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Chapter VII: Duality
In the chapter on data analysis, we will see many cases where a penalization term is added to the objective

function, that is, we minimize f(x)+λg(x) instead of minimizing f(x). We will see in this chapter that this

approach is closely related to the problem of minimizing f(x) under the constraint “g(x) ≤ α”, for some

constant α.

1 Lagrangian dual

In this section, we consider a nonlinear optimization problem of the form

minimize
x∈Rn

f0(x) (NLP)

s.t. fi(x) ≤ 0, (∀i ∈ [m])

hj(x) = 0, (∀j ∈ [p]).

We denote its optimal value by p∗ = inf{f0(x)| x ∈ Rn, fi(x) ≤ 0, ∀i ∈ [m], hj(x) = 0,∀j ∈ [p]}.

Note: We do not assume (yet) that (NLP) is convex.

Definition 1 (Lagrangian). The Lagrangian of Problem (NLP) is the function L : Rn+m+p → R∪{∞},
defined by

L(x,λ,µ) := f0(x) +
∑
i∈[m]

λifi(x) +
∑
j∈[p]

µjhj(x).

We exclude the trivial case where the domains of the fi’s and the gj ’s do not intersect, so for all (λ,µ),

there exists an x such that L(x,λ,µ) < ∞.

Definition 2 (Langrange dual function). The Lagrange dual function of Problem (NLP) is the function

g : Rm+p → R ∪ {−∞}, defined by

g(λ,µ) := inf
x∈Rn

L(x,λ,µ).

Its domain is naturally defined as dom g = {(λ,µ) ∈ Rm×Rp : g(λ,µ) > −∞}. Note that g is concave

(pointwise minimum of affine functions).

The Lagrange dual function gives us a natural bound on the optimal value of p∗. Again, we insist that

this bound is always valid (even if (NLP) is nonconvex):

Theorem 1 (Weak duality). Let λ ∈ Rm, µ ∈ Rp, with λ ≥ 0. Then,

g(λ,µ) ≤ p∗.
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Proof. We first assume that (NLP) is feasible. Let x̃ be a feasible vector. We have

g(λ,µ) = inf
x

L(x,λ,µ) ≤ L(x̃,λ,µ) = f0(x̃) +
∑
i∈[m]

λifi(x̃) +
∑
j∈[p]

µjhj(x̃).

Since x̃ is feasible, we have fi(x̃) ≤ 0 and hj(x̃) = 0 for all i, j ∈ [m]× [p]. Hence,

g(λ,µ) ≤ f0(x̃) +
∑
i∈[m]

λifi(x̃)︸ ︷︷ ︸
≤0

+
∑
j∈[p]

µjhj(x̃)︸ ︷︷ ︸
=0

≤ f0(x̃).

Since this inequality must hold for all feasible x̃, we obtain g(λ,µ) ≤ p∗.

If (NLP) is infeasible, then p∗ = ∞, while g(λ,µ) < ∞, so the statement still holds.

Theorem 2 (Weak duality (2nd version)). An alternative, equivalent formulation of the weak duality

theorem is the following inequality:

sup
λ∈Rm

+

µ∈Rp

inf
x∈Rn

L(x,λ,µ) ≤ inf
x∈Rn

sup
λ∈Rm

+

µ∈Rp

L(x,λ,µ)

Proof. It should be clear that the weak duality theorem can be rewritten as

sup
λ∈Rm

+

µ∈Rp

g(λ,µ) ≤ p∗.

Replacing the Lagrange dual function g(λ,µ) by its definition, we obtain the expression at the left-hand side of the

inequality sign. Then, we claim that the expression at the right-hand side is p∗. This follows from the fact that the

maximization problem with respect to λ and µ is separable (it is a sum of independent problems), so it can solved

easily:

sup
λ∈Rm

+

µ∈Rp

L(x,λ,µ) = f0(x) +

m∑
i=1

sup
λi≥0

λifi(x) +

p∑
j=1

sup
µj∈R

µjhj(x) =

{
f0(x) if x is feasible

+∞ otherwise.

Then, minimizing the above expression is the same as minimizing f0(x) over the feasible set, so

inf
x∈Rn

sup
λ∈Rm

+

µ∈Rp

L(x,λ,µ) = p∗.

The weak duality theorem gives us a simple way to compute lower bounds for the optimization prob-

lem (NLP). So, we may ask ourselves what is the best possible bound which we can obtain in this way. The

problem of finding the best possible lower weak-duality bound is, in fact, the optimization problem that

appears on the left-hand side of the previous theorem:

Definition 3 (Lagrangian Dual). The Lagrangian dual of (NLP) is the optimization problem

maximize
λ∈Rm,µ∈Rp

g(λ,µ)

s.t. λ ≥ 0.

