Chapter IV: Convex Optimization Problems

1 Basic definitions

Consider the optimization problem

$$
\begin{array}{cl}
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} & f_{0}(\boldsymbol{x}) \tag{P}\\
\text { s.t. } & f_{i}(\boldsymbol{x}) \leq 0 \quad(\forall i \in[m]) .
\end{array}
$$

- The function f_{0} is called the objective function.
- The inequalities $f_{i}(\boldsymbol{x}) \leq 0$ (for $i \geq 1$) are called constraints.
- A vector $\boldsymbol{x} \in \mathbb{R}^{n}$ is called feasible, or a feasible solution, if it satisfies all the constraints, i.e.,

$$
f_{i}(\boldsymbol{x}) \leq 0 \quad(\forall i \in[m])
$$

- The set $\mathcal{F}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f_{1}(\boldsymbol{x}) \leq 0, \ldots, f_{m}(\boldsymbol{x}) \leq 0\right\}$ of all feasible solutions is called the feasible set.
- The value $p^{*}=\inf \left\{f_{0}(\boldsymbol{x}) \mid \boldsymbol{x} \in \mathcal{F}\right\} \in \mathbb{R} \cup\{-\infty,+\infty\}$ is the optimal value of the problem.
- $p^{*}=+\infty$ iff the feasible set \mathcal{F} is empty; then we say that Problem (P) is infeasible.
- $p^{*}=-\infty$ iff there is a sequence $\boldsymbol{x}_{i} \in \mathcal{F}$ with $f_{0}\left(\boldsymbol{x}_{i}\right) \rightarrow-\infty$; in this case, (P) is unbounded from below.
- When f_{0} is a constant function, the problem asks to find any feasible vector $\boldsymbol{x} \in \mathcal{F}$. In this case (P) is a feasibility problem.
- If $\boldsymbol{x}^{*} \in \mathcal{F}$ satisfies $f_{0}\left(\boldsymbol{x}^{*}\right)=p^{*}$, we say that \boldsymbol{x}^{*} is an optimal solution of the problem, or that \boldsymbol{x}^{*} solves (P). Sometimes, we'll say that \boldsymbol{x}^{*} is a global optimum, to stress the difference with local optima (cf. definition below). The set of of all optimal solutions of (P) is called the optimal set.
- The vector \boldsymbol{x} is called ϵ-suboptimal if it is feasible and $f_{0}(\boldsymbol{x}) \leq p^{*}+\epsilon$. The set of all ϵ-suboptimal solutions is called the ϵ-suboptimal set.

Remark: The constraints are understood in the sense of extended values of the functions, i.e., $\boldsymbol{x} \notin \operatorname{dom} f_{i} \Longrightarrow f_{i}(\boldsymbol{x})=\infty$. Hence,

$$
\mathcal{F} \subseteq \bigcap_{i=0}^{m} \operatorname{dom} f_{i}
$$

Definition 1 (local optimum). The vector \boldsymbol{x} is called a local optimum for Problem (P) if it solves the problem

$$
\begin{array}{cl}
\underset{\boldsymbol{z} \in \mathbb{R}^{n}}{\operatorname{minimize}} & f_{0}(\boldsymbol{z}) \tag{R}\\
\text { s.t. } & f_{i}(\boldsymbol{z}) \leq 0 \quad(\forall i \in[m]) ; \\
& \|\boldsymbol{z}-\boldsymbol{x}\| \leq R
\end{array}
$$

for some $R>0$. In other words, there is a neighbourhood of \boldsymbol{x} in \mathcal{F} in which f_{0} is minimized at \boldsymbol{x}.
The next proposition characterizes the local optima that occur in the interior of the feasible region:

Proposition 1 (Differential characterization of local optima). Assume the objective function f_{0} is twice differentiable, and let $\boldsymbol{x} \in \operatorname{int} \mathcal{F}$. Then, the following holds:

- If $\nabla f_{0}(\boldsymbol{x})=\mathbf{0}$ and $\nabla^{2} f_{0}(\boldsymbol{x}) \succ 0$, then \boldsymbol{x} is a local optimum.
- Conversely, if \boldsymbol{x} is a local optimum, then $\nabla f_{0}(\boldsymbol{x})=\mathbf{0}$ and $\nabla^{2} f_{0}(\boldsymbol{x}) \succeq 0$.

