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Chapter III: Convex Functions

1 Convex functions

Definition 1. Let S ⊆ Rn. A function f : S → R is convex if

• dom f = S is convex;

• ∀x,y ∈ S, ∀α ∈ [0, 1], f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y).

Moreover, f is called strictly convex if the above inequality holds strictly for all x 6= y ∈ S, α ∈ (0, 1).

The function f is (strictly) concave if −f is (strictly) convex.

Note: If we define f(x) := +∞ whenever x /∈ dom f , then f is convex iff the inequality

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y) (1)

holds for all α ∈ [0, 1] and for all x,y ∈ Rn: The inequality trivially holds when one of x,y is outside

dom f , and the fact that the inequality holds for all x,y ∈ dom f implies the convexity of dom f . Hence,

we can always assume that f takes values in R∪ {∞}, and that dom f = {x : f(x) <∞}. (Or, in problems

involving concavity, that f takes values in R ∪ {−∞}, with dom f = {x : f(x) > −∞}.)

The next result shows that a function is convex iff its restriction to any line is convex. This can be very

useful when we want to prove that a function is convex, since it reduces to show that some functions of one

variable are convex.

Proposition 1. Let f : dom f → R be a function with dom f ⊆ Rn. Then, f is convex if and only if

its restriction to any line is convex. More precisely, if for all x0 ∈ dom f,u ∈ Rn, the function

g : t 7→ f(x0 + tu)

is convex over dom g := {t ∈ R : x0 + tu ∈ dom f}.

Proof. If f is convex, then dom f is convex, so we can see that dom g is an interval (i.e., a convex subset of

R), and the convexity inequality trivially holds for g. Conversely, assume that g is convex for any x0 ∈ Rn and

u ∈ Rn. Let x,y ∈ dom f and α ∈ [0, 1]. We can set x0 = x,u = y − x, so that g(0) = f(x), g(1) = f(y), and

x0 + αu = (1 − α)x + αy. The convexity of dom g shows that g is well defined over the whole interval [0, 1], so

(1− α)x + αy ∈ dom f ; this already shows that dom f is convex. Moreover, we have g(α) = g((1− α) · 0 + α · 1) ≤
(1− α)g(0) + αg(1), which shows that the inequality (1) holds.
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Definition 2. The α−sublevel set of a real-valued function f is

Cα(f) = {x ∈ dom f : f(x) ≤ α}.

The α−superlevel set of a real-valued function f is

Cα(f) = {x ∈ dom f : f(x) ≥ α}.

The epigraph of a function f : dom f → R, with dom f ⊆ Rn, is the set

epi f = {(x, t) ∈ Rn × R : f(x) ≤ t} ⊆ Rn+1.

The hypograph of a function f : dom f → R, with dom f ⊆ Rn, is the set

hypo f = {(x, t) ∈ Rn × R : f(x) ≥ t} ⊆ Rn+1.

The following proposition relates the convexity of f to the convexity of its sublevel sets and epigraph.

Proposition 2. If f is convex (concave), then its α-sublevel sets (superlevel sets) are convex.

The function f is convex (concave) iff its epigraph (hypograph) is convex.

Example:

The converse of the first implication in Proposition 2 is not true. Indeed, consider the function of one variable

f(x) = 1 − e−x2

. Each sublevel set of this function is an interval, hence convex, but the function f is not

convex.

Another example is the function of two variables f(x, y) = xy over dom f := R2
+. The superlevel sets of f

are of the form Cα(f) = cl {x, y > 0 : y ≥ α/x}, which are convex sets, although f is not jointly concave in

x and y: Indeed, f(x, x) = x2, so f is not concave on the line y = x.

Remark: A function whose all sublevel (superlevel) sets are convex is called quasi-convex (quasi-concave).

#1

2 Jensen’s inequality

It is possible to extend the convexity inequality (1) to convex combinations of more than two points, or even

to an infinite number of points (integrals). The proof works by induction:

Theorem 3. Jensen’s inequality Let f be convex and x1,x2, . . . ,xn ∈ dom f . Then, for all λ ∈ Rn+ with

1Tλ = 1,

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).

More generally, let X be an integrable random variable with support in dom f , i.e., P[X ∈ dom f ] = 1.

