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Chapter VIII: SDP in

Combinatorial Optimization

1 Stable Sets and Graph Coloring

In this section, we consider a simple, undirected graph G = (V,E). Formally, an edge between the edges

u ∈ V and v ∈ V should be represented by an unordered pair {u, v} ∈ E, but we will write uv ∈ E for the

sake of simplicity. In particular, uv ∈ E ⇐⇒ vu ∈ E.

Definition 1 (Stable set). Let G be a simple graph. A subset of vertices S ⊆ V is called stable (or

independent) if

u ∈ S, v ∈ S =⇒ uv /∈ E.

The stable set problem is defined as follows: Given a simple graph G = (V,E), find the largest stable set

of G. The stability number (or independent number) of the graph is defined as the cardinality of the largest

stable set. We denote it by α(G).

The stable set problem admits the following formulation as an integer linear program:

α(G) = max
x

∑
v∈V

xv (1)

s.t. xu + xv ≤ 1, ∀uv ∈ E
x ∈ {0, 1}V

The fractional relaxation of the above IP, where the constraints xv ∈ {0, 1} are replaced by 0 ≤ xv ≤ 1,

can be shown to be half-integer (there always exists an optimal solution such that xv ∈ {0, 12 , 1}, ∀v ∈ V ).

These half-integer solutions can be quite poor; for example, it is easy to see that for the complete graph

Kn, the fractional solution of (1) is xv = 1
2 for all v ∈ V , which yields the fractional value of

∑
v∈V xv = n

2 ,

while α(Kn) = 1.

We will see that semidefinite programming allows us to formulate a stronger relaxation, which even yields

an exact algorithm for a large class of graphs.

Definition 2 (Clique number). A clique of G is a subset U ⊆ V such that u, v ∈ U =⇒ uv ∈ E. The

largest cardinality of a clique is called the clique number, and is denoted by ω(G).

Definition 3 (Chromatic number). A k-coloring of G is a partition of its vertices in exactly k stable

sets. The chromatic number of G is the smallest number k such that a k−coloring exists, and is denoted

by χ(G)
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Definition 4 (Clique cover number). A k-clique cover of G is a partition of its vertices in exactly k

cliques. The clique cover number of G is the smallest number k such that a k−clique cover exists, and

is denoted by χ̄(G).

To summarize,

α(G) = max{|S| : S is a stable set of G} [stability number]

ω(G) = max{|C| : C is a clique of G} [clique number]

χ(G) = min{k : V = S1 ] · · · ] Sk,where the Si’s are stable sets of G} [chromatic number]

χ̄(G) = min{k : V = C1 ] · · · ] Ck,where the Ci’s are cliques of G}. [clique cover number]

Let Ḡ denote the complementary graph of G, that is, Ḡ = (V, Ē), where Ē = EK \ E and EK is the set

of edges on the complete graph over V . In other words, i and j are connected in Ḡ iff they are not connected

in G. It is straigtforward to show that

Proposition 1. α(G) = ω(Ḡ) and χ(G) = χ̄(Ḡ).

Proof. This results from the simple observation

S is stable in G ⇐⇒ S is a clique in Ḡ.

It is also clear that

ω(G) ≤ χ(G),

because each vertex of a clique must be assigned to different colors. Hence, by taking the complementary

graph, we obtain

α(G) ≤ χ̄(G).

A graph in which the equality ω(G′) = χ(G′) holds for all induced subgraphs G′ of G (including G′ = G) is

called a perfect graph. Lovász showed in 1972 that a graph is perfect iff its complementary is perfect. Hence,

in a perfect graph it also holds that α(G) = χ̄(G). The class of perfect graphs was finally characterized in

2006 by Chudnovsky, Robertson, Seymour, and Thomas [3], in a theorem that we will not prove:

Theorem 2. A graph G is perfect if and only if neither G nor Ḡ contains an odd cycle of length ≥ 5 as

an induced subgraph.

We also point out that there is a polynomial-time algorithm that recognizes whether a graph is perfect.

We will now present what is often refered as the Sandwich theorem of Lovász. It states that there is a

function of G, equal to the value of some SDP, that lies between α(G) and χ̄(G). As a consequence, α(G)

and χ̄(G) can be computed in polynomial time if G is perfect. In contrast, note that computing any of α(G)

or χ(G) is NP-hard for general graphs.
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Definition 5. The theta-function of Lovász is defined for all graphs G, as follows:

ϑ(G) = max
X∈Sn

〈J,X〉 (2)

s.t. 〈I,X〉 = 1

Xij = 0, ∀ij ∈ E
X � 0.

Recall that I denotes the identity matrix and J = 11T is the matrix of all-ones. Hence, 〈I,X〉 = traceX

and 〈J,X〉 =
∑n
i=1

∑n
j=1Xij .

We can also define ϑ(G) by the dual SDP:

Proposition 3.

ϑ(G) = min
t,Z∈Sn

t (3)

s.t. Z � tI
Zij = 1, ∀(i, j) such that (i = j or ij ∈ Ē).

This SDP can also be rewritten as an eigenvalue problem:

ϑ(G) = min
Z∈Z

λmax(Z),

where Z := {Z ∈ Sn| Zii = 1, ∀i ∈ [n]; Zij = 1, ∀ ij ∈ Ē}.

