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Chapter IX: The Lasserre Hierarchy for Polynomial

and Combinatorial Optimization
The purpose of this chapter is to give an introduction on the topic of polynomial optimization via

semidefinite programming and sums of squares relaxations. This material is partly based on lecture notes

and review papers from H. Fawzi [1], M. Laurent [2], M. Mevissen [4], T. Rothvoß [6] and Y. de Castro [5],

as well as the book of J.-B. Lasserre [3].

In this chapter, we will study a polynomial optimization problem of the form

minimize
x∈Rn

p(x) (P)

s.t. gi(x) ≥ 0, (∀i ∈ [m]),

where p, g1, . . . , gm ∈ R[x1, . . . , xn] are polynomials. Clearly, Problem (P) is NP-hard in general, as binary

variables xi ∈ {0, 1} can be encoded by introducting the constraints x2
i = xi (which are equivalent to the

pair of polynomial inequalities x2
i − xi ≥ 0 and xi − x2

i ≥ 0).

Another reduction shows that it is NP-hard to minimize a quartic polynomial (i.e., of degree 4) over

Rn. In the previous lecture, we have seen that it is NP-hard to separate the copositive positive cone Cn
(as otherwise we could optimize efficiently over Cn, and solve e.g. the maximum stable set problem in

polytime). So, given a symmetric matrix Q ∈ Sn, it is NP-hard to decide whether Q ∈ Cn, or to output a

separating hyperplane H such that 〈H,Q〉 < 0 and 〈H,M〉 ≥ 0,∀M ∈ Cn, i.e., H ∈ C∗n is completely positive.

Now, define the quartic polynomial p(x) = (x ◦ x)TQ(x ◦ x) =
∑
i,j Qi,jx

2
ix

2
j . Clearly, infx∈Rn p(x) = 0 iff

yTQy ≥ 0 for all y ≥ 0, that is, Q �Cn 0. On the other hand, any x such that p(x) < 0 yields a separating

hyperplane H = (x ◦ x)(x ◦ x)T ∈ C∗n.

1 Nonnegative Polynomials of one variable

Definition 1 (Nonnegative Polynomial). We say that a polynomial p ∈ R[x] is nonnegative if

p(x) ≥ 0, ∀x ∈ R.

The set of nonnegative polynomials of degree ≤ d can be identified with the cone

P+
d := {p ∈ Rd+1 :

d∑
i=0

pi x
i ≥ 0, ∀x ∈ R} ⊂ Rd+1.

Note that the problem of minimizing a polynomial p ∈ Rd[x] over R can be written as a conic program over

P+
d :

inf
x∈R

p(x) = sup {γ ∈ R : p− γ is nonnegative} = sup
γ∈R

γ

p− γe0 �P+
d

0.
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Definition 2 (Sum of squares). We say that a polynomial p ∈ R[x] is a sum of squares if there exist

polynomials p1, . . . , pm ∈ R[x] such that p =
∑m
i=1 p

2
i . We denote by PSOS

d ⊂ Rd+1 the set of (vectors

of coefficients of) sum of squares polynomials of degree at most d.

From the definition, it is clear that PSOS
d ⊆ P+

d . The proof of the next proposition is left to the reader.

Proposition 1. For all d ∈ N, the cones PSOS
2d and P+

2d are proper.

Note that when d is odd, P+
d and PSOS

d are reduced to the set of nonnegative constant polynomials. So

we can restrict our attention on polynomials of even degree. In fact, in the case of univariate polynomials,

equality holds between PSOS
2d and P+

2d:

Theorem 2. All nonnegative polynomials of one variable can be written as the sum of two squares.

Hence, it holds:

P+
2d = PSOS

2d .

Proof. Let a1, . . . , a2d ∈ C be the (complex-valued) roots of p ∈ R2d[x] (counted with multiplicity). So, we have

p(x) = p2d

∏2d
i=1(x− ai). Since p has real-valued coefficients, it holds p(z̄) = p(z) for all z ∈ C, hence z is a root of p

iff z̄ is a root. Also, if x ∈ R is a real root, then it must have even multiplicity because p is nonnegative on the whole

real line. Hence, after reindexing the roots, we can write

p(x) = p2d

d∏
i=1

(x− ai)(x− ai).

Now, we recognize that this expression can be written as p(x) = q(x) q(x) = |q(x)|2, where q(x) =
√
p2d

∏d
i=1(x−ai).

Finally, we have p(x) = p1(x)2 + p2(x)2, where the polynomials p1 and p2 correspond to the real and imaginary parts

of q, respectively.

While checking whether a polynomial is nonnegative basically accounts to solving a polynomial opti-

mization problem (or, as in the above proof, compute all its complex roots), we can easily check if a given

polynomial is a sum of squares, by solving a linear matrix inequality:

Theorem 3. The polynomial p(x) =
∑2d
i=0 pkx

k is a sum of squares if and only if there exists a matrix

M � 0 such that the sum of the kth antidiagonal is pk, for each k = 0, . . . , 2d:

sk(M) =
∑

{0≤i,j≤d: i+j=k}

Mij = pk, ∀k ∈ {0, . . . , 2d}.

Proof. Let x ∈ R and denote by v(x) = [1, x, x2, . . . , xd] ∈ Rd+1 the vector of the first (d + 1) powers of x. Direct

calculation shows that

v(x)TM v(x) =
∑

0≤i,j≤d

xiMijx
j =

2d∑
k=0

∑
{i,j: i+j=k}

Mij x
i+j =

2d∑
k=0

sk(M) xk.

