
G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

Chapter VI: Conic Programming

1 Conic Programming

In this section, we introduce an important class of convex optimization problems, which generalizes the class

of linear programs in a natural fashion.

Definition 1 (Conic Programming). Let K be a proper cone. A conic program in standard form

(relative to the cone K) is an optimization problem of the form

minimize
x∈Rn

cTx (PCone)

s.t. Ax = b,

x �K 0.

• When the cone K is the nonnegative orthant Rn+, we say that Problem (PCone) is a Linear Program

(LP).

• When the cone K is a direct product of Lorrentz cones, we say that (PCone) is a Second Order Cone

Program (SOCP). Some authors also use the term conic quadratic program (CQP). For consistency,

we will adopt the following notation for the Lorrentz cone:

Ln+ := {x ∈ Rn :
√
x21 + . . .+ x2n−1 ≤ xn}.

• When the cone K is the semidefinite cone Sn+, we say that (PCone) is a Semidefinite Program (SDP).

More generally, we call LP/SOCP/SDP any optimization problem that is “trivially equivalent” to a conic

problem in the standard form (PCone). We define this more formally next.

Definition 2. Let x ∈ Rn be a decision variable. We say that a constraint of the form

‖Ax− b‖ ≤ cTx+ d,

is a second order cone inequality.

Let F : Rn → Sm be an affine function. We say that a constraint of the form “F (x) � 0,” where the

inequality � is relative to Sm+ , is a linear matrix inequality.

In brief, the general idea to remember is that

• any optimization problem that contains only linear equalities and inequalities is an LP;

• if in addition it contains some second order cone inequalities, it is an SOCP;

• finally, if in addition, is also contains linear matrix inequalities, then it is an SDP (we will understand

later why a program with second order cone inequalities can be seen as an SDP...).

Page 1 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

Definition 3. Let Ki ⊂ Vi be a proper cone, where Vi is a vector space (of finite dimension), and let

Fi : Rn → Vi be an affine mapping (∀i ∈ [q]). Any optimization problem of the form

minimize
x∈Rn

cTx

s.t. Ax = b,

Fi(x) �Ki 0, (∀i ∈ [q]).

is equivalent to a conic program in standard form (PCone), and is hence called a conic program.

Note that the above definition is written with abstract vector spaces Vi (rather than, e.g., Rni). This

allows to handle the case where Fi(x) is a matrix (for semidefinite programming). We will now show in

several examples how the reduction to the standard form works.

Example:

The following optimization problem is an LP:

minimize
x∈Rn

cT0 x

s.t. Fx = f ,

Hx ≥ h.

To convert it to the standard form (PCone), we proceed in two steps. Denote by m1 and m2 the dimensions

of f and h, respectively. First, we introduce a slack variable z = Hx−h ∈ Rm2 . This yields the equivalent

formulation:

minimize
x∈Rn, z∈Rm2

cT0 x

s.t. Fx = f ,

Hx− z = h.

z ≥ 0.

Now, it remains to deal with the fact that the variable x is unconstrained, while the standard form (PCone)

only allows for variables in the cone K. So, the idea is to replace x by the difference between two vectors of

nonnegative variables:

x ∈ Rn ⇐⇒ ∃x1,x2 ∈ Rn+ : x = x1 − x2.

We thus obtain the following problem:

minimize
x1,x2∈Rn, z∈Rm2

cT0 (x1 − x2)

s.t. F (x1 − x2) = f ,

H(x1 − x2)− z = h.

x1,x2, z ≥ 0

Finally, we obtain a problem of the standard form, by setting

cT = [cT0 ,−cT0 ,0T]T ∈ R2n+m2 , A =

[
F −F O

H −H −I

]
∈ R(m1+m2)×(2n+m2), b =

[
f

h

]
∈ Rm1+m2 ,

and the cone K is the nonnegative orthant R2n+m2
+ .

#1

Page 2 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

Example:

The following problem is an SOCP:

minimize
x∈Rn

cT0 x (1)

s.t. Fx = f ,

Hx ≥ g,
‖Aix+ bi‖ ≤ cTi x+ di, (∀i ∈ [m]).

The fact that the variable x is unconstrained can be handled exactly as in the previous example. Now, we

need to rewrite the linear inequalities and second order cone inequalities as in the standard form (PCone). If

the rows of H are hT1 , . . . ,h
T
p , then we introduce the slack variables

yi =

[
0

hTi x− gi

]
∈ R2,

and for all i ∈ [m], we introduce the slack variable

zi =

[
Aix+ bi
cTi x+ di

]
∈ Rni+1,

where ni is the dimension of bi. Now, it is easy to see that hTi x ≥ gi ⇐⇒ yi ∈ L2
+, and

‖Aix+ bi‖ ≤ cTi x+ di ⇐⇒ zi ∈ Lni+1
+ .