Note that the converse statement is a bit weaker (\succeq instead of \succ). The following examples show that we cannot strengthen the above result:

- Consider $f(x)=x^{3}$ over \mathbb{R}. Then, $\nabla^{2} f(0) \succeq 0$ (we have $f^{\prime \prime}(0)=0$), but x is not a local optimum.
- Consider $f(x)=x^{4}$ over \mathbb{R}. Then, $x=0$ is a local (and even, global) optimum, but $\nabla^{2} f(0)=f^{\prime \prime}(0)=0$;

Let us now prove this proposition.
Proof. For the first statement, we use the Taylor expansion of f_{0}. For all $\boldsymbol{h} \in \mathbb{R}^{n}$ with $\|\boldsymbol{h}\|=1$,

$$
f_{0}(\boldsymbol{x}+\epsilon \boldsymbol{h})=f_{0}(\boldsymbol{x})+\epsilon \nabla f_{0}(\boldsymbol{x})^{T} \boldsymbol{h}+\frac{\epsilon^{2}}{2} \boldsymbol{h}^{T} \nabla^{2} f_{0}(\boldsymbol{x}) \boldsymbol{h}+o\left(\epsilon^{2}\right) .
$$

(For those not familiar with the "little-o" notation, you can replace the o $o \epsilon^{2}$) by $\epsilon^{2} \eta(\epsilon)$, where η is a function converging to 0 as $\epsilon \rightarrow 0$). Now, we use $\nabla f_{0}(\boldsymbol{x})=\mathbf{0}$ and $\nabla^{2} f_{0}(\boldsymbol{x}) \succ 0$, which gives

$$
f_{0}(\boldsymbol{x}+\epsilon \boldsymbol{h})-f_{0}(\boldsymbol{x})=\epsilon^{2}(\frac{1}{2} \underbrace{\boldsymbol{h}^{T} \nabla^{2} f_{0}(\boldsymbol{x}) \boldsymbol{h}}_{>0}+\underbrace{o(1)}_{=\eta(\epsilon) \rightarrow 0}) .
$$

So, for all \boldsymbol{h}, there exists $\epsilon(\boldsymbol{h})>0$ such that $f_{0}(\boldsymbol{x}) \leq f_{0}(\boldsymbol{x}+t \boldsymbol{h})$, for all $0 \leq t \leq \epsilon(\boldsymbol{h})$. Finally, setting $R>0$ to the minimum value of $\epsilon(\boldsymbol{h})$ over the unit sphere shows that \boldsymbol{x} is a local minimum.

For the converse statement, let $\boldsymbol{h} \in \mathbb{R}^{n}$, and consider the restriction to a line:

$$
g: t \mapsto f_{0}(\boldsymbol{x}+t \boldsymbol{h})
$$

so that $g^{\prime}(0)=\nabla f_{0}(\boldsymbol{x})^{T} \boldsymbol{h}$ and $g^{\prime \prime}(0)=\boldsymbol{h}^{T} \nabla^{2} f_{0}(\boldsymbol{x}) \boldsymbol{h}$. Since \boldsymbol{x} is a local minimum, $g(t) \geq g(0)$ for $t>0$ small enough, hence $g^{\prime}(0)=\lim _{t \rightarrow 0^{+}} \frac{g(t)-g(0)}{t} \geq 0$. Similarly, $g(t) \geq g(0)$ for $t<0$ with $|t|$ small enough, hence $g^{\prime}(0)=$ $\lim _{t \rightarrow 0^{-}} \frac{g(t)-g(0)}{t} \leq 0$. So, the equality $g^{\prime}(0)=\nabla f_{0}(\boldsymbol{x})^{T} \boldsymbol{h}=0$ must hold for all $\boldsymbol{h} \in \mathbb{R}^{n}$, which implies $\nabla f_{0}(\boldsymbol{x})=\mathbf{0}$.

Then, we note that both $g(t) \geq g(0)$ and $g(-t) \geq g(0)$ for small enough $|t|$, which implies that $g(t)+g(-t)-2 g(0) \geq$ 0 for small enough $|t|$. Hence, $\boldsymbol{h}^{T} \nabla^{2} f_{0}(\boldsymbol{x}) \boldsymbol{h}=g^{\prime \prime}(0)=\lim _{t \rightarrow 0} \frac{g(t)+g(-t)-2 g(0)}{t^{2}} \geq 0$ for all $\boldsymbol{h} \in \mathbb{R}^{n}$, which corresponds to the definition of $\nabla^{2} f_{0}(\boldsymbol{x}) \succeq 0$.