Hence, it holds p(x) = v(x)TM v(x) iff the matrix M satisfies sk(M) = pk, for all k ∈ {0, . . . , 2d}.
Now, assume that p(x) = v(x)TMv(x) for some positive semidefinite matrix M . This means that M = PTP for

some matrix P ∈ Rm×(d+1), and p(x) = v(x)TPTPv(x) = ‖Pv(x)‖2 =
∑m
i=1(pTi v(x))2, where pTi is the ith row of

P . We have thus shown that p is a sum of squares: p(x) =
∑m
i=1 pi(x)2, where pi(x) := pTi v(x) is a polynomial of

degree ≤ d.

Conversely, if p is a sum of squares, then we have p(x) = ‖Pv(x)‖2 for some matrix P , that is, p(x) =

v(x)TPTPv(x). So, we obtain the result of the theorem by setting M = PPT � 0.
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By combining the results of Theorems 2 and 3, we see that polynomial minimization problems over R
can be formulated as an SDP.

Example:
We formulate the problem of minimizing the polynomial p(x) = x6 − 17x4 + 2x3 − 2x + 1 over R as an
SDP. By Theorem 2, this problem is equivalent to solving sup {γ ∈ R : p − γe0 ∈ PSOS

6 }, where p =
[1,−2, 0, 2,−17, 0, 1]T . Then, we can use Theorem 3 to obtain the following SDP formulation:

maximize
M∈S4

γ

s.t. M00 = 1− γ
M10 +M01 = −2

M20 +M11 +M02 = 0

M30 +M21 +M12 +M03 = 2

M31 +M22 +M13 = −17

M32 +M23 = 0

M33 = 1

M � 0.

#1

2 Multivariate Polynomials

A polynomial p ∈ Rd[x1, . . . , xn] can be written compactly as

p(x) =
∑

α∈∆(n,d)

pα x
α,

where ∆(n, d) is the set of nonnegative integer vectors with sum ≤ d: ∆(n, d) := {α ∈ Zn≥0 :
∑n
i=1 αi ≤ d},

and xα is a compact notation for

xα := xα1
1 xα2

2 · · ·xαnn .

We say that xα is a monomial of total degree |α| :=
∑n
i=1 αi.

The cone P+
n,d of n−variate nonnegative polynomials of total degree≤ d can be defined as in the univariate

case, as well as the cone PSOS
n,d of n−variate sum of squares of degree ≤ d. Note that the dimension of these

cones is s(n, d) := |∆(n, d)| =
(
n+d
d

)
. As in the univariate case, it is also easy to see that a polynomial can

only be nonnegative if its degree is even, so we will often write P+
n,2d.

Unlike the univariate case, P+
n,d 6= PSOS

n,d in general. A famous counter-example is the Motzkin polynomial:

Proposition 4. The polynomial p(x, y) = x4y2 + x2y4 + 1− 3x2y2 ∈ R6[x, y] is nonnegative, but is not

a sum of squares.

Proof. Nonnegativity follows from the arithmetic-geometric mean applied to x2y4, x4y2 and 1:

1

3
(x4y2 + x2y4 + 1) ≥ (x6y6)1/3.

A certificate for p /∈ PSOS
n,d will be given after Theorem 6.

In fact, the study of nonnegative polynomials and sum of squares dates back to Hilbert, who characterized

the equality cases:
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Theorem 5 (Hilbert).

(P+
n,d = PSOS

n,d ) ⇐⇒
(

(n = 1) or (d = 2) or (n, d) = (2, 4)
)
.

However, it is clear that the inclusion PSOS
n,d ⊆ P

+
n,d still holds, so we obtain relaxations of polynomial

optimization problems by optimizing over PSOS
n,d instead of P+

n,d. The next theorem shows that it can be

done by semidefinite programming:

Theorem 6. The polynomial p ∈ R2d[x1, . . . , xn], where p(x) =
∑
α∈∆(n,2d) pα x

α is a sum of squares

if and only if there exists a matrix M ∈ Ss(n,d) (indexed by multi-indices α, β ∈ ∆(n, d)) such that M � 0

and ∑
α,β∈∆(n,d)
α+β=γ

Mα,β = pγ , ∀γ ∈ ∆(n, 2d). (1)

Proof. The proof is completely similar to that of Theorem 3: Take any x ∈ Rn and introduce the vector v(x) =

[xα]α∈∆(n,d) ∈ Rs(n,d), which contains all monomials of degree ≤ d. Direct calculation shows that v(x)TMv(x) =

p(x) if and only if the equality conditions (1) are satisfied.

Then, when (1) holds, we have

M � 0 ⇐⇒ M = PTP ⇐⇒ p(x) = v(x)TPTPv(x) = ‖Pv(x)‖2 ⇐⇒ p is a sum of squares.

Example:

We sketch how to use the above theorem to establish a certificate that the Motzkin polynomial

p(x1, x2) = x4
1x

2
2 + x2

1x
4
2 + 1− 3x2

1x
2
2

of Proposition 4 is not a sum of square. In that case, we have 2d = 6 and n = 2, so the matrix M of

Theorem 6 is of size s(2, 3) = 10; The Motzkin polynomial is a sum of squares iff ∃M ∈ S10
+ such that

M00,00 = 1 [p00 = 1]

2M11,00 + 2M10,01 = 1 [p11 = 0]

2M21,01 + 2M20,02 + 2M12,10 +M11,11 = −3 [p22 = −3]

2M21,03 +M12,12 = 1 [p24 = 1]

(...) there are s(2, 6) = 28 such constraints, one for each pα (...)

This is, in fact, a feasibility SDP problem. Let Pγ denote the matrix such that the above constraints read

〈M,Pγ〉 = pγ , for all γ ∈ ∆(2, 6). To show that this problem is infeasible, we apply the Farkas lemma for

cones (cf. Chapter 2):

p /∈ PSOS
2,6 ⇐⇒ ∃y :

∑
γ

yγPγ � 0 and 〈p,y〉 < 0.