Proof. We start to show that the two SDPs are dual from each other. To this end, we first rewrite the max SDP as

a saddle point (max-min) problem:

ϑ(G) = sup
X�0
〈J,X〉 + inf

t∈R
t · (1− 〈I,X〉) +

∑
ij∈E

inf
uij∈R

uij ·Xij

The dual problem is obtained by switching the order of sup and inf. By weak duality,

ϑ(G) ≤ ϑ′(G) := inf
t∈R,uij∈R

t + sup
X�0

〈
X, J − t I +

∑
ij∈E

uij Ei,j
〉
,

where Ei,j = 1
2
(eie

T
j + eje

T
i ) is the matrix with 1

2
on the (i, j)- and (j, i)-coordinates and 0’s elsewhere, so it holds

Xij = 〈X,Eij〉 for i 6= j. The above supremum is finite (and has value 0) if and only if J − t I +
∑
ij∈E uij Ei,j � 0.

Hence,

ϑ′(G) = inf
t∈R,uij∈R

t

s.t. J +
∑
ij∈E

uij Ei,j � t I,

Then, the dual SDP of the proposition is obtained by making the change of variable Z = J +
∑
ij∈E uij Ei,j , which

is a symmetric matrix with arbitrary entries on coordinates (i, j) where ij ∈ E, and with ones elsewhere, that is,

Z ∈ Z. The formulation as an eigenvalue problem follows from the SDP-representation of λmax(·).
It remains to show that strong duality holds, so ϑ(G) = ϑ′(G). We are going to show that both SDPs are strictly

feasible, which also implies that they are also bounded and attain their optimal values (so we can safely write “max”

and “min” in the formulations of ϑ(G) instead of “sup” and “inf”).
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The matrix X = 1
n
In is clearly strictly feasible for the primal SDP (the maximization problem). For the dual

SDP, we observe that Z ≺ tI iff λmax(Z) < t. We can thus take an arbitrary matrix Z ∈ Z, and choose t > λmax(Z),

so the pair (Z, t) is strictly feasible for the dual SDP.

In the exercises, we will give yet another alternative SDP formulation of ϑ(G), which can be derived in a

systematic way, as a relaxation from the integer quadratic programming formulation of α(G). We are now

ready to prove the

Theorem 4 (Lovász’s Sandwich theorem [7]).

α(G) ≤ ϑ(G) ≤ χ̄(G).

Proof. For the first inequality, α(G) ≤ ϑ(G), let S be a maximal stable set, and denote by eS the incidence

vector of S: eS is the {0, 1}-vector of size n with a one on the ith coordinate iff i ∈ S. Then, we can see

that X = 1
|S| eSe

T
S is feasible for (2). Indeed, X � 0 because it is defined as a tensor product of two vectors,

traceX = 1
|S| trace eSe

T
S = 1

|S|e
T
SeS = 1, and for all ij ∈ E, we have (i /∈ S or j /∈ S) because S is a stable,

so (eSe
T
S )ij = 0 =⇒ Xij = 0. This shows that ϑ(G) ≥ 〈J,X〉, since the optimal value of the SDP is at

least as large as the value of the particular solution X:

ϑ(G) ≥ 〈J,X〉 =
1

|S|
eTSJeS =

1

|S|
(eTS1)2 =

1

|S|
(|S|)2 = |S| = α(G).

We will proceed similarly for the second inequality, by identifying a feasible solution of value χ̄(G) for

the dual SDP. Let C1, . . . , Ck be a minimal k−clique cover of G, and denote by eCj the incidence vector

of Cj . We claim that Z = k I − 1
k

∑k
j=1(keCj − 1)(keCj − 1)T and t = k are feasible for the SDP (3).

Indeed, t I − Z = 1
k

∑k
j=1(keCj − 1)(keCj − 1)T is a sum of rank-one positive semidefinite matrices, and

t I � Z. Then, by observing that
∑k
j=1 eCj = 1 (because the Cj ’s form a partition of V ), we can expand

the expression of Z:

Z = k I − 1

k

k∑
j=1

(keCj − 1)(keCj − 1)T = k I − k
k∑
j=1

eCje
T
Cj + 2J − J

= k (I −
k∑
j=1

eCje
T
Cj ) + J.

Finally, the elements of the matrix U := (I −
∑k
j=1 eCje

T
Cj

) are

Uij =

{
−1 if i 6= j belong to the same clique;

0 otherwise,

so the diagonal elements of Z are Zii = Jii = 1, and for ij ∈ Ē, the vertices i and j must belong to different

cliques, so Zij = Jij = 1. This shows Z ∈ Z, and ϑ(G) ≤ t = k = χ̄(G).

We will see in the exercises that Semidefinite Programming can also be used to compute a maximum

stable set in a perfect graph G. The algorithm needs to solve n+ 1 times the Lovász’s SDP. Note that there

is no known algorithm to compute a maximum stable set for perfect graphs without SDP. It is also possible

to write an algorithm based on the Lovász’s ϑ-function to compute a minimum coloring of perfect graphs.
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2 Maxcut SDP

Let G be a simple graph with weights wij ≥ 0,∀ ij ∈ E.

