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Lecture #15 Notes Summary

Polymatrix games, star-shaped Graphical games, Stackelberg games

Polymatrix Games

Polymatrix games is a particular class of N−player games, in which the payoff of every player is obtained

as a sum of individual payoffs gained against each other player. We start to define the class of Graphical

Polymatrix Games (GPM games). Here, the players are associated with the nodes of a graph, and interact

only with their neighbours. For a graphG = (V,E) and a vertex v ∈ V , we denote byN(v) the neighbourhood

of v, that is, the set of vertices adjacent to v.

Definition 1 (GPM game). Let G = (V,E) be a simple (undirected) graph with N nodes. For i =

1, . . . , N , let ni ≥ 1 be the number of (pure) strategies of player i. Let a pair of matricesAij ∈ Rni×nj and

Aji ∈ Rnj×ni be given for all e ≡ (i, j) ∈ E. The graphical polymatrix game G = (G, (Aij , Aji)(i,j)∈E)

is the N−player game with the following payoff function:

∀i ∈ [N ], πi : ∆n1
× . . .×∆nN

7→ R, πi(p1, . . . ,pN ) =
∑

j∈N(i)

pi
TAij pj

Definition 2 (pairwise zero-sum GPM game). A GMP game is called pairwise zero-sum if for all

e ≡ (i, j) ∈ E,

Aij = −AT
ji.

Nash equilibriums are defined as usual, i.e., (p1, . . . ,pN ) is a NE iff for all i ∈ [N ], pi ∈ BRi(p−i).

An important result, due to Bregman & Fokin – and refined by Cai & Daskalakis – shows that the

computation of a Nash equilibrium of a pairwise zero-sum GPM game can be done efficiently. For simplicity,

and for the purpose of this lecture on spot-checking games, we only study the simple case where G is a star

graph:

V = {0, 1, . . . , N}, E = {(0, i) : i ∈ [N ]}.

To simplify the notation in this case (G is a pairwise zero-sum, star-shaped polymatrix game), denote

by q the strategy played by the central player, and by pi the strategy of the ith player (i = 1, . . . , N). We

denote the matrix of the partial game between player 0 and player i by Ai (instead of A0i), so that the

payoffs write:

π0(p, q) =
∑
i

qTAipi

πi(p, q) = −qTAipi (∀i ∈ [N ]).

Remark 1. Some authors call G a Bayesian game, because we can interprete it as follows: Player 0 will

play a game against one of the other players (1 ≤ i ≤ n), which is chosen at random with given probabilities.

Player 0 has to choose her strategy before knowing her opponent, and tries to mazimize her expected payoff.

In this case, a NE can be found by solving a LP, which can be thought as a generalization of the minimax

theorem.
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Theorem 1 (Nash Equilibriums of a pairwise zero-sum, star-shaped GPM game). Consider the following

pair of primal/dual LPs:

max
q,u

∑
i∈[N ]

ui (1a)

s. t. ∀i ∈ [N ], AT
i q ≥ ui (1b)

q ∈ ∆n0
(1c)

min
p1,...,pN ,v

v (2a)

s. t.
∑
i∈[N ]

Aipi ≤ v (2b)

∀i ∈ [N ], pi ∈ ∆ni
, (2c)

where the inequalities (1b) and (2b) are componentwise, i.e. AT
i q ≥ ui should be understood as

∀j ∈ [ni], (AT
i q)j ≥ ui. The profile (q,p1, . . . ,pN ) is a NE of G if and only if these vectors are part

of a solution of (1)-(2).

Proof. By definition, (q,p1, . . . ,pN ) is a NE of G iff these vectors simultaneously solve the following N + 1

optimization problems:

max
q∈∆n0

∑
i

qTAipi (P0)

min
pi∈∆ni

qTAipi (∀i ∈ [N ]) (P1, . . . , PN )

Let (q,p1, . . . ,pN ) be a NE. Since pi is a solution of (Pi), we have qTAipi = minj∈[ni](A
T
i q)j at the

equilibrium. Substituting in Problem (P0) and introducing a variable ui such that minj∈[ni](A
T
i q)j ≥ ui

yields the LP (1). The problems (P1, . . . , PN ) are mutually independent, and hence they reduce to the single

problem

min
(p1,...,pN )∈∆n1×...×∆nN

∑
i

qTAipi. (P1 + . . .+ PN )

Now, we use that q solves Problem (P0), which implies
∑

i q
TAipi = maxj∈[n0](

∑
i Aipi)j . Substituting in

Problem (P1 + . . .+ PN ) and introducing the auxiliary variable v yields the LP (2).