We denote its optimal value by d∗, and the weak duality theorem tells us that d∗ ≤ p∗.

If (λ,µ) ∈ dom g ∩ (Rm
+ × Rp), we say that (λ,µ) is a pair of feasible Lagrange multipliers.
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In general, the duality inequality d∗ ≤ p∗ can be strict. We will see that sometimes, we can guarantee

that the primal and the dual optimization problems have the same optimal value:

Definition 4 (Strong duality). If p∗ = d∗, then we say that strong duality holds.

In general, it can be quite complicated to compute the Lagrangian dual function. We show in the next

example that there is a connection between the Lagrangian function and the Fenchel dual, for linearly

constrained problems.

Example:

Lagrangian dual of a problem with linear constraints.

We will see that the dual of an optimization problem with linear constraints involves the Fenchel conjugate

of the objective function. Consider the following optmization problem:

minimize
x∈Rn

f(x)

s.t. Ax ≤ b

Fx = g.

The Lagrangian dual function reads

g(λ,µ) = inf
x∈Rn

f(x) + λT (Ax− b) + µT (Fx− g)

= −bTλ− gTµ+ inf
x∈Rn

f(x) + xT (ATλ+ FTµ)

Recall the definition of the Fenchel conjugate of f : f∗(y) = supx xTy − f(x) = − infx f(x)− xTy. Then,

we have:

g(λ,µ) = −bTλ− gTµ− f∗(−ATλ− FTµ).

Since f∗ is convex, the dual is the convex optimization problem

maximize
λ∈Rm,µ∈Rp

− bTλ− gTµ− f∗(−ATλ− FTµ)

s.t. λ ≥ 0.

#1

There are, in fact, some hidden constraints in the formulation of the dual we derived above, because

we did not write explictly the domain of the Fenchel conjugate. For certain functions f , the constraints

−ATλ− FTµ ∈ dom f∗ can be difficult to handle.

2 Dual of conic programming problems

Things become much easier with conic programming problems: We will see that the dual of a conic pro-

gramming problem is another conic programming problem, which we can write explictly. For this we first

need to define the Lagrangian dual of a problem with generalized conic (⪯K) inequalities. Consider the conic

programming problem

p∗ = inf
x∈Rn

cTx (CP )

s.t. A0 x = b0

Ai x ⪰Ki
bi, (i = 1, . . . ,m),
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where the cones K1, . . . ,Km are proper. The Lagrangian of (CP ) is defined in a simmilar manner as

for (NLP). For each constraint we introduce a Lagrange multiplier yi ∈ Rni , where ni is the dimension of bi
(for i = 0, . . . ,m). We denote by y = [yT

0 , . . . ,y
T
m] the big vector of multipliers. Then,

L(x,y) = cTx+

m∑
i=0

yT
i (bi −Aix).

The Lagrange dual function is defined as before:

g(y) := inf
x∈Rn

L(x,y).

Then, we obtain the weak duality theorem by replacing the requirements that multipliers of ≤-inequalities

must be nonnegative, by yi ⪰K∗
i
0.

Theorem 3 (Weak duality for Conic Programming). For all vectors of Lagrange multipliers y =

(y0,y1, . . . ,ym), with y1 ⪰K∗
1
0, . . . ,ym ⪰K∗

m
0,

g(y) ≤ p∗.

In other words,

d∗ := sup
y0∈Rn0

∀i∈[m],yi⪰K∗
i
0

inf
x∈Rn

L(x,y) ≤ inf
x∈Rn

sup
y0∈Rn0

∀i∈[m],yi⪰K∗
i
0

L(x,y) = p∗.

The program on the left-hand side in the above equation is called the Lagrangian dual of (CP ).

Remark: With a slight abuse of notation, we could treat linear equalities as other constraints. To do

this, we could rewrite A0x = b0 as A0x ⪰K0 b0, where K0 = {0} ⊆ Rn0 is the trivial cone. This is an abuse

of notation, because K0 is not proper. However, we would still obtain the correct form for the dual, because

the dual cone of K0 is the whole space Rn0 .

Proof. Let x̃ be feasible for (CP ), y0 ∈ Rn0 and yi ∈ K∗
i (for all i ∈ [m]). Then,

g(y) = inf
x

L(x,y) ≤ L(x̃,y) = cT x̃+

m∑
i=0

yT
i (bi −Aix̃).