Definition 6 (cut). A cut of G is a partition of V in two node sets S and S̄. The weight of a cut is

the sum of the weights of the cut edges:

cut(S, S̄) =
∑
ij∈E

i∈S,j /∈S

wij

The maximum cut problem asks to find the cut of maximum weight. From now on, we assume without

loss of generality that G is the complete graph, since adding edges of weight 0 does not change the maximum

cut.

We represent a cut by a vector x ∈ {−1, 1}n, where xi = 1 if i ∈ S, and xi = −1 if i ∈ S̄. Then, we have

1− xixj =

{
2 if {i, j} is a cut-edge

0 otherwise.

It follows that cut(S, S̄) = 1
2

∑
ij∈E wij(1−xixj) = 1

4

∑
1≤i,j≤n wij(1−xixj) (there is an additional 1

2 -factor

because each edge is counted twice in the sum). So the maximum cut problem can be formulated as

maximize
x

1

4

∑
i,j

wij(1− xixj)

x ∈ {−1, 1}n.

To formulate an SDP relaxation, we introduce a matrix variable X, and we would like that Xij = xixj .

To this end, we use the following lemma

Lemma 5. The matrix X ∈ Sn satisfies Xij = xixj for some vector x ∈ {−1, 1}n if and only if

X � 0, diag (X) = 1, and rank (X) = 1.

Proof. We know that positive semidefinite matrices of rank 1 are of the form X = uuT for some vector u ∈ Rn, that

is, Xij = uiuj . Moreover, we have (uuT )ii = (ui)
2, so Xii = 1 ⇐⇒ ui ∈ {−1, 1}.

If X satisfies the property of this lemma, then it holds

cut(S, S̄) =
1

4

∑
i,j

wij(1− xixj) =
1

4
〈W,J −X〉,

where W is the symmetric matrix such that both Wij and Wji are set to the weight wij of the edge {i, j}.
If follows that the maximum cut problem is equivalent to the following optimization problem:

maximize
X∈Sn

1

4
〈W,J −X〉

diag (X) = 1

X � 0

rank (X) = 1.

The above problem is not an SDP, because of the nonconvex rank-one constraint. However, we otain an
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SDP relaxation by removing that constraint:

maximize
X∈Sn

1

4
〈W,J −X〉 (4)

diag (X) = 1

X � 0

Denote the optimal value of this relaxation by SDP. Since this is a relaxation (we removed a constraint,

hence we optimize over a larger set of matrices), we have

maxcut(G) ≤ SDP .

Note: In the exercises, we will give an alternative formulation for the MAXCUT SDP, which relies on the

Laplacian matrix of the graph G, and can be used to derive analytic bounds on maxcut(G).

In a seminal paper, Goemans and Williamson showed that it is also possible to use the SDP (4) to derive

an approximation algorithm for the maximum cut problem [5]. We next present this randomized algorithm,

which relies on projections on a random hyperplane:

1. Compute a solution X∗ of the SDP (4).

2. Compute a decomposition X∗ = HTH (for example, a Cholesky decomposition). Denote the columns

of H by h1, . . . ,hn. Note that the constraint X∗ii = 1 implies hTi hi = 1. Hence, the hi’s have unit

norm.

3. Draw a vector r uniformly at random over the unit sphere of Rn. To do this, one can draw independently

some zi ∼ N (0, 1) for i = 1, . . . , n, and then take r = 1
‖z‖z.

4. Finally, return the cut defined by S = {i ∈ V : rThi > 0}. (Or, equivalently, define the cut through

the vector xi = sign(rThi), ∀i ∈ [n].)

Theorem 6 (Goemans & Williamson). Let (S, S̄) be the (random) cut returned by the above random

projection algorithm. Then,

E[cut(S, S̄)] ≥ α SDP ≥ α maxcut(G),

where α ' 0.87856.

The proof of this theorem is based on the following lemma:

Lemma 7. Let u and v be two vectors on the unit sphere on Rn, and let r be a random vector drawn

uniformly at random on the sphere. Denote by H be the hyperplane {x ∈ Rn : xTr = 0}. Then, the

probability that H separates u and v is equal to θ
π , where θ = arccos(uTv) is the angle between u and v.

Proof. (Sketch) We can reason in the two-dimensional subspace which contains u and v, and for a suitable basis

(e1, e2) of this subspace, it holds u = e1 and v = cos(θ)e1 + sin(θ)e2. Then, it is easy to see that the projection

of r on this subspace is a vector of the form r = ρ
(

cos(α)e1 + sin(α)e2

)
, where ρ ≤ 1 and α is drawn unifomly at

random in [0, 2π]. Finally, the hyperplane defined by r separates u and v iff r lies in a two-sided cone of angle θ,

which occurs with probability 2θ
2π

.

We are now ready to prove the theorem:
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Proof. The expected weight of the cut (S, S̄) is

E[cut(S, S̄)] =
∑
ij∈E

wijP[{i, j} belongs to the cut set]

=
∑
ij∈E

wij
arccos(hi

Thj)

π

Now we multiply and divide the (i, j)th term of this sum by 1
2
(1− hi

Thj) = 1
2
(1−X∗ij):

E[cut(S, S̄)] =
∑
ij∈E

1

2
wij(1−X∗ij)

2 arccos(hi
Thj)

π(1− hi
Thj)

A straigtforward analysis shows that α := infθ∈[0,π]
2
π

θ
1−cos(θ)

' 0.87856. Hence,

E[cut(S, S̄)] ≥ α
∑
ij∈E

1

2
wij(1−X∗ij) = α

∑
1≤i,j≤n

1

4
wij(1−X∗ij) = α

1

4
〈W,J −X∗〉 = α SDP .

