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Chapter IV: Convex Optimization Problems

1 Basic definitions

Consider the optimization problem

minimize
x∈Rn

f0(x) (P)

s.t. fi(x) ≤ 0 (∀i ∈ [m]).

• The function f0 is called the objective function.

• The inequalities fi(x) ≤ 0 (for i ≥ 1) are called constraints.

• A vector x ∈ Rn is called feasible, or a feasible solution, if it satisfies all the constraints, i.e.,

fi(x) ≤ 0 (∀i ∈ [m]).

• The set F = {x ∈ Rn| f1(x) ≤ 0, . . . , fm(x) ≤ 0} of all feasible solutions is called the feasible set.

• The value p∗ = inf{f0(x)| x ∈ F} ∈ R ∪ {−∞,+∞} is the optimal value of the problem.

• p∗ = +∞ iff the feasible set F is empty; then we say that Problem (P) is infeasible.

• p∗ = −∞ iff there is a sequence xi ∈ F with f0(xi)→ −∞; in this case, (P) is unbounded from below.

• When f0 is a constant function, the problem asks to find any feasible vector x ∈ F . In this case (P)

is a feasibility problem.

• If x∗ ∈ F satisfies f0(x∗) = p∗, we say that x∗ is an optimal solution of the problem, or that x∗

solves (P). Sometimes, we’ll say that x∗ is a global optimum, to stress the difference with local optima

(cf. definition below). The set of of all optimal solutions of (P) is called the optimal set.

• The vector x is called ε-suboptimal if it is feasible and f0(x) ≤ p∗ + ε. The set of all ε-suboptimal

solutions is called the ε-suboptimal set.

Remark: The constraints are understood in the sense of extended values of the functions, i.e.,

x /∈ dom fi =⇒ fi(x) =∞. Hence,

F ⊆
m⋂
i=0

dom fi.

Definition 1 (local optimum). The vector x is called a local optimum for Problem (P) if it solves the

problem

minimize
z∈Rn

f0(z) (PR)

s.t. fi(z) ≤ 0 (∀i ∈ [m]);

‖z − x‖ ≤ R
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for some R > 0. In other words, there is a neighbourhood of x in F in which f0 is minimized at x.

The next proposition characterizes the local optima that occur in the interior of the feasible region:

Proposition 1 (Differential characterization of local optima). Assume the objective function f0 is twice

differentiable, and let x ∈ intF . Then, the following holds:

• If ∇f0(x) = 0 and ∇2f0(x) � 0, then x is a local optimum.

• Conversely, if x is a local optimum, then ∇f0(x) = 0 and ∇2f0(x) � 0.

Note that the converse statement is a bit weaker (� instead of �). The following examples show that we

cannot strengthen the above result:

• Consider f(x) = x3 over R. Then, ∇2f(0) � 0 (we have f ′′(0) = 0), but x is not a local optimum.

• Consider f(x) = x4 over R. Then, x = 0 is a local (and even, global) optimum, but∇2f(0) = f ′′(0) = 0;

Let us now prove this proposition.

Proof. For the first statement, we use the Taylor expansion of f0. For all h ∈ Rn with ‖h‖ = 1,

f0(x + εh) = f0(x) + ε∇f0(x)Th +
ε2

2
hT∇2f0(x)h + o(ε2).

(For those not familiar with the “little-o” notation, you can replace the o(ε2) by ε2η(ε), where η is a function converging

to 0 as ε→ 0). Now, we use ∇f0(x) = 0 and ∇2f0(x) � 0, which gives

f0(x + εh)− f0(x) = ε2

1

2
hT∇2f0(x)h︸ ︷︷ ︸

>0

+ o(1)︸︷︷︸
=η(ε)→0

 .

So, for all h, there exists ε(h) > 0 such that f0(x) ≤ f0(x + th), for all 0 ≤ t ≤ ε(h). Finally, setting R > 0 to the

minimum value of ε(h) over the unit sphere shows that x is a local minimum.