Then,

f(E[X]) ≤ E[f(X)].
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3 First and second order convexity conditions

Theorem 4 (First order conditions). Let f be differentiable at all points of its domain (in particular,

this implies that dom f is open), and assume that dom f ⊆ Rn is convex. Then, f is convex iff

∀x,y ∈ dom f, f(y) ≥ f(x) +∇f(x)T (y − x).

This theorem is important because it shows that when f is convex, we can obtain bounds on f(y) by using

only “the local information available at x” (the value of f and its gradient).

Theorem 5 (Second order conditions). Let f be twice differentiable at all points of its domain (in

particular, this implies that dom f is open), and assume that dom f ⊆ Rn is convex. Then, f is convex

iff the matrix ∇2f(x) is positive semidefinite, for all x ∈ dom f .

If ∇2f(x) � 0 (that is, the matrix ∇2f(x) is positive definite) for all points x of its domain, then f

is strictly convex, but the converse is not necessarily true.

We skip the proofs of the theorems of this section. One possibility is to prove them for functions of a

single variable first, and then the general result follows by applying Proposition 1. For a counter-example

showing that strictly convex functions do not necessarily satisfy ∇2f(x) � 0, consider the strictly convex

function f : x 7→ x4, whose second derivative is f ′′(x) = 12x2 and vanishes at x = 0.

4 Examples of convex functions

• Every affine function is both convex and concave;

• x 7→ eax is convex on R, for all a ∈ R;

• x 7→ xa is convex on R+, for all a ≥ 1; concave on R+ for all a ∈ (0, 1]; convex on R++ for all a ≤ 0.

• x 7→ log(x) is concave over R++.

• x 7→ x log(x) is convex over R+ (with 0 log 0 := 0).

• x 7→ ‖x‖ is convex over Rn (for ANY norm !); The squared norm x 7→ ‖x‖2 is also convex;

• x 7→ max(x1, . . . , xn) is convex over Rn;

• The log-sum-exp function x 7→ log (ex1 + . . .+ exn) is convex over Rn. (This function is often used as
a smooth approximation of the above max−function);

• The quadratic function x 7→ xTQx+aTx+b is convex over Rn if and only if Q is positive semidefinite;

• The geometric mean x 7→ (
∏n
i=1 xi)

1/n
is concave over Rn+.

• The log-det function X 7→ log detX is concave over Sn++.

It is easy to show the convexity (concavity) of the functions of one variable in the example. For all other
functions, we will prove their convexity or concavity later in this course. For now we only show the concavity
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of the logdet function. By restriction to lines, it suffices to show that the function g : t 7→ log det(Z + tV ) is
concave for any Z � 0 and any V ∈ Sn. We have:

g(t) = log det(Z + tV ) = log det
(
Z1/2(I + tZ−1/2V Z−1/2)Z1/2

)
= log detZ + log det(I + tZ−1/2V Z−1/2)

= log detZ +

n∑
i=1

log(1 + tλi).

Then, we take the second derivative of g: g′′(t) = −
∑
i

λ2
i

(1+tλi)2
≤ 0, so g is concave.

5 Operations that preserve convexity

We have learned some kind of systematic way to establish the convexity of a function f : prove that its
Hessian matrix ∇2f is positive semidefinite. In the practice however, this is often not the easiest way to
proceed. Instead, we can show that f can be obtained by combining some blocks that are already known to
be convex (or concave).

• Nonnegative scaling : if f is convex, then αf is convex for all α ≥ 0;

• Sum: if f1 and f2 are convex, then f1 + f2 is convex ;

• Composition with affine maping : if f is convex, then x 7→ f(Ax+ b) is convex;

• Pointwise maximum: if f1, . . . , fn are convex, then

x 7→ max(f1(x), . . . , fn(x))

is convex over dom f =
⋂n
i=1 dom fi. This extends to infinite supremums: let f : X × Y → R, and

assume that x 7→ f(x,y) is convex over X, for all y ∈ Y . Then,

x 7→ sup
y∈Y

f(x,y)

is convex (over its natural domain, which consists of all x’s such that the supremum is <∞).