3 Further extensions of the MAXCUT result

3.1 Nesterov’s 2
π
-approximation

There exists an alternative formulation of the MAXCUT SDP, in which the objective function is the scalar
product between X and a positive semidefinite matrix. To see this, note that the equality Xii = 1 holds for
all i, so the objective function of (4) rewrites

1

2

∑
i<j

wij(1−Xij) =
1

4

∑
i<j

wij(Xii +Xjj − 2Xij) =
1

4

∑
i<j

wij(ei − ej)
TX(ei − ej) =

1

4
〈X,L〉,

where L :=
∑
i<j wij(ei − ej)(ei − ej)

T is the Laplacian matrix of the graph G. By construction, L is
positive semidefinite, because it is a conic combination of rank-one positive semidefinite matrices.

Nesterov [8] generalized the result of Goemans and Williamson to the case where the matrix Q � 0 is
any positive semidefinite matrix (not necessarily the Laplacian matrix of some graph). This means that we
are interested in solving the following binary quadratic program

maximize
x∈{−1,1}n

xTQx, (5)

which we relax to the SDP

maximize
X∈Sn

〈Q,X〉

s.t. diag (X) = 1

X � 0.

The proposed rounding scheme is the same as for MAXCUT: We solve the SDP, and get a decomposition
of the optimal matrix X in order to get unit vectors ui with uTi uj = Xij . Then, we draw a Gaussian vector
r at random and define xi = sign(rTui). Obviously, the geometric lemma 7 still holds for this problem, so
P[xi 6= xj ] = 1

π arccos(Xij). From there, we get

E[xixj ] = 1 · P[xi = xj ]︸ ︷︷ ︸
1−arccos(Xij)/π

+(−1) · P[xi 6= xj ]︸ ︷︷ ︸
arccos(Xij)/π

= 1− 2

π
arccos(Xij) =

2

π
arcsin(Xij).
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Therefore, the expected value of the rounding can be expressed by

E[xTQx] = 〈Q,E[xxT ]〉 =
2

π
〈Q, arcsin(X)〉,

where the arcsin operator is applied elementwise to the matrix X. Now, we need the following results:

Proposition 8 (Schur Product Theorem). Let X � 0 and Y � 0. Then, X ◦ Y � 0, where X ◦ Y ∈ Sn
denotes the Hadamard (elementwise) product of X and Y , i.e., (X ◦ Y )ij = XijYij.

Proof. Consider eigendecompositions X =
∑
i λiuiu

T
i and T =

∑
i µiviv

T
i . Then,

X ◦ Y =
∑
i

∑
j

λiµj(uiu
T
i ) ◦ (vjv

T
j ).

Now, we observe that the identity (uuT ) ◦ (vvT ) = (u ◦ v)(u ◦ v)T holds for all vectors u,v (both matrices have
coordinates uiujvivj). So, X◦Y =

∑
i

∑
j λiµj(uiv

T
j )◦(uivTj ) is a conic combination of rank-one positive semidefinite

matrices, which implies X ◦ Y � 0.

Lemma 9. arcsin(X) � X.

Proof. The function arcsin admits the following Taylor series:

arcsin(x) = x+
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ . . . , ∀|x| ≤ 1.

Now, we observe that |Xij | ≤ 1 for all i, j, because we know that the diagonal elements of X are Xii = 1, and X � 0
implies |Xij | ≤

√
XiiXjj = 1. So we can apply the above series componentwise, which gives

arcsin(X) = X +
1

2

X◦3

3︸ ︷︷ ︸
�0

+
1 · 3
2 · 4

X◦5

5︸ ︷︷ ︸
�0

+
1 · 3 · 5
2 · 4 · 6

X◦7

7︸ ︷︷ ︸
�0

+ . . . � X,

where the conic inequality follows from the Schur product theorem (Proposition 8).

We are now ready to prove Nesterov’s result:

Theorem 10 (Nesterov).

E[xTQx] ≥ 2

π
SDP ≥ 2

π
OPT.

Proof. We know that arcsin(X) � X from Lemma 9 and that Q � 0, so 〈Q, arcsin(X)−X〉 ≥ 0. Therefore,

E[xTQx] =
2

π
〈Q, arcsin(X)〉 ≥ 2

π
〈Q,X〉 =

2

π
SDP.

Finally, SDP ≥ OPT holds because SDP is a relaxation of the binary quadratic program (5).

3.2 A 0.651-approximation algorithm for MAX-BISECTION

The problem of MAX-BISECTION is simular to MAXCUT, except that the returned cut is constrained to
partition the vertices in two sets of equal size. So, we assume that |V | = n is even, and we want to maximize
cut(S, S̄) subject to the constraint that |S| = n

2 .
In this section, we present a 0.651-approximation algorithm due to Frieze and Jerrum [4], but we point

out that this result has been improved by several authors. The best approximation factor known to date for
this problem is very close to the 0.878 performance guarantee of MAXCUT [1], but it requires solving several
rounds of the Lasserre hierarchy of SDPs (cf. next chapter), so its running time –although polynomial– is
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very bad: the authors claim estimates in the order of O(n10
100

)... In contrast, the algorithm we present
involves solving a simple SDP.