It is possible to include an equality constraint in a problem of the form (P), by considering two reversed inequalities $f(\boldsymbol{x}) \leq 0$ and $-f(\boldsymbol{x}) \leq 0$. If all the functions f_{0}, \ldots, f_{m} are convex, then we say that (P) is a convex optimization problem. If there is an equality constraint $f_{i}(\boldsymbol{x})=0$ in a convex optimization problem, then f_{i} must be both concave and convex, hence f_{i} is affine. Therefore, it is often convenient to write the equality constraints separately in a convex optimization problem:

$$
\begin{array}{cl}
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} & f_{0}(\boldsymbol{x}) \tag{Eq}\\
\text { s.t. } & f_{i}(\boldsymbol{x}) \leq 0 \quad(\forall i \in[m]) ; \\
& A \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

Remark: The above definitions can be extended in the obvious manner for maximization problems (since maximizing $f_{0}(\boldsymbol{x})$ is the same as minimizing $\left.-f_{0}(\boldsymbol{x})\right)$. Hence, the problem "maximize $\boldsymbol{x} \in \mathcal{F} f_{0}(\boldsymbol{x})$ " is called convex if f_{0} is concave and the $f_{i}^{\prime} s$ are convex $(\forall i \geq 1)$.

The next result states an essential property of convex optimization problems, which contributes to make them efficiently solvable:

Theorem 2. Let (P) be a convex optimization problem. Then, any local optimum \boldsymbol{x}^{*} is also a global optimum.

Proof. Let \boldsymbol{x}^{*} be a local optimum. Then, there exist a $R>0$ such that

$$
\boldsymbol{z} \in \mathcal{F},\left\|\boldsymbol{z}-\boldsymbol{x}^{*}\right\| \leq R \Longrightarrow f_{0}(\boldsymbol{z}) \geq f_{0}\left(\boldsymbol{x}^{*}\right)
$$

Now, we assume (by contradiction) that \boldsymbol{x}^{*} is not globally optimal, i.e., there exists an $\boldsymbol{y} \in \mathcal{F}$ such that $f_{0}(\boldsymbol{y})<f_{0}\left(\boldsymbol{x}^{*}\right)$. Let $\boldsymbol{z}=\theta \boldsymbol{y}+(1-\theta) \boldsymbol{x}^{*}$, where $\theta=\frac{R}{2\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|}$ is chosen so that $\left\|\boldsymbol{z}-\boldsymbol{x}^{*}\right\|=\frac{R}{2}$. We have $\boldsymbol{z} \in \mathcal{F}$ by convexity of \mathcal{F}; it then follows that $f_{0}(\boldsymbol{z}) \geq f_{0}\left(\boldsymbol{x}^{*}\right)$, but this contradicts the convexity inequality of f_{0} :

$$
f_{0}(\boldsymbol{z}) \leq \theta f_{0}(\boldsymbol{y})+(1-\theta) f_{0}\left(\boldsymbol{x}^{*}\right)<f_{0}\left(\boldsymbol{x}^{*}\right)
$$

2 Problem reformulations

In this section, we review a few techniques useful to reformulate a problem to another equivalent problem. Sometimes, this is necessary, because the new problem will have better properties (e.g. solution can be characterized more easily, or it can be solved more efficiently). This, of course, would require a proper definition of what it means for two problems to be equivalent. While this can be stated in a more rigorous manner, we'll just say that Problems P_{1} and P_{2} are equivalent if an optimal solution of P_{1} can be transformed to an optimal solution of P_{2}, and vice versa. This will become clear with the following examples. We use the (nonstandard) notation $P_{1} \dot{\sim} P_{2}$ to say that P_{1} and P_{2} are equivalent.
(a) Eliminating (or adding) equality constraints: When a problem contains equality constraints " $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ ", we can remove these constraints by using a simple change of variables. Indeed, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ means that \boldsymbol{x} belongs to some affine set L, and we know that L admits an alternative representation of the form $L=\left\{C \boldsymbol{z}+\boldsymbol{d}: \boldsymbol{z} \in \mathbb{R}^{r}\right\}$. (To obtain such a representation, take for \boldsymbol{d} a particular solution ${ }^{1}$ of the equation $A \boldsymbol{x}=\boldsymbol{b}$, and let $C \in \mathbb{R}^{n \times r}$ be a matrix whose columns form a basis of Ker A.) Then, with the change of variables $\boldsymbol{x}=\boldsymbol{C} \boldsymbol{z}+\boldsymbol{d}$, Problem $\left(\mathrm{P}_{\mathrm{Eq}}\right)$ can be seen to be equivalent to