Such a certificate can be obtained by using an SDP solver. For example, one can check numerically that the

vector y defined by

y00 = 1, y20 = y02 = 1.1660, y40 = y04 = 1.8484, y60 = y06 = 9.5289,

y24 = y42 = 0.8523, y22 = 0.9348,

and yγ = 0 for all the other multi-indices γ ∈ ∆(2, 6) is a valid certificate of infeasibility. Hence, the Motzkin

polynomial is not a sum of squares.

#2
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In fact, one can show that, while the Motzkin polynomial p(x, y) is not a sum of squares, multiplying

this polynomial by (1 + x2 + y2) yields a sum of squares. Indeed, one can verify that

(1+x2+y2)
(
x4y2+x2y4+1−3x2y2

)
= y2(1−x2)2+x2(1−y2)2+(x2y2−1)2+

3

4
x2y2(x2+y2−2)2+

1

4
x2y2(x2−y2)2.

For the purpose of polynomial optimization over Rn, this motivates the study of the following hierarchy

of semidefinite programming problems:

v∗r := sup {γ ∈ R : (1 + x2
1 + . . .+ x2

n)r (p(x)− γ) is a sum of square}.

Proposition 7. We have:

v∗0 ≤ v∗1 ≤ v∗2 ≤ . . . ≤ inf
x∈Rn

p(x).

Proof. The inequality v∗r ≤ v∗r+1 follows from the fact that the product of two sums of squares is a sum of squares.

So, p ∈ PSOS
n,d =⇒ q ∈ PSOS

n,d+2, where q(x) = (1 + x2
1 + . . . + x2

n) · p(x). The inequality v∗r ≤ infx p(x) follows from

the implication

(1 + x2
1 + . . .+ x2

n)r (p(x)− γ) is a sum of squares =⇒ p(x) ≥ γ, ∀x ∈ Rn.

Under some mild conditions, it can be shown that the hierarchy converges. In the next section, we

are going to study the dual cones of P+
n,2d and PSOS

n,2d, which will lead to another hierarchy –The Lasserre

hierarchy– for the general polynomial problem (P) presented in the introduction.

3 The moment problem

Denote byM+(Rn) the set of all nonnegative measures over Rn. Given a nonnegative measure µ ∈M+(Rn),

define its (infinite) sequence of moments (yα)α∈Zn≥0
by

yα :=

∫
Rn
xα µ(dx), ∀α ∈ Zn≥0.

For example, if µ is the probability measure corresponding to a random vector Y ∈ Rn, then the yα’s

correspond to the raw moments of Y : we have y0 =
∫
µ(dx) = 1, and for all i it holds

yei =

∫
xi µ(dx) = E[Yi] y2ei =

∫
x2
i µ(dx) = E[Y 2

i ] = V[Yi] + (E[Yi])
2.

More generally, yα = E[Y α1
1 · · ·Y αnn ].

Conversely, given a vector y ∈ Rs(n,d), we may ask ourselves whether y has a representing measure, i.e.,

if there exists a measure µ ∈ M+(Rn) whose moments of total degree ≤ d correspond to the coordinates

of y. This is the moment problem. Those vectors y with a representing measure are in the moment cone

M+
d (Rn) :=

{ (∫
Rn
xα µ(dx)

)
α∈∆(n,d)

: µ ∈M+(Rn)

}
.

As it turns out, we now show that P+
n,2d and M+

2d(Rn) are dual from each other.
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Proposition 8.

(P+
n,2d)

∗ =M+
2d(R

n)

.

Proof. Let p ∈ P+
n,2d, and y ∈M+

2d(R
n). Then, y has a representing measure µ ∈M+(Rn), so

〈p,y〉 =
∑

α∈∆(n,2d)

pαyα =
∑

α∈∆(n,2d)

pα

∫
Rn

xαµ(dx) =

∫
Rn

∑
α∈∆(n,2d)

pαx
α

︸ ︷︷ ︸
=p(x)≥0

µ(dx) ≥ 0.

This already proves P+
n,2d ⊆ (M+

2d(R
n))∗. Conversely, assume p /∈ P+

n,2d, that is, ∃z ∈ Rn : p(z) < 0. Let y be the

vector of moments of degree ≤ 2d corresponding to the dirac measure µ = δz at z. Then, yα =
∫
Rn xαδz(dx) = zα,

so it holds 〈p,y〉 =
∑
pαz

α = p(z) < 0, hence p /∈ (M+
2d(R

n))∗. This shows (M+
2d(R

n))∗ ⊆ P+
n,2d. Finally, the

statement of the proposition follows because the considered cones are proper, so they are equal to their bi-dual.

As for the case of nonnegative polynomials, there is no simple condition which ensures that y ∈M+
2d(Rn).

However, there is a simple linear matrix inequality that is satisfied by all y ∈ M+
2d(Rn). Note that the

situation is reversed compared to the case of polynomials. While an LMI allowed to give a sufficient condition

of positivity for a polynomial (if it is an SOS), for the case of moments we obtain a necessary condition

relying on an LMI for y to have a representing measure. Given a (possibly infinite) sequence (yα) containing

all elements indexed by some α of total degree |α| :=
∑
i αi ≤ 2r, denote by Mr(y) ∈ Ss(n,r) the matrix

with elements (
Mr(y)

)
α,β

= yα+β, ∀α,β ∈ ∆(n, r).

It can be seen that Mr(y) =
∑
γ∈∆(n,2r) yγPγ , where Pγ ∈ Ss(n,r) is the matrix with a 1 at each coordinate

(α,β) such that α+ β = γ, and zeros elsewhere.

Proposition 9. Let y ∈M+
2d(Rn), and let r ∈ N such that r ≤ d. Then, Mr(y) � 0.