In order to refine the SDP (4), we observe that if the vector x ∈ {−1, 1}n defines a bisection, then
1Tx = 0. Squaring this equality yields 1TxxT1 = 0, so the equality 1TX∗1 = 〈J,X∗〉 = 0 must be satisfied
by the matrix X∗ = x∗x∗T , where x∗ is the {±1}-indicator vector of the maximal bisection cut. This shows
that the following SDP is a relaxation of MAX-BISECTION:

maximize
X∈Sn

1

4
〈W,J −X〉 (6)

diag (X) = 1

〈J,X〉 = 0

X � 0

The rounding algorithm proposed by Frieze & Jerrum works as follows: As in the algorithm of Goemans
and Williamson, solve the SDP and factorize the optimal matrix X, in order to obtain some unit-length
vectors ui satisfying uTi uj = Xij .

Then, for a vector p ∈ Rn, we define a bisection (S(p), S(p)) as follows: let S1 = {i : uTi p ≥ 0}, S2 =
{i : uTi p < 0}, and assume w.l.o.g that |S1| ≥ |S2| (otherwise, swap S1 and S2). Finally, sort the elements
of S1 as i1, . . . , i`, so that ζi1 ≥ ζi2 ≥ . . . ≥ ζi` , where ` = |S1| ≥ n

2 and ζi =
∑
j∈S2

wij , and define
S(p) = {i1, . . . , in2 }. In simple words, the last step greedily reassigns points from the larger set S1 to the
smaller set S2, until both sets have the same size.

Theorem 11 (Frieze & Jerrum). Generate independent random Gaussian vectors p1, . . . ,pK ∼ N (0, I),
and output the best bisection cut S from S(p1), . . . , S(pK). If K ≥ 2

ε log( 2
ε ) for some ε > 0, then

E[cut(S, S̄)] ≥
(

2(
√

2α− 1)︸ ︷︷ ︸
>0.6511

−ε
)
OPT,

where α ' 0.87856 is the approximation factor of Theorem 6 for MAXCUT, and OPT denotes the optimal
value of the maximum bisection problem.

Proof (sketch). Let p ∼ N (0, I) and consider the sets S1 and S2, as described above. We introduce the random
variables C = cut(S1, S2) and Y = |S1|·|S2|. The first thing to observe is that the analysis of Goemans and Williamson
still holds, so

E[C] ≥ αSDP ≥ αOPT.
Now, to get a bound on E[Y ], we will use the fact that 〈J,X〉 = 0 (this is a constraint of the refined SDP):

E[Y ] =
∑
i<j

P[(i, j) are separated by cut (S1, S2)]

=
∑
i<j

arccos(Xij)

π
(By Lemma 7)

≥
∑
i<j

α

2
(1−Xij) (By definition of α)

=
α

2

∑
i<j

1− 1

2
(〈J,X〉︸ ︷︷ ︸

=0

− traceX︸ ︷︷ ︸
=n

)


=
α

2

(
n(n− 1)

2
+
n

2

)
= α

n2

4
.

So E[Y ] is at least within a fraction α of y∗ = n2

4
, where y∗ is the largest value Y can take (when |S1| = |S2| = n

2
).

Then, we define the random variable Z = C
OPT

+ Y
y∗ . The above inequalities show that E[Z] ≥ 2α, while Z is a

random variable with bounded support (we have Z ∈ [0, 3], because Y ≤ y∗ and it can be seen that C ≤ 2OPT ).
Therefore, if we draw enough samples z1, . . . , zK from the random variable Z, we will soon get one zi ≥ E[Z].
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The precise analysis of Frieze and Jerrum shows that if K ≥ ε−1 log ε−1, then max(z1, . . . , zK) ≥ (1 − ε)E[Z] with
probability ≥ 1− ε. For the sake of simplicity, let us forget about the ε, and assume that after K random draws, we
obtained two sets S1 and S2 such that

cut(S1, S2)

OPT
+
|S1| · |S2|

y∗
≥ E[Z] ≥ 2α. (7)

Now, consider the bisection cut S = {i1, . . . , in/2} returned by the greedy swapping procedure applied to S1 and S2.
By construction,

cut(S, S̄) =
∑
i∈S

∑
j∈S̄

wij ≥
∑
i∈S

∑
j∈S2

wij =
∑
i∈S

ζi ≥
n/2

|S1|
∑
i∈S1

ζi =
n/2

|S1|
cut(S1, S2), (8)

where the first inequality follows from S2 ⊆ S̄ and the second inequality from the fact that S retains the n/2 elements
of S1 with the largest ζi’s.

Assume that cut(S1, S2) = λ ·OPT and |S1| = δn, so that inequality (7) rewrites

λ+
δn(n− δn)

n2/4
= λ+ 4δ(1− δ) ≥ 2α ⇐⇒ λ ≥ 2α− 4δ(1− δ). (9)

Combining (8) and (9), we get

cut(S, S̄) ≥ n/2

δn
λ ·OPT ≥ 1

2δ

(
2α− 4δ(1− δ)

)
·OPT.