$$
\begin{aligned}
\underset{\boldsymbol{z} \in \mathbb{R}^{r}}{\operatorname{minimize}} & f_{0}(C \boldsymbol{z}+\boldsymbol{d}) \\
\text { s.t. } & f_{i}(C \boldsymbol{z}+\boldsymbol{d}) \leq 0 \quad(\forall i \in[m]) ;
\end{aligned}
$$

If (P_{Eq}) is convex, then the new problem is convex, too (composition with an affine mapping). An optimal solution \boldsymbol{z}^{*} of the above problem readily gives an optimal solution $\boldsymbol{x}^{*}=C \boldsymbol{z}^{*}+\boldsymbol{d}$ of $\left(\mathrm{P}_{\mathrm{Eq}}\right)$, and conversely, an optimal solution \boldsymbol{x}^{*} can be transformed to an optimal \boldsymbol{z}^{*} by solving the equation $C \boldsymbol{z}^{*}=\boldsymbol{x}^{*}-\boldsymbol{d}$ for \boldsymbol{z}^{*}.
(b) Slack variables One can replace linear inequalities by linear equalities by introducing a slack variable. Indeed,

$$
\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b \Longleftrightarrow \exists s \geq 0: \boldsymbol{a}_{i}^{T} \boldsymbol{x}+s=b
$$

[^0]This means that we obtain an equivalent problem when we replace the constraint " $\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b$ " by the system of two constraints " $\boldsymbol{a}_{i}^{T} \boldsymbol{x}+s=b, s \geq 0$ ", which involves the new set of variables $(\boldsymbol{x}, s) \in \mathbb{R}^{n+1}$.
(c) Change of variables: If $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-to-one, and every feasible \boldsymbol{x} can be written as $\boldsymbol{x}=\phi(\boldsymbol{z})$ for some \boldsymbol{z}, i.e. $\phi(\operatorname{dom} \phi) \supseteq \mathcal{F}$, then we can make the substitution $\boldsymbol{x}=\phi(\boldsymbol{z})$ to obtain an equivalent problem. That is, Problem (P) is equivalent to

$$
\begin{array}{cl}
\underset{\boldsymbol{z} \in \mathbb{R}^{n}}{\operatorname{minimize}} & f_{0}(\phi(\boldsymbol{z})) \\
\text { s.t. } & f_{i}(\phi(\boldsymbol{z})) \leq 0 \quad(\forall i \in[m]) .
\end{array}
$$

(d) Transformation of objective or constraints: If $\psi_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing and for all $i \in[m]$, $\psi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\psi_{i}(u) \leq 0 \Longleftrightarrow u \leq 0$, then Problem (P) is equivalent to

$$
\begin{aligned}
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} & \psi_{0}\left(f_{0}(\boldsymbol{x})\right) \\
\text { s.t. } & \psi_{i}\left(f_{i}(\boldsymbol{x})\right) \leq 0 \quad(\forall i \in[m]) .
\end{aligned}
$$

(e) Epigraph reformulation: It is always possible to assume that the objective function of a problem is linear. Indeed, Problem (P) is equivalent to

$$
\begin{array}{cl}
\underset{\boldsymbol{x} \in \mathbb{R}^{n}, t \in \mathbb{R}}{\operatorname{minimize}} & t \\
\text { s.t. } & f_{i}(\boldsymbol{x}) \leq 0 \quad(\forall i \in[m]) ; \\
& f_{0}(\boldsymbol{x}) \leq t .
\end{array}
$$

