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Chapter V: Ellipsoid Methods

In this lecture, we will learn our first polynomial-time algorithm to solve convex optimization problems.
From a historical point of view, this method is famous for being the first algorithm that could solve linear
programs (LP) in polynomial-time, which generated a lot of excitement in the late 70’s (cf. Section 5).

From a practical point of view, we point out that this method suffers from many numerical issues, and
hence it is not suited to solve even medium-sized problems. The interior-point methods, which we will study
in details in a later chapter, are much better for practical purposes. Nevertheless, the ellipsoid method
remains a formidable theoretical tool, as it only relies on the availability of an oracle that separates feasible
from infeasible solutions. In particular, it does not depend on the number of constraints used to define the
feasible set, a property often used to show the existence of polynomial-time algorithms for combinatorial
optimization problems.

The ellipsoid method can, in fact, be seen as a generalization of the bisection method to higher dimension.
Let us first recall the bisection method for convex optimization problems with a single variable:

minimize
x∈[ℓ0,u0]

f(x).

At the kth iteration, we know that the optimal solution lies in the interval [ℓk−1, uk−1], and we evaluate
f ′(xk), where xk = 1

2 (ℓk−1 + uk−1) is the midpoint of the interval. If f ′(xk) < 0, then the optimum must
lie in the interval [ℓk−1, xk], so we set ℓk = ℓk−1, uk = xk and we iterate. Otherwise, the optimum lies in
[xk, uk−1], so we set ℓk = xk, uk = uk−1 and we iterate. The basic property of this algorithm is that we keep
a set Sk = [ℓk, uk] that is guaranteed to contain the optimum through the iterations, and its “volume” (the
length of the interval) is divided by 2 at each iteration, which ensures a very fast convergence.

In more dimensions, ellipsoids will play the role of the intervals, and we need to define an operation on
ellipsoids which plays the role of halving the intervals.

1 Halving Ellipsoids

Since a half ellipsoid is not an ellipsoid itself, we must rely on something more complex. A result attributed
to Löwner, and completed by John in 1948, states that every convex body K ⊂ Rn (i.e., a compact convex set
having non-empty interior) is contained in a unique ellipsoid E of minimal volume. Moreover, the ellipsoid
obtained by shrinking E by a factor 1

n around its center is contained in K. This result falls out of the scope
of this lecture, but we can define the Löwner-John ellipsoid of a convex body:

Definition 1. (Löwner John Ellipsoid). Let K be a compact convex set of nonempty interior. The
Löwner-John ellipsoid of K is the unique ellipsoid E of minimal volume satisfying E ⊇ K.

In general, it can be quite complicated to compute the Löwner ellipsoid of an arbitrary convex body K.
However, there is a simple explicit formula for the case where K is a half-ellipsoid:

Proposition 1. (Löwner-John Ellipsoid of a half-ellipsoid).
Let E = E(a, Q) := {x ∈ Rn : (x − a)TQ−1(x − a) ≤ 1}, for some a ∈ Rn and Q ∈ Sn++. Let
h ∈ Rn \ {0}, and define the half-ellipsoid

H = E ∩ {x ∈ Rn : hTx ≤ hTa}.
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Define b := 1√
hTQh

Qh. Then, the Löwner-John ellipsoid of H is E′ = E(a′, Q′), where

a′ :=a− 1

(n+ 1)
b

Q′ :=
n2

n2 − 1

(
Q− 2

n+ 1
bbT

)

The trick to prove this result is to reduce to the case where E is the unit ball and the halfspace is
{x : x1 ≤ 0}, which makes the calculations much easier. Then, the result can be obtained by taking the
affine transformation that maps the unit ball to E. Details can be found in [1].

We also need a lemma which shows that the volume of the Löwner-John ellipsoid of a half-ellipsoid is
within a constant fraction of the original volume. To prove this lemma, we will use a classical result of linear
algebra, which allows to take rank-one updates of determinants:

Lemma 2. (Matrix-determinant Lemma). Let A be an n × n-invertible matrix, and let u,v ∈ Rn.
Then,

det(A+ uvT ) = (1 + vTA−1u) detA.

Proof. We first note that det(In + uvT ) = (1 + vTu), which is a consequence of the identity[
In 0n

vT 1

]
·

[
In + uvT u

0T
n 1

]
·

[
In 0

−vT 1

]
=

[
In u

0 1 + vTu

]
.

Then, the result follows from det(A+ uvT ) = detA(In +A−1uvT ) = detA det(In + (A−1u)vT ).