In the above sum, we claim that all terms are ≤ 0. The term of index 0 is even = 0, because b0 = A0x̃. The other

terms are scalar products of bi −Aix̃ ∈ −Ki and yi ∈ K∗
i , hence nonpositive by definition of the dual cone.

This already shows that d∗ ≤ p∗. It remains to show that p∗ is equal to the inf − sup problem on the right-hand

side. This follows from

sup
y0∈Rn0

∀i∈[m],yi⪰K∗
i
0

L(x,y) =

{
cTx if x is feasible

+∞ otherwise.

This again, is a consequence of the definition of dual cones. First, if x is feasible, we know that each term yT
i (bi−Aix)

is ≤ 0, and equality is attained by taking yi = 0. Otherwise, if x violates the ith inequality, then (bi −Aix) /∈ −Ki,

so there exists zi ∈ K∗
i such that zT

i (bi −Aix) > 0. Then, the term yT
i (bi −Aix) can be made arbitrarily large, by

setting yi = tzi for t → ∞.

Remark: If y = (y0,y1, . . . ,yn) satisfies the assumptions of Theorem (3), i.e.,

y0 ∈ Rn0 , yi ⪰K∗
i
0, ∀i ∈ [m],
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we say that y is a feasible vector of Lagrange multipliers.

Theorem 4. The Lagrangian dual of (CP ) is the following conic programming problem:

d∗ = sup
y0,y1,...,ym

m∑
i=0

bTi yi (CD)

s.t.

m∑
i=0

AT
i yi = c

yi ⪰K∗
i
0, (i = 1, . . . ,m).

Proof. We first write the primal problem as the inf − sup of the Lagrangian:

p∗ = inf
x∈Rn

sup
y0∈Rn0

∀i∈[m],yi⪰K∗
i
0

cT x̃+

m∑
i=0

yT
i (bi −Aix̃).

Then, by definition, the dual of (CP ) is obtained by switching the order of inf and sup:

d∗ = sup
y0∈Rn0

∀i∈[m],yi⪰K∗
i
0

inf
x∈Rn

cT x̃+

m∑
i=0

yT
i (bi −Aix̃)

= sup
y0∈Rn0

∀i∈[m],yi⪰K∗
i
0

inf
x∈Rn

m∑
i=0

yT
i bi + xT (c−

m∑
i=0

AT
i yi)

= sup
y0∈Rn0

∀i∈[m],yi⪰K∗
i
0

{ ∑m
i=0 y

T
i bi if c−

∑m
i=0 A

T
i yi = 0

−∞ otherwise.

because infx∈Rn xTu is finite (and equal to 0) iff u = 0. We have shown that the dual problem is to find the

feasible lagrange multipliers that maximize
∑m

i=0 y
T
i bi, under the additional that

∑m
i=0 A

T
i yi = c, which is the conic

programming problem (CD).

3 Strong Duality

3.1 Constraint qualification

We will see that when an optimization problem is convex, then usually strong duality holds. Here, “usu-

ally” indicates that some pathological cases exist. Fortunately, we will see that there exists some sufficient

conditions, called constraints qualifications, which guarantee strong duality in most cases:

Definition 5. We say that the constraints of a convex optimization problem are qualified if they satisfy

a condition which ensures that strong duality holds, i.e., p∗ = d∗.

There exist many types of constraint qualifications. In this lecture, we will focus on Slater’s condition.
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3.2 Slater’s condition for conic programming

We consider a pair of optimization problems of the form

p∗ = inf
x

cTx (CP )

s.t. A0 x = b0

Ai x ⪰Ki bi, (i = 1, . . . ,m),

and

d∗ = sup
y0,y1,...,ym

m∑
i=0

bTi yi (CD)

s.t.

m∑
i=0

AT
i yi = c

yi ⪰K∗
i
0, (i = 1, . . . ,m),

where for all i, Ki is a proper cone. Denote by IN ⊆ [m] the set of indices such that Ki is not polyhedral.

Definition 6 (Essentially strict feasibility). Problem (CP ) is called (essentially) strictly feasible if there

is a feasible vector x that satisfies all (nonlinear) conic inequalities strictly:

∃x ∈ Rn : A0 x = b0, Ai x ≻Ki bi (∀i ∈ [m]).

(or Ai x ⪰Ki
bi,∀i /∈ IN and Ai x ≻Ki

bi,∀i ∈ IN ).