For the converse statement, let h ∈ Rn, and consider the restriction to a line:

g : t 7→ f0(x + th).

so that g′(0) = ∇f0(x)Th and g′′(0) = hT∇2f0(x)h. Since x is a local minimum, g(t) ≥ g(0) for t > 0 small

enough, hence g′(0) = limt→0+
g(t)−g(0)

t
≥ 0. Similarly, g(t) ≥ g(0) for t < 0 with |t| small enough, hence g′(0) =

limt→0−
g(t)−g(0)

t
≤ 0. So, the equality g′(0) = ∇f0(x)Th = 0 must hold for all h ∈ Rn, which implies ∇f0(x) = 0.

Then, we note that both g(t) ≥ g(0) and g(−t) ≥ g(0) for small enough |t|, which implies that g(t)+g(−t)−2g(0) ≥
0 for small enough |t|. Hence, hT∇2f0(x)h = g′′(0) = limt→0

g(t)+g(−t)−2g(0)

t2
≥ 0 for all h ∈ Rn, which corresponds

to the definition of ∇2f0(x) � 0.

It is possible to include an equality constraint in a problem of the form (P), by considering two reversed

inequalities f(x) ≤ 0 and −f(x) ≤ 0. If all the functions f0, . . . , fm are convex, then we say that (P) is a

convex optimization problem. If there is an equality constraint fi(x) = 0 in a convex optimization problem,

then fi must be both concave and convex, hence fi is affine. Therefore, it is often convenient to write the

equality constraints separately in a convex optimization problem:

minimize
x∈Rn

f0(x) (PEq)

s.t. fi(x) ≤ 0 (∀i ∈ [m]);

Ax = b.
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Remark: The above definitions can be extended in the obvious manner for maximization problems

(since maximizing f0(x) is the same as minimizing −f0(x)). Hence, the problem “maximizex∈Ff0(x)” is

called convex if f0 is concave and the f ′is are convex (∀i ≥ 1).

The next result states an essential property of convex optimization problems, which contributes to make

them efficiently solvable:

Theorem 2. Let (P) be a convex optimization problem. Then, any local optimum x∗ is also a global

optimum.

Proof. Let x∗ be a local optimum. Then, there exist a R > 0 such that

z ∈ F , ‖z − x∗‖ ≤ R =⇒ f0(z) ≥ f0(x∗).

Now, we assume (by contradiction) that x∗ is not globally optimal, i.e., there exists an y ∈ F such that f0(y) < f0(x∗).

Let z = θy + (1 − θ)x∗, where θ = R
2‖y−x∗‖ is chosen so that ‖z − x∗‖ = R

2
. We have z ∈ F by convexity of F ; it

then follows that f0(z) ≥ f0(x∗), but this contradicts the convexity inequality of f0:

f0(z) ≤ θf0(y) + (1− θ)f0(x∗) < f0(x∗).

2 Problem reformulations

In this section, we review a few techniques useful to reformulate a problem to another equivalent problem.

Sometimes, this is necessary, because the new problem will have better properties (e.g. solution can be

characterized more easily, or it can be solved more efficiently). This, of course, would require a proper

definition of what it means for two problems to be equivalent. While this can be stated in a more rigorous

manner, we’ll just say that Problems P1 and P2 are equivalent if an optimal solution of P1 can be transformed

to an optimal solution of P2, and vice versa. This will become clear with the following examples. We use

the (nonstandard) notation P1∼̇P2 to say that P1 and P2 are equivalent.