The inequalities and second order cone inequalities of Problem (1) can hence be reformulated as a set of

equalities, and the generalized conic inequality

(y1, . . . ,yp, z1, . . . ,zm) �K′ 0, where K ′ := (L2
+)p × Ln1+1

+ × · · · × Lnm+1
+

#2

For the reduction of SDPs to the standard form (PCone), we need will need the following lemma:

Lemma 1. The block diagonal matrix M =

 A1

. . .

An

 is positive semidefinite if and only if

each diagonal block is positive semidefinite:

M � 0 ⇐⇒ ∀i ∈ [n], Ai � 0.

Proof. The direct implication follows from the fact that the principal submatrices of a positive semidefinite matrix

are positive semidefinite.

For the reverse implication, observe that

[uT
1 , . . . ,u

T
n]M


u1

...

un

 =

n∑
i=1

uT
i Aiui.

When the blocks Ai are positive semidefinite, the above sum has only nonnegative terms, so it is ≥ 0. Since the

vectors u1, . . . ,un were arbitrary, this proves M � 0.

Page 3 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

Example:

The following problem is an SDP:

minimize
x∈Rn, X∈Sn

〈C,X〉+ cT0 x (2a)

s.t. 〈Fi, X〉+ fTi x = gi, (∀i ∈ [p]) (2b)

〈Hi, X〉+ hTi x ≥ `i, (∀i ∈ [q]) (2c)

BXBT +DX +XTD � R1 (2d)
m∑
i=1

xiQi � R2. (2e)

The fact that the variables x and X are unconstrained can be handled as in Example #1. We assume that

R1 ∈ Sr1 and R2 ∈ Sr2 . We define the slack matrix

Z =

 Diag(u) O O

O BXBT +DX +XTD −R1 O

O O
∑m
i=1 xiQi −R2

 ∈ Sq+r1+r2 ,
where ui = 〈Hi, X〉 + hTi x − `i (∀i ∈ [q]). Now, by Lemma 1, the constraints (2c)-(2d)-(2e) are equivalent

to Z � 0, and we have only used linear equalities to introduce the slack variable Z.

#3

2 Conic representability

In the next sections, we will see that many convex constraints of the form “f(x) ≤ t” can be reformulated as

equivalent conic constraints. The next definition introduces the concept of K-representability, which should

be interpreted as follows “an optimization problem involving the function f can be refomulated as a conic

program over the cone K”.

Definition 4. (Conic representability). Let K ⊆ Rd be a proper cone. A convex function f : Rn → R
is K-representable if there exists a matrix A ∈ Rp×(n+1+m) and a vector b ∈ Rp such that

f(x) ≤ t ⇐⇒ ∃u ∈ Rm : A

 x

t

u

 �K̃ b,
where K̃ is the direct product of several copies of K (i.e., K̃ = K⊗k, where k ∈ N is such that

p = kd). In other words, the constraint “f(x) ≤ t” is equivalent to a collection of k conic constraints

“Fj(x, t,u) �K 0” for some affine functions Fj (∀j ∈ [k]), that may involve a set of m ≥ 0 additional

variables.

Note: A concave function is said to be K-representable if −f is K-representable.

We will see in a next lecture that conic programs can be solved efficiently for a number of cones, including

Rn+, Ln+ and Sn+. Therefore, it is very important to understand which functions are K-representable, as it

gives an answer to the following question: given an efficient algorithm to solve conic programs over K, which

class of optimization problems can be solved efficiently using this algorithm?

Remark. Note however that in order to be used efficiently, we must restrict ourselves to functions with

a compact conic representation, i.e., the number m of additional variables and the dimension p of the cone

K̃ must be bounded by some polynomial in n.

Page 4 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

We next review a few general calculus rules that preserve the notion of K−reprentability:

(a) Adding an affine part

If f is K-representable, then g : x 7→ f(x) + aTx+ b is K-representable.

(b) Composition with affine mapping

If f is K-representable, then g : x 7→ f(Ax+ b) is K-representable.

(c) Conic combinations

If f1, . . . , fk are K-representable and λ ≥ 0, then g : x 7→
∑k
i=1 λifi(x) is K-representable.

(d) Pointwise maximum

If f1, . . . , fk are K-representable then g : x 7→ maxki=1 fi(x) is K-representable.

(e) Inf-convolution

If f1, . . . , fk areK-representable then g : x 7→ inf
x1,...,xk

x1+...+xk=x

f1(x1)+f2(x2)+. . .+fk(xk) isK-representable.

(f) Perspective transform

If f is K-representable, then g(x, t) = t f(x/t), with dom g = dom f × R++ is K-representable.