Finally, it is easy to see that the function δ 7→ 1
2δ

(
2α− 4δ(1− δ)

)
= α

δ
+ 2δ− 2 is minimized for δ =

√
α
2
∈ [0, 1], and

substituting this value in the above inequality yields

cut(S, S̄) ≥ 2(
√

2α− 1)OPT.

Clearly, the best bisection cut from S(p1), . . . , S(pK) is at least as good as the cut obtained from the sets (S1, S2)
for which (7) holds. A more precise analysis with the ε yields the precise statement from the theorem.

3.3 MAX-3-CUT via complex SDP

Goemans and Williamson proposed an elegant extension of their result to the case of MAX-3-CUT [6], by
using complex semidefinite programming, which is conic programming over the cone Hn+ ⊂ Cn×n of positive
semidefinite hermitian matrices. The problem MAX-3-CUT asks to partition the vertices of G in 3 subsets
S0, S1, S2, so that the weight of all edges with endpoints in two different subsets is maximized.

For a vertex v ∈ V , let xv ∈ {0, 1, 2} denote the index of the partition to which v is assigned, and denote

zv = ωxv , where ω = e2i
π
3 = − 1

2 + i
√
3
2 ∈ C is the principal third complex root of unity. For all i, j ∈ V ,

note that ziz̄j + zj z̄i = 2 if xi = xj , and ziz̄j + zj z̄i = −1 otherwise. Hence, the weight of the 3−cut defined
by x can be expressed as

cut(S1, S2, S3) =
∑
i<j

wij1{xi 6=xj} =
∑
i<j

wij
3

(2− ziz̄j − zj z̄i).

So the problem of maximizing the above expression, subject to the constraints that zi ∈ R3 := {1, ω, ω2},∀i,
is equivalent to MAX-3-CUT. To obtain an SDP relaxation, we first introduce the Hermitian matrix Z ∈ Hn
such that Zij = ziz̄j . Note that Z = zz∗, so Z is positive semidefinite and has rank one (recall that
z∗ := z̄T denotes the conjugate transpose of z ). The diagonal elements of Z are Zii = ziz̄i = |zi|2 = 1,
and the off-diagonal elements are Zij = R3. We obtain a Hn+-cone programming relaxation by ignoring the
rank-one constraint, and by constraining Zij in conv(R3), that is, the triangle in the complex plane whose
vertices are the third roots of unity:

maximize
Z∈Hn

∑
i<j

wij
3

(2− Zij − Zji)

s.t. Zii = 1, ∀i ∈ V
αZij + ᾱZji ≥ −1, ∀α ∈ R3, ∀i < j

Z �Hn+ 0.
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In the above program, it can be seen that the three constraints involving Zij (for each α ∈ R3) are equivalent
to Zij ∈ conv(R3).

The first thing you might ask yourself is: can we solve such a cone program over Hn+ efficiently? In
fact, it is possible to reformulate such problems as an equivalent real-valued SDP. To see this, the trick is to
introduce the matrix

M =

[
X −Y
Y X

]
,

where Z = X + iY is the decomposition of Z into real and imaginary parts. Clearly, M must be symmetric
(because X is symmetric and Y is skew-symetric, so Y T = −Y ), and it can be seen that for all x,y ∈ Rn,
with z = x + i · y ∈ Cn, it holds z∗Zz = xTXx + 2yTY x + yTXy = [xT ,yT ]M [xT ,yT ]T . Therefore,

Z �Hn+ 0 ⇐⇒ z∗Zz ≥ 0, ∀z ∈ Cn ⇐⇒
[

x
y

]T
M

[
x
y

]
≥ 0, ∀

[
x
y

]
∈ R2n ⇐⇒ M � 0.

This implies that the above complex-SDP can be recast as the following equivalent SDP with real variables:

maximize
X∈Sn,Y ∈Rn×n

∑
i<j

wij
3

(2− 2Xij)

s.t. Xii = 1, ∀i ∈ V
2 Re(α)Xij − 2 Im(α)Yij ≥ −1, ∀α ∈ R3, ∀i < j[
X −Y
Y X

]
� 0.

So, the way to adapt the MAX-CUT rounding algorithm to the case of MAX-3-CUT is to solve the above
complex-SDP, and to get a decomposition Z = UU∗ of the optimal matrix. By construction, the rows uTi
of U are such that Zij = 〈ui,uj〉, so we have ‖ui‖ :=

√
u∗iui = (Zii)

1/2 = 1. Then, we generate a random
vector p ∈ Cn with independent complex Gaussian coordinates (i.e., p = p1 + i · p2 for some independent
Gaussian vectors p1 ∼ N (0, I) and p2 ∼ N (0, I)). The randomized rounding is then obtained from the
argument of the complex scalar products 〈p,ui〉 = u∗ip ∈ C:

xi =

 0 if arg〈p,ui〉 ∈ [0, 2π/3)
1 if arg〈p,ui〉 ∈ [2π/3, 4π/3)
2 if arg〈p,ui〉 ∈ [4π/3, 2π)

.

Goemans and Williamson proved the following two geometric lemmas, which imply a 0.836-performance
guarantee for the above algorithm:

Lemma 12. If 〈ui,uj〉 = reiθ, then the probability that xi 6= xj is

P (r, θ) =
2

3
− 3

8π2

[
2 arccos2

(
− r cos(θ)

)
− arccos2

(
− r cos(θ +

2π

3
)
)
− arccos2

(
− r cos(θ − 2π

3
)
)]
.