(a) Eliminating (or adding) equality constraints: When a problem contains equality constraints

“Ax = b”, we can remove these constraints by using a simple change of variables. Indeed, Ax = b

means that x belongs to some affine set L, and we know that L admits an alternative representation

of the form L = {Cz +d : z ∈ Rr}. (To obtain such a representation, take for d a particular solution1

of the equation Ax = b, and let C ∈ Rn×r be a matrix whose columns form a basis of KerA.) Then,

with the change of variables x = Cz + d, Problem (PEq) can be seen to be equivalent to

minimize
z∈Rr

f0(Cz + d)

s.t. fi(Cz + d) ≤ 0 (∀i ∈ [m]);

If (PEq) is convex, then the new problem is convex, too (composition with an affine mapping). An

optimal solution z∗ of the above problem readily gives an optimal solution x∗ = Cz∗ + d of (PEq),

and conversely, an optimal solution x∗ can be transformed to an optimal z∗ by solving the equation

Cz∗ = x∗ − d for z∗.

(b) Slack variables One can replace linear inequalities by linear equalities by introducing a slack variable.

Indeed,

aT
i x ≤ b ⇐⇒ ∃s ≥ 0 : aT

i x + s = b.

1For example, one solution is given by d = A†b, where A† is the Moore-Penrose pseudo inverse of A; when A has full column
rank, A† = (ATA)−1AT .
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This means that we obtain an equivalent problem when we replace the constraint “aT
i x ≤ b” by the

system of two constraints “aT
i x+ s = b, s ≥ 0”, which involves the new set of variables (x, s) ∈ Rn+1.

(c) Change of variables: If φ : Rn → Rn is one-to-one, and every feasible x can be written as x = φ(z)

for some z, i.e. φ(domφ) ⊇ F , then we can make the substitution x = φ(z) to obtain an equivalent

problem. That is, Problem (P) is equivalent to

minimize
z∈Rn

f0(φ(z))

s.t. fi(φ(z)) ≤ 0 (∀i ∈ [m]).

(d) Transformation of objective or constraints: If ψ0 : R→ R is strictly increasing and for all i ∈ [m],

ψi : R→ R satisfies ψi(u) ≤ 0 ⇐⇒ u ≤ 0, then Problem (P) is equivalent to

minimize
x∈Rn

ψ0(f0(x))

s.t. ψi(fi(x)) ≤ 0 (∀i ∈ [m]).

(e) Epigraph reformulation: It is always possible to assume that the objective function of a problem

is linear. Indeed, Problem (P) is equivalent to

minimize
x∈Rn,t∈R

t

s.t. fi(x) ≤ 0 (∀i ∈ [m]);

f0(x) ≤ t.

(f) Partial minimization: When the constraints of the problem involve different blocks of variables, it

is possible to reduce the problem by solving it (partially) for some blocks of variables. For example,

the following two problems are equivalent:

minimize
x1∈Rn1 ,x2∈Rn2

f0(x1,x2) ∼̇ minimize
x1∈Rn1

f̃0(x1)

s.t. fi(x1) ≤ 0 (∀i ∈ [m1]) s.t. fi(x1) ≤ 0 (∀i ∈ [m1]),

gj(x1,x2) ≤ 0 (∀j ∈ [m2])

where we have defined f̃0(x1) := inf
{
f0(x1,x2) | x2 ∈ Rn2 , gj(x1,x2) ≤ 0 ∀j ∈ [m2]

}
.

3 First order optimality conditions

When the objective function f0 is differentiable and Problem (P) is convex, we can derive a simple optimality

condition, which depends only on ∇f0 and the feasibility set F = {x ∈ Rn| f1(x) ≤ 0, . . . , fm(x) ≤ 0}.

Theorem 3. Let f0 be differentiable. Then, a vector x∗ is optimal for the convex problem (P) if and

only if x∗ is feasible (i.e., x∗ ∈ F), and

∀y ∈ F , ∇f0(x∗)T (y − x∗) ≥ 0.

Proof. ⇐= : We use the first order condition of convexity for f0:

∀y ∈ F , f0(y) ≥ f0(x∗) +∇f0(x∗)T (y − x∗)︸ ︷︷ ︸
≥0

≥ f0(x∗).
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Hence, x∗ is optimal.