Proof. For (a), note that g(x) ≤ t ⇐⇒ f(x) ≤ t − aTx − b. Since f is K-representable, there exists an affine

function F such that f(x) ≤ t ⇐⇒ F (x, t,u) �K̃ 0. But then,

g(x) ≤ t ⇐⇒ G(x, t,u) := F (x, t− aTx− b,u) �K̃ 0,

and G is affine (composition of two affine functions). (b) can be handled similarly:

g(x) ≤ t ⇐⇒ H(x, t,u) := F (Ax + b, t,u) �K̃ 0,

where the function H is a composition of affine functions, hence affine. For (c), we assume that

fi(x) ≤ t ⇐⇒ ∃ui ∈ Rm : Ai

 x

t

ui

 �K̃i
bi,

where K̃i is a direct product of copies of K. Then, it is easy to see that

k∑
i=1

λifi(x) ≤ t ⇐⇒ ∃u1, . . . ,uk ∈ Rm, ∃t1, . . . , tk ∈ R : Ai

 x

ti
ui

 �K̃i
bi (∀i ∈ [k]), and t1 + . . .+ tk ≤ t.

Given any vector u ∈ K \ 0, the inequality constraint t1 + . . . + tk ≤ t can also be written as a conic inequality:

(t1 + . . . + tk)u �K tu, so it is possible to rewrite the condition
∑k

i=1 λifi(x) ≤ t as a single big conic inequality

(for a direct product of copies of K). The proof for (d) and (e) is similar. Finally, for the case of the perspective

transformation (f), let f have a conic representation of the same form as in the definition. Then, for all t > 0,

g(x, t) ≤ s ⇐⇒ ∃u : A

 x/t

s/t

u

 �K̃ b ⇐⇒ ∃u′ : A

 x

s

u′

 �K̃ tb ⇐⇒ ∃u′ : [A,−b]


x

s

u′

t

 �K̃ 0.

Page 5 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

3 What can be expressed by Linear Programming ?

In this section, we will review a few nonlinear functions that are Rn+ representable, i.e., functions f such that

the constraint

f(x) ≤ t

can be reformulated as a set of equivalent linear (in)equalities.

(a) Convex piecewise linear functions.

A convex piecewise linear function f can always be written as f(x) = max
i∈[m]

aTi x+ bi for some vectors

ai’s and scalars bi’s. Then, the inequality f(x) ≤ t is equivalent to

aTi x+ bi ≤ t (∀i ∈ [m]).

(b) `1−norm of a vector:

‖x‖1 ≤ t ⇐⇒ ∃u ∈ Rn :

{
−u ≤ x ≤ u;

1Tu ≤ t.

(c) `∞−norm of a vector:

‖x‖∞ ≤ t ⇐⇒ (−t ≤ xi ≤ t, ∀i ∈ [n]) .

(d) Sum of the k largest elements of a vector.

Denote by sk(x) the sum of the k largest elements of x. The function x 7→ sk(x) is convex. Indeed, it

can be rewritten as a pointwise maximum of linear functions:

sk(x) = max
1≤i1<i2<...<ik≤n

xi1 + xi2 + . . .+ xik .

We could hence use the point (a) above to rewrite sk(x) ≤ t as a set of linear inequalities. However,

this representation involves the maximum of
(
n
k

)
functions. Below, we give a much more compact

representation, thanks to the use of n+1 additional variables. Geometrically, we are in fact expressing

the polytope {(x, t) : sk(x) ≤ t} ⊆ Rn+1 as the projection of another polytope in R2(n+1) over the

(x, t)-space:

sk(x) ≤ t ⇐⇒ ∃u ∈ R,∃v ∈ Rn :


ku+ 1Tv ≤ t;
v ≥ 0

v ≥ x− u1.

Proof. We only prove the point (d), the other points are rather trivial. Denote by x(1) ≥ x(2) ≥ . . . ≥ x(n) the sorted

elements of x.

We first show that

sk(x) = min
u∈R

ku+

n∑
i=1

max(0, xi − u). (3)

Let u be any real number in the interval [x(k+1), x(k)]. Then,

ku+

n∑
i=1

max(0, xi − u) = ku+

k∑
j=1

(
x(j) − u

)
= sk(x),

where the first equality comes from the fact that j > k =⇒ x(j) − u < 0. This already shows that the optimal value

p∗(x) of the minimization problem in the right hand side of (3) satisfies p∗(x) ≤ sk(x).

On the other hand, for all u ∈ R,

sk(x) =

k∑
j=1

x(j) =

k∑
j=1

(x(j) − u+ u) = ku+

k∑
j=1

(x(j) − u) ≤ ku+

k∑
j=1

max(0, x(j) − u) ≤ ku+

n∑
i=1

max(0, xi − u).

Page 6 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

Therefore, sk(x) ≤ p∗(x). Finally, the representation of point (d) is obtained by introducing an auxiliary variable

vi ≥ max(0, xi − u) for all i ∈ [n].

