xi)

2 ≥ 0.

The above proposition implies, in particular, the following
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Corollary 6. The set Sn+ is a convex cone.

The next result characterizes the interior of Sn+, which is itself a convex cone, and consists of all positive

definite matrices.

Proposition 7. The following statements are equivalent:

(i) X ∈ Sn++ (S is positive definite)

(ii) X ∈ int Sn+

(iii) ∀u ∈ Rn, u ̸= 0 =⇒ uTXu > 0.

(iv) All eigenvalues of X are positive.

(v) Sylvester criterion: All leading principal minors of X are positive.

We now give a few important properties about positive semidefinite matrices. The next lemma can be

useful, in particular when we want to show that a matrix is not positive semidefinite.

Lemma 8. Let X ∈ Sn+. Then,

1. For any matrix A ∈ Rm×n, the matrix AXAT is positive semidefinite.

2. If I is a subset of [n], the principal submatrix X[I, I] = {Xi1,i2}i1∈I,i2∈I is positive semidefinite.

3. For all i, j ∈ [n], |Xij | ≤
√

XiiXjj.

4. Xii = 0 =⇒ ∀j ∈ [n], Xij = 0.

Proof. 1. X admits a decomposition of the form HHT . Hence, AXAT = (AH)(AH)T ∈ Sm
+ .

2. We construct a matrix A such that X[I, I] = AXAT and we use the previous result. Let I = {i1, . . . , i|I|}, and
define the matrix A ∈ R|I|×n as follows: For k ∈ {1, . . . , |I|}, Ak,ik = 1 and Ai,j = 0 elsewhere.

3. In particular, the 2× 2 principal submatrix

[
Xii Xij

Xij Xjj

]
is positive semidefinite, so its determinant is non-

negative: XiiXjj −X2
ij ≥ 0, which implies |Xij | ≤

√
XiiXjj .

4. This is an immediate consequence of the previous inequality.

Proposition 9 (Matrix square root). Let X ∈ Sn+. Then, X has a square root, which we denote by

X
1
2 ∈ Sn+, and is the only positive semidefinite matrix that satisfies

X =
(
X

1
2

)2

.

In particular, the eigenvalues of X
1
2 are the square roots of the eigenvalues of X.

Proof. Let X = UΛUT be an eigendecomposition of X, where U is orthogonal and Λ is a diagonal matrix with

nonnegative elements. Then, we define X
1
2 = UΛ

1
2UT ∈ Sn

+, with Λ1/2 := Diag(
√
λ1, . . . ,

√
λn). Now we can verify

that (
X

1
2

)2

= UΛ
1
2 UTU︸ ︷︷ ︸

=I

Λ
1
2UT = UΛUT = X.
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It remains to show that the positive semidefinite square root is unique. A matrix A has the same eigenspaces as

its square A2, and the eigenvalues of A2 are the square of the eigenvalues of A. Hence, if S1 and S2 are positive

semidefinite square roots of X, then we have eigendecompositions of the form

S1 = UΛ
1
2UT , S2 = V Λ

1
2 V T ,

and if Uλ, Vλ are the columns of U and V corresponding to some eigenvalue λ of X, then Uλ is an orthogonal

transformation of Vλ. This shows that U = V Ω, where Ω is a block diagonal matrix with orthogonal matrices

Ωλ = V T
λ Uλ as diagonal blocks. So we have S1 = UΛ

1
2UT = V ΩΛ

1
2ΩTV T , and the diagonal blocks of ΩΛ

1
2ΩT are of

the form Ωλ(
√
λI)ΩT

λ =
√
λΩλΩ

T
λ = λ1/2I. Hence ΩΛ

1
2ΩT = Λ

1
2 , and S1 = V ΩΛ

1
2ΩTV T = V Λ

1
2 V T = S2.

We finish this section with another decomposition of positive semidefinite matrices, which we will not

prove:

Proposition 10 (Cholesky decomposition). All positive semidefinite matrices X ∈ Sn+ admit a Cholesky

decomposition of the form X = LLT , where L is a lower triangular matrix. If X is positive definite, then

this decomposition is unique.