Problem (CD) is called (essentially) strictly feasible if there is a dual feasible vector y =

(y0,y1, . . . ,ym) which satisfies all (nonlinear) conic inequalities strictly:

∃(y0,y1, . . . ,ym) :

m∑
i=0

AT
i yi = c, yi ≻K∗

i
0, (∀i ∈ [m]).

(or yi ⪰Ki
0,∀i /∈ IN and yi ≻Ki

0,∀i ∈ IN ).

Theorem 5 (Strong duality Theorem for conic programming). Consider a pair of primal and dual conic

programs (CP ) and (CD). Then,

1. [Weak duality]: d∗ ≤ p∗.

2. [Symmetry]: The duality is symmetric: (CD) is a conic program, and the dual of (CD) is (CP )

(or, to be more precise, the dual of (CD) is equivalent to (CP )).

3. [Strong duality]: If one of the programs (CP ),(CD) is essentially strictly feasible and bounded,

then the other is solvable (dual attainement) and p∗ = d∗ (no duality gap). In particular, if both

problems are essentially strictly feasible, then there exists a pair (x∗,y∗) of primal-dual optimal

solutions.

4. [Optimality conditions]: Let x∗ be feasible for (CP ) and y∗ be feasible for (CD). If strong duality

holds (in particular, if one of the two problems is e.s.f.), then the following statements are equivalent

(i) [optimality] : (x∗,y∗) is a pair of primal-dual optimal solutions

(ii) [no duality gap] : cTx∗ = bTy∗ (here we use bTy∗ as a shorthand for
∑m

i=0 b
T
i y∗

i )
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(iii) [complementary slackness] : y∗T
i (Ai x

∗ − bi) = 0, (i = 1, . . . ,m).

3.3 Proof of the strong duality theorem for conic programming

Proof. Weak Duality: We already proved this.

Symmetry: Let us compute the dual problem of (CD). To this end, we first express d∗ as a sup− inf problem,

and then we will switch the order of sup and inf:

d∗ = sup
yi∈Rni , ∀i∈[m]

m∑
i=0

yT
i bi + inf

x∈Rn
xT (c−

m∑
i=0

AT
i yi) +

m∑
i=1

inf
zi∈Ki

zT
i yi.

So, the dual of (CD) is

inf
x∈Rn,zi⪰Ki

0
sup

yi∈Rni

m∑
i=0

yT
i bi + xT (c−

m∑
i=0

AT
i yi) +

m∑
i=1

zT
i yi

= inf
x∈Rn,zi⪰Ki

0
cTx+ sup

∀i, yi∈Rni

yT
0 (b0 −A0x) +

m∑
i=1

yT
i (bi −Aix+ zi)

The supremum above has finite value (and is equal to 0) iff A0x = b0 and zi = Aix − bi, ∀i ∈ [m]. So the dual

of (CD) is

minimize
x∈Rn,

zi∈Rni ,∀i∈[m]

cTx

s.t. A0x = b0

zi = Aix− bi, (∀i ∈ [m])

zi ⪰ 0, (∀i ∈ [m]).

Finally, we observe that zi plays the role of a slack variable, and the above problem is equivalent to (CP ).

Strong Duality: We will only handle the case of strict feasibility. For a detailed proof of the refined result with

essentially strict feasibility, cf. [1, Section 7.1].

We have already seen in a previous lecture that every conic programming problem was equivalent to a conic

programming problem in standard form

p∗ = inf{cTx | x ∈ Rn, Ax ⪰K b} (SCP )

where K ⊂ Rm is a proper cone. The associated dual standard form is

d∗ = sup{bTy | y ∈ Rm, ATy = c, y ⪰K∗ 0}. (SCD)

By symmetry, we can assume (without loss of generality) that the strict feasibility condition is satisfied by the primal

problem (SCP ), that is,

∃x0 ∈ Rn : Ax0 ≻K b.

We already now that d∗ ≤ p∗ by weak duality, and we want to show that the optimal value is attained in the dual

problem, and d∗ ≥ p∗, that is

∃y∗ ⪰K∗ 0 : ATy∗ = c and bTy∗ ≥ p∗. (1)

We start with the case c ̸= 0, and we define

M = {Ax− b : x ∈ Rn, cTx ≤ p∗}.

We observe that M ̸= ∅ (because (SCP ) is bounded, so p∗ > −∞ and {x : cTx ≤ p∗} is a halfspace). Moreover, we

claim that M ∩ intK = ∅. Otherwise, there would be an x̄ ∈ Rn such that Ax̄ ≻K b and cT x̄ ≤ p∗, so Ax̄ ⪰K b
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holds in a neighborhood of x̄, and we could find an x∗ such that cTx∗ < cT x̄ ≤ p∗ in this neighborhood, which

contradicts that p∗ is the optimal value of (SCP ).