Proof. As M+
2d(R

n) and {y : Mr(y) � 0} are cones, we can rescale y and assume w.l.o.g. that y0 = 1. Let µ be a

realizing probability measure for y, and let X be a random variable corresponding to µ. For an arbitrary sequence

c ∈ ∆(n, r), define the polynomial c(x) =
∑
|α|≤r cαx

α. Then, we have

0 ≤ E[c(X)2] = E[
∑
α

cαX
α
∑
β

cβX
β] =

∑
α,β

cαcβ E[Xα+β]︸ ︷︷ ︸
=yα+β

=
∑
α,β

cαcβ
(
Mr(y)

)
α,β

= cTMr(y)c.

The above inequality holds for all vectors c, which proves Mr(y) � 0.

Now, let us define

MSDP
2d (Rn) := {y ∈ Rs(n,2d) : Mr(y) � 0,∀r ≤ d} = {y ∈ Rs(n,2d) : Md(y) � 0},

where the equality follows from the observation that Mr(y) is a principal submatrix of Mr+1(y). Then, the

above proposition simply rewrites M+
2d(Rn) ⊆MSDP

2d (Rn).

We also leave the following result as an exercise:

Proposition 10. (PSOS
n,2d )∗ =MSDP

2d (Rn).
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4 Polynomial optimization: The point of view of moments

We return to the polynomial optimization problem given in the introduction of this chapter:

p∗ = inf
x∈Rn

p(x) (P)

s.t. gi(x) ≥ 0, (∀i ∈ [m]),

Problem (P) asks to minimize the polynomial p(x) over K := {x ∈ Rn : gi(x) ≥ 0, ∀i ∈ [m]}. We say

that K, which is defined by polynomial inequalities, is a semi-algebraic set. It is possible to reformulate (P)

as a moment problem over K:

p∗ = inf
µ∈M+(K)

∫
K

p(x)µ(dx) (2)

s.t. µ(K) = 1.

The decision variable is a probabililty measure µ supported by K: we have µ ∈M+(K), where

M+(K) := {µ ∈M+(Rn) : µ(Rn \K) = 0}.

We also define M+
d (K) :=

{
(
∫
Rn x

α µ(dx))α∈∆(n,d) : µ ∈ M+(K)
}

, i.e., the set of truncated mo-

ment sequences (up to degree d) for all nonnegative measures over K. Then, denote by y the trun-

cated moment sequence of µ ∈ M+(K), and observe that µ(K) = µ(Rn) = y0 and
∫
K
p(x)µ(dx) =∫

K

∑
α∈∆(n,d) pαx

α µ(dx) = 〈p,y〉, so we obtain:

p∗ = inf
y∈M+

d (K)
〈p,y〉 (3)

s.t. y0 = 1.

Thus, the problem is now to derive a tractable approximation ofM+
d (K). As in the previous section, we

first obtain necessary conditions. Consider a polynomial g =
∑
|α|≤q gαx

α of degree ≤ 2u and an integer

r ∈ N. Then, for a (possibly infinite) sequence (yα) containing all elements indexed by some α of total

degree |α| ≤ 2(u+ r), define the localizing matrix Mr(gy) ∈ Ss(n,r) with elements(
Mr(gy)

)
α,β

=
∑
|γ|≤2u

gγ yα+β+γ , ∀α,β ∈ ∆(n, r).

Proposition 11. Let y be the moment sequence of a measure µ ∈M+(K). Then, for all r ∈ N we have

Mr(y) � 0 and Mr(giy) � 0, ∀i ∈ [m].

Proof. The fact that Mr(y) � 0 follows from Proposition 9, because the truncated vector (yα)|α|≤2r is a member

of M+
2r(K) ⊆ M+

2r(R
n). Then, we proceed similarly as in the proof of Proposition 9 to show Mr(giy) � 0: For

an arbitrary sequence c ∈ ∆(n, r), define the polynomial c(x) =
∑
|α|≤r cαx

α. The polynomial x 7→ gi(x)c(x)2 is

nonnegative over K, so it holds
∫
K
gi(x)c(x)2µ(dx) ≥ 0, where µ ∈M+(K) is a representing measure for y. Finally,

it can be seen that
∫
K
gi(x)c(x)2µ(dx) = cTMr(giy)c ≥ 0, and since c is arbitrary we obtain the desired result.

This proposition can also be rewritten as follows: Define

MSDP
2r (K) := {y ∈ Rs(n,2r) : Mr(y) � 0 and Mr−ui(giy) � 0,∀i ∈ [m]},

where ui = ddeg(gi)/2e. Then, M+
2r(K) ⊆MSDP

2r (K).
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In fact, we can also construct more precise outer approximations ofM+
2r(K) by considering the necessary

condition from Proposition 11 for moment sequences truncated at a higher degree, say 2(r + δ):

MSDP
2r,δ (K) :=

{
y ∈ Rs(n,2r) : ∃ỹ ∈ Rs(n,2(r+δ)) such that ỹα = yα,∀|α| ≤ 2r;

Mr+δ(ỹ) � 0;

Mr+δ−ui(giỹ) � 0,∀i ∈ [m]
}
.

This definition basically says that y ∈ MSDP
2r,δ (K) if we can extend the sequence (yα)|α|≤2r to obtain a

sequence (ỹα)|α|≤2(r+δ) for which the moment matrix and the localizing matrices are positive semidefinite.

Proposition 11 implies thatM+
2r(K) ⊆MSDP

2r,δ (K) holds for all δ ∈ N. Moreover, these outer approximations

are nested by construction, hence

Corollary 12.

M+
2r(K) ⊆ · · · ⊆ MSDP

2r,2 (K) ⊆MSDP
2r,1 (K) ⊆MSDP

2r,0 (K) =MSDP
2r (K).