5 Ellipsoids

An ellipsoid of Rn is a set of the form

{x ∈ Rn : (x− x0)
TQ−1(x− x0) ≤ 1},

where x0 ∈ Rn and the matrix Q is positive definite.

Proposition 11 (Affine transformation of a ball). Let A ∈ Rn×n be an invertible matrix, b ∈ Rn and

r > 0. The following sets are ellipsoids (E1 is the image of a ball by the affine mapping x 7→ Ax− b, and

E2 is the reverse image of a ball by the same mapping):

• E1 = {Az − b : z ∈ Rn, ∥z∥ ≤ r} ⊂ Rn

• E2 = {x ∈ Rn : ∥Ax− b∥ ≤ r} ⊂ Rm

Proof.

• We first show that E2 is an ellipsoid. Define Q = r2(ATA)−1 and x0 = A−1b, so we have

1

r2
(x− x0)

TQ−1(x− x0) =
1

r2
(xTQ−1x− 2xT

0 Q
−1x+ xT

0 Q
−1x0)

=
1

r2
(xTATAx− 2bTA−TATAx+ bTA−TATAA−1b)

=
1

r2
(xTATAx− 2bTAx+ ∥b∥2)

=
1

r2
∥Ax− b∥2.

This shows that E2 can be rewritten as {x ∈ Rn : (x− x0)
TQ−1(x− x0) ≤ 1}, which is an ellipsoid, because

Q = r2(ATA)−1 is positive definite.

• x ∈ E1 ⇐⇒ ∃z ∈ Rn : ∥z∥ ≤ r, x = Az − b ⇐⇒ ∥A−1(x+ b)∥ ≤ r. Define A′ = A−1 and b′ = −A−1b, so

E1 = {x ∈ Rn : ∥A′x− b′∥ ≤ r}, which has the same form as E2 and is hence an ellipsoid.
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When the matrix A in the definition of E1 is not invertible (in particular, if A is non-square), we obtain a

“flat ellipsoid”, which is contained in the affine space −b+ ImA. When the matrix A in the definition of E2

is not invertible, we get a “cylinder”, which is infinite in the directions corresponding to singular eigenvectors

of A. The next example shows that the directions and lengths of the the semi-axis of an ellipsoid are actually

given by the eigenvalue decomposition of its associated matrix Q:

Example:

Let Q = UΛUT be an eigendecomposition of Q ∈ Sn++. Denote by λ1, . . . , λn > 0 the diagonal elements of

Λ (the eigenvalues), and by u1, . . . ,un the columns of U (the eigenvectors). The ellipsoid

E = {x ∈ Rn : (x− x0)
TQ−1(x− x0) ≤ 1}

can be rewriten as an affine transformation of the unit ball:

E = {x : ∥Λ−1/2UT (x− x0)
T ∥ ≤ 1} = {UΛ1/2z + x0 : z ∈ Rn, ∥z∥ ≤ 1}.

This can be interpreted by saying that E is an ellipoid centered at x0, with semi-axis of length
√
λi in

the direction ui. The limit case λi → 0 gives a “flat ellipsoid”, of width 0 in the direction of the singular

eigenvector ui.

#1

6 Generalized inequalities and dual cone

Definition 4 (Proper cone). A cone K ⊂ Rn is said to be proper if it is

• closed;

• convex;

• pointed, i.e., it contains no lines. More precisely,

(x ∈ K,−x ∈ K) =⇒ x = 0;

• and it has a nonempty interior.

We can define a partial order relative to a proper cone K: we write x ⪯K y whenever y lies in the affine

cone x+K. More precisely,

Definition 5 (Generalized order). Let K be a proper cone. Then,

x ⪯K y ⇐⇒ y − x ∈ K.

We also define the generalized strict inequality

x ≺K y ⇐⇒ y − x ∈ intK.

Observe that the notion of order relative to a cone generalizes the elementwise inequalities x ≤ y, which

correspond to the case K = Rn
+.