Example:

We show how to reformulate the nonlinear optimization problem

minimize
x∈Rn

3 ‖x‖1 + 7 s4(x)

s.t. Ax ≤ b

to an equivalent LP with 3n+ 1 variables. We first use the epigraph representation

minimize
x∈Rn,λ1,λ2∈R

3λ1 + 7λ2

s.t. Ax ≤ b
‖x‖1 ≤ λ1
s4(x) ≤ λ2.

Now, we use the points (b) and (d) above, which yields

minimize
x,u,v∈Rn
t,λ1,λ2∈R

3λ1 + 7λ2 (4a)

s.t. Ax ≤ b (4b)

− u ≤ x ≤ u (4c)

1Tu ≤ λ1 (4d)

v ≥ 0 (4e)

v ≥ x− t1 (4f)

4t+ 1Tv ≤ λ2 (4g)

Finally, it is possible to eliminate λ1 and λ2 from this formulation, by putting the LHS of constraints (4d)

and (4g) directly in the objective function:

minimize
x,u,v∈Rn, t∈R

3 · (1Tu) + 7 · (4t+ 1Tv)

s.t. Ax ≤ b
− u ≤ x ≤ u
v ≥ 0

v ≥ x− t1.

#4

4 What can be expressed by Second Order Cone Programming ?

As in the previous section, x always denote a vector of dimension n. We review some nonlinear constraints

involving the variable x ∈ Rn, as well as some scalar variables t, y, z ∈ R, which can be handled by SOCP.

(a) Squared norm less than product of nonnegative variables

Inequalities of the form


‖x‖2 ≤ y · z;

y ≥ 0;

z ≥ 0.

Page 7 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

The above system is equivalent to the SOC inequality∥∥∥∥[2x

y − z

]∥∥∥∥ ≤ y + z.

Proof. This follows from

∥∥∥∥∥
[

2x

y − z

]∥∥∥∥∥ ≤ y + z ⇐⇒


∥∥∥∥∥
[

2x

y − z

]∥∥∥∥∥
2

≤ (y + z)2;

y + z ≥ 0.

⇐⇒

{
4‖x‖2 ≤ (y + z)2 − (y − z)2;

y + z ≥ 0.
⇐⇒

{
4‖x‖2 ≤ 4 y · z;
y, z ≥ 0.

(b) Convex quadratic inequalities xTQx+ aTx+ b ≤ t

By using the last point, we can reformulate any convex quadratic constraint as a SOC constraint.

Indeed, the function f : x 7→ xTQx + aTx + b is convex iff Q � 0. It follows that we can compute

a decomposition of the form Q = HTH (for example, by using a Cholesky decomposition). Then, we

have f(x) = ‖Hx‖2 + aTx+ b, and

f(x) ≤ t ⇐⇒ ‖Hx‖2 ≤ t− aTx− b ⇐⇒
∥∥∥∥[2Hx

t− aTx− b− 1

]∥∥∥∥ ≤ t− aTx− b+ 1.

(c) Geometric and Harmonic means.

The geometric and harmonic means of a nonnegative vector are concave functions. We will show in

the exercises that the inequalities

G(x) =

n∏
i=1

x
1/n
i ≥ t

and

H(x) =
n∑n
i=1

1
xi

≥ t

can be represented by an equivalent system of SOC inequalities. (The harmonic mean is defined by

continuity over all Rn+, with H(x) = 0 whenever some xi = 0.)

(d) Rational powers

The inequality yp ≤ t, where p ∈ Q, p ≥ 1 can be represented by a system of SOC inequalities. Indeed,

let p = α
β , with α ≥ β ∈ N. Then,

x
α
β ≤ t ⇐⇒ xα ≤ tβ ⇐⇒ x ≤ G([t, . . . , t︸ ︷︷ ︸

β times

, 1, . . . , 1︸ ︷︷ ︸
(α−β) times

]).

Note: The point (b) shows that every convex QCQP (quadratically constrained quadratic program),

that is, an optimization problem in which the objective function and the constraints are convex quadratic

functions, can be cast as a SOCP.

Page 8 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

5 What can be expressed by Semidefinite Programming ?

Before we start to enumerate nonlinear functions that can be handled by SDP (i.e., Sn+-representable func-
tions), we state a very important lemma, which is at the heart of most SDP representations. We will prove
this result in the exercises.

Lemma 2 (Schur Complement). Let M be a symmetric matrix paritioned in blocks as M =

[
A C
CT B

]
.

The following holds:

M � 0 ⇐⇒
{
B � 0
A− CB−1CT � 0

⇐⇒
{
A � 0
B − CTA−1C � 0

Moreover, if B � 0, then
M � 0 ⇐⇒ A− CB−1CT � 0;

And similarly, if A � 0, then
M � 0 ⇐⇒ B − CTA−1C � 0.