Lemma 3. Let E′ = E(a′, Q′) be the Löwner-John ellipsoid of E(a, Q) ∩ {x ∈ Rn : hTx ≤ hTa}.
Then,

volume(E′) < e−
1

2(n+1) volume(E).

Proof. First, we recall that E(a, Q) := {x ∈ Rn : (x−a)TQ−1(x−a) ≤ 1} is the image of the unit ball by the affine
map x 7→ Q1/2x+ a. Hence, volume(E(a, Q)) = detQ

1
2 γn, where γn is the volume of the unit ball in Rn.

Then, we make use of the matrix-determinant lemma in order to express detQ′ as a function of detQ:

detQ′ =

(
n2

n2 − 1

)n

det(Q− 2

n+ 1
bbT ) =

(
n2

n2 − 1

)n (
1− 2

n+ 1
bTQ−1b

)
detQ =

(
n2

n2 − 1

)n
n− 1

n+ 1
detQ.

Therefore, we have

volume(E′)

volume(E)
=

√
detQ′

detQ
=

√(
n2

n2 − 1

)n
n− 1

n+ 1
=

√(
n2

n2 − 1

)n−1 (
n

n+ 1

)2

=

(
1− 1

n+ 1

)
·
(
1 +

1

n2 − 1

)(n−1)/2

.

Finally, using the inequality 1 + t ≤ et (and the inequality is strict for all t ̸= 0), we get

volume(E′)

volume(E)
< exp

(
− 1

n+ 1
+

n− 1

2(n2 − 1)

)
= e

− 1
2(n+1)
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2 Solving feasibility problems

We are now ready to describe and prove the convergence of a simple variant of the ellipsoid algorithm, which
solves the following feasibility problem:

Given a convex set K ⊆ Rn, find x ∈ K or assert that K is empty. (F (K))

In what follows, we assume that a separation oracle SEPK is available: given x ∈ Rn, the oracle either

• asserts that x ∈ K;

• or returns a separating hyperplane between K and {x}, i.e., a vector h ∈ Rn such that

hTz ≤ hTx, ∀z ∈ K.

In addition, the ellipsoid algorithm requires two parameters to solve F (K):
(i) a real R > 0 such that K ⊆ B(0, R), the ball of center 0 and radius R;
(ii) a real r > 0 such that either K = ∅ or K contains a ball of radius r.

Algorithm 1 (ELLIPSOID ALGORITHM)
Input: Separation oracle SEPK , r,R > 0;
Output: Some x ∈ K, or asserts “K = ∅”.

P0 ← R2 In, x0 ← 0n ▷ Hence, Assumption (i) implies K ⊆ E0 = E(x0, Q0)

N ← ⌊2n(n+ 1) log(R/r)⌋
for k = 0, 1, . . . , N do

Run the separation oracle SEPK(xk).
if the oracle returns a separating hyperplane h ̸= 0 then

Define (Qk+1,xk+1) using Proposition 1, so Ek+1 = E(xk+1, Qk+1) is the Löwner-John ellipsoid of
Ek ∩ {x ∈ Rn : hTx ≤ hTxk}.

else
return xk ▷ In this case, the separation oracle certified xk ∈ K, so we are done.

end if
end for
return “K = ∅”

Theorem 4. Under assumptions (i) and (ii), the ellipsoid algorithm described above correctly solves
Problem F (K), by making O(n2 log(R/r)) calls to the oracle.

Proof. If the algorithm returns a vector x, then we know that x ∈ K, so there is nothing to show. Otherwise,
by construction, we have Ek ⊇ K at all iterations k, so in particular, EN+1 ⊇ K. Therefore,

volume(K) ≤ volume(EN+1) < e−
N+1

2(n+1) volume(E0) ≤ e−
2n(n+1) log(R/r)

2(n+1) Rnγn = rnγn,

where the strict inequality follows from Lemma 3, and γn is the volume of the unit ball in Rn. We have
shown that the volume of K is smaller than the volume of a ball of radius r. Hence, by assumption (ii), K
must be empty.
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3 Solving convex optimization problems

We first make a few comments on what it means to solve a convex optimization problem.

• The first thing to notice is that there is no hope to design an algorithm that solves convex optimiation
problems exactly using finite-precision arithmetics. To see this, consider the convex optimization
problem

max{x : x2 ≤ 2}.

Although this problem has integer data, the only solution to this problem is x∗ =
√
2 /∈ Q.