When K is the cone of positive semidefinite matrices, A ⪯Sn+ B means that B−A is positive semidefinite.

So, when we work with matrices, we will often omit the subscript and write X ⪰ 0 for X ∈ Sn+, and X ≻ 0

for X ∈ Sn++.
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Example:

Let K ⊂ Rd+1 be the cone of coefficients of polynomials of degree d that are nonnegative on [0, 1]:

K = {α ∈ Rd+1 : ∀x ∈ [0, 1],

d∑
i=0

αix
i ≥ 0}.

It is easy to check that K is closed, convex, pointed, and has a no empty interior, hence it is proper. The

inequality α ⪯K β means that the polynomial with coefficients αi is dominated by the polynomial with

coeffients βi on the whole interval [0, 1]:

α ⪯K β ⇐⇒ ∀x ∈ [0, 1],

d∑
i=0

αix
i ≤

d∑
i=0

βix
i

#2

Let us now review a few properties of the generalized order ⪯K . The proof is left as an exercise.

Proposition 12. Let K be a proper cone. The generalized inequality ⪯K satisfies following properties:

1. transitivity: x ⪯K y and y ⪯K z =⇒ x ⪯K z

2. reflexivity: x ⪯K x.

3. antisymmetry: x ⪯K y and y ⪯K x =⇒ x = y.

4. preservation under addition: x ⪯K y and u ⪯K v =⇒ x+ u ⪯K y + v.

5. preservation under nonnegative scaling: x ⪯K y and α ≥ 0 =⇒ αx ⪯K αy.

In particular, the properties 1-3 of the proposition above show that ⪯K is a partial order. However, it is

not a total order, because some elements can’t be compared. This means that in general,

x ⪯̸K y ⇐⇏ x ⪰K y.

For example, the vectors

[
0

1

]
and

[
1

0

]
are not comparable for the elementwise order ⪯R2

+
.

We now define a notion that will be very important later in this course:

Definition 6 (Dual cone). Let K be a cone. The dual cone of K ⊂ Rn is

K∗ := {y ∈ Rn : ⟨x,y⟩ ≥ 0, ∀x ∈ K}.

We next present a fundamental property of the dual cone, which we will use later in this course to define

the Lagrangian dual of conic programming problems.

Proposition 13. Let K be a cone. Then,

inf
x∈K

cTx =

{
0 if c ∈ K∗

−∞ otherwise.

Similarly,

sup
x∈K

cTx =

{
0 if c ∈ −K∗

+∞ otherwise.
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Proof. We simply use the definition of K∗:

c ⪰K∗ 0 ⇐⇒ ∀x ∈ K, cTx ≥ 0.

Hence, if c ⪰K∗ 0, it holds infx∈K cTx ≥ 0. On the other hand, since 0 ∈ K, we have infx∈K cTx ≤ cT0 = 0.

Conversely, if c ⪰̸K∗ 0, then ∃x0 ∈ K : cTx0 < 0. Setting x = tx0 ∈ K and letting t → ∞ yields cTx → −∞.

The proof of the statement with the sup is obtained by changing c to −c.

The next proposition gives some important properties of dual cones. We will prove them in exercise.

Proposition 14 (Properties of dual cones). Let K be a convex cone.

1. K∗ is a convex cone.

2. K∗ is closed (even if K is not).

3. K1 ⊆ K2 =⇒ K∗
2 ⊆ K∗

1 .

4. K has a nonempty interior =⇒ K∗ pointed.

5. K∗∗ = clK (so, in particular, K closed =⇒ K = K∗∗).

6. clK is pointed =⇒ K∗ has a nonempty interior.

Observe that the above proposition shows that if K is a proper cone, then K∗ is a proper cone, too. And

in this case, we always have K = (K∗)∗, which justifies the term “dual cone”.

We next define the notions of minimal and minimum element in a set relative to a proper cone K

Definition 7 (Minimum and minimal elements). LetK be a proper cone. We say that x is theminimum

element of S (with respect to the generalized order ⪯K) if S ⊆ x+K. In other words,

x is the minimum of S ⇐⇒ ∀y ∈ S,x ⪯K y.