(f) Partial minimization: When the constraints of the problem involve different blocks of variables, it is possible to reduce the problem by solving it (partially) for some blocks of variables. For example, the following two problems are equivalent:

$$
\begin{array}{clccl}
\operatorname{minimimize}_{\boldsymbol{x}_{1} \in \mathbb{R}^{n_{1}}, \boldsymbol{x}_{2} \in \mathbb{R}^{n_{2}}} & f_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & \dot{\sim} & \operatorname{miniminize}_{\boldsymbol{x}_{1} \in \mathbb{R}^{n_{1}}} & \tilde{f}_{0}\left(\boldsymbol{x}_{1}\right) \\
\text { s.t. } & f_{i}\left(\boldsymbol{x}_{1}\right) \leq 0 \quad\left(\forall i \in\left[m_{1}\right]\right) & & \text { s.t. } & f_{i}\left(\boldsymbol{x}_{1}\right) \leq 0 \quad\left(\forall i \in\left[m_{1}\right]\right), \\
& g_{j}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \leq 0 \quad\left(\forall j \in\left[m_{2}\right]\right) & & &
\end{array}
$$

where we have defined $\tilde{f}_{0}\left(\boldsymbol{x}_{1}\right):=\inf \left\{f_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \mid \boldsymbol{x}_{2} \in \mathbb{R}^{n_{2}}, g_{j}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \leq 0 \forall j \in\left[m_{2}\right]\right\}$.

3 First order optimality conditions

When the objective function f_{0} is differentiable and Problem (P) is convex, we can derive a simple optimality condition, which depends only on ∇f_{0} and the feasibility set $\mathcal{F}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f_{1}(\boldsymbol{x}) \leq 0, \ldots, f_{m}(\boldsymbol{x}) \leq 0\right\}$.

Theorem 3. Let f_{0} be differentiable. Then, a vector \boldsymbol{x}^{*} is optimal for the convex problem (P) if and only if \boldsymbol{x}^{*} is feasible (i.e., $\boldsymbol{x}^{*} \in \mathcal{F}$), and

$$
\forall \boldsymbol{y} \in \mathcal{F}, \quad \nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T}\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right) \geq 0
$$

Proof. $\Longleftarrow:$ We use the first order condition of convexity for f_{0} :

$$
\forall \boldsymbol{y} \in \mathcal{F}, f_{0}(\boldsymbol{y}) \geq f_{0}\left(\boldsymbol{x}^{*}\right)+\underbrace{\nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T}\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right)}_{\geq 0} \geq f_{0}\left(\boldsymbol{x}^{*}\right) .
$$

Hence, \boldsymbol{x}^{*} is optimal.
$\Longrightarrow:$ We will prove the contrapositive statement. Assume there exists $\boldsymbol{y} \in \mathcal{F}$ such that $\nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T}\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right)<0$. We recognize that $\nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T}\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right)$ is the directional derivative of f_{0} is the direction of $\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right)$, that is,

$$
\nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T}\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right)=\left.\frac{d}{d t}\left(t \mapsto f_{0}\left(\boldsymbol{x}^{*}+t\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right)\right)\right)\right|_{t=0}=\lim _{t \rightarrow 0} \frac{f_{0}\left(\boldsymbol{x}^{*}+t\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right)\right)-f_{0}\left(\boldsymbol{x}^{*}\right)}{t}<0
$$

Hence, for $t>0$ small enough, we have $f_{0}\left(\boldsymbol{x}^{*}+t\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right)\right)<f\left(\boldsymbol{x}^{*}\right)$, and $\boldsymbol{x}^{*}+t\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right) \in \mathcal{F}$ by convexity of \mathcal{F}. This shows that \boldsymbol{x}^{*} is not optimal.

Remark: This theorem has a simple geometric interpretation. It says that \boldsymbol{x}^{*} is optimal if and only if $\nabla f_{0}\left(\boldsymbol{x}^{*}\right)=0$, or if $\nabla f_{0}\left(\boldsymbol{x}^{*}\right)$ defines a supporting hyperplane of \mathcal{F} at \boldsymbol{x}^{*}.

The theorem above already allows us to characterize optimal solutions in a number of simple situations. For example, when the problem is unconstrained (i.e., $\mathcal{F}=\mathbb{R}^{n}$), we get the well-known fact that \boldsymbol{x}^{*} is optimal iff it solves the equation $\nabla f_{0}\left(\boldsymbol{x}^{*}\right)=0$. The next result characterizes optimal solutions of a problem with equality constraints only

Proposition 4. Consider the optimization problem

$$
\begin{aligned}
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} & f_{0}(\boldsymbol{x}) \\
\text { s.t. } & A \boldsymbol{x}=\boldsymbol{b},
\end{aligned}
$$

where f_{0} is convex and differentiable. Then, \boldsymbol{x}^{*} is optimal iff $\nabla f_{0}\left(\boldsymbol{x}^{*}\right) \in \operatorname{Im} A^{T}$.