• Therefore, we must content ourselves with approximate solutions of convex optimization problems.
An algorithm is said to solve a convex optimization problem in polynomial time if it returns an
ϵ−suboptimal solution, in time polynomial with respect to the input length of the problem and log 1

ϵ .

• Finally, there are many technical details implied by the use of finite-precision arithmetics. This is a
problem, since the formula to update the ellipsoid involves a square root, which needs to be approx-
imated when we use finite-precision arithmetics. We will skip this issue in this section, and simply
assume that exact arithmetics is used.

Now, we consider a convex optimization problem of the form

p∗ = inf
x∈K

cTx, (P )

where K ⊆ Rn is convex body and ∥c∥ = 1. If we have an efficient routine to solve the feasibility problem
F (K), then we can solve the convex optimization problem P to arbitrary precision by doing a binary
search to find the smallest δ such that the convex set K(δ) := K ∩ {x ∈ Rn : cTx ≤ δ} is nonempty.
However, if we want to use the ellipsoid algorithm from the previous section, we need to choose r′ so that
K ∩ {x ∈ Rn : cTx ≤ δ} contains a ball or radius r′, even when δ gets very close to the optimum value, say
δ = p∗ + ϵ. This is possible, as long as K satisfies the conditions (i) and (ii) from the previous section for
two given reals R > 0 and r > 0.

Proposition 5. Let K be a convex body satifying (i) and (ii) for r,R > 0, and let 0 < ϵ < R. Then, either
K is empty, or the ϵ-suboptimal set for (P ) contains a ball of radius rϵ

2R+r .

Proof. We can assume that K contains a ball B = B(x0, r) of center x0 ∈ K and radius r, (otherwise, K is
empty, so there is nothing to show). Since K is compact and linear functions are continuous, Problem (P )
attains its minimum at some x∗ ∈ K. Without loss of generality, we assume x∗ = 0 (by shifting K), so
p∗ = 0 and the ϵ-suboptimal set reads Kϵ := K ∩ {x ∈ Rn : cTx ≤ ϵ}. Moreover, observe that cTx0 ≥ 0,
as cTx0 < p∗ = 0 would contradict that x∗ = 0 is an optimal solution.

By convexity of K, the ball B(tx0, t r) is contained in K for all t ∈ [0, 1]. Now, we search the largest
t ∈ [0, 1] such that B(tx0, t r) ⊆ Kϵ ⇐⇒ B(tx0, t r) ⊆ {x ∈ K : cTx ≤ ϵ}. This inclusion can be rewritten
as

max
x∈B(tx0,t r)

cTx ≤ ϵ,

or, after the change of variable x = t(x0 + rz),

tcTx0 + t r max
z∈B(0,1)

cTz ≤ ϵ.

The above maximization problem has optimal solution z∗ = c, which is an easy consequence of the Cauchy-
Schwarz inequality: ∀z ∈ B(0, 1), cTz ≤ ∥c∥∥z∥ ≤ ∥c∥ = cTz∗ = 1. Hence, the inclusion B(tx0, t r) ⊆ Kϵ

is equivalent to t(cTx0 + r) ≤ ϵ. We have thus shown that Kϵ contains a ball of radius t∗ r, where t∗ =

min(1, ϵ(cTx0 + r)−1).
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Finally, to obtain a bound that does not depend on cTx0, we observe that cTx0 ≤ ∥c∥∥x0∥ ≤ 2R, so
that t∗ r = min(r, rϵ(cTx0 + r)−1) ≥ min(r, rϵ

2R+r ) = rϵ
2R+r (the last equality follows from the assumption

ϵ < R), which concludes the proof.

Rather than relying on binary search to solve (P ), it is possible to modify the ellipsoid algorithm as
follows, so that it directly returns an ϵ−approximate solution: Whenever the oracle certifies xk ∈ K, do
not stop the computations, but instead store fbest = cTxk, and update the ellipsoid to be the Löwner-John
ellipsoid of Ek ∩ {x ∈ Rn : cTx ≤ cTxk}. In this way, Ek+1 must contain the (fbest − p∗)-suboptimal set,
and this property will remain true for all subsequent iterations.

We run this modified ellipsoid algorithm for N ′ = ⌊2n(n+ 1) log
(
R
ϵ (2

R
r + 1)

)
⌋ iterations. The condition

ϵ < R guarantees that N ′ ≥ N , and so we can return that “the problem is infeasible” (i.e., K = ∅) if a
feasible solution has not been found during the first N iterations. Otherwise, similarly as in the proof of
Theorem 4, the volume of EN ′+1 is smaller than the volume of a ball of radius ϵ/(2R/r + 1). On the other
hand, we know that EN ′+1 contains the (fbest − p∗)−suboptimal set; Hence by Proposition 5, it contains a
ball of radius r(fbest−p∗)

2R+r . This shows:

r(fbest − p∗)

2R+ r
≤ ϵ

2R/r + 1
⇐⇒ fbest ≤ p∗ + ϵ.