If S has a minimum element, then this minimum is unique.

We say that x is a minimal element of S (with respec to ⪯K) if (x−K) ∩ S = {x}, that is:

x is minimal in S ⇐⇒
(
y ∈ S, y ⪯K x =⇒ y = x

)
.

A minimum element of S is always minimal, but minimal elements need not be unique.

We should prove that the minimum element of S is necessarily unique. Assume that for all y ∈ S,

y ⪰K x1 and y ⪰K x2, with x1,x2 ∈ S. Then, in particular it holds x2 ⪰K x1 and x1 ⪰K x2, so by

antisymmetry of ⪯K it holds x1 = x2. The fact that minimum elements are minimal can be seen in a similar

manner. If x ⪯K y for all y ∈ S, then any element z ∈ S satisfying z ⪯K x also satisfies z ⪰K x, hence

z = x by antisymmetry of ⪯K .

The generalized order ⪯K is related to the order ⪯K∗ by the following proposition, which also gives an

equivalent characterization of minimum and minimal elements.

Proposition 15. Let K be a proper cone. Then,

x ⪯K y ⇐⇒ ∀λ ⪰K∗ 0, λTx ≤ λTy;
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x ≺K y ⇐⇒ ∀λ ∈ K∗ \ {0}, λTx < λTy.

In particular, x is the minimum element of S if it minimizes the linear form x 7→ ⟨x,λ⟩ over S, for all

λ ∈ K∗:

x is the minimum of S ⇐⇒ ∀λ ⪰K∗ 0,∀y ∈ S, λTx ≤ λTy.

Geometrically, this means that {y ∈ Rn : λT (y − x) = 0} is a supporting hyperplane of S at x, for all

λ ∈ K∗. For minimal elements however, we only obtain a sufficient condition in general:

x is minimal in S ⇐= ∃λ ≻K∗ 0,∀y ∈ S, λTx ≤ λTy.

But a weaker form of the converse implication holds when S is convex:

x is minimal in the convex set S =⇒ ∃λ ⪰K∗ 0,∀y ∈ S, λTx ≤ λTy.

Proof. For the first equivalence, we use the fact that K is equal to its bidual K∗∗:

x ⪯K y ⇐⇒ y − x ∈ K ⇐⇒ y − x ∈ K∗∗ ⇐⇒ ∀λ ∈ K∗, ⟨y − x,λ⟩ ≥ 0.

Then, the characterization of the minimum element is obtained by plugging the above equivalence in the definition

of the minimum of S. For minimal elements, assume that x minimizes xTλ over S, where λ ⪰K∗ 0. Then, if some

element y ∈ S satisfies y ⪯K x, we must have yTλ ≤ xTλ, so yTλ = xTλ. But then, (x−y) ∈ K \{0} would imply

(x− y)Tλ > 0, a contradiction. Hence, x = y, and x is minimal in S. We leave the proof of the last statement for

the case of a convex set S as an exercise, as it requires the separating hyperplane theorem from the next section.

7 Separating hyperplane theorems

This section proves a major result of convex geometry, which will be important for the notion of duality in

convex optimization. It basically states that if two convex sets do not intersect, then they can be separated

by some hyperplane:

Theorem 16 (Separating hyperplane). Let X,Y be two disjoint, nonempty convex sets of Rn. Then,

there exist a scalar c and a vector v ∈ Rn, v ̸= 0, such that

∀x ∈ X, ⟨x,v⟩ ≤ c and ∀y ∈ Y, ⟨y,v⟩ ≥ c.

In other words, the hyperplane {x : ⟨x,v⟩ = c} separates X and Y .

