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Lecture #10 Notes Summary

Reducing the PoA: pricing, augmenting capacities, and Stackelberg routing.

Summary of important points on PoA

• Continuous (Non-atomic) Congestion games

– Social cost defined as C(x) =
∑

e xede(xe) over the set of feasible loads X.

– A Social optimum is a flow (fo,xo), such that xo minimizes C(x) over X.

– A flow (f∗,x∗) is a Wardrop Equilibrium iff it minimizes Φ(x) =
∑

e

∫ xe

0
de(z)dz over X.

– PoA = C(x∗)
C(xo) , independently of the choice of a WE x∗ or a social optimum xo.

– For linear delays, PoA ≤ 4/3. For polynomial delays of degree ≤ p, PoA ≤ O(p/ log(p)).

• Discrete (atomic) congestion games

– Social cost defined as before.

– For unweighted games, and games with linear delays, there is a potential function Φ : S → R,
such that every local minimum of Φ is a Nash equilibrium.

– If Xeq is the set of loads induced by a Nash Equilibrium profile and xo is a social optimum, we

defined

PoA =
maxx∈Xeq C(x)

C(xo)
, PoS =

minx∈Xeq C(x)

C(xo)
.

– For linear delays, PoA ≤ ϕ2 = 3+
√
5

2 .

– In an unweighted game with linear delays, PoS ≤ 1 + 1/
√
3.

Reducing the Price of Anarchy

We consider only continuous (non-atomic) congestion games. For the remaining of the lecture we take a

generic NACG G = (E,S,w,d). We next review three techniques to reduce the PoA of a given instance.

1. Pricing

In this section we assume that a toll τe has been set on each element e ∈ E, and that the users have to pay

a cost dτe (xe) := de(xe) + τe to take element e. So under this assumption, it is natural to claim that users

will behave as in a Wardrop Equilibrium of the game Gτ = (E,S,w,dτ ).

A natural question is thus the following: how should we set the toll prices τe, if we want to reduce as

much as possible the social cost C(x). The answer to this question is surprisingly easy:

Theorem 1. Let x → xde(x) be convex and of class C1 for all e ∈ E. Let xo be a social optimum of G,
and define τe := xod′e(x

o
e), where d′e is the derivative of de. Then, xo is a Wardrop Equilibrium of Gτ .

Proof. This is a direct corollary of Proposition 4 in Lecture #6 (equivalence between the notions of social

optimum for G and Wardrop equilibrium for the game G′ with marginal costs d̂).
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This simple result actually hides many interesting questions. For example, what is the minimum pricing

policy that leads to a social optimum, or what happens if the users have a different perception of the toll

fee (we should not add time with money, hence in reality de(xe) must be converted to a monetary value to

compute dτe . But this is a problem when users are not uniform and have a different perception of “what

time costs”.)

2. Augmenting capacities

The next theorem shows that a Wardrop equilibrium is always better than the social optimum in the situation

with twice as much traffic.

Theorem 2. Let G = (E,S,w,d) be a NACG, and let (f∗,x∗) be a WE for this game. If (f ,x) is

any feasible flow of G1 = (E,S, 2w,d), then C(x∗) ≤ C(x). In particular, the WE equilibrium is always

better than the social optimum in the situation with twice as much traffic.

This can be translated into a theorem for the situation in which investments have been done to augment

the link capacities:

Corollary 3. Let G = (E,S,w,d) be a NACG, and define the delay functions for augmented capacities:

d̃e(x) =
1
2de(x/2). Let (f∗,x∗) be a WE of the game G̃ = (E,S,w, d̃) with cost C̃(x∗) :=

∑
e x

∗
e d̃e(x

∗
e).

Then, for any feasible flow (f ,x) of G, we have C̃(x∗) ≤ C(x).

These theorems are proved in Exercise 1 of Worksheet #10.

3. Stackelberg Routing

In a Stackelberg game, we assume that a centralized player can route a fraction α of the whole traffic. A

Stackelberg strategy consists in a flow g (inducing a load xg) satisfying:

∀i ∈ [N ],
∑
P∈Si

gP := ui ≤ wi (1)

∑
P∈S

gP = α
∑
i

wi. (2)

Then, we make the assumption than the remaining fraction (1 − α) of the traffic is routed according to a

Wardrop Equilibrium (h,xh) of the game where g is fixed, i.e. Gg = (E,S,w − u,dg), where

dge(x) := de(x
g
e + x).

The Price of Anarchy for the Stackelberg strategy g is then defined as PoA(g) = C(xg+xh)
C(xo) , where xo is a

social optimum (of the original game G).
The following question has been studied in the literature: Given a fraction α of controllable traffic, how

must we chose g so that the resulting traffic f = g + h is as close as possible to the social optimum ?
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We next give a simple example (from [Bonifaci, Harks & Schäfer, 2010]), where it is possible to compute

the optimal Stackelberg strategy: consider the following Braess paradox-like network, where 1 unit of flow

must be routed from s to t:

For any feasible flow f , we denote by f1 the amount routed on s → A → t, by f2 the amount routed on

s → B → t, and by f3 the amount of flow routed on the zig-zag strategy s → B → A → t. We have the

following lemma:

Lemma 4. Let g be any feasible Stackelberg strategy of weight α for the network above, i.e. g1+g2+g3 = α.