This shows that we can invoke the separating hyperplane theorem:

∃z ∈ Rn \ {0}, ∃u ∈ R :

{
zTy ≤ u, ∀y ∈ M

zTy ≥ u, ∀y ∈ intK.

We can assume u ≥ 0 w.l.o.g. Indeed, intK is a cone, so if ∃ȳ ∈ intK : zT ȳ < 0, then we would have infy∈intK zTy =

−∞ by taking y = t ȳ for t → ∞. On the other hand, we must have u ≤ 0, which can be seen by taking y → 0. So,

we can assume that u = 0 and

∀y ∈ intK, zTy ≥ 0 =⇒ ∀y ∈ K, zTy ≥ 0 =⇒ z ∈ K∗.

For x such that cTx ≤ p∗, we have y = Ax − b ∈ M , and the separating hyperplane theorem tells us that

zT (Ax− b) ≤ u = 0, that is,

cTx ≤ p∗ =⇒ zTAx ≤ zT b. (2)

In particular, the linear form x 7→ ⟨x, ATz⟩ is bounded on the halfspace {x : cTx ≤ p∗}. Clearly, this is only possible

if ATz is a nonnegative multiple of c: ∃µ ≥ 0 : ATz = µc.

Now, the vector y∗ = z/µ is going to be our candidate to prove the statement (1). But first, we must show that

µ ̸= 0.

Assume µ = 0. Then, we have ATz = 0. Then, Eq.(2) shows that bTz ≥ 0. Now, we use our strictly feasible

vector x0. The conic inequalities Ax0 ≻K b and z ⪰K∗ 0,z ̸= 0 imply ⟨Ax0 − b,z⟩ > 0. But then, we have

xT
0 A

Tz︸ ︷︷ ︸
=0

> bTz ≥ 0,

a contradiction.

Finally, we write y∗ = 1
µ
z. We have y∗ ⪰K∗ 0 and ATy∗ = c. For any x such that cTx ≤ p∗, we also have,

by Eq. (2), xTATz ≤ bTz =⇒ 1
µ
xTATz = xTATy∗ = xT c ≤ bTy∗. Hence, p∗ ≤ bTy∗. This concludes the proof

of (1) for the case c ̸= 0.

If c = 0, (SCP ) is a feasibility problem, so p∗ = 0 because the problem is feasible. Then, y∗ = 0 is dual optimal,

since bTy∗ = 0 and we know that d∗ ≤ 0 by weak duality.

Optimality Conditions: If strong duality holds, then x∗,y∗ are optimal iff p∗ = cTx∗ = d∗ = bTy∗. In other

words, the duality gap cTx∗ − bTy∗ is 0. But, since x∗ and y∗ are feasible, the duality gap is

cTx∗ − bTy∗ = x∗ATy∗ − bTy∗ = y∗T (ATx∗ − b),

so optimality is equivalent to the condition of complementary slackness.

3.4 The strong duality theorem for semidefinite programming

The above form of the duality theorem assumes that both the primal variables x and the dual variables

y = (y0,y1, . . . ,ym) are vectors of Rn and Rn0 × Rn1 × · · · × Rnm , respectively. You may wonder how this

is consistent with the special case of semidefinite programming, in which variables can be matrices. In fact,

the above theorem implicitly assumes that every variable has been vectorized when needed (for semidefinite

programming, you can see x as the vector of all n2 elements of the matrix X, and the cone K is the cone of

all vectorized semidefinite matrices). A more elegant formulation, which avoids the use of vectorization, is

as follows. We first need to define the notion of adjoint operators:

Definition 7 (Adjoint operator). The adjoint of a linear operator A : X 7→ Y is the unique linear

operator A∗ : Y 7→ X such that

∀x,y ∈ X × Y, ⟨A(x),y⟩Y = ⟨x, A∗(y)⟩X .
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Example:

Consider the operator A : Rn → Rm, where the spaces Rn and Rm are equipped with the usual scalar

product. Then, the adjoint of the operator x 7→ Ax is A∗ : y 7→ ATy, because

(Ax)Ty = xT (ATy).

Consider the operator F : Rn → Sm, x 7→
∑n

i=1 xiMi, for some matrices Mi ∈ Sm, and where Rn and Sm

are equipped with their usual scalar procuct. Then, the adjoint of F is F ∗ : Y 7→

 ⟨M1, Y ⟩
...