Proof. We first prove the following intermediate result: if S is a closed convex set, then it has a unique vector of

minimal norm. To see this, let δ := infx∈S ∥x∥. This infimum is clearly reached, since we minimize a continuous

function (the norm) over the compact set S ∩ {x ∈ Rn : ∥x∥ ≤ δ + 1}. Now, assume that ∥x∥ = ∥y∥ = δ. By

convexity of S, we have 1
2
(x + y) ∈ S, so ∥x+y

2
∥2 ≥ δ2 ⇐⇒ ∥x + y∥2 ≥ 4δ2. Now, we use the parallelogram law:

∥x− y∥2 = 2∥x∥2 + 2∥y∥2 − ∥x+ y∥2 ≤ 2δ2 + 2δ2 − 4δ2 = 0. This shows x = y.

The set S = {y − x : x ∈ X,y ∈ Y } is convex (it is the Minkowski sum of Y and −X, which are both convex),

and it does not contain 0 (because X ∩ Y = ∅). So, now, we use the above intermediate result, and we denote by v

the (unique) vector of minimal norm in clS.

Let z ∈ S. We now show that ⟨z,v⟩ ≥ ∥v∥2. To see this, define f(t) = ∥v + t(z − v)∥2, and observe that

f(t) ≥ f(0) = ∥v∥2 for all t ∈ [0, 1], because by convexity, the point v+ t(z− v) belongs to S. So 1
t
(f(t)− f(0)) ≥ 0

for all t ∈ (0, 1]. We have:

1

t
(f(t)− f(0)) =

1

t
(∥v∥2 + 2tvT (z − v) + t2∥z − v∥2 − ∥v∥2) = 2(vTz − ∥v∥2) +O(t) ≥ 0.
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So, letting t → 0, we obtain ⟨z,v⟩ ≥ ∥v∥2.
If v ̸= 0, this readily proves the theorem. Indeed, we have

∀z ∈ S, ⟨z,v⟩ ≥ ∥v∥2 =⇒ ∀x ∈ X, ∀y ∈ Y, ⟨y,v⟩ − ⟨x,v⟩ ≥ ∥v∥2 > 0

=⇒ ∀x ∈ X, ∀y ∈ Y, ⟨y,v⟩ > ⟨x,v⟩.

Hence, we can set the scalar c to any number between supx∈X⟨x,v⟩ and infy∈Y ⟨y,v⟩ to get the desired inequality.

To handle the case where v = 0, let Sn be an increasing sequence of compact sets converging to intS, and

denote by vn the unique vector of minimal norm in Sn. Then, as before we have ∀zn ∈ Sn, ⟨zn,vn⟩ ≥ ∥vn∥2 ⇐⇒
⟨zn,

vn
∥vn∥ ⟩ ≥ ∥vn∥ ≥ 0. This shows that for all z ∈ S and for all n large enough, ⟨z, vn

∥vn∥ ⟩ ≥ 0. Now, the vectors
vn

∥vn∥ live in the unit ball, which is compact, so we can consider a convergent subsequence, with limi→∞
vni

∥vni
∥ = v̄,

where v̄ is a vector of unit norm. Taking the limit, we obtain that for all z ∈ S, ⟨z, v̄⟩ ≥ 0, where the vector v̄ is

nonzero. Then, we conclude as above: infy∈Y ⟨y, v̄⟩ ≥ supx∈X⟨x, v̄⟩.

In some cases, it is possible to ensure the existence of a strict separating hyperplane. A sufficient condition

is given in the following theorem:

Theorem 17 (Strict separating hyperplane). Let X,Y be two disjoint, nonempty, closed convex sets of

Rn. If X or Y is compact, then there exist a scalar c a vector v ∈ Rn, v ̸= 0, such that

∀x ∈ X, ⟨x,v⟩ < c and ∀y ∈ Y, ⟨y,v⟩ > c.

In other words, the hyperplane {x : ⟨x,v⟩ = c} strictly separates X and Y .

Proof. Assume that X is closed and Y is compact. Then, it can be seen that the Minkowski sum S = Y + (−X) is

closed (but not necessarily compact). We know from the previous proof that S has a vector v of minimal norm and

does not contain {0}, so v ̸= 0. (Contrarily to the previous proof, we do not need to take the closure of S, since S is

already closed.)

Following the same line of reasoning as in the previous proof, we now obtain:

∀x ∈ X, ∀y ∈ Y, ⟨y,v⟩ > ⟨x,v⟩+ ∥v∥2.