Under some technical conditions, it can be shown that the converse of Proposition 11 is valid: This result

is a consequence of Putinar’s Positivstellensatz, which we will mention at the end of Section 5. For the sake

of this lecture, we will simply say that K satisfies the Archimedean condition if

R2 − ‖x‖2 =

m∑
i=1

σi(x)gi(x)

for some R and SOS polynomials σ1, . . . , σm. This condition can be interpreted as an algebraic certificate of

compactness for K. Indeed, for x ∈ K we have gi(x) ≥ 0,∀i, so
∑
i σi(x)gi(x) ≥ 0 for all SOS polynomials

σ1, . . . , σm, and the Archimedean condition implies ‖x‖2 ≤ R2. Note that if we know that K is included

in the ball of center 0 and radius R, we can simply add the constraint gm+1(x) = R2 − ‖x‖2 ≥ 0 into

the problem, so that the Archimedean condition is automatically satisfied (consider the SOS polynomials

σi(x) = 0, ∀i ∈ [m] and σm+1(x) = 1).

Theorem 13. Assume that K satisfies the Archimedean condition. Then, an infinite moment sequence y

has a representing measure µ ∈M+(K) if and only if for all r ∈ N, Mr(y) � 0 and Mr(giy) � 0,∀i ∈ [m].

In this case, the hierarchy of Corollary 12 is convergent:

M+
2r(K) =

⋂
δ∈N
MSDP

2r,δ (K).

As a consequence, we obtain a hierarchy of SDPs which converges to the polynomial optimization prob-

lem (P), Let u = maxi ui and r = max
(
ddeg(p)/2e, u

)
, and replace the constraint y ∈ M+

d (K) in (3) by

y ∈MSDP
2r,δ (K) for some δ ∈ N:

minimize
y∈Rs(n,2(r+δ))

〈p,y〉, (Lasδ)

s.t. y0 = 1.

Mr+δ(y) � 0;

Mr+δ−ui(giy) � 0,∀i ∈ [m].
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Note that in the above problem, p was implicitely extended to a vector in Rs(n,2(r+δ)) (so its scalar product

with y is well defined), i.e., we set pα = 0 for all |α| > deg(p). By construction, the sequence of optimal

values p∗δ of (Lasδ) is nondecreasing, and Theorem (13) guarantees that p∗δ converges to the optimal value

p∗ of (P):

p∗0 ≤ p∗1 ≤ p∗2 ≤ . . . ≤ p∗ and lim
δ→∞

p∗δ = p∗.

Moreover, under certain conditions (one of them is that the problem contains only equality constraints, we

will prove a special case of this result in Section 6), it can be shown that the convergence occurs after a finite

number of steps, i.e., ∃δ ∈ N : p∗δ = p∗. The following condition can be used to check whether convergence

took place after δ rounds of the hierarchy:

Theorem 14. Let y∗ be an optimal solution of (Lasδ), so we have p∗δ = 〈p,y∗〉. If y∗ satisfies

rankMr+δ(y
∗) = rankMr+δ−u(y∗) (=: rδ)

where u = maxi ui, then p∗δ = p∗, and y∗ has a representing measure µ∗ ∈M+(K) that solves Problem (2).

Moreover, µ∗ is rδ-atomic, which means that µ∗ can be decomposed as a convex combination of rδ dirac

measures: µ∗ =
∑rδ
i=1 wiδx∗i , with w ≥ 0,

∑
i wi = 1, and the support points x∗i of µ∗ are global

minimizers of (P).

We also point out that there is an algorithm that can be used to extract the support points x∗i of the

optimal measure µ∗, cf. [3]. This is particularly easy when rδ = rankMr+δ(y
∗) = 1, because in this case

we have Mr+δ(y
∗) = v(x∗)v(x∗)T , where v(x∗) = (x∗α)|α|≤r+δ is the vector of monomials of x∗. So an

optimal solution x∗ to Problem (P) is simply recovered by reading the coordinates of y∗ corresponding to

monomials of degree 1: x∗i = y∗ei ,∀i ∈ [n].

Example:

Consider the polynomial optimization problem

min
x,y

p(x, y) = 11x2 + 16xy + x− y2 + 2y + 1 s.t. x2 + y2 ≤ 1.

If there is a solution to this problem in the interior of the unit ball (x2 + y2 < 1), then it must be a

stationary point, i.e., the gradient ∇p = [22x + 16y + 1, 16x − 2y + 2]T vanishes. This yields the point

[x0, y0] ' [−0.1133, 0.0933] as a good candidate, but the analysis of the eigenvalues of the hessian matrix

shows that this point is in fact a saddle point of p. So the optimum must be attained on the boundary of the

unit ball. Plotting p(cos θ, sin θ) over θ ∈ (−π, π] reveals that the minimum is attained at θ∗ ' −1.15043,

hence [x∗, y∗] = [0.4080,−0.9129] is the solution to the above polynomial optimization problem.

The polynomial p has n = 2 variables and is of degree 2r = 2, and the constraint is of degree 2u = 2, so

r = u = 1. For a vector (zα)|α|≤2ρ, recall that the moment matrix is Mρ(z)α,β = zα+β , (|α| ≤ ρ, |β| ≤ ρ)

so if we order the monomials of degree ≤ 1 as (1, x, y), corresponding to the multi-indices (00, 10, 01), at the

level δ = 0 of the hierarchy we have

Mr+δ(z) = M1(z) =

 z00 z10 z01

z10 z20 z11

z01 z11 z02

.
And the localizing matrix Mρ(gz) has coordinates Mρ(gz)α,β =

∑
γ gγzα+β+γ for |α| ≤ ρ, |β| ≤ ρ. Hence,

for g(x, y) = 1− x2 − y2,

Mr+δ−u(gz) = M0(g1z) = (1− z20 − z02).