Lemma 13. If z = reiθ, belongs to the triangle defined by R3, then P (r, θ) ≥ ψ · 23 (1 − Re(z)), where
ψ := 7

12 + 3
π2 arccos2(− 1

4 ) > 0.836008.

It is now easy to show that the expected value of the 3-cut S0, S1, S2 is within a fraction ψ of the optimum
cut:

Theorem 14. Let (S0, S1, S2) be the (random) 3-cut returned by the above rounding algorithm. Then,

E[cut(S0, S1, S2)] ≥ ψ SDP ≥ ψ max-3-cut(G).
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Proof. Denote by ui the complex vectors returned by the algorithm, and let 〈ui,uj〉 = rije
iθij .

E[cut(S0, S1, S2)] = E
[∑
i<j

wij1{xi 6=xj}

]
=
∑
i<j

wijP[xi 6= xj ]

=
∑
i<j

wijP (rij , θij) (by Lemma 12)

≥ ψ
∑
i<j

wij
2

3

(
1− Re(〈ui,uj〉)

)
(by Lemma 13)

= ψ
∑
i<j

wij
3

(
2− Zij − Zji

)
= ψ SDP .

The last inequality, ψ SDP ≥ ψ max-3-cut(G) follows from the fact that the complex SDP is a relaxation
of the MAX-3-CUT problem.

4 SDP relaxations for nonconvex QCQPs (with binary variables)

In the previous sections, we have derived SDP relaxations for the stable set problem and (variants of) the
maximum cut problem. In fact, those relaxations could have been obtained in a systemmatic manner, by
using a general recipe that allows to obtain an SDP relaxation for any QCQP.

Let us consider an optimization problem of the form

minimize
x∈Rn

xTQ0x + cT0 x + q0 (10)

s.t. xTQix + cTi x + qi ≶ 0, ∀i ∈ [m],

where the data (Qi, ci, qi)i is of appropriate size, and the symbol ≶ replaces any of {≤,=,≥}. Note that
this problem is not convex in general. In particular, it allows for binary constraints of the form xi ∈ {0, 1},
which can be formulated as equivalent quadratic equality constraints:

xi ∈ {0, 1} ⇐⇒ x2i = xi ⇐⇒ xTQx + cTx = 0 for Q = eie
T
i , c = −ei.

We can use semidefinite programming to construct a relaxation of (10). To do this, one possibility is to
introduce an auxilary variable X = xxT : Prolem (10) is equivalent to

minimize
x∈Rn,X∈Sn

〈Q0, X〉+ cT0 x + q0 (11)

s.t. 〈Qi, X〉+ cTi x + qi ≶ 0, ∀i ∈ [m],

X = xxT .

this problem is not convex because of the constraint X = xxT . However, we obtain an SDP if we relax this
constraint to X � xxT , which can be expressed as an LMI by using a Schur complement:

X � xxT ⇐⇒
[
X x
xT 1

]
� 0.

Therefore, we obtain the following result:
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Proposition 15. The SDP

minimize
x∈Rn,X∈Sn

〈Q0, X〉+ cT0 x + q0 (12)

s.t. 〈Qi, X〉+ cTi x + qi ≶ 0, ∀i ∈ [m],[
X x
xT 1

]
� 0

is a relaxation of Problem (10). Its optimal value gives a lower bound for the original nonconvex QCQP.

We observe that binary variables xi ∈ {0, 1} ⇐⇒ x2i = xi result in constraints of the form

Xii = xi

in the SDP. Similarly, a binary variable xj ∈ {−1, 1} ⇐⇒ x2j = 1 yields the constraint Xjj = 1.

There is an alternative way to interprete this SDP, by proceeding as we did for MAXCUT. Indeed, note

that we obtain an exact reformulation of Problem (10) when we add the nonconvex constraint rank

[
X x
xT 1

]
=

1 to the SDP. To see this,[
X x
xT 1

]
� 0 is of rank 1 ⇐⇒

[
X x
xT 1

]
=

[
u
α

] [
u
α

]T
for some u ∈ Rn, α ∈ R

⇐⇒ X = uuT for u = αx, α = ±1

⇐⇒ X = xxT .

5 Completely positive formulation for binary QPs

It was shown by Burer that we can even obtain an exact conic reformulation for QPs with binary variables.
To do this, we need to introduce the cone of copositive matrices:

Definition 7 (Copositive cone). The cone of n× n copositive matrices is

Cn := {X ∈ Sn| uTXu ≥ 0, ∀u ∈ Rn+}.

Note that the copositive cone only differs from the semidefinite cone from the restriction u ≥ 0. We also
introduce the cone of completely positive matrices:

Definition 8 (Completely positive cone). The cone of n× n completely positive matrices is

C∗n := {
q∑

k=1

uku
T
k | q ∈ N, uk ∈ Rn+, ∀k ∈ [q]}.

The next proposition gives important properties above these 2 cones:

Proposition 16 (Properties of Cn and C∗n).

(i) We require at most q ≤ n(n+ 1)/2 vectors to decompose a completely positive matrix:

X ∈ C∗n ⇐⇒ ∃` ≤ 1

2
n(n+ 1),x1,x2, . . . ,x` ∈ Rn+ : X =

∑̀
j=1

xix
T
i .
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(ii) The following inclusions hold:

C∗n ⊆
(
Sn+ ∩ Rn×n+

)
⊆ Sn+ ⊆

(
Sn+ + Rn×n+

)
⊆ Cn.