Finally, set c = supx∈X⟨x,v⟩+ 1
2
∥v∥2, so it holds

sup
x∈X

⟨x,v⟩ < c < inf
y∈Y

⟨y,v⟩.

As an exercise, you can try to find a counterexample showing that we can not get rid off the compactness

assumption of either X or Y .

We can specialize the separation theorem for the case in which one of the two sets is a cone: In this case,

the constant c can be taken equal to 0:

Theorem 18 (Separating hyperplane theorem for a cone). Let C ⊆ Rn be a nonempty convex cone, and

Y ⊆ Rn be a nonempty convex set which does not intersect C. Then, there exists a vector v ∈ Rn \ {0}
such that

∀x ∈ C, ⟨x,v⟩ ≤ 0 and ∀y ∈ Y, ⟨y,v⟩ ≥ 0.

In other words, the hyperplane {x : ⟨x,v⟩ = 0} separates separates C and Y . If in addition, the cone C

is closed and the set Y is compact, then there is a strict separating hyperplane:

∀x ∈ C, ⟨x,v⟩ ≤ 0 and ∀y ∈ Y, ⟨y,v⟩ > 0.
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We leave the proof of this result as an exercise. Note that we often encounter the last theorem for the

case where Y = {y} is a singleton: If C ⊆ Rn is a closed convex cone and y ∈ Rn, y /∈ C, then

∃v ∈ Rn \ {0} : ∀x ∈ C, xTv ≤ 0 and yTv > 0.

Applying the above result to the cone C = {Ax : x ⪰K 0} for a proper cone K and a singleton Y = {b},
we obtain the conic version of the Farkas lemma:

Lemma 19 (Farkas Lemma). Let K be a proper cone (or any cone such that C = {Ax : x ⪰K 0} is

closed). Then, exactly one of the following alternatices is true:

1. ∃x ⪰ 0 : Ax = b;

2. ∃y : bTy < 0 and ATy ⪰K∗ 0.

Proof. We prove the equivalence ( not(1.) ⇐⇒ 2.). We have b /∈ C if and only if there exists a strict separating

hyperplane between C and {b}: ∃y ∈ Rn \ {0} : ∀x ⪰K 0, yTAx ≥ 0 and bTy < 0. The condition ∀x ⪰K 0,

yTAx = ⟨x, ATy⟩ ≥ 0 is equivalent to ATy ⪰K∗ 0.

Let us now define the notion of supporting hyperplane:

Definition 8 (Supporting hyperplane). Let S ⊆ Rn be nonempty, a ∈ Rn \ {0} and b ∈ R. We say

that H = {x : aTx = b} is a supporting hyperplane of S if

• S is contained in one of the two halfspaces defined by H, i.e, ∀x ∈ S,aTx − b ≤ 0 or ∀x ∈
S,aTx− b ≥ 0.

• S has at least one boundary point on the hyperplane, i.e., H ∩ ∂S ̸= ∅, where ∂S := clS \ intS
is the boundary of S.

The supporting hyperplane theorem is an important consequence of the separating hyperplane theorem:

Theorem 20 (Supporting hyperplane theorem). Let S be a convex set and x0 be a boundary point of S.

Then, S has a supporting hyperplane at x0, that is,

∃a ∈ Rn \ {0} : ∀x ∈ S, aTx ≤ aTx0.

Conversely, if S is closed , has nonempty interior, and has (at least) one supporting hyperplane in each

of its boundary points, then S is convex.

Proof. If S has a nonempty interior, then the supporting hyperplane at x0 is found by applying the separating

hyperplane theorem between the sets intS and {x0}. Otherwise, S is contained in some affine space A of dimension

less than n, so in particular S is contained in some hyperplane, which is a (trivial) supporting hyperplane at x0.

We leave the proof of the (partial) converse statement as an exercise.