In this example, the localizing matrix is scalar. But if we need to go to the next level (δ = 1) of the

hierarchy, we will need to consider the moment matrix M2(z) indexed over |α| ≤ 2, |β| ≤ 2 of dimension

s(n, 2) =
(
n+2

2

)
=
(

4
2

)
=6, and the localizing matrix M1(gz) of dimension s(n, 1) =

(
n+1

1

)
=
(

3
1

)
=3.

#3
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Example (continued):

The SDP for the hierarchy at level δ = 0 is therefore:

minimize
z

11 z20 + 16 z11 + z10 − z02 + 2 z01 + 1

s.t. z00 = 1 z00 z10 z01

z10 z20 z11

z01 z11 z02

 � 0

1− z20 − z02 ≥ 0.

If we solve this SDP, we get the optimal moment matrix

M1(z∗) =

 1. 0.40809016 −0.91294164

0.40809016 0.16653757 −0.37256249

−0.91294164 −0.37256249 0.83346242

 .

This matrix has rank 1, so the certificate of global optimality of Theorem 14 is satisfied, as obviously,

Mr+δ−u(z∗) = M0(z∗) = 1 has rank one, too. This is the easy case (rδ = 1) where the optimal solution of

the polynomial optimization problem can be read directly from the vector of optimal moments z∗:

x∗ = z∗10 = 0.40809016 and y∗ = z∗01 = −0.91294164.

#3

5 Polynomial Optimization and Sum of Squares

Now, we derive the dual optimization problem of (Lasδ), which will give an alternative interpretation of

the hierarchy. For ρ ≥ 0, recall that the moment matrix Mρ(y) can be written as Mρ(y) =
∑
|γ|≤2ρ yγPγ ,

where Pγ is a {0, 1}-symmetric matrix of size s(n, ρ) × s(n, ρ) with a 1 at all coordinates (α,β) such that

α+ β = γ. Similarly, in can be seen that the localizing matrix of a polynomial g of degree ≤ 2u, which has

elements Mρ(gy)α,β =
∑
|τ |≤2u gτyα+β+τ , can be written as Mρ(gy) =

∑
yγQ

g
γ , where Qgγ is the matrix in

Ss(n,ρ) such that (Qgγ)α,β = gτ whenever α+ β + τ = γ.

Let us now derive the dual of (Lasδ):

p∗δ = inf
y
〈p,y〉+ sup

λ∈R
Λ�0

Ωi�0,∀i∈[m]

λ · (1− y0)− 〈Mr+δ(y),Λ〉 −
∑
i∈[m]

〈Mr+δ−ui(giy),Ωi〉

d∗δ = sup
λ∈R
Λ�0

Ωi�0,∀i∈[m]

inf
y
〈p,y〉+ λ · (1− y0)−

〈 ∑
|γ|≤2(r+δ)

yγPγ , Λ

〉
−
∑
i

〈 ∑
|γ|≤2(r+δ−ui)

yγQ
gi
γ , Ωi

〉

= sup
λ∈R
Λ�0

Ωi�0,∀i∈[m]

λ+ inf
y

∑
γ

yγ

(
pγ − λ(e0)γ − 〈Pγ ,Λ〉 −

∑
i

〈Qgiγ ,Ωi〉

)

= sup
λ,Λ,(Ωi)i∈[m]

λ (Sosδ)

s.t. (p− λe0)γ = 〈Pγ ,Λ〉+
∑
i∈[m]

〈Qgiγ ,Ωi〉, ∀|γ| ≤ 2(r + δ)

Λ � 0

Ωi � 0, ∀i ∈ [m]
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Now, let us try to understand the meaning of this dual formulation. The equality constraint tells us that

the polynomial x 7→ p(x)− λ is the sum of a polynomial σ0 with coefficients 〈Pγ ,Λ〉 and some polynomials

q1, . . . , qm with coefficients 〈Qgiγ ,Ωi〉, ∀i ∈ [m]. We know from Theorem 6 that Λ � 0 is equivalent to σ0

being a sum of squares. Similarly, we can observe that

qi(x) =
∑
γ

xγ〈Qgiγ ,Ωi〉 =
∑
γ

xγ
∑

α+β+τ=γ

(gi)γ (Ωi)α,β =
∑
τ

(gi)γ x
τ

︸ ︷︷ ︸
=gi(x)

·
∑
α,β

xα(Ωi)α,β x
β

︸ ︷︷ ︸
=σi(x)

,

and Ωi � 0 ⇐⇒ σi is a sum of squares, cf. proof of Theorem 6. The dual problem of the hierarchy can also

be interpreted as follows:

d∗δ = sup
λ,σ0,(σi)i∈[m]

λ (Sosδ)

s.t. p(x)− λ = σ0(x) +
∑
i∈[m]

gi(x) · σi(x)

σ0 is a SOS polynomial of degree ≤ 2(r + δ)

σi is a SOS polynomial of degree ≤ 2(r + δ − ui), ∀i ∈ [m]

It is easy to see that p(x)− λ = σ0(x) +
∑
i∈[m] gi(x) · σi(x) for some SOS polynomials is an algebraic

certificate for p− λ to be nonnegative over K, i.e., p(x) ≥ λ,∀x ∈ K. Therefore, the optimal value λ∗ = d∗δ
is an underestimator for the optimal value of the polynomial optimization problem p∗, which we already

knew from weak duality: d∗δ ≤ p∗δ ≤ p∗.
Putinar’s Positivstellensatz, the result which can be used to prove convergence of the Lasserre / sum-of-

squares hierarchy, has a very similar flavour indeed:

Theorem 15. (Putinar’s Positivstellensatz) Let p be a positive polynomial over a set K = {x ∈ Rn :

gi(x) ≥ 0, ∀i ∈ [m]} that has the Archimedean property. Then, p can be written as p = σ0 +
∑
i∈[m] gi ·σi

for some SOS polynomials σ0, . . . , σm.