Then, the unique Wardrop equilibrium h∗ of Gg is h∗
1 = h∗

2 = 0, h∗
3 = 1− α.

Proof. Let g be a Stackelberg strategy of weight α (g1 + g2 + g3 = α), and h be a feasible strategy for the

players not centrally controlled, i.e. h1 + h2 + h3 = 1− α. For a fixed g, the costs on each path from s to t

are:

c1(h) = 1 + g1 + g3 + h1 + h3

c2(h) = 1 + g2 + g3 + h2 + h3

c3(h) = g2 + g3 + h2 + h3 + g1 + g3 + h1 + h3 = 1 + g3 + h3,

where we have used that g1 + g2 + g3 + h1 + h2 + h3 = 1 to simplify the expression of c3(h). So we have

c3(h) ≤ c1(h) and c3(h) ≤ c2(h), which shows that h∗ = [0, 0, 1 − α]T is a Wardrop equilibrium of Gg.

Moreover, these inequalities are strict if g1 > 0 and g2 > 0, in which case h∗ is the only Wardrop equilibrium

induced by g. If g1 = 0, then we have c1(h) = c3(h) only in the case where h1 = 0, so we never have an

incentive to route drivers on the route 1. A similar argument holds for h2, so that every WE must satisfy

h1 = h2 = 0 and h∗ is the only WE of Gg.

We are thus in a nice situation where the WE flow induced by g does not depend on g. This allows us

to compute easily the optimal Stackelberg strategy: for an arbitrary Stackelberg strategy g of weight α, the

global flow is

f =

 g1
g2

g3 + 1− α

 .

This flow has a cost

C(xg + xh) = g1︸︷︷︸
s→A

+ g2︸︷︷︸
B→t

+(g1 + g3 + 1− α)2︸ ︷︷ ︸
A→t

+(g2 + g3 + 1− α)2︸ ︷︷ ︸
s→B

,

must be minimized under the constraint g1+g2+g3 = α (and g ≥ 0). Using this inequality, the cost rewrites

C(xg + xh) = g1 + g2 + (1− g2)
2 + (1− g1)

2,

and is minimized under the constraints g1 ≥ 0, g2 ≥ 0, g1 + g2 ≤ α for g1 = g2 = 1
2α (and so g3 = 0).
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We thus obtain the following proposition, which gives a lower bound on the PoA that any Stackelberg

strategy must satisfy for the example studied above, and hence for at least one instance with linear delay

functions.

Proposition 5. There is an instance with linear delay functions such that if (g,xg) is an arbitrary

Stackelberg strategy of weight α inducing a WE flow (h,xh) for Gg, then

PoA(g) ≥ 4− 2α+ α2

3
.

Proof. For a given α, we know that the Stackelberg strategy minimizing C(xg + xh) is g = (α/2, α/2, 0)T

and induces the WE h = (0, 0, 1− α)T for Gg. This flow has cost

C(xg + xh) =
1

2
α+

1

2
α+ (1− 1

2
α)2 + (1− 1

2
α)2 = α+ 2(1 +

α2

4
− α).

We obtain the lower bound of the proposition by dividing by the social optimum C(xo) = 3
2 , which is

obtained for the flow o where half of the traffic is routed through A, half is routed through B, and no one

takes the zigzag :
C(xg + xh)

C(xo)
≥

(
α+ 2(1 +

α2

4
− α)

)2
3
=

4− 2α+ α2

3
.

The bad news is that in general it is very hard to compute the optimal Stackelberg strategy. Below is a

hardness result proved by Roughgarden, whose proof will be omitted.

Theorem 6. For α ∈ (0, 1), the problem of computing the optimal Stackelberg strategy is NP-hard, even

for instances in networks of parallel links with linear delay functions.

But the good news is that the optimal Stackelberg strategy can be approximated by an efficient and

simple algorithm. This has been known for a long time for single-commodity networks of parallel links, but

until very recently no result was known for arbitrary network topologies. In a recent article, [Bonifaci, Harks

& Schäfer, 2010], it was shown that a simple heuristic approach (the SCALE strategy) approaches the

for networks of arbitrary topology. The approach of these authors relies on the very intuitive SCALE

strategy:

Definition 1 (SCALE Strategy). The scale strategy consists in routing a fraction α of the traffic, by

setting g = αfo, where fo is a social optimum of G.

We are now going to give the result of Bonifaci et. al. for linear delay functions.

Before giving the main theorem of this section, we need a technical definition, similar as the definition

of β(D) we used to study the PoA of continuous games: consider a game G with delay functions de in the

family D, let (fo,xo) be a social optimum and let λ be a positive scalar. For a Stackelberg strategy (g,xg)

inducing a Wardrop equilibrium (h,xh) of Gg, we define

ωλ(g,D) := sup
d∈D

max
e∈E

xo
e

xg
e + xh

e

de(x
g
e + xh

e )− λde(x
o
e)

de(x
g
e + xh

e )
.
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Proposition 7. Let G be a NACG with delay functions de in the family D, and let (o,xo) be a social

optimum. If (g,xg) is a Stackelberg strategy satisfying xg
e ≤ xo

e for all e ∈ E, and if ωλ(g,D) < 1, then

PoA(g) ≤ λ

1− ωλ(g,D)
.