Conversely, let (q,u) and (p1, . . . ,pN , v) be solutions of (1)-(2). Recall the complementary slack-

ness condition for inequality (1b): ∀j ∈ [ni],
(
(AT

i q)j = ui OR (pi)j = 0
)
. This implies ui =

minj∈[ni](A
T
i q)j = qTAipi, and hence pi is a solution of (Pi). Similarly, the complementary slackness

for (2b) says v = maxj∈[n0](
∑

i Aipi)j =
∑

i q
TAipi, and so q is a solution of Problem (P0).

Similarly to what we did for congestion games, we also define the concept of Stackelberg equilibrium.

Imagine that one of the player is a leader, who announces her strategy before playing. The other players

(the followers) then react to the leader with a best response. Formally:

Definition 3 (Stackelberg equilibrium). Let π be a N−player game in standard form, in which the

first player (indexed by 1) is the leader. Define the set of partial Nash strategy profiles for the followers:

Peq :=
{
p ∈ ∆1 × . . .×∆N : ∀i ̸= 1, pi ∈ BRi(p−i)

}
.

We say that the profile (p1, . . . ,pN ) is a Stackelberg equilibrium of G if it maximizes the leader’s

payoff, among the set of all profiles p ∈ Peq such that the followers’ strategies p−1 are in best response

relationship to each other’s action:
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p = (p1,p−1) is a Stackelberg equilibrium ⇐⇒ p ∈ argmax
(p1,p−1)∈Peq

π1(p1,p−1)

⇐⇒

{
(p1,p−1) ∈ Peq
∀(p′

1,p
′
−1) ∈ Peq, π1(p1,p−1) ≥ π1(p

′
1,p

′
−1)

Example: Consider the following (non-zero sum) bimatrix game:

L R

U 2, 1 4, 0

B 1, 0 3, 1

The strategy B for the row player is strictly dominated by U . So every NE for the row player puts all the

weight on U , and the best response of the column player is to choose L. This is the unique NE, with a payoff

of 2 for the row player.

Now, assume we have a Stackelberg game with the row player as leader. The row player could commit to the

strategy B, which gives the column player an incentive to play R, and yields a payoff of 3. But with mixed

strategies she can even do better. If a weight pU = 0.5 + ϵ with ϵ > 0 is assigned to strategy U , the column

player prefers R, so the payoff for the row player is 3.5− ϵ. The Stackelberg equilibrium is actually attained

for ϵ = 0. In this case, the column player could play indifferently L or R, but our definition of a Stackelberg

equilibrium indicates that she breaks the tie in favor of the leader, that is, the Stackelberg equilibrium is

pU = pB = 0.5, pL = 0, pR = 1, with a payoff of 3.5 for the row player.

#1

In the case of a pairwise zero-sum, star-shaped polymatrix game G, there is also a nice relationship

between Nash and Stackelberg equilibriums, when the leader corresponds to the node 0 at the center of the

star.

Theorem 2 (Stackelberg Equilibriums of a pairwise zero-sum, star-shaped GPM game). Let

(q,p1, . . . ,pN ) be a NE of G, and let (p′
1, . . . ,p

′
N ) ∈ ∆n1 × . . .×∆nN

be arbitrary best response strategies

to q:

∀i ∈ [N ], min
j∈[ni]

(AT
i q)j = qTAipi,

that is, the vector pi puts only weight on the minimal coordinates of AT
i q. Then, (q,p′

1, . . . ,p
′
N ) is a

Stackelberg equilibrium of the stackelberg game G with Player 0 as the leader. In particular, every Nash

equilibrium is also a Stackelberg equilibrium.

Conversely, if (q,p′
1, . . . ,p

′
N ) is a Stackelberg equilibrium (with Player 0 as the leader), then q is part

of a NE profile, i.e., there exists (p1, . . . ,pN ) ∈ ∆n1
× . . .×∆nN

such that (q,p1, . . . ,pN ) is a NE of G.

Proof. Let (q,p′
1, . . . ,p

′
N ) be as in the theorem. We have p′

i ∈ BRi(p
′
−i) for all i ≥ 1, so (q,p′

1, . . . ,p
′
N ) is

a partial Nash equilibrium in Peq, in the sense of Definition 3. We know from the previous theorem that q

solves the LP (1), so q maximizes
∑

i minj(A
T
i q)j over ∆n0

. Now, let (q̄, p̄1, . . . , p̄N ) be another profile in

Peq. We have minj∈[ni](A
T
i q̄)j = q̄TAip̄i for all i, and hence

π0(p̄, q̄) =
∑
i

min
j∈[ni]

(AT
i q̄)j ≤

∑
i

min
j∈[ni]

(AT
i q)j = π0(p

′, q).