=⇒ : We will prove the contrapositive statement. Assume there exists y ∈ F such that ∇f0(x∗)T (y − x∗) < 0.

We recognize that ∇f0(x∗)T (y − x∗) is the directional derivative of f0 is the direction of (y − x∗), that is,

∇f0(x∗)T (y − x∗) =
d

dt

(
t 7→ f0(x∗ + t(y − x∗))

)∣∣∣
t=0

= lim
t→0

f0(x∗ + t(y − x∗))− f0(x∗)

t
< 0.

Hence, for t > 0 small enough, we have f0(x∗ + t(y−x∗)) < f(x∗), and x∗ + t(y−x∗) ∈ F by convexity of F . This

shows that x∗ is not optimal.

Remark: This theorem has a simple geometric interpretation. It says that x∗ is optimal if and only if

∇f0(x∗) = 0, or if ∇f0(x∗) defines a supporting hyperplane of F at x∗.

The theorem above already allows us to characterize optimal solutions in a number of simple situations.

For example, when the problem is unconstrained (i.e., F = Rn), we get the well-known fact that x∗ is

optimal iff it solves the equation ∇f0(x∗) = 0. The next result characterizes optimal solutions of a problem

with equality constraints only

Proposition 4. Consider the optimization problem

minimize
x∈Rn

f0(x)

s.t. Ax = b,

where f0 is convex and differentiable. Then, x∗ is optimal iff ∇f0(x∗) ∈ ImAT .

Proof. For any x∗ in the affine set F = {x : Ax = b}, it holds (y ∈ F ⇐⇒ y − x∗ ∈ KerA). So, the first order

optimality condition for x∗ is

∀y ∈ F , ∇f0(x∗)T (y − x∗) ≥ 0 ⇐⇒ ∀v ∈ KerA, ∇f0(x∗)Tv ≥ 0.

A linear function which is nonnegative everywhere on a vector space is necessarily constant. So, since 0 ∈ KerA,

the optimality condition can be rewritten as ∀v ∈ KerA, ∇f0(x∗)Tv = 0. This is equivalent to saying that ∇f0(x∗)

is orthogonal to KerA, that is, ∇f0(x∗) ∈ ImAT .

Another simple case, which occurs often in practice, is the case of optimization over the nonnegative

orthant Rn
+.

Proposition 5. Consider the optimization problem

minimize
x∈Rn

f0(x)

s.t. x ≥ 0,

where f0 is convex and differentiable. Then, x∗ is optimal iff the following condition holds:

x∗ ≥ 0, ∇f0(x∗) ≥ 0, and ∀i ∈ [n],

(
xi = 0 or

∂f0
∂xi

(x∗) = 0

)
.

Proof. The first order condition for x∗ ∈ F reads

∀y ≥ 0, ∇f0(x∗)T (y − x∗) ≥ 0.
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This already implies ∇f0(x∗)T ≥ 0 (Otherwise, if ∂f0
∂xi

(x∗) < 0 for some i, the above condition would be violated

when yi →∞.) Now, for y = 0, we obtain

∇f0(x∗)Tx∗ =
∑
i

x∗i
∂f0
∂xi

(x∗) ≤ 0.

Each term of this sum is the product of two nonnegative numbers, so it is nonnegative. It follows that the above

inequality can only hold if for all i ∈ [n], x∗i · ∂f0∂xi
(x∗) = 0. This yields the condition of the proposition.

Conversely, assume that the condition of the proposition holds, and let y ≥ 0. Then, for all i we have

∂f0
∂xi

(x∗) · (yi − x∗i ) ≥ 0,

because this expression is either the product of two nonnegative terms, or it is equal to 0 whenever ∂f0
∂xi

(x∗) = 0.

Finally, summing over i yields the first order optimality condition for x∗.
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