Note that we require p to be positive on K (nonnegative is not enough), and the result does not tell

anything on the degrees of the σi’s. The convergence of the sum-of-squares hierarchy (Sosδ) –and hence of

the Lasserre hierarchy (Lasδ)– simply follows from this theorem: p− p∗ + ε is positive over K for all ε > 0,

so p − p∗ + ε = σ0 +
∑
i∈[m] gi · σi for some SOS polynomials σi’s of degree high enough. This means that

there exists δ ∈ N such that p∗ − ε is feasible for (Sosδ).

6 The Lasserre Hierarchy in Combinatorial Optimization

In this section we will review a few properties of the Lasserre hierarchy applied to the integer program

minimize cTx s.t. Ax ≥ b, x ∈ {0, 1}n. (IP)

The integer constraints can be handled by the equalities x2
i = xi, forall i ∈ [m]. Instead of considering

the pair of polynomial inequalities x2
i − xi ≥ 0 and x2

i ≤ xi, we observe that we can simplify the Lasserre

hierarchy by carrying out some moment substitutions: for all nonnegative measure µ supported on the

feasible set K = {x ∈ {0, 1}n : Ax ≥ b}, it holds
∫
x2
i µ(dx) =

∫
xi µ(dx). More generally, for all α ∈ Zn≥0

we have ∫
K

xα µ(dx) =

∫
K

(∏
i∈I

xi

)
µ(dx), where I = {i ∈ [n] : αi ≥ 1}.
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This indicates that the moments yα do not depend on the actual values of the αi, but only on the sparsity

pattern I of α. Therefore, we can simplify the hierarchy and consider a vector of moments y indexed by

some subsets I ⊆ [n]: we identify yI with yeI , where eI =
∑
k∈I ek is the incidence vector of I. For example,

the moment matrix has coordinates(
Mρ(y)

)
I,J

=

∫
K

(∏
i∈I

xi

) ∏
j∈J

xj

µ(dx) =

∫
K

( ∏
i∈I∪J

xi

)
µ(dx) = yI∪J .

In the moment formulation of the problem, we are searching a probability measure µ over K, correspond-

ing to a random variable X. Since K is finite, the distribution of X is discrete, and it can be interpreted as

a randomized algorithm that outputs x ∈ K with probability P[X = x]. Then, we have

yI =

∫
K

(∏
i∈I

xi

)
µ(dx) = E

[∏
i∈I

Xi

]
= P

[∧
i∈I

(Xi = 1)

]
.

In particular, y∅ = 1 and y{i} = P[Xi = 1]. When x∗ is an optimal solution for the LP relaxation min{cTx :

Ax ≥ b,0 ≤ x ≤ 1}, it is customary to interprete x∗i as the probability with which xi should be set

to 1. However, rounding all variables indepently from each other will most likely result in a non-feasible

solution x /∈ K. So information on joint events is required, for example we need to know P[Xi = Xj = 1].

One interpretation of the Lasserre hierarchy is that it gives information on the correlation structure of the

solution, by introducing a set of variables yI giving information on joint events of bounded cardinality |I|.
Let us now have a look at the problem (Lasδ) applied to (IP). We only consider the linear constraints

gi(x) =
∑
j aijxj− bi ≥ 0, ∀i ∈ [m], since we are already handling the equality constraints x2

i = xi thanks to

the aforementioned moment substitutions. The objective function and all constraints of (IP) are linear, so

ui = u = r = 1. The level δ ≥ 0 of the hierarchy depends on the variables yI for all subsets I of cardinality

≤ 2(δ + 1) (thanks to our moments substitution, as opposed to all variables yα for α ∈ ∆(n, 2(δ + r))).

Definition 3. A vector y = (yI)|I|≤2(δ+1) is said to be in the δ-th level of the Lasserre hierarchy, and

we write y ∈ Lδ, if the following LMIs hold:

y∅ = 1

Mδ+1(y) := (yI∪J)|I|,|J|≤δ+1 � 0

Mδ(giy) :=

∑
j∈[n]

aijyI∪J∪{j} − biyI∪J


|I|,|J|≤δ

� 0, ∀i ∈ [m].

Define further the set Lprojδ = { [y{1}, . . . , y{n}]
T | y ∈ Lδ}, i.e., the projection of Lδ onto the set of

original coordinates.

Example:

The level δ = 0 of the hierarchy corresponds to the general recipe for constructing the SDP relaxation of

problems with binary variables seen in the previous chapter: Denote by z ∈ Rn the vector with elements

zi = y{i} and denote by Z ∈ Sn the matrix with coordinates Zij = y{i,j}. Then, if we order the sets I of

cardinality |I| ≤ 1 as
{
∅, {1}, . . . , {n}

}
, we have

M1(y) =

[
y∅ zT

z Z

]
=

[
1 zT

z Z

]
,

and for all i it holds Zii = y{i,i} = y{i} = zi, that is, diag (Z) = z. The matrix M0(giy) is scalar, its only

element is indexed by (∅, ∅) and it is equal to
∑
j∈[n] aijy{j} − biy∅ = aTi z − bi. This shows:

y ∈ Lproj0 ⇐⇒ Ay ≥ b and ∃Z :

[
1 yT

y Z

]
� 0, Diag(Z) = y.

#4
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By construction, the Lprojδ are nested and they contain K (as in Corollary 12):

{x ∈ Rn : Ax ≥ b} ⊇ Lproj0 ⊇ Lproj1 ⊇ . . . ⊇ K = {x ∈ {0, 1}n : Ax ≥ b}.