Note: When the matrix B is singular, there is an extended version of the lemma which characterizes the
positive semidefiniteness of M in terms of the Schur complement A−CB†CT , where B† is the Moore-Penrose
pseudo inverse of B; In this case, an additional technical condition is required:

M � 0 ⇐⇒ B � 0 and A− CB†CT � 0 and Im CT ⊆ Im B.

⇐⇒ A � 0 and B− CTA†C � 0 and Im C ⊆ Im A.

In what follows, X ∈ Sn is a matrix variable, x ∈ Rm is a vector of variable, and t ∈ R is a scalar variable.
We review some nonlinear functions such that f(X) ≤ t or g(x) ≤ t can be represented by a LMI (linear
matrix inequality).

(a) Second Order Cone Programming

The SOC inequality ‖x‖ ≤ t can be cast as a LMI. Indeed,

‖x‖ ≤ t ⇐⇒
{
‖x‖2 ≤ t2
t ≥ 0

⇐⇒
{
xT (tIn)−1x ≤ t
t ≥ 0

⇐⇒
[
t In x
xT t

]
� 0.

This shows that any SOCP can be cast as a SDP. This is often not a good idea in practice, but this
shows that SDP is a superclass of SOCP !

(b) Let c ∈ Rn, and let K : Rm+ → Sn++ be an affine function. Then, the Schur complement lemma tells us
that

cTK(x)−1c ≤ t ⇐⇒
[
K(x) c
cT t

]
� 0.

(c) Largest eigenvalue of a matrix.

Let M : Rm → Sn be an affine function, that is, M(x) = M0 +
∑m
i=1 xiMi for some Mi ∈ Sn. Then,

λmax(M(x)) ≤ t ⇐⇒ M(x) � t In.

By the way, this shows that λmax is a convex function over Sn.

(d) Smallest eigenvalue of a matrix.

Similarly, λmin is a concave function over Sn, and

λmin(M(x)) ≥ t ⇐⇒ M(x) � t In.

Page 9 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

(e) nth root of determinant.

The nth root of the determinant is a concave function over Sn++. We have the following representation
with LMIs:

(detX)
1
n ≥ t ⇐⇒ ∃L ∈ Rn×n,u ∈ Rn :



[
X L
LT Diagu

]
� 0;

L is Lower triangular;

diagL = u;

G(u) ≥ t,
where G(u) is the geometric mean of the vector u (cf. Section 4, Point (c)).

Proof. (a) and (b) are already proved, and (d) is similar to (c). We only need to prove (c) and (e).
(c) The largest eigenvalue of a matrix satisfies the variational characterization

λmax(X) = sup
u∈Rn\{0}

uTXu

uTu
.

Hence,

λmax(X) ≤ t ⇐⇒ ∀u ∈ Rn \ {0}, uTXu

uTu
≤ t

⇐⇒ ∀u ∈ Rn, uTXu ≤ tuTu

⇐⇒ ∀u ∈ Rn, uT (X − tIn)u ≤ 0

⇐⇒ (X − tIn) � 0.

(e) =⇒ . Let X � 0, and let X = JJT be a Cholesky decomposition of X. Let D be the diagonal matrix
with diagonal elements ui, where ui := J2

ii is the square of the ith diagonal element of J , and let L = JD1/2, so
Lii = J2

ii = Dii = ui. We have X = LD−1LT , so the Schur-complement lemma tells us that[
X L
LT D

]
� 0.

By construction, L is lower triangular, and the diagonal elements of L are the same as the diagonal elements ui of
D. Finally, since the determinant of a triangular matrix is equal to the product of its diagonal elements, we have

detX = detLdetD−1 detL =
(∏

ui

)(∏
ui

)−1 (∏
ui

)
=
(∏

ui

)
.

Hence, (detX)
1
n ≥ t =⇒ G(u) ≥ t.

⇐= . We first prove the intermediate result A � B � 0 =⇒ detA ≥ detB. First note that the statement is
trivial whenever B is singular. So we assume B � 0. If M � I, then we know from point (d) that the eigenvalues of M
are larger than 1, so detM ≥ 1. Applying this to the matrix M = B−1/2AB−1/2 yields A � B =⇒ B−1/2AB−1/2 �
I =⇒ detB−1 detA ≥ 1, hence the desired result.

Now, if the system of constraints holds and t > 0, then by the Schur complement lemma, we have X �
LDiagu−1LT . So, using the implication A � B =⇒ detA ≥ detB, we obtain detX ≥ (

∏
ui) (

∏
ui)
−1 (

∏
ui) =

(
∏
ui), and (detX)

1
n ≥ G(u) ≥ t. In the trivial case t ≤ 0, the LMI tells us that X � 0, hence detX ≥ 0 ≥ t.