8 Extreme points, extreme rays, and Minkowski theorems

Definition 9 (Face). Let S ⊆ Rn be a convex set. We say that F is a face of S if F is convex, and, for

any x ∈ F , if x = λa+ (1− λ)b, where a, b ∈ S and λ ∈ (0, 1), (i.e., x is a convex combination of two

points a and b in S ), then a, b ∈ F .
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Definition 10 (Extreme point). Let S ⊆ Rn be a convex set. The point x is an extreme point of S if

{x} is a face of S, that is, extreme points are faces of dimension 0:

x is an extreme point of S ⇐⇒
(
∃a, b ∈ S, λ ∈ (0, 1) : x = λa+ (1− λ)b =⇒ a = b = x

)
.

The Minkowski theorem tells us that any point in a compact convex set can be written as a convex combi-

nation of its extreme points. We do not prove this result, but we mention it can be proved by induction on

the dimension of S.

Theorem 21 (Minkowski theorem). Let S be a compact convex set of Rn. Denote by ext(S) the set of

extreme points of S. Then, S = conv
(
ext(S)

)
.

There is another, dual characterization of convex sets, which relies on the notion of supporting hyper-

planes: Every convex set is the intersection of all halfspaces that contain it.

Theorem 22. Let S be a closed convex set of Rn. Then,

S =
⋂

H halfspace
H⊇S

H.

Proof. Let T denote the set in the right hand side of the statement. The inclusion S ⊆ T is trivial. For the converse

inclusion, we show x /∈ S =⇒ x /∈ T . If x /∈ S, then we know that there exists a strict separating hyperplane

between {x} and S:

∃a ∈ Rn \ {0}, ∃b ∈ R : aTx < b and ∀y ∈ S,aTy > b.

This shows that x is not included in the halfspace H := {y : aTy > b}, which contains S. Hence, x /∈ T .

Let us now define the notion of extreme rays of a cone, which play a similar role as extreme points for

bounded convex sets.

Definition 11 (Extreme ray). Let K be a convex cone. A set of the form R = {λx : λ ≥ 0}, where
x ∈ K \ {0}, is called an extreme ray if

(x = y + z, x ∈ R, y, z ∈ K) =⇒ y, z ∈ R.

The Minkowski theorem for closed, convex, pointed cones follow:

Theorem 23. Let K be a closed convex pointed cone in Rn. Then, K is the conic hull of its extreme

rays.

Proof. We must show that any x ∈ K can be written as a conic combination of extreme rays of K.

The interior of the dual cone K∗ is intK∗ = {y : xTy > 0, ∀x ∈ K \ {0} }. We know from Proposition 14

that since K is closed and pointed, K∗ has a nonempty interior. Let a ∈ intK∗, so K \ {0} is included in the open

halfspace {x : aTx > 0}.
We claim that K∩{x : aTx = 1} is bounded, hence compact. Otherwise, there is a sequence such that ∥xn∥ → ∞

and aTxn = 1 =⇒ aT xn
∥xn∥ → 0. Denote by v a limit point of the sequence xn

∥xn∥ , so aTv = 0. The points xn
∥xn∥ are
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in K, so since K is closed we have v ∈ K, and v ̸= 0 because it is a vector of unit norm. But v ∈ K \{0} contradicts

aTv = 0.

Now, C := K ∩ {x : aTx = 1} is a compact convex set, so we can apply the Minkowski theorem: if x ∈ C, then

x can be written as a convex combination of extreme points of C. It remains to show that each of these extreme

points are on extreme rays of K, and the result will follow. Let z ∈ C, and assume that z = u+ v for some vectors

u,v ∈ K. Then,

z = (aTu)︸ ︷︷ ︸
λ1

u

aTu︸ ︷︷ ︸
z1

+(aTv)︸ ︷︷ ︸
λ2

v

aTv︸ ︷︷ ︸
z2

.

It is easy to see that z1,z2 ∈ C. Moreover, λ1 + λ2 = aT (u+ v) = aTz = 1, so z is a convex combination of z1 and

z2. Since z is an extreme point of C, then we must have z1 = z2 = z, which implies that u and v lie on the ray

R = {λz : λ ≥ 0}, hence R is an extreme ray of K.
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