Note that this proposition virtually gives a bound for every scalar λ satisfying the technical condition

ωλ(g,D) < 1.

Proof. Recall the variational characterization of a WE (Proposition 2 in Lecture #7): (h,xh) is a WE of

Gg iff

∀x′ feasible load for Gg,
∑
e∈E

xh
e de(x

g
e + xh

e ) ≤
∑
e∈E

x′
e de(x

g
e + xh

e ).

In particular, for the flow h′ = o− g, which is feasible for Gg and induces the load x′ = xo −xg, we obtain∑
e∈E

xh
e de(x

g
e + xh

e ) ≤
∑
e∈E

(xo
e − xg

e) de(x
g
e + xh

e )

⇐⇒ C(xg + xh) ≤
∑
e∈E

xo
ede(x

g
e + xh

e ).

Now, by using the definition of ωλ(g,D), we have

∀e ∈ E, ωλ(g,D)(xg
e + xh

e )de(x
g
e + xh

e ) ≥ xo
e

(
de(x

g
e + xh

e )− λde(x
o
e)
)
.

By combining the last two inequalities, we obtain:

C(xg + xh) ≤
∑
e∈E

ωλ(g,D)(xg
e + xh

e )de(x
g
e + xh

e ) + λxo
ede(x

o
e) = ωλ(g,D)C(xg + xh) + λC(xo)

If the condition ωλ(g,D) < 1 is fulfilled, this implies

C(xg + xh) ≤ λ

1− ωλ(g,D)
C(xo).

We can finally prove a theorem for the SCALE strategy and linear delays (or even, any function in the

class L of delay functions d (continuous, nondecreasing) satisfying ∀x ≥ 0,∀c ∈ [0, 1], d(cx) ≥ cd(x). We

have already noted in an exercise that L actually contains all concave delay functions.

Theorem 8. Let G be a game with delay functions in L, (o,xo) be a social optimum and g = αo be a

SCALE strategy routing a fraction α of the traffic. Then,

PoA(g) ≤ (1 +
√
1− α)2

2(1 +
√
1− α)− 1

.

Proof. Let λ ∈ (0, 1). We first prove that ωλ(g,L) ≤ max{ 1−λ
α , 1

4λ}. To do this, define

ωe =
xo
e

αxo
e + xh

e

de(αx
o
e + xh

e )− λde(x
o
e)

de(αxo
e + xh

e )
.

We consider two cases:
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• If αxo
e + xh

e ≥ xo
e, we define µ =

xo
e

αxo
e+xh

e
≤ 1. Then, using that de ∈ L we obtain

ωe ≤ µ
de(αx

o
e + xh

e )− λde
(
µ(αxo

e + xh
e )
)

de(αxo
e + xh

e )
≤ µ(1− λµ) ≤ 1

4λ
,

where the last inequality is obtained by taking the max of µ(1− λµ) over µ ∈ [0, 1].

• otherwise (αxo
e + xh

e < xo
e), we have

ωe ≤
xo
e

αxo
e + xh

e

de(αx
o
e + xh

e )− λde(αx
o
e + xh

e )

de(αxo
e + xh

e )
≤ sup

z≥0

xo
e

αxo
e + z

(1− λ) =
1− λ

α
,

where for the first inequality we have used that de is nondecreasing.

These two cases show that ωλ(g,L) ≤ max{ 1−λ
α , 1

4λ}.

Now, we take the particular value λ = 1
2 (1 +

√
1− α), which is a value ≤ 1 for which the two arguments

of the maximum in the upper bound of ωλ(g,L) coincide:

1− λ

α
=

1

4λ
=

1

2(1 +
√
1− α)

.

So we have ωλ(g,L) ≤ 1
2(1+

√
1−α)

< 1, and we can apply Proposition 7:

PoA ≤ λ

1− ωλ(g,D)
=

λ

1− 1
4λ

=
4λ2

4λ− 1
=

(1 +
√
1− α)2

2(1 +
√
1− α)− 1

.

Observe that Theorem 8 shows that the SCALE strategy approximates the optimal Stackelberg strategy

in the following sense: it provides a solution g such that PoA(g) ≤ (1+
√
1−α)2

2(1+
√
1−α)−1

, while we know from

Proposition 5 that for some instance, the optimal Stackelberg strategy g∗ satisfies PoA(g∗) ≥ 4−2α+α2

3 .

Those bounds are displayed in the figure at the bottom of this page. For all α, the upper bound is less than

1.12 times the lower bound. So the SCALE strategy is within 12% of the best possible bound we could have

hoped to prove for any Stackelberg strategy.

Figure 1: Upper bound for the PoA of the SCALE strategy (for all instances), vs. Lower bound for the PoA
of any strategy (attained for some instances). Figure from [Bonifaci, Harks & Schäfer, 2010].
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