6 The Exponential Cone

Clearly, the cones seen so far only allow to handle semi-algebraic functions, i.e., functions such that the
equation f(x) ≤ t is equivalent to a set of polynomial inequalities in x, t (and eventually additional variables
u). Indeed, linear and second-order cone inequalities are special cases of LMI, and by using Silverster criterion
(a matrix is positive semidefinite iff all its principal minors are nonnegative), we can rewrite any LMI as a
(large) set of polynomial inequalities.

This rules out the possibility of existence of an LMI for simple convex constraints involving transcendental
functions, such as ex ≤ t. But we may still ask ourselves whether such constraints can be represented as
conic inequalities. Obviously, only convex functions can be conic representable:

Page 10 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

Proposition 3. If f is K-representable for some proper cone K, then f is convex.

Proof. If f is K-representable, then its epigraph is (the projection over a subset of coordinates of) the reverse affine
image of a proper (hence convex) cone. So, epi f is convex, hence f must be convex.

A general result gives a (partial) converse to this statement: every convex function is K-representable
for the cone K obtained by taking the perspective transformation of its epigraph (with technical conditions
to ensure the cone is proper). We leave the proof of this statement as an exercise.

Theorem 4. Let f be a convex function, with int dom f 6= ∅ and such that epi f does not contain any
line (which basically means that there is no direction along which f is linear), and define

K̃ = {(x, y, z) ∈ Rn+2 : y > 0, yf(x/y) ≤ z}.

Then, K = cl K̃ is a proper cone, and f is K-representable:

f(x) ≤ t ⇐⇒ (x, 1, t) �K 0.

A cone of particular interest is the exponential cone, which is obtained as in the above theorem, for the
exponential function:

Kexp := cl {(x, y, z) ∈ R3 : y > 0, yex/y ≤ z}
= {(x, y, z) ∈ R3 : y > 0, yex/y ≤ z} ∪ {(x, y, z)|x ≤ 0, y = 0, z ≥ 0}.

We will see in the exercises that this cone allows to give a conic representation for two important convex
functions, namely:

(a) The relative entropy (or Kullback-Leibler divergence) of two nonnegative vectors x,y ≥ 0:

f(x,y) =
∑
i=1n

xi log
xi
yi
,

with the appropriate convention to “close the function f” by continuity at the boundary of R2n
+ : For

all α > 0, 0 log 0/α := 0, 0 log 0/0 := 0 and α logα/0 :=∞.

(b) The log-sum-exp function, f(x) = log(
∑n
i=1 e

xi).

An important application of optimization with log-sum-exp functions is Geometric Programming (GP).
A function of the form f : Rn>0 7→ R, f(x) = αxp11 · · ·xpnn , where α > 0 and the pi’s are real-valued
exponents is called a (generalized) monomial, and a sum of monomials is a posynomial. For example,

f(x, y, z) =
√
x

y2.5z + 2zy1.7 + 6 is a posynomial, but g(x, y, z) = 2x−1.3z1.4 − 3x2.1y1.6 is not (because of the

coef −3). An optimization problem of the form

min
x∈Rn++

f0(x)

s.t. fi(x) ≤ 1, (i = 1, . . . ,m)

hj(x) = 1, (j = 1, . . . , p),

where the fi’s are posynomials and the hi’s are monomials, is called a geometric program (in posynomial
form). Geometric programming has many applications, in particular in electrical engeneering. In fact, we
shall see that every GP can be reformulated as an equivalent exponential cone program, i.e., a conic program
over Kexp. Taking the logarithm of the objective function and constraints, the GP is equivalent to:

min
x∈Rn++

log f0(x)

s.t. log fi(x) ≤ 0, (i = 1, . . . ,m)

log hj(x) = 0, (j = 1, . . . , p).

Page 11 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

Now, we perform the change of variable xi = eyi . Then, the function log fi(x) become a log-sum-exp with
affine substitution of the argument. To see this, consider a posynomial f(x) =

∑
k αk

∏
i x

pik
i . We have:

log f(x) = log

(∑
k

αk
∏
i

epik yi

)
= log

(∑
k

exp(logαk +
∑
i

yipik)
)
.

For the case of an monomial h(x) = β
∏
i x

qi
i , the log-transformation yields a linear function:

log h(x) = log β +
∑
i

qiyi.

As for Rn+, Ln+ and Sn+, we will see in a next lecture that conic programs over Kexp can be solved efficiently.
However, we point that, unlike the three other cones, Kexp is not self-dual. This has a number of drawbacks
for algorithmic purposes.

Theorem 5. The cones Rn+, Ln+ and Sn+ are self-dual, i.e., (Rn+)∗ = Rn+, (Ln+)∗ = Ln+ and (Sn+)∗ = Sn+.
This is not the case for the exponential cone, whose dual is the relative entropy cone:

K∗exp = {(u, v, w) ∈ R3 : u ≤ 0, w ≥ 0, −u log(−u/w) ≤ v − u},

where 0 log 0 := 0.