⟨Mn, Y ⟩

 , because

⟨F (x), Y ⟩ =
n∑

i=1

xi⟨Mi, Y ⟩ = xT

 ⟨M1, Y ⟩
...

⟨Mn, Y ⟩

 .

#2

Now, the primal variable x lives in a n−dimensional Euclidean vector space X equipped with an inner

product ⟨·, ·⟩X , and the dual variable y lives in the
∑m

i=0 ni−dimensional Euclidean vector space
(
Y, ⟨·, ·⟩Y

)
.

Then, the primal and dual conic problems become:

p∗ = inf
x∈X

⟨c,x⟩X (CP ′)

s.t. A(x)− b ∈ {0}n0 ×K1 × · · · ×Km

and

d∗ = sup
y

⟨b,y⟩Y (CD′)

s.t. A∗(y) = c

y ∈ Rn0 ×K∗
1 × · · · ×K∗

m

and the duality theorem translates naturally for the above pair of problems in Euclidean vector spaces, by

replacing all scalar products uTv by an inner product ⟨u,v⟩ in the appropriate space.

For convenience, we next give the duality theorem for the case of semidefinite programs in standard form:

Theorem 6 (Strong duality theorem for SDPs). Consider the pair of primal and dual SDPs

p∗ = inf
x∈Rn

cTx (SP )

s.t.

n∑
i=1

xiMi ⪰ C

and

d∗ = sup
Y ∈Sm

⟨C, Y ⟩ (SD)

s.t. ⟨Mi, Y ⟩ = ci, (∀i ∈ [n])

Y ⪰ 0,

where c ∈ Rn, C,Mi ∈ Sm (∀i ∈ [n]). Then,

1. [Weak duality]: d∗ ≤ p∗.
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2. [Symmetry]: The duality is symmetric: (SD) is an SDP, and the dual of (SD) is (SP ) (or, to be

more precise, the dual of (SD) is equivalent to (SP )).

3. [Strong duality]: If one of the programs (SP ),(SD) is strictly feasible and bounded, then the other

is solvable (dual attainement) and p∗ = d∗ (no duality gap). In particular, if both problems are

strictly feasible, then there exists a pair (x∗, Y ∗) of primal-dual optimal solutions.

4. [Optimality conditions]: Let x∗ be feasible for (SP ) and Y ∗ be feasible for (SD). If strong duality

holds (in particular, if one of the two problems is s.f.), then the following statements are equivalent

(i) [optimality]: (x∗, Y ∗) is a pair of primal-dual optimal solutions

(ii) [no duality gap]: cTx∗ = ⟨C, Y ∗⟩

(iii) [complementary slackness]: Y ∗ (
∑n

i=1 x
∗
iMi − C) = 0.

Proof. This theorem is the direct translation of Theorem 5 for the case of semidefinite programming, except for one

thing. The complementary slackness condition should be ⟨Y ∗,
∑n

i=1 x
∗
iMi − C⟩ = 0. However, since Y ∗ and x∗ are

feasible, this is the scalar product of two symmetric matrices, and we claim that for all U ⪰ 0, V ⪰ 0,

⟨U, V ⟩ = 0 ⇐⇒ UV = 0.

The implication ⇐= is trivial. For =⇒ , take some decompositions U = HHT and V = KKT . Then,

⟨U, V ⟩ = traceHHTKKT = traceKTHHTK = trace(HTK)T (HTK) = ∥HTK∥2F .

So, ⟨U, V ⟩ = 0 =⇒ HTK = 0 =⇒ UV = HHTKKT = 0.

3.5 Importance of the strict feasibility

We now discuss the importance of the strict feasibility for strong duality to hold. In fact, the strong duality

theorem contains two assumptions: one of the two problems must be strictly feasible, and it must be bounded.

The boundedness condition is not so critical, because e.g. if the primal is unbouded, then p∗ = −∞, and

by weak duality d∗ = −∞, too. So in fact, strong duality holds, and the only thing we loose is the property

of “dual attainment”. Indeed, d∗ = −∞ means that the dual problem is infeasible.

The condition of strict feasibility, however, is very important. This is a very different situation as for

the case of linear programming, where, as you may know, strong duality only fails when both problems are

infeasible, i.e., d∗ = −∞ and p∗ = ∞. This is consistent with the condition of essentially strict feasibility :

since in a linear program all constraints are linear, every LP satisfies the Slater’s condition. So the only case

where strong duality does not hold in linear programming is when problems are infeasible:

• If the two problems are feasible, then by weak duality they are also bounded, so strong duality holds.