• Minimization: if f : Rn+m → R is convex on dom f (i.e., f(x,y) is jointly convex in x ∈ Rn and
y ∈ Rm). Then,

g : x 7→ inf
y∈Rm

f(x,y)

is convex over its natural domain, dom g = {x ∈ Rn| ∃y ∈ Rm : (x,y) ∈ dom f};

• Perspective of a function: If f : Rn → R is convex, then

g : (x, t) 7→ t f
(x
t

)
is convex over dom g = dom f × R++ (Note that g is a function of n+ 1 variables);

• Composition rules: Let h : Rk → R, g : Rn → Rk, and define f = h ◦ g.

(i) If h is convex, h is nondecreasing in each argument, and gi is convex (∀i ∈ [k]), then f is convex.

(ii) If h is convex, h is nonincreasing in each argument, and gi is concave (∀i ∈ [k]), then f is convex.

(iii) If h is concave, h is nondecreasing in each argument, and gi is concave (∀i ∈ [k]), then f is concave.

(iv) If h is concave, h is nonincreasing in each argument, and gi is convex (∀i ∈ [k]), then f is concave.
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To recall these rules, we can simply study the case when k = n = 1 and h, g are twice differentiable:

f ′(x) = g′(x)h′(g(x));

f ′′(x) = g′′(x)h′(g(x)) + g′(x)2h′′(g(x)).

Then, the case (i) follows from g′′ ≥ 0, h′ ≥ 0, h′′ ≥ 0 =⇒ f ′′ ≥ 0.

Example:

• f(x) = −
∑m
i=1 log(bi − aTi x) is convex over the polyhedron dom f := {x : Ax ≤ b}, where A =

[a1, . . . ,am]T ∈ Rm×n and b ∈ Rm. Indeed, − log is convex, so x 7→ − log(bi − aTi x) is convex
(composition with affine mapping), and finally f is a sum of convex functions, hence it is convex.

• f(X) = λmax(X) is convex over Sn. Indeed, we have the variational characterization

λmax(X) = sup
‖v‖=1

vTXv,

which is a pointwise supremum of linear functions of the form X 7→ 〈X,vvT 〉;

• f : (x, t) 7→ ‖x‖2
t is convex over Rn+1, because this is the perspective of the squared norm function:

f(x, t) = t‖x
t
‖2.

• The function g : x 7→ dist(x, S) := infy∈S ‖x−y‖ is convex if S is convex. To see this, we first observe
that (x,y) 7→ ‖x − y‖ is jointly convex in x and y, since it is the composition of the norm with the
affine map (x,y) 7→ x− y. Then, we can apply the minimization rule to the extended-value function

f : (x,y) 7→
{
‖x− y‖ if y ∈ S;
+∞ otherwise,

which is convex if S is convex (or equivalently, we can redefine f as its restriction to dom f = Rn×S,
and we observe that S convex =⇒ dom f convex).

#2

6 Conjugate function

Definition 3. Let f : Rn → R. The conjugate function of f , also known as Fenchel conjugate, is

f∗ : y 7→ sup
x∈dom f

〈y,x〉 − f(x).

f∗ is implicitly defined with values in R ∪ {∞}, so we have dom f∗ := {y ∈ Rn : f∗(y) <∞}.

The next proposition gives a few properties of conjugate functions:

Proposition 6. Let f : Rn → R. Then,

• f∗ is convex ( even if f is not).

• If f is convex and the epigraph of f is closed, then f = f∗∗.

• Fenchel-Young inequality: ∀x,y ∈ Rn, 〈x,y〉 ≤ f(x) + f∗(y)

• If f is differentiable, and x∗ solves the equation y = ∇f(x∗), then f∗(y) = x∗T∇f(x∗)− f(x∗).
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We finish this section with a few examples of conjugate functions:

Example:

• Let f(x) = aTx+ b be an affine function. The function 〈y,x〉 − f(x) = 〈y − a,x〉 − b is unbounded
over Rn, unless y = a. Hence,

dom f∗ = {a}, with f∗(a) = −b.

• Let f be the strictly quadratic function x 7→ 1
2x

TQx, where Q � 0 (Q is positive definite). Then,
x 7→ xTy − 1

2x
TQx is minimized over x ∈ Rn for x = Q−1y (∀y ∈ Rn). Hence,

f∗(y) =
1

2
yTQ−1y.

#3
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