Proof. 1) K = Rn
+. Let x ∈ Rn

+. Then, for all y ∈ Rn
+, xTy is a sum of nonnegative terms, hence xTy ≥ 0.

This shows Rn
+ ⊆ (Rn

+)∗. For the reverse inclusion, assume x � 0, i.e., there is a coordinate i ∈ [n] such that
xi < 0 ⇐⇒ 〈x, ei〉 < 0. Since ei ∈ Rn

+, this shows x /∈ (Rn
+)∗.

2) K = Ln
+. Let ‖x‖ ≤ t. Then, for all y such that ‖y‖ ≤ s, we have 〈(x, t), (y, s)〉 = xTy+ ts ≥ −‖x‖‖y‖+ ts ≥

ts − ts = 0, where the first inequality is Cauchy Schwarz. This shows Ln
+ ⊆ (Ln

+)∗. For the converse inclusion,
assume (x, t) /∈ Ln

+, i.e., ‖x‖ > t. Then, define y = −x and s = ‖y‖ = ‖x‖ > t, so (y, s) ∈ Ln
+. We have

〈(x, t), (y, s)〉 = xTy + ts = −‖y‖2 + ts = −s2 + ts = s(t− s) < 0. Hence, (x, t) /∈ (Ln
+)∗.

3) K = Ln
+. Let X � 0. Then, X = LLT for some matrix L, and for all Y � 0, there exists a matrix H such that

Y = HHT . Hence, 〈X,Y 〉 = traceLLTHHT = traceHTLLTH = ‖HTL‖2F ≥ 0. This shows Sn+ ⊆ (Sn+)∗. For the
reverse inclusion, assume X � 0, i.e., ∃u : uTXu < 0 ⇐⇒ 〈X,uuT 〉 < 0. Since uuT ∈ Sn+, this shows X /∈ (Sn+)∗.

4) K = Kexp. Denote by Kr the cone defined in the theorem. To show Kr ⊆ K∗exp, we will demonstrate that the
inclusion holds for vectors in the interior of these cones, i.e., when all inequalities hold strictly. So, let (x, y, z, u, v, w)

satisfy y > 0, ye
x
y < z, u < 0, w > 0,−u log(−u

w
) < v − u. The last inequality can be rewritten as w > −uev/u−1.

Hence, 〈(x, y, z), (u, v, w)〉 = xu + yv + zw ≥ xu + yv − yuex/y+v/u−1 = −yu(−x/y − v/u + ex/y+v/u−1). This
expression is the product of y ≥ 0, −u ≥ 0, and eA − (1 + A) ≥ 0, where we have set A = x/y + v/u − 1. So, this
shows intKr ⊆ (intKexp)∗, and the inclusion Kr ⊆ K∗exp follows by taking the closure.

For the converse inclusion, let (u, v, w) /∈ Kr. Here, we must distinguish several cases:

a) if u > 0, then we consider (x, y, z) = (−1, 0, 0) ∈ Kexp, so 〈(x, y, z), (u, v, w)〉 = −u < 0;

b) if w < 0, then we take (x, y, z) = (0, 0, 1) ∈ Kexp, so 〈(x, y, z), (u, v, w)〉 = w < 0;

c) The remaining case is u ≤ 0, w ≥ 0,−u log(−u/v) > v − u. Here, we must again distinguish the subcases
(u < 0, w > 0), (u = 0), and (u < 0, w = 0). For u,w 6= 0 we consider the vector (x, 1, ex) ∈ Kexp for
x = log(−u/w), so 〈(x, y, z), (u, v, w)〉 = u log(−u/w) + v − u < 0. For u = 0 with the convention 0 log 0 = 0,
the condition −u log(−u/v) > v − u rewrites v < 0. Then, 〈(x, 1, ex), (u, v, w)〉 = v + wex is negative for
x→ −∞. And for (u < 0, w = 0), we have 〈(x, 1, ex), (u, v, w)〉 = xu+ v, which is negative for x > v/(−u).

In all cases, we were able to find a vector (x, y, z) ∈ Kexp such that 〈(x, y, z), (u, v, w)〉 < 0, so (u, v, w) /∈ K∗exp.

Page 12 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

7 A very quick guide through the PICOS interface

The python interfaces PICOS and CVXPY allow the users to easily implement conic programming problems
in python, and to solve them with state-of-the-art solvers.

We give a few details on the PICOS syntax below:

• To create a problem instance:

import picos

P = picos.Problem()

• Variables can be added to the problem as follows:

x = P.add_variable(name, size=(1,1), type="continuous")

Here, <name> is a string, <size> is an integer (for vectors) or a pair of integers (for matrices), and
<type> can be used to indicate that the variable has a special type, for example type="symmetric"

indicates that the variable is a symmetric matrix. Other interesting types are "binary" and "integer"

for (mixed)-integer optimization, but this goes out of the scope of this lecture.