This shows that (q,p′) is a Stackelberg equilibrium of G (with Player 0 as the leader).
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Conversely, if (q,p′) is a Stackelberg equilibrium of G, then q must maximize
∑

i minj(A
T
i q)j over ∆n0

,

and so it is a solution of the primal LP (1). By Theorem 1, any solution p of the dual LP (2) yields a Nash

equilibrium (q,p) of G. Such a solution always exists, because (2) is feasible and bounded.

We point out that this theorem is true only if the leader is the player at the center of the star (index 0).

For a counter example, see Exercise 6 of Worksheet #15.

Let us now turn to the case where the game is not zero sum. We keep the star pattern of the graph G,

and for all i we set Ai := A0i, Bi := −AT
i0, so that the payoff reads:

π0(p, q) =
∑
i

qTAipi

πi(p, q) = −qTBipi (∀i ∈ [N ]).

(3)

In this case, both Stackelberg and Nash equilibrium are hard to compute. However, the next theorem

shows that a Stackelberg equilibrium with pure follower strategies always exist:

Theorem 3 (Stackelberg equilibrium with pure follower strategies). Consider the star-shaped GPM game

G with payoffs described in Eq. (3) and Player 0 as leader. There exists a Stackelberg equilibrium profile

(q,p1, . . . ,pN ) in which every follower’s strategy pi is pure, that is, pi has a single nonzero component

(which must be 1).

Proof. First note that the existence part of this theorem is not evident (actually a Stackelberg profile of

mixed strategies exists for every polymatrix game, but we won’t prove this in the lecture). But we can write

an optimization problem with a supremum, such that every profile attaining the maximum is a Stackelberg

equilibrium:

sup
p,q

∑
i

qTAipi

s. t. ∀i ∈ [N ], pi minimizes qTBipi over ∆ni
(4)

q ∈ ∆n0

This kind of optimization problem is called a bilevel programming problem, because some secondary

variables (here, the pi) are constrained to solve an auxiliary optimization problem that depends on the

primary variable (here, q). Let (q,p) be a feasible profile for this problem (so we have (q,p) ∈ Peq). For all
i, define Ii(q) := argminj∈[ni](B

T
i q)j . The vector pi puts weight only on coordinates in Ii(q) (because pi is

a best response to q). Now choose a coordinate ji ∈ argmaxj∈Ii(q)(A
T
i q)j , and let p′

i be the unit vector with

a 1 on the jthi coordinate. By definition, (q,p′) is feasible for Problem (4), and
∑

i q
TAipi ≤

∑
i q

TAip
′
i.

This shows that we can restrain our search to pure strategies pi of the followers:

sup
j1,...,jN ,q

∑
i

(AT
i q)ji

s. t. ∀i ∈ [N ], ji ∈ [ni]

∀i ∈ [N ],∀j ∈ [ni], (BT
i q)j ≥ (BT

i q)ji (5)

q ∈ ∆n0
,

This problem is in fact the maximum of a finite number of LPs. Each LP is bounded (some might be

infeasible), which guarantees that the supremum is attained, and proves the existence of a Stackelberg

equilibrium (with pure strategies for the followers).
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As a byproduct of this proof, we obtain a method to compute a Stackelberg equilibrium of the game G,
based on a sequence of

∏N
i=1 ni linear programming problems.

Corollary 4. Consider the star-shaped graphical game G with payoffs described in Eq. (3) and Player 0

as leader. For all j = (j1, . . . , jN ) ∈ [n1] × . . . × [nN ], let u(j) ∈ R ∪ {−∞} denote the value of the

following LP:

max
q

∑
i

(AT
i q)ji

s. t. ∀i ∈ [N ],∀j ∈ [ni], (BT
i q)j ≥ (BT

i q)ji (Pj)

q ∈ ∆n0
,

If j∗ maximizes u(j) over [n1] × . . . × [nN ], then the profile (q(j∗),p(j∗)) is a Stackelberg equilibrium,

where q(j∗) is a solution of (Pj∗) and pi(j
∗) is the unit vector with a 1 on the j∗thi coordinate.
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