• if exactly one of the two problems is feasible, then this problem is unbounded and the other one is

infeasible, so p∗ = d∗ = ±∞.

• If the two problems are infeasible, then strong duality fails: d∗ = −∞ and p∗ = ∞.

When there are nonlinear constraints, there are more pathological cases. For example, consider the SOCP

p∗ = inf{y| (x, y) ∈ R2,

∥∥∥∥[ x

y

]∥∥∥∥ ≤ x} (3)

The constraint is equivalent to x ≥ 0 and x2 + y2 ≤ x2 =⇒ y = 0, so p∗ = 0.
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Now, les us form the dual problem. In conic form, the primal problem reads

p∗ = inf{y| (x, y) ∈ R2,

 x

y

x

 ⪰L3
+
0}. (4)

So, since L3
+ is self-dual, we can substitute in the dual form (SCD) with b = 0, c = [0, 1]T , andA =

[
1 0 1

0 1 0

]T
.

We find

d∗ = sup{0| z ∈ R3, z1 + z3 = 0, z2 = 1, z ⪰L3
+
0, }. (5)

This problem is infeasible, because the conic constraint implies z21 + 1 ≤ (−z1)
2 ⇐⇒ 1 ≤ 0. Hence,

d∗ = −∞.

This example illustrates two weaknesses of the duality theorem for conic programming:

• First, strong duality can fail. Here, the primal is feasible and solvable, but the dual is not even

feasible. This is because the primal problem is not strictly feasible (the inequality x2+ y2 ≤ x2 cannot

be satisfied strictly).

• Second, the problem is equivalent to the LP inf{y| (x, y) ∈ R2, x ≥ 0, y = 0}, for which strong duality

clearly holds. Hence, the formulation of the problem matters!

In the exercises, we will see that there are even examples where both the primal and the dual are feasible,

so p∗ and d∗ are finite, but d∗ < p∗.

3.6 Slater’s condition for convex nonlinear programming

Definition 8. Consider the problem (NLP), and denote by

D := (

m⋂
i=0

dom fi) ∩ (

p⋂
j=1

domhj)

its domain. We say that (NLP) satisfies Slater’s condition if it is strictly feasible:

∃x ∈ intD : f0(x) < ∞, fi(x) < 0,∀i ∈ [m], hj(x) = 0,∀j ∈ [p].

More generally, we also say that that (NLP) satisfies Slater’s condition if it is essentially strictly feasible,

that is, there exists a feasible x ∈ relintD that satisfies all non-affine inequalities strictly (fi(x) < 0).

Theorem 7 (Strong Duality under Slater’s condition). Let (NLP) be a convex optimization problem that

satisfies Slater’s condition. Then,

• there is no duality gap, i.e., p∗ = d∗;

• moreover, if (NLP) is bounded from below, then the optimal value can be attained in the dual

problem:

∃λ ∈ Rm
+ ,∃µ ∈ Rp : g(λ,µ) = d∗ = p∗.

We are not going to prove this result, as the proof uses similar ideas as the proof of Theorem (5) for conic

programming.
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3.7 Karush Kuhn Tucker optimality conditions

We now derive necessary and sufficient optimality conditions for convex nonlinear programming.

Theorem 8 (Karush-Kuhn-Tucker). Let (NLP) be a convex optimization problem, in which the functions

f0, . . . , fm are differentiable, and assume that strong duality holds (in particular, this is the case when

the constraints satisfy Slater’s condition). [Note that since the problem is convex, the functions hj must

be affine, hence they are always differentiable.] Then, (x, (λ,µ)) is a pair of primal and dual optimal

solutions if and only if the following equations (often abbreviated as KKT conditions for Karush-Kuhn-

Tucker), hold:

[Stationarity]: ∇f0(x) +

m∑
i=1

λi∇fi(x) +

p∑
j=1

µj∇hj(x) = 0

[Primal feasibility]: fi(x) ≤ 0, ∀i ∈ [m], hj(x) = 0, ∀j ∈ [p];

[Dual feasibility]: λ ≥ 0;

[Complementary slackness]: λifi(x) = 0, ∀i ∈ [m].

Remark: For non-convex optimization problems, when a constraint qualification holds (such as Slater’s),

it can also be shown that the KKT conditions are necessary conditions for local optimality: If x is a local

optimum, then there exist Lagrange multipliers (λ,µ) such that the KKT conditions hold.