Proof. For any \boldsymbol{x}^{*} in the affine set $\mathcal{F}=\{\boldsymbol{x}: A \boldsymbol{x}=\boldsymbol{b}\}$, it holds $\left(\boldsymbol{y} \in \mathcal{F} \Longleftrightarrow \boldsymbol{y}-\boldsymbol{x}^{*} \in \operatorname{Ker} A\right)$. So, the first order optimality condition for \boldsymbol{x}^{*} is

$$
\forall \boldsymbol{y} \in \mathcal{F}, \nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T}\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right) \geq 0 \Longleftrightarrow \forall \boldsymbol{v} \in \operatorname{Ker} A, \nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{v} \geq 0
$$

A linear function which is nonnegative everywhere on a vector space is necessarily constant. So, since $\mathbf{0} \in \operatorname{Ker} A$, the optimality condition can be rewritten as $\forall \boldsymbol{v} \in \operatorname{Ker} A, \nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{v}=0$. This is equivalent to saying that $\nabla f_{0}\left(\boldsymbol{x}^{*}\right)$ is orthogonal to $\operatorname{Ker} A$, that is, $\nabla f_{0}\left(\boldsymbol{x}^{*}\right) \in \operatorname{Im} A^{T}$.

Another simple case, which occurs often in practice, is the case of optimization over the nonnegative orthant \mathbb{R}_{+}^{n}.

Proposition 5. Consider the optimization problem

$$
\begin{aligned}
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} & f_{0}(\boldsymbol{x}) \\
\text { s.t. } & \boldsymbol{x} \geq \mathbf{0},
\end{aligned}
$$

where f_{0} is convex and differentiable. Then, \boldsymbol{x}^{*} is optimal iff the following condition holds:

$$
\boldsymbol{x}^{*} \geq \mathbf{0}, \quad \nabla f_{0}\left(\boldsymbol{x}^{*}\right) \geq \mathbf{0}, \quad \text { and } \quad \forall i \in[n], \quad\left(x_{i}=0 \quad \text { or } \quad \frac{\partial f_{0}}{\partial x_{i}}\left(\boldsymbol{x}^{*}\right)=0\right)
$$

Proof. The first order condition for $\boldsymbol{x}^{*} \in \mathcal{F}$ reads

$$
\forall \boldsymbol{y} \geq 0, \nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T}\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right) \geq 0
$$

This already implies $\nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T} \geq 0$ (Otherwise, if $\frac{\partial f_{0}}{\partial x_{i}}\left(\boldsymbol{x}^{*}\right)<0$ for some i, the above condition would be violated when $y_{i} \rightarrow \infty$.) Now, for $\boldsymbol{y}=\mathbf{0}$, we obtain

$$
\nabla f_{0}\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{x}^{*}=\sum_{i} x_{i}^{*} \frac{\partial f_{0}}{\partial x_{i}}\left(\boldsymbol{x}^{*}\right) \leq 0
$$

Each term of this sum is the product of two nonnegative numbers, so it is nonnegative. It follows that the above inequality can only hold if for all $i \in[n], x_{i}^{*} \cdot \frac{\partial f_{0}}{\partial x_{i}}\left(\boldsymbol{x}^{*}\right)=0$. This yields the condition of the proposition.

Conversely, assume that the condition of the proposition holds, and let $\boldsymbol{y} \geq \mathbf{0}$. Then, for all i we have

$$
\frac{\partial f_{0}}{\partial x_{i}}\left(\boldsymbol{x}^{*}\right) \cdot\left(y_{i}-x_{i}^{*}\right) \geq 0
$$

because this expression is either the product of two nonnegative terms, or it is equal to 0 whenever $\frac{\partial f_{0}}{\partial x_{i}}\left(\boldsymbol{x}^{*}\right)=0$. Finally, summing over i yields the first order optimality condition for \boldsymbol{x}^{*}.

[^0]: ${ }^{1}$ For example, one solution is given by $\boldsymbol{d}=A^{\dagger} \boldsymbol{b}$, where A^{\dagger} is the Moore-Penrose pseudo inverse of A; when A has full column rank, $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$.