Since the Lprojδ are convex (they are SDP-representable), we can be a bit more precise and observe that the

Lprojδ contain the integer hull H of Problem (IP), that is, the polytope formed by the integer vertices of K:

Lprojδ ⊇ H := conv {x ∈ {0, 1}n : Ax ≥ b}.

In fact, we will now show that the hierarchy converges to H after at most δ = n rounds, that is, Lprojn = H.

In other words, there exists a δ ≤ n such that solving the SDP-relaxation over Lprojδ is equivalent to solving

the original problem (IP).

Lemma 16. Let y ∈ Lδ. Then, for all |I| ≤ 2(δ + 1) it holds yI ∈ [0, 1].

Proof. The principal submatrix of Mδ+1(y) corresponding to the coordinates ∅ and I is:[
1 yI
yI yI

]
.

It must positive semidefinite, so by the Schur complement lemma we have yI ≥ 0 and yi ≥ y2
I ⇐⇒ 1 ≥ yI .

Lemma 17. Let y ∈ Lδ and assume that 0 < yk < 1 for some k ∈ [n]. Define the vectors z(1) and z(2)

as follows:

(z(1))I =
yI∪{k}

yk
and (z(2))I =

yI − yI∪{k}
1− yk

, ∀|I| ≤ 2δ.

Then, we have z(1), z(2) ∈ Lδ−1, (z(1)){k} = 1, (z(2)){k} = 0, and the vector ȳ = (yI)|I|≤2δ satisfies

ȳ = ykz
(1) + (1− yk)z(2).

Proof. We have (z(1)){k} =
y{k}
y{k}

= 1, (z(2)){k} =
y{k}−y{k}

1−y{k}
= 0 and for all |I| ≤ 2δ it holds

ykz
(1)
I + (1− yk)z

(2)
I = yI∪{k} + yI − yI∪{k} = yI = (ȳ)I ,

so the only thing left to show is z(1),z(2) ∈ Lδ−1. The first easy thing to check is that (z(1))∅ = (z(2))∅ = 1. Then, the

matrix Mδ+1(y) is positive semidefinite, so there exist vectors (vI)|I|≤δ+1 such that
(
Mδ+1(y)

)
I,J

= yI∪J = 〈vI ,vJ〉,
∀|I|, |J | ≤ δ + 1. Now, for all |I| ≤ δ, define the vectors

v̄
(1)
I =

vI∪{k}√
yk

and v̄
(2)
I =

vI − vI∪{k}√
1− yk

.

We have 〈v̄(1)
I , v̄

(1)
J 〉 = 1

yk
〈vI∪{k},vJ∪{k}〉 = 1

yk
yI∪J∪{k}, which is also the element of coordinates (I, J) of the matrix

Mδ(z
(1)). Hence, Mδ(z

(1)) � 0.

Similarly, 〈v̄(2)
I , v̄

(2)
J 〉 = 1

1−yk
〈vI − vI∪{k},vJ − vJ∪{k}〉 = 1

1−yk
(yI∪J − 2yI∪J∪{k} + yI∪J∪{k}) =

yI∪J−yI∪J∪{k}
1−yk

,

which is the element (I, J) of Mδ(z
(2)). This shows Mδ(z

(2)) � 0.

Finally, for all i ∈ [n], Mδ−1(giz
(1)) � 0 and Mδ−1(giz

(2)) � 0 can be proved in a similar manner: Let (wI)|I|≤δ
be such that

(
Mδ(giy)

)
I,J

= 〈wI ,wJ〉, and for all |I| ≤ δ − 1 define the vectors

w̄
(1)
I =

wI∪{k}√
yk

and w̄
(2)
I =

wI −wI∪{k}√
1− yk

.

It can be verified that
(
Mδ−1(giz

(1))
)
I,J

= 〈w̄(1)
I , w̄

(1)
J 〉 and

(
Mδ−1(giz

(2))
)
I,J

= 〈w̄(2)
I , w̄

(2)
J 〉, which proves the claim

and concludes this proof.
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Corollary 18. The projection of Lδ over the subset of coordinates |I| ≤ 2δ, Lδ|δ−1 := {(yI)|I|≤2δ |y ∈ Lδ},
satisfies

Lδ|δ−1 ⊆ conv
(
{z ∈ Lδ−1 : zk = 0} ∪ {z ∈ Lδ−1 : zk = 1}

)
.

Iterating the above result, we also see that for all subsets S ⊆ [n], Lδ|δ−|S| := {(yI)|I|≤2(δ−|S|+1) |y ∈ Lδ}
is the convex hull of all elements of Lδ−|S| with {0, 1} elements in S:

Lδ|δ−|S| := {(yI)|I|≤2(δ−|S|+1) |y ∈ Lδ} ⊆ conv {z ∈ Lδ−|S| : zi ∈ {0, 1}, ∀i ∈ S}.

In particular, if we take δ = n and S = [n], we obtain Ln|0 ⊆ conv {z ∈ L0 : z ∈ {0, 1}n}. Then, by projecting

onto the subset of original coordinates ({1}, . . . , {n}), we obtain Lprojn ⊆ H := conv {x ∈ {0, 1}n : Ax ≥ b}.
Therefore, we have shown:

Proposition 19.

{x ∈ Rn : Ax ≥ b} ⊇ Lproj0 ⊇ Lproj1 ⊇ . . . ⊇ Lprojn = conv {x ∈ {0, 1}n : Ax ≥ b}.

We conclude this chapter by mentioning that the study of these hierarchies is an active field of research.

In particular, the SDP relaxation of (IP) over Lprojδ can be solved in polynomial time for a fixed δ ∈ N.

Many of the tightest known polytime approximation algorithms for certain NP hard optimization problems

involve solving δ = O(1/ε) rounds of the Lasserre hierarchy.
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