Proof. =⇒ : Let (x∗, (λ∗,µ∗)) be a pair of primal and dual optimal solutions. Then, it is clear that the conditions

of primal and dual feasibility hold. Then, the Lagrange dual function at λ∗,µ∗ is

d∗ = g(λ∗,µ∗) = inf
x

f0(x) +
∑
i∈[m]

λ∗
i fi(x) +

∑
j∈[p]

µ∗
jhj(x)

≤ f0(x
∗) +

∑
i∈[m]

λ∗
i fi(x

∗)︸ ︷︷ ︸
≤0

+
∑
j∈[p]

µ∗
jhj(x

∗)︸ ︷︷ ︸
=0

≤ f0(x
∗) = p∗.

Since strong duality holds, p∗ = d∗, and the above inequalities must be equalities. It follows that, for all i ∈ [m],

λ∗
i fi(x

∗) = 0 (this is the condition of complementary slackness), and x∗ minimizes the Lagrangian L(x,λ∗,µ∗) over

Rn, so its gradient vanishes at x∗ (this is the condition of stationarity).

⇐= : Let (x∗, (λ∗,µ∗)) satisfy the KKT conditions. The stationarity condition tells us that x∗ minimizes

the Lagrangian x 7→ L(x,λ∗,µ∗) over Rn (because this is a convex function), that is, L(x∗,λ∗,µ∗) = g(λ∗,µ∗).

Moreover,

L(x∗,λ∗,µ∗) = f0(x
∗) +

∑
i∈[m]

λ∗
i fi(x

∗)︸ ︷︷ ︸
=0

+
∑
j∈[p]

µ∗
jhj(x

∗)︸ ︷︷ ︸
=0

= f0(x
∗),

where the “= 0” follow from primal feasibility and complementary slackness. We have shown that f0(x
∗) = g(λ∗,µ∗).

There is no duality gap, so (x∗,λ∗,µ∗) are optimal.

4 Sensitivity analysis

In this section, we consider a perturbed version of (NLP):

p∗(u,v) = inf
x∈Rn

f0(x) (Pu,v)

s.t. fi(x) ≤ ui, ∀i ∈ [m]

hj(x) ≤ vj , ∀j ∈ [p]
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When we perform an analysis of sensitivity of Problem (NLP), we ask ourselves how the optimal value p∗

varies when we perturb the right-hand sides u and v of the constraints.

We first have a global sensitivity result:

Theorem 9 (Global sensitivity). Let (NLP) be a convex optimization problem for which strong duality

holds. Denote by (λ∗,µ∗) a pair of optimal Lagrange multiplers. Then,

p∗(u,v) ≥ p∗(0,0)− λ∗Tu− µ∗Tv

Proof. By strong duality, p∗(0,0) = p∗ = d∗ = g(λ∗,µ∗).

Now, let x be any vector which is feasible for the perturbed problem (Pu,v). It holds

g(λ∗,µ∗) ≤ f0(x) +
∑
i∈[m]

λ∗
i fi(x) +

∑
j∈[p]

µ∗
jhj(x)

Since λ∗ ≥ 0 by dual feasibility, and fi(x) ≤ ui, hj(x) = vj , we get

p∗(0,0) = g(λ∗,µ∗) ≤ f0(x) + λ∗Tu+ µ∗Tv.

The result of the theorem follows by taking the infimum over all x in the feasible set of (Pu,v).

We also mention a local sensitivity result, which helps for the interpretation of the optimal dual values:

Theorem 10 (Local sensitivity). Let (NLP) be a convex optimization problem for which strong duality

holds. Denote by (λ∗,µ∗) a pair of optimal Lagrange multiplers, and assume that p∗(u,v), seen as a

function of u and v, is differentiable at u = 0,v = 0. Then, for all (i, j) ∈ [m]× [p],

∂p∗(0, 0)

∂ui
= −λ∗

i ,
∂p∗(0, 0)

∂vj
= −µj .

Proof. By definition,
∂p∗(0, 0)

∂ui
= lim

t→0

p∗(tei,0)− p∗

t
.

From the global sensitivity result, we know that for all t, p∗(tei,0) ≥ p∗ − tλ∗
i . That is,

p∗(tei,0)−p∗

t
≥ −λ∗

i for t > 0,

and p∗(tei,0)−p∗

t
≤ −λ∗

i for t < 0. If p∗(·, ·) is differentiable, then the limit exists and must be equal to −λi.

The proof for the derivative relative to vj is similar.
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