Thus, we have shown:

Theorem 6. If constants R and r are known, such that the convex body K satisfies assumptions (i)-(ii),
then we can find an ϵ−suboptimal solution of (P ), or assert that this problem is infeasible, by making
O(n2 log R

min(r,ϵ) ) calls to the separation oracle.

4 Weak Optimization & Separation

In the previous section, we have given a polynomial-time algorithm for convex optimization problems with
two additional assumptions on the feasible set K. While the assumption (i) is easy to satisfy in practice,
(we can generally put a large bound on all optimization variables), it is much more tricky to guarantee
assumption (ii) (K is either empty or contains a ball of radius r > 0).

When using finite-precision arithmetics, it would make sense to set r to the machire precision, but then,
it means that we are not able to differentiate infeasible problems from problems with a very small feasibility
region. In particular, finite-precision arithmetics makes it unrealistic to have an exact separation oracle, as
assumed in the previous sections. To cope with this issue, Grötschel, Lovász and Schrijver [2] proposed to
work with a weak separation oracle:

Definition 2. (Weak separator). A weak separation oracle for K ⊂ Rn takes x ∈ Qn and ϵ ∈ Q++ as
input, and either

1. asserts that x is ϵ−almost in K, i.e., d(x,K) := infz∈K ∥x− z∥ ≤ ϵ.

2. or returns a hyperplane h with ∥h∥∞ = 1 that “almost” separates x from all points that are deep
in K, i.e.,

hTx ≤ hTz + ϵ, ∀z ∈ Rn, B(z, ϵ) ⊆ K.

Then, they defined a relaxed version of the optimization problem P , in which we only need to separate
points that are ϵ-almost/ϵ-deep in K:
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Definition 3. (Weak optimization). Given ϵ > 0, the weak optimization version of Problem (P ) consists
in either

1. asserting that K does not contain any ball or radius ϵ.

2. or returning a point x∗ that is ϵ−almost in K, i.e., d(x∗,K) := infz∈K ∥x∗ − z∥ ≤ ϵ, and such
that x∗ is almost optimal compared to ϵ−deep points:

cTx∗ ≤ cTz + ϵ, ∀z ∈ Rn, B(z, ϵ) ⊆ K.

The main result of Grötschel, Lovász and Schrijver is as follows:

Theorem 7. Given R and a polynomial-time weak separation oracle for K ⊆ B(0, R), we can solve the
weak optimization problem in polynomial time.

The proof of this result essentially follows the ideas presented in this lecture, but the formulas are much
more complicated, because we use the weak separator, and we need to “blow-up” the ellipsoids in order to
ensure that Ek ⊆ K, in order to compensate for the lack of accuracy caused by the rounding; see [2] for
details. Interestingly, there is also a converse result, so that the problems of weak optimization and weak
separation are polynomially inter-reducible (up to the knowledge of a sufficiently large R > 0):

Theorem 8. Given a polynomial-time weak optimization oracle for a convex set K, we can solve the
weakly separation problem for K in polynomial time.

5 Final remarks and historical notes

The ellipsoid method was initially proposed by Yudin and Nemirovki [5] and Shor [6] in the 70’s. The method
attracted a lot of interest after the work of Khachian [3], who used it to design the first polynomial-time
algorithm to solve linear programming: An essential contribution of Khachian was to show that we can
reduce linear programming to a problem using finite-precision arithmetics only, with a number of digits
polynomially bounded by the input size of the problem. Later, Grötschel, Lovász and Schrijver (see [2])
discussed the implications of this result for combinatorial optimization problems, using linear programs with
exponentially many constraints that can be separated in polynomial time.

Last but not least, we mention that the ellipsoid method is just one of many “cutting plane methods”,
which differ in the way a set Ek ⊇ K is maintained (not necessarily an ellipsoid), and how the query point
xk is selected. While it was the first method to solve the feasibility problem in polynomial time (its total
complexity is O(n2 log R

r (SO + n2)), where SO is the complexity of the separation oracle), more efficient
methods exist: The best cutting plane method known to date is due to Lee, Sidford and Wong [4] and solves
the same problem in O(n log nR

r SO + n3 logO(1) nR
r ).
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