• The objective function should be specified by

P.set_objective(direction, objective)

where <direction> is either "max" or "min", and <objective> is an affine expression formed with
the variables of the problem.

• Constraints are added with the syntax

P.add_constraint(cons)

where <cons> is a constraint obtained by comparing two expressions, for example

P.add_constraint(expression1 <= expression2)

P.add_constraint(expression1 == expression2)

for inequality and equality constraints, respectively.

• When the problem is fully implemented, we can solve it with

P.solve()

This calls the most appropriate solver, solves the problem, and stores the optimal value of the variables
in their value attribute. Optimal dual variables of the constraints are computed, too (cf. next chapter),
and stored in the dual attribute of the constraints.

• To enter constraints, the following operators are useful:

– The standard python operators for the usual operations are +, -, *, / and ** for exponentiation.

– The operators << and >> are used to denote the conic order relative Sn+.

– The operator | stands for the scalar product. For example, 1|x is understood as the sum of all
elements of x.

– The operator abs() stands for the Euclidean (or Frobenius) norm of its argument.

– The operator & can be used to concatenate matrix blocks, horizontally.

– The operator // can be used to concatenate matrix blocks, vertically.

– The operator picos.diag applied to a vector u returns the matrix Diag(u).

– The operator picos.diag vect applied to a matrix X returns the vector diag (X).

– The property .T transposes a vector/matrix.

– The operator picos.sum applied to a list of affine expressions, returns the sum of all expressions
in the list.

Page 13 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

• PICOS natively supports most of the nonlinear functions listed in this chapter. For example, the
constraint x2.7 <= t can be entered as is in PICOS, which automatically translates x**2.7 <= t as a
set of equivalent SOC-constraints (cf. Section 4, point (d)). Also, the constraints ‖x‖2 ≤ yz, y, z ≥ 0
can be entered in picos directly as

P.add_constraint(abs(x)**2 <= y*z)

For this special case, PICOS understands that we mean the implicit constraints y ≥ 0, z ≥ 0, and

automatically reformulates the constraint as

∥∥∥∥[2x
y − z

]∥∥∥∥ ≤ y + z. In other words, the above code

fragment is equivalent to:

P.add_constraint(abs(((2*x) // (y-z))) <= y*z)

• Here are a few examples of nonlinear functions implemented in PICOS:

– picos.sum k largest(x,k) <= t represents the constraint sk(x) ≤ t;
– picos.norm(x,p) <= t represents the constraint ‖x‖p ≤ t;

– picos.geomean(x) >= t represents the constraint G(x) =
∏
x
1/n
i ≥ t;

– picos.detrootn(X) >= t represents the constraint (detX)1/n ≥ t;
– picos.lambda max(X) <= t represents the constraint λmax(X) ≤ t.

• The exponential cone is now supported in PICOS (thanks to Maximilan Stahlberg ©):

– picos.exp(x) <= t represents the constraint ex ≤ t.
– picos.logsumexp(x) <= t represents the constraint log(

∑
i e
xi) ≤ t.

– picos.kullback leibler(x,y) <= t represents the constraint
∑
i xi log xi

yi
≤ t.

Page 14 of 15

G. Sagnol Convex Optimization: Chapter VI - Conic Programming WS 2019, TU Berlin

Example:
To illustrate the above rules, let us implement the following (dummy) problem in PICOS

min
X∈Sn,x∈Rm,t∈R

〈A,X〉+ bTx+ 3t

s.t.

[
X x
xT t

]
� 0

Diag(X) = x

0 ≤ x ≤ 1

1Tx = 1

X3,3 +X1,2 +X2,1 + 2x6 ≤ x8
‖Cx− d‖ ≤ t

We assume that the data A ∈ Sn, b ∈ Rm, C ∈ Rr×m and d ∈ Rr is already loaded in memory, and stored
in objects A,b,C,d of the class cvxopt.matrix (the package cvxopt is a dependency of PICOS).

#Define the problem and the variables

P = picos.Problem()

X = P.add_variable(’X’,(n,n),’symmetric’)

x = P.add_variable(’x’,m)

t = P.add_variable(’t’,1)

#add the constraints

P.add_constraint(((X & x)//(x.T & t)) >> 0)

P.add_constraint(picos.diag_vect(X) == x)

P.add_constraint(x >= 0) #(here, PICOS understands >= is elementwise)

P.add_constraint(x <= 1)

P.add_constraint((1|x) == 1) #(here, ‘1’ is recognized as the vector of ones)

P.add_constraint(X[2,2] + X[0,1] + X[1,0] + 2*x[5] <= x[7]) #(indices start from 0)

P.add_constraint(abs(C*x-d) <= t)

#set the objective function and solve the problem

P.set_objective(’min’,(A|X) + (b.T*x) + 3*t)

P.solve()

#5

Page 15 of 15