(iii) The cones Cn and C∗n are proper, and dual from each other.

Proof. (i). We have C∗n = cone {uuT |u ∈ R+
n }. The affine dimension of {uuT |u ∈ R+

n } ⊆ Sn is less than
n(n+ 1)/2 (the affine dimension of Sn), so Caratheodory’s theorem tells us that every element of C∗n can be
expressed as a conic combination of q ≤ n(n+ 1)/2 elements of {uuT |u ∈ R+

n }.
(ii). The two inclusions in the middle are trivial, so we only prove the first and the last inclusions. Let

X ∈ C∗n. Then X is positive semidefinite, because it can be written as a sum of rank-one positive semidefinite
matrices. Moreover, the elements of X =

∑
k uku

T
k , where ∀kuk ≥ 0, are clearly nonnegative. This shows:

C∗n ⊆ Sn+ ∩ Rn×n+ . Now, let X ∈
(
Sn+ + Rn×n+

)
, that is, X = Y + Z for some matrices Y � 0 and Z ≥ 0.

Then, for all u ≥ 0, it holds uTXu = uTY u + uTZu, and uTY u ≥ 0 because Y � 0, uTZu ≥ 0 because
it is a sum of products of nonnegative numbers. This shows

(
Sn+ + Rn×n+

)
⊆ Cn.

(iii). The cone Cn is clearly closed, and convex (it is the intersection of infinitely many halfspaces). Its
interior is nonempty, which can be seen from Sn+ ⊆ Cn =⇒ int Sn+ = Sn++ ⊆ int Cn. To see that the
cone is pointed, assume that X ∈ Cn and −X ∈ Cn, that is, uTXu = 0,∀u ≥ 0. We can choose u = ei,
which gives uTXu = Xii = 0, so the diagonal elements of X are 0. Then, choosing u = ei + ej , we get
uTXu = Xii +Xjj + 2Xij = 0 =⇒ Xij = 0, so the off-diagonal elements of X must be 0, too.

This shows that Cn is proper. Now, we show that Cn is the dual cone of C∗n, which also implies that C∗n is
the dual of Cn, and that C∗n is a proper cone, because we know that the dual cone of a proper cone is proper.

Y ∈ dual(C∗n) ⇐⇒ ∀X ∈ C∗n, 〈X,Y 〉 ≥ 0

⇐⇒ ∀q ∈ N,∀u1, . . . ,uq ∈ Rn+,
q∑

k=1

uTk Y uk ≥ 0

⇐⇒ ∀u ≥ 0, uTY u ≥ 0

⇐⇒ Y ∈ Cn

Now, consider a mixed-integer QP of the form

minimize
x∈Rn

xTQx + cTx (13)

s.t. aTi x = bi, ∀i ∈ [m]

x ≥ 0

xi ∈ {0, 1}, ∀i ∈ B,

where B is a subset of [n]. By applying the general recipe of Proposition 15, this problem admits the
following SDP relaxation:

minimize
x∈Rn

〈Q,X〉+ cTx (14)

s.t. aTi x = bi, ∀i ∈ [m]

x ≥ 0

Xii = xi, ∀i ∈ B,[
X x
xT 1

]
� 0

Burer proposed to make two modifications to this SDP [2]. First, he adds the (redundant) quadratic
equalities (aTi x)2 = b2i in the original problem formulation, which yields the new constraints aTi Xai = b2i
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in the SDP. Then, he observes that thanks to the constraint x ≥ 0, the matrix

[
x
1

] [
x
1

]T
is not only

positive semidefinite, but also completely positive. With these two modifications, the relaxation becomes
exact !

Theorem 17 (Burer). Under some mild assumption (which can always be achieved without loss of gen-
erality), the completely positive program

minimize
x∈Rn

〈Q,X〉+ cTx (15)

s.t. aTi x = bi, ∀i ∈ [m]

aTi Xai = b2i , ∀i ∈ [m]

Xii = xi, ∀i ∈ B,[
X x
xT 1

]
�C∗n 0

is equivalent to the mixed-integer QP (13).

We are not going to prove this result, but we will prove a special case of this result for a QP formulation
of the maximum stable set problem in the exercises.

Of course, we can not expect to solve the above completely positive program in polynomial time, as (13)
contains many NP-hard optimization problems as special cases. Hence, this shows that completely positive
programming is intractable. This is a nice example to show that convex optimization problems can be NP-
hard. The difficulty comes from the fact that it is NP -hard to separate the completely positive cone, that
is, to decide whether a matrix X is completely positive, or to return a separating hyperplane.

Nevertheless, the completely positive formulation can be used to construct hierarchies of SDPs that
converge to the optimal value of (13). The first level of this hierarchy is the well known doubly nonnegative

relaxation, in which the constraint

[
X x
xT 1

]
�C∗n 0 is replaced by

X ∈ Sn+ ∩ Rn×n+ ⇐⇒
[
X x
xT 1

]
� 0,

[
X x
xT 1

]
≥ 0.

The doubly nonnegative relaxation is known to be exact for n ≤ 4, but is only an approximation for n ≥ 5.
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